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Let H be a subgroup of F, the modular group. Let h be the number of orbits of
Q U{°°} under the action of H. In each orbit, the stabilizers are H-conjugate. Let U be
the mapping zt-»z + l. Each stabilizer is F-conjugate to (t/c) for some non-negative
integer c. The integer c is the cusp-width of the orbit. Let h0 be the number of orbits with
non-trivial stabilizer, i.e. with c>0 . The sequence (c( l ) , . . . , c(h0)) of non-zero cusp-
widths is the cusp-split of H. Clearly, ho<li, and hta= h-h0 is the number of orbits with
trivial stabilizer.

We associate with H the list (r, s, tu h0, h, c ( l ) , . . . , c(h0)), the specification of H. The
definitions of r, s, and tl are in [4]. If H has index u, not necessarily finite, and h«, = 0, then
ho= h >0 and

. (1)

When u is finite, some positive power of each F-conjugate of U belongs to H so that
^ = 0 . Further, r, s, and t1 are non-negative integers with t1 even and

u = 3r + 4s + 6(h o - t , -2 ) . (2)

Given a list (u, r, s, tu h0) satisfying (2) with u, ho>0, and f, even, there is a corresponding
subgroup of F, see [4] or [3].

Here we consider a list with ^ = 0 and ask whether it is the specification of a
subgroup of infinite index. We obtain a necessary and sufficient condition which is the
analogue of (1) and (2). In a further paper, we propose to consider cases with hoo>0.

We shall use the various D-diagrams of [4] and the L-diagrams of [6]. We remind the
reader that the red loops (edges) in [4] correspond to H,-loops (pairs of edges) in [6], and
that the green edges in [4] are the Pj-edges in [6], but are oppositely directed. It follows
that the L-diagrams can be obtained from the D,-diagrams. The existence results are
generalisations of the final theorems in [6].

We are indebted to the referee for the observation that our L-diagrams are graphs
underlying the triangular maps discussed in [1], [2]. Our results and proofs can be restated
in the language of maps.

To restrict attention to lists which satisfy known necessary conditions, we say that
(r, s, t,, h0, h, c ( l ) , . . . , c(h0)) is a specification provided

(i) each of r, s, t1; h0, h is a non-negative integer or is oo,
(ii) for each i, c(i) is a positive integer,
(iii) if ^ = 0, then Jio = °° (see (1)),
(iv) if hoo= 1 and f1 + fi0<t», then tj is even (see Theorem 4.4 of [4]),
(v) r + s + I1 + h0 + h=oo (see Lemma 4.2 of [4]).
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102 W. W. STOTHERS

In a specification, let h(k) be the number of values of i for which c

1. L-diagrams and subdiagrams. Given a pseudograph P, we write Y(P) (resp.
£(P)) for the set of vertices (resp. edges) of P. We use the same notation for an
L-diagram, referring to the underlying pseudograph. For Ve¥{P), v(V) denotes the
degree of the vertex V. Since we assume that ^ = 0, we always have u(V)<°°.

Let L be an L-diagram. A subdiagram E consists of a vertex set f (E )cT(L) , with
the edge set containing all edges of L with both ends in Y(E). We avoid contexts which
involve free edges. Observe that a subdiagram is determined by its vertex set, i.e. by a
subset of Y(L).

The edges round each vertex of a subdiagram E are ordered by the ordering in the
parent L-diagram. Hence E is a K-diagram. However, E need not be an L-diagram, e.g. if
Y(E) consists of 2 vertices which are joined by a single edge in the L-diagram but have no
loops.

Suppose that E is a subdiagram of L. Then the completion of E, denoted E, is the
subdiagram with "V(E) = 'V(E) U sd(E) where s&(E) is the set of vertices in L which are
adjacent to vertices of E. The boundary of E, denoted 38 (E), is the set of vertices of E
which are adjacent to vertices of L~E. Note that each vertex of 28 (E) is adjacent to a
vertex of s£(E), and conversely. The centre of E, *#(£), is Y(E) - 38(E), the set of vertices
of E all of whose L-neighbours belong to Y(E).

W

Figure 1.

Figure 1 shows an L-diagram. Here, as later, we omit the labelling of the edges at
each vertex since we draw our diagrams so that the ordering is anti-clockwise in each case.
We define subdiagrams E and F as follows:

{W,X,Y,Z},

Y{E)U{U},

E = L,
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THE MODULAR GROUP 103

We recall that, in an L-diagram L, ABC is a triangle if AB, BC, CA in &(L) are such
that BC follows AB at B, CA follows BC at C and AB follows CA at A. Note that a
triangle may involve one, two or three different vertices. If a triangle involves less than
three vertices, then at least one loop is involved (see Figure 5 of [6]).

Since an L-diagram has the triangle property, each edge is in precisely two triangles.
(We are ignoring free edges.) Suppose that £ is a subdiagram of L. A paired (resp.
unpaired, loose) edge of E is an edge in two (resp. one, no) triangles of L lying entirely in
E. Observe that an unpaired or loose edge must have both end points in 38 (E) since it
belongs to at least one triangle with an edge not in E. In Figure 1, XY is an unpaired edge of
E since it belongs to WXY and UXY, but U£ T(E). It is a paired edge of F. Also, XZ is
a loose edge of E and an unpaired edge of F.

In considering L-diagrams, it is convenient to avoid vertices which have loops. We
state results for diagrams which have no loops, but it should be clear that they can be
applied to regions of a general L-diagram where there are no loops.

LEMMA 1.1. (i) Suppose that L is an L-diagram without loops. If F is a non-empty
subdiagram of L and E = F, then any vertex P in 38 (E) is incident with at least two unpaired
edges of E.

(ii) Suppose, further, that Pe38(E) and that u(P)<6. Then P is on exactly two
unpaired edges of E.

Proof, (i) Observe that, by the definition of completion, Y(F) £ <g(E). Hence there is
a vertex Qe<ig(E) with QPe%(E) and, as P^^iE), a vertex XeY(L-E) with PXe
L-E. In one direction round P, let the sequence of edges be PA0 ( = PQ), PAU ..., PAn

( = PX). Suppose that PAi+i is not in %(E). Then the triangle PA^Aj belongs to E, but
PA;Ai+i does not. Hence PA{ is unpaired. Note that if-n as X£Y(E).

Similarly, in the other direction round P, there is a first unpaired edge PB, say. As
before, PB^PX.

If PA; = PB, then each must be PQ since PA{ lies between PQ and PX in one
direction, and PB between them in the other. (Neither is PX.) Further, as Q €<#(£), PQ
is paired by the remarks following the definition of paired edge. The contradiction shows
that PAt j= PB, so that P lies on at least two unpaired edges.

(ii) Now suppose that u(P)«6. As in (i), there are unpaired edges PA and PB
closest to PQ on either side. If PR is in the arc AQB round P, then PR is paired since
PA, PB are nearest. Also, each of PA, PB is in one triangle with an edge within this arc.

Suppose that C e Y(E) with PC not paired in E. Then PC is not adjacent to PA at P,
or PAC is a triangle and PA is paired. Similarly, PC is not adjacent to PB at P. Hence
there are edges PX between PA and PC, and PY between PB and PC. Then we have
distinct edges PQ, PA, PX, PC, PY, PB at P. As u(P)<6, these are all the edges at P. As
PA and PB are unpaired, neither X nor Y is in V(E), so that PC is a loose edge. Since
we have accounted for all the edges at P, we see that P is on exactly two unpaired edges.
Note that we have not proved that P does lie on a loose edge, even when u(P)^6.

This proof has a useful consequence. Let E = F, for F a subdiagram of a loop-free
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104 W. W. STOTHERS

diagram L. When u(P)<6 for PeY{E), the two unpaired edges at P divide the other
edges into two sectors. In one the edges belong to E and are paired (the sector including
Q in the above notation). In the other, they are loose or do not belong to E. Thus, if
ReY(E)-Y(E) has u(R)<6, there are two possibilities.

(a) Every L-edge incident with R belongs to E (e.g. vertex U in Figure 1). Suppose
that the edges round R are, in order, RA0,..., RAn_,. Then Aj-jA; is unpaired in E and
each Af belongs to S8(E). Since A^^Ai is not a loop, Aj_, j= Af. We may have Ai_, = Ai+1

for some values of i. If we also have AjA^ = AtAi+1, then this edge preceeds and follows
RAj in the ordering round A;, so that v(A;) = 2. Since Ai is joined to a vertex in %{E), we
get a contradiction. Thus we have AiA^x j= AjAi+1. By the remarks above, the edges in
the sector opposite AtR between AjA;-, and AjAj+i all belong to E.

(b) There is an L-edge RA with A£ Y(E). Then R e 3§(E). Suppose that R belongs
to u triangles in E. Each such triangle must have one edge in E. Then these triangles must
involve at least u + 1 edges in E - E . (Otherwise they involve u edges, each in two of the
triangles so that they are adjacent in pairs and clearly exhaust the edges round R in the
L-diagram. Then we would have case (a), contradicting the assumption that A<£Y(E).)

LEMMA 1.2. In the situation of Lemma 1.1, assume that |28(E)| = q>0 , that there are
p edges joining E to L-E and that u(P)<6 for PeS8(E). Then |S8(E)|sp-q.

Proof. Let J be the subdiagram with Y_(J) = ^(E), i.e. the vertices of J are those of E
together with those of type (a). Then J = E since the vertices of J—E are joined only to
vertices of E so that the vertices added in the completion all belong to E. We note that
the completion of J involves no vertices of type (a), so that Y(J)-Y{]) = %{]).

Suppose that E-E has k vertices of type (a), and that the sum of their degrees is m.
Then, clearly, m > k. Also 58(J) = q - k and the number of edges from J to L - / is p - m.
(For the latter, recall that each vertex of type (a) in E is joined only to vertices of E and
hence of J.)

By Lemma l.l(ii), J has q-k unpaired edges. Suppose that these belong to triangles
involving n vertices of J — J. Since each vertex in 38 (J) is of type (b), these triangles
involve at least q-k + n of the edges leaving J (by the analysis of type (b) vertices). Each
of the remaining edges leaving J may give a "new" vertex of J. Then, since m s fc, and
J = E,

|»(E)| = |»(J)| = (p-m)-(q-fc + n) + n
= (p-q) + (k-m)
< p - q .

2. The generalised genus formula. Formula (2) is known as the genus formula since
it can be used to compute \tu the genus of the Riemann surface corresponding to the
subgroup. Note that tx must be even for a subgroup of finite index and compare (iv) in the
introductory remarks.

Now suppose that H is a subgroup of infinite index with hm = 0. Since the D,-diagram
for H is connected, see [4], we can construct an increasing sequence of subpseudographs
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THE MODULAR GROUP 105

(Sj: i = 1, 2 , . . . ) in the following way. Let St be the green polygon containing the origin
and all red edges joining vertices of this polygon. Once St is defined, Si+1 is obtained by
adding all green polygons linked to Sf by red edges, and all red edges joining vertices of
the new structure. Observe that this is analogous to the successive completion of the
L-diagram since green polygons and red edges in the Di-diagram become vertices and the
edges in the L-diagram.

Assume now that, in addition, H has ho — h(6) finite, i.e. that there are only finitely
many green polygons with more than six sides. Then there is an integer n such that Sn

includes all of these. By considering $ for i s= n, we may assume that the boundary
consists of "small" (i.e. at most six-sided) polygons.

Assume, further, that r, s, and h(\) are finite, and that n has been chosen so that
there are no red, green or (implied) blue loops outside Sn. This simplifies the correspond-
ing part of the L-diagram.

Let Ej be the subdiagram (of the L-diagram for H) which corresponds to Sf. Then
Ei+1 = £ ,

For the moment, we also assume that, for i>n, L — Et has no loops. For i>n, we
construct a finite L-diagram L; as follows. We delete all loose edges of E{. By Lemma 1.1,
the unpaired edges of the remaining pseudograph form a subpseudograph which is regular
of degree two, i.e. which consists of disjoint cycles. We suppose the entire pseudograph
redrawn so that each of these cycles is a convex polygon with all other vertices and edges
outside the polygons. Let k(i) be the number of cycles. We add new vertices Xlt..., Xk(0,
with Xj inside the yth polygon, and join each vertex of the /th polygon to X,. We can
assume that the (redrawn) pseudograph Ef has the edges round each vertex ordered in the
usual way. Now, each vertex in 28 (Et) is outside En and hence of degree at most six in Et.
By the remark after Lemma 1.1, the deletion of any loose edges at such a vertex leaves (in
Ef) only paired edges, with both natural neighbours in Ef, and the two unpaired, each with
one of its neighbours (one of the paired edges). We order the edges in Lf to maintain the
anticlockwise convention at each vertex, including the Xy. Then it is clear that Lf is a
K-diagram with the triangle property. To see that it is an L- diagram, we must check that
it is connected. Since E, has one vertex, it is connected. Now, E; £ E\_u SO that each Ef is
connected by induction on i. For i > n + l, the region beyond Et is free of loops. Then
Lemma 1.1 applies, so that each vertex of £ ( - £ _ ! is joined to a vertex of Ei_1 by an
unpaired edge. Hence, in this region, the removal of loose edges does not disconnect the
diagram. The new vertices, the X,, are each joined to a vertex of Et. Thus Lf is connected.

Following [2], we define a T2 for the D2-diagram for H. We use the St. From Sj we
take all but one of the green edges and no red edges. Suppose that we have dealt with Sf.
We expand the spanning tree to Sj+1 by taking one red edge to each new polygon and all
but one of the green edges from each. This subpseudograph spans Si+1. In the limit, we
get a T2 for the D2-diagram. We fix this and choose a graph G of the type considered in
[4].

Consider now the corresponding subdiagrams £;. A red edge from a polygon of_Sf to
one in Si+l — S; corresponds to an edge from ^(E;) to V(Ei+l)-T(Ei). Since Ei+1 = Eb we
have y(E;) = (€(Ei+1), so that such an edge is paired in Ej+1.
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Let Ht be the subgroup of T defined by the L-diagram L;. A T2 for the D2-diagram
for H, is obtained from the spanning tree for S; described above. We add one red edge to
each of the polygons corresponding to the Xjt and all but one of the green edges of these
polygons. This gives a spanning tree and thus a T2.

For the next lemma, we require some notation: for each i>n,

M(i) = \<€(Ei)\,
N(i) = £ v(P), where the sum is over P e

p(i) = number of edges joining Ef to L — Eh

n(i) = number of triangles in E{,
n'(i) = number of triangles in Lj,
t{i) = number of red edges in Sf - T2 which do not correspond to directed edges of G.

Since G is chosen once for all, and since Sf =>S,- for is*/, t(i) is non-decreasing. Recall
from [2] that the edges enumerated by the t(i) correspond to hyperbolic generators in the
presentation of H derived from the chosen T2 and G. If rt is finite, then t(i) = tt when i is
large enough. If t, is infinite, then t(i) tends to infinity with i.

Observe that, in the construction of Lj from Ef, only loose edges are deleted, so no
triangles are lost. Also, Et has q(i) unpaired edges (Lemma 1.1), so that q(i) new triangles
are created. Hence,

LEMMA 2.1. For i>n + l,

N(i) + 2q(i) - p(i) > 3r + 4s + 6(M(i) + t(i) -1).

Proof. At present we are assuming that r + s + h(l) is finite, that ho—h(6) is finite,
and that the L-diagram for H has finitely many loops. We have chosen n so that the
D-diagram (L-diagram) for H has no loops outside Sn (£„). Further, in the L-diagram,
u(P)<6 whenever P is outside En. From these, it follows that the D-diagram for H{ has r
red loops and s blue loops for i > n.

From [6], the (finite) index of Hj is equal to the sum of the degrees of the vertices of
Lj. The vertices in ^(Ej) have total degree N(i). There are q{i) vertices in S8(JEj), and each
has degree at most six in the L-diagram for H and hence in each E(. The L-edges in Lf

contribute at most 6q(i) - p(i) to the total degree of these vertices in Lj. The new edges (to
the Xj) contribute q(i) to their degree. The Xj have total degree q(i) by the construction.
Hence Ht has index less than or equal to N(i) + q(i)-p(i).

The number of vertices in L; is M(i) + q(i) + k(i) (from ^(Ej), 08(E;-) and from the
Xj). This is the parabolic class number, the h0, of Hj.

Using the T2 for ffj constructed above and the relationship between D- and
L-diagrams, there are at least n(i) + t(i) + q(i)- k(i) red edges not in the T2. Now, Lj has
n'{i) triangles and is finite, so the corresponding G has n'{i) — l directed edges. Thus, Ht

has at least
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hyperbolic generators. Using the genus formula (2) for the finite index subgroup Hh we
have

q(i) + t(i) -1 ) .

The result follows at once.

Define G(i) (for i>n) by

G(i) = N(i) - 6M(i) - 3r - 4s - 6((0 + 6. (3)

COROLLARY 2.2. For i>n + l, G(i)>0.

Proof. We note that, in our new notation, Lemma 1.2 can be rewritten

Suppose that, for some i>n + l, G(i)<0. Then, from the lemma,

G(i) = p(0
so that

Now, t(i) is non-decreasing. As all polygons outside Sn have at most six sides,
N(i)-6M(i) is non-increasing. Also, when i>n,r and s are fixed. Hence G(i) is
non-increasing for i > n. Thus, on our hypothesis that G(i) is once negative, it is negative
thereafter. Then q(i) is strictly decreasing. As q(i) is, by definition, a non-negative integer,
we have a contradiction. Hence G(i)>0 for i > n + l.

We now describe how a diagram may be altered to allow us to apply the corollary in
more general circumstances. We must be able to remove all but finitely many red, blue
and green loops from a D-diagram, and to remove loops outside a finite region of an
L-diagram. We retain the assumption that the D-diagram under discussion has finitely
many green polygons with more than six sides. We may also assume that we operate
outside Sn or En for a suitably chosen n.

For the removal of blue and red loops, see the sketches in [5]. These do not have the
green edges, but, since green edges are determined by red and blue edges, they can be
added to justify the assertions which follow.

In a diagram with more than one vertex, a blue loop occurs at a vertex of a green
polygon with at least two sides. The removal reduces the size of this polygon by one, but
does not affect any other green polygon. It produces a new red loop.

In an infinite diagram, indeed in a diagram with more than six vertices, a blue loop is at
a vertex joined to a blue triangle and a triangle has at most two such vertices attached.
This, like some assertions below concerning the context of coloured loops, follows from
the fact that the red and blue edges connect a diagram. With an infinite diagram, the
removal of all of the blue loops, even if there are infinitely many, leaves an infinite
diagram. Further, the removal can only.reduce the sizes of green polygons, so the new

https://doi.org/10.1017/S0017089500004523 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004523


108 W. W. STOTHERS

diagram has h^ = 0, and ho = °°. The value of ho-h(6) cannot increase. Now assume that
this has been done.

In an infinite diagram, indeed in a diagram with more than three vertices, a red loop
occurs at a vertex of a blue triangle, and each triangle has at most two red loops attached.
The removal of red loops is achieved in one of two ways, depending on whether the
associated triangle has one or two red loops. In the present context, we can assume that
we operate outside Sn so that each red loop is at a vertex of a green polygon with at most
six sides. A sketch shows that a triangle with two red loops is joined to another triangle
with no red loops (or we should have a heptagon at least) and without a red edge joining
the remaining vertices (or we have a six-vertex diagram). Under these circumstances, the
procedure in [5] cannot lead to a new red loop, nor can the presence of a triangle with two
loops affect the removal of a triangle with a single loop.

A triangle with a single red loop does not have a red edge joining the other vertices,
except in a three-vertex diagram. It follows that the removal of such a loop does not
produce a further loop. A sketch shows that a chain of six or more triangles each with a
red loop must involve a green polygon with more than six sides. Such a feature cannot
occur outside Sn. A finite chain of triangles can be removed in one step in the same way as
a single triangle.

Either of the procedures in [5] affects at most two green polygons. Each affected
polygon is reduced in size, but cannot disappear. We can remove all red loops in a single
operation. As no green polygons are lost, we are left with an infinite diagram. The new
diagram has ^ , = 0 and Jio

 = o°- Since we operated outside Sn, ho-h(6) is unchanged.
Suppose that the D-diagram has no red or blue loops outside Sn. Apart from a

one-vertex diagram, a green loop must occur at a vertex V of a blue triangle with a red
edge joining V to another vertex of the triangle. For connectedness, the third vertex of
this triangle is joined to a further blue triangle. The other vertices of the triangle including
V belong to the same green polygon, see Figure 2. We refer to this as the polygon associated
with the green loop. Provided there are no red loops involved, the second blue triangle
has distinct red edges at each vertex (or we would have a six-vertex diagram).

V
• • • • • • • ^

We can remove both triangles and repair the broken red edges much as for a triangle
with one red loop. This removes the green loop, reduces the size of the associated green
polygon by four and that of a further green polygon by one. The last polygon is that
attached to the associated polygon. We see that the associated polygon has at least five
sides. Outside Sn, such a polygon is a pentagon or a hexagon. In the latter case, the
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removal leaves a digon. In the former, we get a new green loop. Figure 2 shows that this
occurs when the original diagram D was the result of composition (see [4]) of an infinite
diagram Do with a six-vertex diagram C. This C has two blue triangles, two red edges and
two red loops and one green loop; there is only one such diagram. The composition must
occur at a triangle of Do with two red loops. Figure 3 confirms that such a triangle has its
vertices in a green polygon with at least six sides (as Do is infinite). Since composition does
not alter the sizes of green polygons, Do has no large polygons outside a finite region S.
Thus the two loop triangle is in a hexagon or lies within S. The case of a hexagon arises
from the composition of an infinite diagram Dx with the six-vertex diagram Cu where Q
has two blue triangles and four red loops. In such a case, we can undo this composition to
get a triangle with two red loops. Since the original D was connected, a finite sequence of
decompositions leads into Sn. The entire finite chain of hexagons begins at a triangle in Sn

and ends in a green pentagon associated with a green loop. Since each triangle in Sn is the
start of at most one such chain, and there are finitely many triangles in Sn, there are
finitely many chains. Now, since each chain has finite length, we may as well increase n to
ensure that all chains lie in Sn.

Figure 3.

We may now assume that each green loop outside Sn is associated with a hexagon.
There may be infinitely many such loops, each associated with a different hexagon. The
removal of all of them leaves an infinite diagram with hoo = 0, ho = oo and ho-h(6)
unchanged.

Now suppose that we have a D-diagram with no loops outside Sn. The L-diagram
may have loops outside £„. Recall (from [4]) that a loop in an L-diagram corresponds to a
red loop or a red edge which joins two vertices in a single green polygon. Outside En, all
are of the latter type.

In [4], we described a procedure which removes a red edge (a cut). In the case of a red
edge corresponding to a loop in the L-diagram, Lemma 3.2 or Lemma 3.7 of [4] applies.
The result of a cut is a diagram or a pair of diagrams with two green polygons in place of
the original one involving the red edge. As the original had at most six vertices, one of the
new ones has at most three. A vertex with a red loop which has a green loop is a
one-vertex diagram (the red and green edges connect a diagram) and so has a blue loop
also. A cut does not affect blue edges and so cannot produce a blue loop. Since we are

https://doi.org/10.1017/S0017089500004523 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004523


110 W. W. STOTHERS

outside Sn, the split cannot give a green loop, i.e. both new polygons have at least two
vertices. A green digon with a red loop at one vertex occurs only in a three-vertex
diagram since the green digon of this type forces a red edge between two vertices of a
triangle with a red loop. -This diagram has a green loop. This was not affected by the cut
since affected polygons hav£ a red loop. Again since we are outside Sn, the split cannot
give a digon. Thus the smallest green polygon which can arise has three vertices. Since we
began with at most six vertices, we must have had a green hexagon and this must yield two
green triangles, each with a red loop. Since there were no other red loops in the vicinity,
such a triangle must be the result of the composition of a diagram (perhaps null) with the
diagram consisting of a blue triangle with three red loops. Now consider the reversal of
the cut, i.e. the join (see [4]) of the red loops of the triangles. This gives a green hexagon
of the type we met when dealing with green loops.

Much as in the case of green loops, we can have chains of such hexagons, but now
these can be of two types.

(c) A chain is finite. Then both ends involve polygons with at least seven vertices, i.e.
within Sn. Since Sn is finite, there can be only finitely many such chains. As each is of finite
length, we can increase n to ensure that the entire chains all lie in Sn.

(d) A chain extends infinitely in one direction. We refer to such a chain as a 6-chain.
Each 6-chain terminates in Sn, so there are finitely many. Undoing the composition where
a 6-chain enters Sn, we are left with a 6-chain ending in two red loops, C(6), and another
diagram D. The latter may be infinite or finite. We treat these separately, but first we
observe that, in C(6), each red edge belongs either to the T2 or to the G (once T2 has
been chosen, there is no choice for the corresponding G).

(i) D is infinite. Then Corollary 3.10(ii) of [4] applies, showing that the removal of
each copy of C(6) reduces tx by one, the relevant edge being inside Sn. Thus t(i) is
reduced by one for i>n. Since only hexagons are removed, N{i) — 6M(i) is not changed.
The process does not alter s but increases r by two. Thus the G(i) for i>n are
unchanged. The removal of the last of the finitely many 6-chains may lead to the following
case.

(ii) D is finite. Now Corollary 3.10(i) of [4] applies. By the remarks in (i) regarding
red edges of a 6-chain, t(i) = t(n) for i > n, and t(n) is equal to the (t of the original
diagram and of D. Applying (2) to the subgroup corresponding to D, we obtain

Hence G(n) = 0. Since t(i) = t(n) (i>n) and all green polygons outside Sn have six sides,
G(i') = 0 for i>n.

LEMMA 2.3. Let H be a subgroup of infinite index in T with hm = 0 and
+ h(l) + (ho-h(6)) finite. Then *1 + h(5) is finite.

Proof. Let D be the D-diagram for H. By the hypotheses, D has finitely many loops
and finitely many green polygons with more than six vertices.
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Suppose first that D consists of the composition of a finite diagram Do with a
(necessarily finite) number of 6-chains. The remarks under (d) above show that the red
edges enumerated by t1 and all large green polygons lie in Do. Since Do is finite, t1 and
h(5) are finite, as required.

Now suppose that the removal of all 6-chains leaves an infinite diagram D*. As in
(d)(i), the G(i) for D* are equal to those for D when i > n. Also, ft has been decreased by
a finite quantity (viz. the number of chains removed) and r increased by twice this amount.
Finally, s and h(5) are unchanged. Let L be the L-diagram corresponding to D*. Since we
have removed all composition chains, or taken them inside Sn (see (a)-(d) above), L has
no loops outside fv All vertices outside En have degree at most six, so that

is non-increasing (see the proof of Corollary 2.2). Suppose that e(i) decreases infinitely
often. Then, for i sufficiently large, D* has G(i) negative, contradicting Corollary 2.2.
Hence e(i) is constant for i > m. It follows that Em includes all vertices of degree less than
six and all edges enumerated by tx. Thus D*, and hence D, has ft + h(5) finite.

THEOREM 2.4. Suppose that H is a subgroup of infinite index in T with ha3 = 0 and
ho-h(6) finite. Then r + s + ^ + 71(5) is finite and

oo

X (c(y)-6)>3r + 4s + 6l 1 -6 . (4)

(Note that, since h(5) is finite, there is an integer m with c(/) = 6 for ;>m. Thus the
sum on the left of (4) is over a finite range.)

Proof. We begin by noting that the procedures for removing loops from a D-diagram
cannot increase ho — h(6) and do not affect tt.

Suppose that r + s + ho — h(6) is finite but that h(l) is infinite. Since ho-h{6) is finite,
all but finitely many of the green loops are associated with green pentagons or hexagons.
By the earlier analysis of green loops, only finitely many of them are associated with
pentagons. Of the rest, only a finite number lie in Sn the region containing all red and blue
loops and all the large green polygons. If we remove the infinite collection associated with
hexagons and outside Sn, then we have a diagram with r + s+ h(l) finite but h(2) and
hence h{5) infinite. This contradicts Lemma 2.3.

Now suppose that s + ho — h(6) is finite but that r + h(l) is infinite. By removing all
red loops outside a region S containing all blue loops and all large green polygons, we
obtain a diagram with r + s + ho — h(6) finite but with h(5) infinite (each red loop outside S
is in a green polygon with at most six sides, its removal leaves a polygon with at most five
sides). For the new diagram, either h(l) is finite, contradicting Lemma 2.3, or h(l) is
infinite, when we get a contradiction as in the previous paragraph.

Finally, suppose that s is infinite. The removal of all blue loops gives a diagram with
ho — h(6) still finite, but with r infinite (the removal of a blue loop leaves a red loop). Then
we get a contradiction as in the previous paragraph.
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It follows that we must have r + s + h(l) + h0-h(6) finite. Then Lemma 2.3 shows
that ti + h(5) is finite.

To show that (4) holds, we consider first the case where the removal of all 6-chains
leaves a finite diagram. By the analysis under (d)(i), (ii) above, there is an integer n such
that the diagram has G(i) = 0 and t(i) = ra for i > n. As h(5) is finite, there is an integer m
such that Sm contains all green polygons with fewer than five sides. Let k = max{m, n +1}.
Then all green polygons outside Sk have six sides. Thus

Also, G(k) = 0. The result (4) follows readily.
Now suppose that the removal of 6-chains leaves an infinite diagram. As in (d)(i), the

removal does not affect G(i) for large i. After the removal of these chains, we can choose
n so that Sn (for the new diagram) contains all loops and all green polygons with other
than six sides, and all finite composition chains. The corresponding L-diagram has no
loops outside En. For i > n,

oo

G(0-6M(i) = JV(n)-6M(n)= £ (c(/)-6).

j=i

Then (4) follows from Corollary 2.2.

We observe that formulae (1) and (2) can be rewritten as
K
£ (c(/)-6) = 3r + 4s + 6l1-12. (5)

i=i

These formulae are frequently used to calculate the genus (g = ̂ 0 of the Riemann surface
corresponding to the subgroup. We refer to (2) or (5), and their infinite analogue (4) as
the genus formulae. The discrepancy of six on the right hand sides of (4) and (5) may be
interpreted as a consequence of the fact that a finite index subgroup has hQ—l parabolic
generators and one of infinite index has h0 (in a "standard" presentation, see [4]).

In Theorem 2.4, our hypotheses were sufficient to ensure that the sum in (4) was
finite. We say that (4) is satisfied whenever the left hand side is infinite. Note that, when
this happens, there are infinitely many of the c(j) greater than six.

3. Existence results. To prove a converse of Theorem 2.4, we describe how suitable
L-diagrams can be constructed. We are now free to avoid unpleasant features, e.g. loops
and multiple edges, whenever possible. In fact we will construct basic L-diagrams and
explain how the corresponding D-diagrams may be altered to introduce red, blue and
green loops, etc.

Recall that, if we have an L-diagram with no loops, then the green polygon
corresponding to each vertex involves just one vertex of each blue triangle that it meets.
Let L be such an L-diagram, and let D be the corresponding D-diagram.
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If L has adjacent vertices of degrees 4 and 5, then D has a pair of triangles joined by
a red edge with one end in a 4-gon and the other in a 5-gon. We can add a new (blue)
triangle in the middle of this red edge. The remaining vertex of the new triangle has a red
loop so that we have a new D-diagram. The orientation of the triangle can be chosen to
give two green 6-gons; one will have a red loop at one vertex.

If, instead, L has adjacent vertices of degrees 3 and 5, then we can add a triangle to
get a D-diagram with a 6-gon and a 5-gon with a red loop at one vertex. We can then add
a further vertex with a blue loop in place of the red loop. We obtain two 6-gons, one with
a blue loop at one vertex.

Finally suppose that L has adjacent vertices of degree 2 and 5. Adding a triangle as
before, we get a 6-gon and a 4-gon with a red loop at one vertex. We replace the red loop
with a red edge leading to a further blue triangle, this one having a red edge joining the
other vertices. We then have two 6-gons and a green loop (see Figure 2).

These three constructions are simply the reversals of the procedures for removing
loops discussed earlier.

Our existence theorem is a generalisation of Theorem 2.2 of [6]. In the proof of that
result, we constructed an L-diagram with its vertices lying at a point P and on circles
C(k), k = 1, 2 , . . . , of radius k round P. Here we sometimes need to add vertices between
C(k) and C(k +1) to form the boundary of Ek, the fcth stage of the construction. See Figures
4 and 5. For the moment, we restrict ourselves to the basic construction of [6].

Let (c(j'): j = 1, 2 , . . . ) be a sequence of integers with c(j) s 6. The vertex set of £ ,
consists of P and of c(l) points on C(l). The edge set consists of the arcs of C(l) and
edges joining P to each of the points on C(l).

Suppose that we have constructed Ef such that

(i) vertices inside C(i) have degrees c ( l ) , . . . , c(nj),
(ii) vertices on C(i) are numbered nt +1,..., nt + mh vertex k having degree a(k) = 3

or 4.

If X and Y are adjacent vertices on C(i), we add vertex v(X, Y) on C(i +1) between PX
and PY. The new vertex is joined to X and to Y. Let Z be the other vertex on C(i)
adjacent to Y.We join Ytou(X, Y), to v{Y,Z) and to c(k)-a{k)-2 vertices on C(i + 1)
between these. This gives Ei+1 with the properties (i) and (ii).

LEMMA 3.1. In the above notation, the boundary of Et has mf vertices of degree 4 and

I (c(j)- 6) + 6 of degree 3.

A proof by induction is straight-forward. We observe that if c(j) = 6 for large / then
the number of boundary vertices of degree 3 will remain constant after some point.

We now explain how we can relax the condition that each c(j) be greater than or
equal to six.

We can allow some c(j) equal to five. In the above construction, we can take a
boundary vertex Y of degree 3 and treat it like one of degree 4, i.e. add no vertices
between u(X, Y) and v(Y, Z).
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To introduce a vertex of degree 4 inside Ei+1 (so it will be a vertex of this degree in Ey

for j > i), we begin with a vertex B of degree 3 on the boundary of E;. Let A and C be the
vertices adjacent to B on the boundary. Instead of v(A, B) and v(B, C), we add a single
vertex X on C(i +1). X is joined to A, B and C and to its neighbours on C(i +1). To the
left and right of B we proceed as usual. On the boundary of Ej+1, the vertex X has degree
5. In the continuation, we must treat X like B, i.e. we join it to just one new vertex. Thus
each subsequent E, will have a vertex of degree 5. Adding more than one vertex of degree
4 requires care as we see in the next paragraph.

Suppose that Ef has two boundary vertices of degree 5 separated by / of degree 4.
Figure 4 shows the situation with U and V of degree 5 and I = 1. It is quite easy to see
that, in general, Ei+1 will have two vertices of degree 5 just J - l apart. Subsequent
continuation will lead to adjacent vertices of degree 5, e.g. B and C in Figure 4. This cannot
be continued in the usual way without introducing a vertex of degree 6. The figure shows
how we continue to Ei+2. The new vertex Y is in Ei+2 but not on its boundary. The
boundary vertices X and Z have degree 5, so that this technique must be employed at
each stage.

Figure 4.

Rather than have a large number of figures, we now give a verbal description of the
construction; we use this type of description later. Given successive vertices A,B,C,F
with u(A) = u(F) = 4, v(B)=v{C) = 5, add vertices X,Y,Z with edges AY, BY,
CY, FY, AX, FZ, XY, YZ. Note that the new vertices are listed in the same order as they
are to appear, and the new edges are to be added outwards from Ef. This gives the graph
underlying Ej+1. We get the subdiagram (of an L-diagram) by numbering the edges
anti-clockwise at each vertex.
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It is an easy exercise in the continuation techniques to show that a diagram with three
vertices of degree 5 separated only by vertices of degree 4 yields a finite diagram on
continuation. We therefore avoid creating such a situation.

It is also easy to see that, if the boundary of Et has an adjacent pair of vertices of
degree 5 separated by vertices of degree 4 from a vertex of degree 3, then, for some k,
Ei+k has successive vertices A, B, C with v(A) = v(B) = 5, v(C) = 3. This stage is shown in
Figure 5, together with the continuation. Once again, the vertex Y does not lie on the new
boundary. The new boundary has just one vertex of degree 5, viz. X.

Figure 5.

Finally, unless a further vertex of degree 5 intervenes, a pair of boundary vertices of
degrees 3 and 5 remain a constant distance apart in each further stage. Thus a diagram
with alternating vertices of these degrees separated by vertices of degree 4 leads to an
infinite diagram. In fact, a calculation like that for Lemma 3.1 shows that the number of
new vertices at each stage is fixed.

For later purposes, we may wish to amend Ex to obtain a more convenient disposition
of the vertices of degree 3. Suppose that Et has vertices B and C of degree 3 separated by
k of degree 4. Between C(i) and C(i +1), we add vertices of the type required for the
usual continuation "Ej+1" in the arc BC above the k vertices. A sketch shows that this
new boundary has B and C of degree 4 and two vertices of degree 3 separated by fc - 1 of
degree 4. See the portion of Figure 6 up to the line WY. Still remaining within C(i +1), we
can repeat this process until we have an adjacent pair of vertices of degree 3. We refer to
such a pair as a special pair. In Figure 6, two stages are needed, since the original Et had
k = 2. The new boundary is . . . AWXYZF..., with X, Y as the special pair.

Suppose now that we have a boundary with four vertices of degree 3 separated by
kj, fc2 and k3 of degree 4. If fcj > fc3, then we can proceed as in the previous paragraph to
decrease the distance between the last pair to fc3-l. Note that kt is not affected. By
repeating the process a suitable number of times, we get a boundary with kr = fc3. We can
now apply the process to the central pair, increasing both kj and fc3 by one each time to get
a special pair with further vertices of degree 3 an equal distance on each side. Of course, an
analogous process can be applied if fct < fc3.
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x r

Figure 6.

Suppose that we have a specification with h^ = 0 and ho-h(6) and
finite, and such that (4) of Theorem 2.4 is satisfied. We re-order the sequence (c(i)) so
that those greater than six occupy the initial places, and there follow K sixes (a specific K
could be determined from the constructions which follow).

We construct the first few Et as usual, proceeding until all vertices of degree greater
than six have been included, and the boundary consists of vertices which will have degree
six in the full diagram. By Lemma 3.1, the boundary of Et will have £ (c(i)-6) + 6

c(i)>6

vertices of degree 3, the rest being of degree 4. By (4), we will have a vertex of degree 3
for each i with c(i) = 5, two for each with c(i) = 4, etc., and at least 3r + 4s + 6r, others.

We orientate the boundary of E{ for later convenience, and assume that the vertices
of degree 3 have been suitably arranged.

(a) To obtain a vertex of degree 5, we take one of degree 3 on the boundary and
treat it as described above.

(b) To obtain a vertex of degree 4, we begin with a special pair. Suppose that the pair
is B, C, and that they are between A and* F, the latter being of degree 4. We add a new
vertex X and edges BX, CX and FX. The new boundary includes A, B, X and F, with
degrees 4, 4, 3 and 5 respectively.

(c) To obtain a vertex of degree 3, we take a vertex of degree 3 followed by a special
pair. With the special pair in A, B, C, F as in (b), we add the edge BF. In the new graph,
the degrees of B and F are 4 and 5 respectively, C is no longer on the boundary. We now
have vertices of degree 3 and 5 in this order, not necessarily adjacent.

(d) To obtain a vertex of degree 2, we take a vertex of degree 3, a special pair and
another of order 3. As above, we may assume that the vertices of degree 3 are equidistant
from the special pair. If the pair are B and C, we add a new vertex X and edges BX, XC
and BC. The boundary vertices are unchanged, but B and C now have degree 5. If we
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continue the diagram between the remaining vertices of degree 3, then we obtain a
boundary with vertices of degree 4 in the new part.

(e) To obtain a green loop, we can use adjacent vertices of degrees 2 and 5. We
take a vertex of degree 3, followed by four others arranged as for case (d). Firstly, we
assume that the four occur in the sequence A l 7 . . . , A6, with Al7 A3, A4 and A6 of
degree 3 and A2, A5 of degree 4. We add a new vertex X and edges
A3X, A4X, A3A4, A3A5, A2A5, A2A6, A^A6. The new boundary has adjacent vertices
A,, A6 of degrees 4, 5 respectively. With the first vertex of degree 3, we have a boundary
pair of degree 3 and 5 in order, as in (c). This can be generalised to any of the situations in
(d).

(f) To obtain a red loop, we use adjacent vertices of degrees 4 and 5. We take a
vertex of degree 3 followed by a special pair B, C. We treat B as if it were of degree 4,
and C as if it were of degree 5 in later construction. Thus, in effect, we have a pair of
degrees 3, 5.

(g) To obtain a blue loop, we require adjacent vertices of degree 3 and 5. As in (e),
we consider first adjacent vertices Ax,..., A6. We add new vertices X and Y, and edges
A3AS, A3X, A5X, A2Y, AXY, XY, XA6. The new boundary has vertices A1( Y, X and A6,
of degrees 4, 3, 5 and 4. Once again, this is readily generalised to all arrangements in (d).

(h) To obtain the desired value of tl requires a more elaborate construction. Above,
we assumed that an L-diagram was being built outwards from the boundary at each stage.
By inverting with respect to the boundary at the ith stage, we can easily see that we could
equally well arrange that the subsequent stages all lie within a polygon.

Suppose that we have six vertices of degree 3 on the boundary. We may assume that
these are A , , . . . , A6, and that Au A2 and A5, A6 are special pairs, and that all
intermediate vertices have degree 4. We add an edge A2AS, and treat A2 and A5 as of
degree 5 in a new boundary obtained by ignoring those between A2 and As. We add a
new vertex X and edges A;X, i = 1, 2, 5, 6. The relevant part of the boundary is now
A,, X, A6, and all have degree 4. This leaves another boundary component consisting of
A2 and A5 (of degree 5) and those between, including A3 and A4. As explained above, we
can continue indefinitely from such a boundary using vertices of degree 6, though now we
must work inwards.

As we assume that (4) is satisfied, we have 6tl vertices of degree 3 available for
such constructions, so we can introduce t, — 1 additional boundary components and
continue each indefinitely. An application of Lemma 3.1, a count of the number of
vertices of degree 3 and 5 added and removed in the constructions and an application of
(2) show that the final diagram will have the required tx.

As r + s + tx + h(5) is finite, all these can be carried out in a finite number of stages.
We conclude this section by considering specifications with hoo = 0 and ho-h(6)

infinite. We note that we then have infinitely many c(i) greater than six.
The construction of a suitable D-diagram can be undertaken as above, with obvious

changes to use vertices of degree at least six in place of those of degree six. This simplifies
most of the construction since a boundary vertex of degree 5 can be assumed to become a
vertex of degree at least 7 in later stages. We may have to introduce an infinite number of
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special features, but this is possible since a few stages consisting of vertices of degree 7 or
more will give enough boundary vertices of degree 3 for further constructions of type (a)
to (h). We have proved our final result.

THEOREM 3.2. If a specification has hoo = 0 and satisfies (4), then it is the specification
of a subgroup of T.
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