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Abstract

It is known that there are no real hypersurfaces with parallel structure Jacobi operators in a nonflat
complex space form. In this paper, we classify real hypersurfaces in a nonflat complex space form whose
structure Jacobi operator is cyclic-parallel.
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1. Introduction

A complex n-dimensional Kdhler manifold with Kihler structure J of constant
holomorphic sectional curvature 4c is called a complex space form and denoted by
M, (c). As is well known, a connected complete and simply connected complex space
form is complex analytically isometric to a complex projective space P,C, a complex
Euclidean space C or a complex hyperbolic space H,C if ¢ >0, c=0 or ¢ <0,
respectively.

The study of real hypersurfaces in complex projective space P,C was initiated by
Takagi [14], who proved that all homogeneous real hypersurfaces in P,C could be
divided into six types which are said to be of type Ay, Az, B, C, D and E. He showed
also in [15] and [16] that if a real hypersurface M in P,C has two or three distinct
constant principal curvatures, then M is locally congruent to one of the homogeneous
ones of type A, Ay or B. In particular, real hypersurfaces of type A, A2 and B in
P, C have been studied by several authors (see Cecil and Ryan [3], Maeda [8] and
Okumura [11]).

In the case of complex hyperbolic space H, C, Montiel and Romero started the study
of real hypersurfaces in [9] and constructed some homogeneous real hypersurfaces in
H,,C which are said to be of type Ag, A; and A;. Those hypersurfaces have a lot
of nice geometric properties (see Berndt [1] and Montiel and Romero [9]). In 2007
Berndt and Tamaru [2] classified all homogeneous real hypersurfaces in H, C.

© 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 $16.00

260

https://doi.org/10.1017/5S0004972709000860 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972709000860

[2] Cyclic-parallel structure Jacobi operator 261

Real hypersurfaces of each type in M,(c) have been described in detail by
Niebergall and Ryan [10].

On the other hand, the Jacobi operator field with respect to X in a Riemannian
manifold M is defined by Ry = R(-, X)X, where R denotes the Riemannian
curvature tensor of M. Let M be a real hypersurface in M, (c), ¢ #0, and v a unit
normal vector field on M. Then a tangent vector field & := —Jv to M is called the
structure vector field on M. We will call the Jacobi operator on M with respect to &
the structure Jacobi operator on M. The structure Jacobi operator Rz = R( -, §)&
has a fundamental role in contact geometry. Cho and the first author started the study
of real hypersurfaces in a complex space form by using the operator R: (see [4]).
Recently Ortega ef al. [12] proved the nonexistence of real hypersurfaces in nonflat
complex space forms with parallel structure Jacobi operator. More generally, such a
result has been extended by [13] due to them.

Now let M be a real hypersurfaces in a complex space form M, (c), ¢ #0. The
structure Jacobi operator Rg¢ of M is said to be cyclic-parallel if it satisfies

GRL(X. Y, Z) = Gg(VxRs(Y), Z) =0

for any vector fields X, Y and Z, where & and V denote the cyclic sum and the
Riemannian connection, respectively. In Section 5, the structure Jacobi operator of
real hypersurfaces in P,C of type A1, A> and a special case of type B, and H,C of
type Ag, A1 and A» are cyclic-parallel. The purpose of this paper is to investigate this
converse problem.

THEOREM 1.1. Let M be a real hypersurface in a complex space form M, (c), ¢ # 0,
n > 3. If the structure Jacobi operator is cyclic-parallel, then M is locally congruent
to one of the following.

() In the case where M,,(c) = P,C:

(A1) a geodesic hypersphere of radius r, where 0 < r < 77 //4c;

(A2) atube of radius r over a totally geodesic PyC for somek € {1, ..., n —2},
where 0 < r < 7 //4¢;

(B) a tube of radius r over complex quadric Qy,—1, where cotr = (/2c + 4 +
V20)/2.

(II) In the case where M, (c) = H,C:

(Ag) a horosphere;

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
H, C;

(A2) a tube over a totally geodesic HiC for some k € {1, ...,n —2}.

All manifolds in this paper are assumed to be connected and of class C* and the
real hypersurfaces are supposed to be oriented.
2. Preliminaries

We denote by My (c), ¢ # 0, a nonflat complex space form with the Fubini-Study
metric g of constant holomorphic sectional curvature 4¢ and Levi-Civita connection V.
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For an immersed (2n — 1)-dimensional Riemannian manifold 7 : M — M, (c), the
Levi-Civita connection V of induced metric and the shape operator H of the immersion
are characterized by

VxY =VxY +g(HX,Y)v, Vyv=-HX,

for any vector fields X and Y on M, where g denotes the Riemannian metric
of M induced from g and v a unit normal vector on M. In the sequel the indices
i, j,k,I,... run over the range {1, 2, ..., 2n — 1} unless otherwise stated. For a
local orthonormal frame field {e;} of M, we denote the dual 1-forms by {6;}. Then the
connection forms 6;; are defined by

d95+295j/\9j =0, 91’j+9ji:0‘
J

Then
Veej =) 6jleder =) Tujex,
k k

where we put 6;; =Y, I';jx6. The almost contact metric structure (¢ = (¢;),
& =), &e;) is induced on M by the equation

J(ej) = Z pjiej +&iv.
J

Then the structure tensor ¢ and the structure vector £ satisfy
> udy =& — 8, D Ei¢i=0. Y &=1. ¢ij+¢ji=0,
k j i
deij = Z(d)ik@kj — @jkOki — Eihjik + Ejhikbh), @2.1)
k
dgi =Y &0 — > bjihjith.
J -k
We denote the components of the shape operator or the second fundamental tensor H
of M by h;j. The components h;;,; of the covariant derivative of H are given by

Yok hijikOk =dhij — Y hikbkj — > hjiOki- Then we have the equations of Gauss
and Codazzi,

Rijki = c(Bikdj1 — 8itdjk + Gik®ji — duPjk + 2¢ijbri) + hikhji — hithjk, (2.2)
hij:k — hik,j = cCErdij — &jbix + 28iPxj), (2.3)

respectively.
From (2.2) the structure Jacobi operator R = (&;;) is given by

8ij = ; hixh jiék& — ; hijhi&ié + c&i&j — cdij. (2.4)
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First, we give the following lemma.

LEMMA 2.1. Let U be an open set in M and F a smooth function on U. We put
dF =), Fi6;. Then

Fij — Fji = Z Filkij — Z Fielkji
k k

PROOF. Taking the exterior derivative of dF =), F;6; immediately gives the
formula . O

REMARK 2.2. We have already proved [5, Lemma 2.1].

Now we take a local orthonormal frame field ¢; in such a way that:

(H  e1=§;
(2) e isin the direction of leigl hi;e;; and
(3)  e3=¢gen.
Then
&1=1, &=00>2), h;j=0((=>=3) and ¢3=1. (2.5)
Weputa :=hy1, B:=hia, ¥y :=ho, € :=ho3 and § := h33.
Hereafter the indices p, ¢, 7, s, ... run over the range {4, 5, ..., 2n — 1} unless
otherwise stated.
Since d&; = 0,
010 = gbr + 865 + Z h3p0p,
)4
013 = —BO1 — 02 — €03 — ) haybp, (2.6)
p
91p = Z ¢qphq292 + Z ¢qphq393 + Z ¢qphqr9r~
q q q.r
We put

3= Xibi, Op=DY Ypibhi, O3,=) Zpib:. 2.7)
i i i
Then .it follovys from d¢ri =0 that Y, = —Zq¢quq,~ or Zpi = Zq GpqYyi-
Equation (2.4) is rewritten as
Eijz—(xhij +h1[/’l1j+65513j1—c8ij. (2.8)

Some fundamental properties about the structure vector and the principal curvature
are stated for later use.

PROPOSITION 2.3 (Meada [8], Ki and Suh [6]). Let M be a real hypersurface in
M, (c), c #0. If the structure vector & is principal, then the corresponding principal
curvature o is locally constant.

PROPOSITION 2.4 (Niebergall and Ryan [10]). Let M be a real hypersurface in
M, (c), ¢ #0. Assume that & is a principal curvature vector and the corresponding
principal curvatureisa. If HX =rX for X L&, then 2r —a)H¢pX = (ar + 2c)¢ X.
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3. Real hypersurfaces with cyclic-parallel structure Jacobi operator

First we assume that GRé (X, Y, Z)=0 for any vector fields X, Y and Z. The
components E;;,x of the covariant derivative of Rz = (E;;) are given by

D Eijubh =dEij — Y Exjbi — Y Sikbh;.
k k k
Substituting (2.8) into the above equation,

> Bijuth = —(da)hij — adhyj + (dh)hj + hii(dhy)
k
+a Z hijOri — ahy;01; — Bhyj6y — cdj161;
k
+O‘Zhik9kj —O[h],'91j —ﬂh]igzj —(,‘5,'191]'. (31)
k

Our assumption GRé (X, Y, Z) =0 for any vector fields X, Y and Z is equivalent
to E;j:k + & jk;i + Egi;j = 0. This equation is rewritten as
arhij +aihji + ajhii + o (hiji + hjki + hiij)

— hijhiik — hikhyji — hiihig — hyjhig — hichiig — hiiha i
+ahyj(Crik + Tixi) + ahic(Trji + Tij) + ahii (Tikg 4+ Tjie)

+ Bh1j(Taik + Tori) + Bhie(T2ji + Taij) + Bhii(Toakj + Toji)

+ 81 (Trik + Tigi) + 81k (Trji + Trij) + €81 (Tigj + Tije)

-« Z hij(Crik + Tigj) — o Z hix(Tyji + Tyij)

] ]

-« Z hii (Tikj + Tije) =0, (3.2)
]

because of (3.1).
In the following we assume that 8 #0. Let i, j, ke{l,2, 3, p,q}. Then
equation (3.2) can be stated as follows:

=0, h3,=0, (3.3)
b +c=0, (3.4)
(B* —ay)1 —2a Y hypYp1 =0, (3.5)
p
(@) +2(8° —ay — )Xo+ 2 Y hap(Yps + Zp2) =0, (3.6)
P
B—ay —o)(X1 —8) +a Y hypZp =0, 3.7)
p

(B> — ay)p — 2ahap)r — 2(B* — ay) Yy

+2a ) hyg(Tgpa — Yyp) =0, (3.8)

q
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Cyclic-parallel structure Jacobi operator

(@hop)i + @ Y hpg¥Yg1 + (B> —ay)Yp1r —a Y hogTgpi

q q
+ o Z h2q¢rthp =0,
q.r
ahap(X1 —8) = Y (athyp + c8pg) Zg1 =0.
q

8Zp3 + h2p X3 =0,

(:32 —ay —o)X3t+a Z h2pzp3 =0,
p

(ah2p)z — (B> — ay)(Xp + Yp3) +a8(Zpa — X ) + ahop X2

+a E hzr(F,p3 — er) = 0,
r
(Olhpq)l _athYpl - E ]’quFrlﬂ —Olthqu
r

—a Y hp gt +c(Cigp — Tipg) =0.
r

Henceforth we shall use (3.3) without further mention.
Properly speaking, we should denote equation (2.3) by (23);x, for example. In this
paper we denote it simply by (ijk). Then we have the following equations (112)-

(g3p).

(112)
(212)

(312)

(113)
(213)

(313)
(223)

(323)

aph
(12p)

(13p)

ar — B1 =0,
:32_)/1 _ZZthYPIZO»
P
(@ =8y —BXa+ (y —=8O)X1 — B2 =D hapZp = —c.

p
a3+ 386 —aB+ BX; =0,

Bs—al+ys+(y —8)X1— B> =Y hapZp =c,

p
BX3+38 =0,
s —2B8 42 hapYps+ (v —8)Xa— By — D hapZp =0,
P P
Z hapZpz — 8 — (y —8)X3=0,
p
Olp + ,BYpl = 0,
Bp+2 Z hag®rqhp + BYp2 + o Z Ggphag =0,
q.r q

—28hap + BY 3 +ahyy — BX, =0,
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22p) vp+2) hag¥ap —hapa =D hgp¥y2
q q
+ B Z ¢qph2q + ]/YpZ + Z thquZ =0,
q q
(23p) SXp + ﬂh2p - J/Xp + Z thqu - h2p3
q
- Z hquq3 + VYPS + Z thqu3 =0,
q q

(33p) 8p+hapXs— Y hgpZez+8Zp3 =0,
q

(le) .Bp + Z h2q¢rthp - h2pl - Z hquql + VYp] + Z thqul =0,
q.r q q
(B1p)  —8hap +ahap — BXp +hopX1 = Y hgpZg1 +8Zp1 =0,
q
(32p) 6Xp+ Bhop —yXp+ Z haqZgp + hop X2 — Z hpgZg2 +8Zp2 =0,
q q
(2pq) h2pq + Z herrq - B Z ¢rphrq - )/qu - Z thFrpq - thp
r r r
- Z hqurp +8 Z ¢rthp + Vqu + Z h2rrrqp =0,
(glp) Zhrq¢srhsp_az¢rthq _ﬂqu_hpql +h2qul
r,s r
+ Z hrqrrpl + h2qul + Z hrprrql = C¢pqa
r r
@3p) —8Zgp —h2gXp+ Y hgrZep — hgps + hg2¥ 3
r

+ > hgTrps +hpoYgs + Y hpTrgs =0.
r r

REMARK 3.1. We have omitted equations (1pg), (3pq), (p2q) and (pgr) since we
do not need them.

4. Key lemma

Suppose that g # 0. From (3.10) and (31p),

ahyp =BXp. 4.1)
This and (13 p) imply that
28ha), = BY 3, (4.2)
and so
> hapZpy=0. (4.3)
p
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LEMMA 4.1. H(ey) € span{ey, e>}.

PROOF. It follows from (3.4), (3.11) and (4.3) that
> (12p)*X3=0.
)4

If X3 # 0, then obviously /3, =0. Then X3 =0, which together with (3.4), (3.11),
(4.2)and Y,; = —qu&quq,- implies that s, = 0. O

LEMMA 4.2. Let M be a real hypersurface in a complex space form My (c), c 0,
n > 3. If the structure Jacobi operator is cyclic-parallel, then the structure vector is
principal.

PROOF. From Lemma 4.1 the matrix (h,4) is diagonalizable; that is, for a suitable
choice of a orthonormal frame field {e;} we can set

hpg = Apdpg-

Here we shall set out some equations obtained from Lemma 4.1.
From (4.1), (4.2) and (3.13),

Xp=Yp=Zp=Yn=2Zn=0. (4.4)
Equations (3.5), (3.6), (3.7) and (3.12) imply that
(B> —ay) =0, (4.5)
(@y)3 + (B> —ay —)X2 =0, (4.6)
(B —ay — ) (X1 — 8) =0, 4.7)
(B —ay —c)X3=0. (4.8)
Put p = ¢ in (3.14). Then
(arp)1 =0. (4.9)
Moreover, from (112)-(32p),
oy — B1 =0, 4.10)
B2—y1 =0, (4.11)
(@—8)y —BXa+( —8X| —B>+c=0, (4.12)
a3 4388 —af + X =0, (4.13)
Bs+yS+(y —8)X — p>=0, (4.14)
81+ BX3=0, (4.15)
Y3 =288+ (y —8)X2— By =0, (4.16)
H+(y—9X3=0, 4.17)
Byr =0, (4.18)
Yp =0, (4.19)
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ap=35,=0, (4.20)
Yp1 =2, =0. .21

It follows from (¢ 1p) and (3.14) that
aBYyp = (@Aphg — @%hp + Chp — Chg — CA)Ppg + 1A pSpg. (4.22)
From this, (2pg) and (¢3p),
[@B>(Ap + rg) — (hp — Y)AAphy — @Phy — ca +c(hp — Ag))
— (Ag — YaAphg —a?hp —ca +cOg — 2p)bpg =0,  (4.23)
(hg — Oa{(Ag)? — arg — C}8pg + A1hgdpq]

—aflhgps + (Ap — Ag)Tgp3} =0. (4.24)
If p = ¢ in the above equation, then
(Ap —5){(%,,)2 —akp —c}—B(Ap)3=0. (4.25)
In the following we shall abbreviate the expression ‘take account of the coefficient
of 0; in the exterior derivative of . . .” to ‘see 6; of d of . . .".

Case I. Suppose that 82 — ay — ¢ # 0. From (4.7) and (4.8),
X3=0, X;=3. (4.26)
It follows from (4.10), (4.15), (4.17), (4.5) and (4.11) that

aj=81=ar=8=B=F=y1=0. (4.27)
From (4.12), (4.13), (4.14) and (4.26),
BX2+ (B> —ay —c)+82=0, (4.28)
a3+ 468 —af =0, (4.29)
B3 — B> +2y8 — 82 =0. (4.30)

Seeing 01 A 63 of d of 63,
83 =—B38 —2X>56, (4.31)

which, together with (4.28) and (4.29), implies that
—2/325 +ad® + Ot(,B2 —ay —c)=0.

Seeing 6; of d of the above equation, we have that 3, = 0.
Nowput F=«, 8, y,andi =1, j =2 in Lemma 2.1. Then,

az(y +98)=B3(y +68) =y3(y +6) =0.

If y 46 #0, then from (4.6) and (4.31) we have a contradiction. Thus y +§ =0,
which also contradicts (4.6) and (4.31).
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Case II-1.  Suppose that

o) =0, (4.32)
B2 —ay —c=0. (4.33)
Seeing 6, of d of (4.33),

(B* —ay)3=2pp3 — yaz —ays =0. (4.34)

From (4.12), (4.13, (4.14), (4.16) and (4.33),
=8y — BX2+ (y —8)X1 =0, (4.35)
a3 +3B88 —af + BX1 =0, (4.36)
Bi+(y —8)Xi+ys—ay —c=0, (4.37)
vs —2B8 + (y — 8)X» + By =0. (4.38)

On substituting (4.36), (4.37) and (4.38) into (4.34),
(6 — ¥)(X1 — da) =0,
by virtue of (4.35). If § = y, then by (4.33) we have a contradiction and hence
X =4a. (4.39)
Substituting this equation into (4.35), (4.36) and (4.37),

BXs =da(y —8) — 8y, (4.40)
a3 + 388 + 3B =0, (4.41)
B3+ 3ay — 3as + y8 =0. (4.42)

It follows from (4.16), (4.33) and (4.40) that
ays + BBay —6as — y38) =0. (4.43)

From (4.15) and (4.32) we have X3 =0 and therefore §; = ar =5, =0 because
of (4.10) and (4.17). Hence, by (4.5), we have y; =0, and so , = 0. From (3.6) we
have (ay )3 = 0. This, together with (4.33), implies that 83 = 0. Therefore it follows
from (4.18) that 8 is constant.

Now put F =« and 8 in Lemma 2.1. Then

a3(y + X2) =0, B3(y + X2)=0.

If y + X7 #0, then a3 = 3 = 0. It follows from (4.20) that « and § are constant.
Furthermore, by (4.33) we see that y is constant. Thus from (4.41), (4.42) and (4.43),

a+8=0,
B3y —3ad +y§=0,
3ay —6ad —yé=0.
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Hence, by (3.4) and (4.33), &> — ¢ =0 and 282 + ¢ =0, which is a contradiction.
Therefore X1 = —y, which, together with (4.39), implies that y = —X| = —4«. Thus
it follows from (4.41) that 3 = —4a3 = 128(5 + o). Hence, from (4.43) we have a
contradiction od = 0.

Case II-2. Suppose that
B2 —ay —c=0 and a; #0. (4.44)

Here we assert that if ¢, # 0, then A, = A,. To prove this, we assume that there exist
indices p and g such that

bpg #0,  Ap—Aqg #0.
Then from (4.23) and (4.44),

(prg —20)0hp + 2g) = 2(@ + ¥ — 8)Aphy — 2¢y — 8{(Ap)* + (h)*} = 0.
(4.45)
Multiply the above equation by &> and see ) of d of this equation. Then from (4.9),

(@y)1(Apry — ) =2a1(cy —chp — chg —alphy). (4.46)
On the other hand, by (4.5), (4.10), (4.15) and (4.17),
(@y)1 =2(y — d)ai, (4.47)
which, together with (4.46) and (4.47), implies that
Aphgla+y —8) =c2y —8 —Xp — Ag).
Eliminate (a + y — §)A A, from this and (4.45):
(ahp)(@ry)(@h, +ary) — 2ca’(ay — ad) — (@8){(arp)* + (ary)*} =0.

Multiply this equation by «? and see #; of d of this equation. Then by (4.9),
(¢y)1 = —2(y — 8)a1 and so y = § by virtue of (4.44) and (4.47). Thus from (3.4)
and (4.43) we have contradiction. Therefore, for all p, g such that ¢,, # 0, we have
Ap =Ag.

We now take p, g such that ¢, # 0. Then, from (4.24) and A, = A,

B2y — (p = () — ey — ) =0 (4.48)
Furthermore, from (¢3p), (4.9) and (4.22),
}‘[J()"p —6)=0.

Note that (4.25) implies that A, # 0. Hence we have 1, =§. From (4.48) we have

(¢ +8)(§ —y)=0.Ifa + =0, then o and § are constant, which contradicts (4.44).

Hence § — y = 0. However, from (4.44) we have = 0, which is a contradiction.
Consequently we have proved g8 = 0, which completes the proof. O
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5. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Let M be a real hypersurface in a complex
space form M, (c), ¢ # 0, n > 3. Suppose that the structure Jacobi operator is cyclic-
parallel. From d§; =0, (2.1) and (2.5),

Ciij=Xjji. (5.1
If @ = 0, then (3.2) implies that
()»,'-)xj)(]ﬁ,‘j:() fori, j > 2.

Thus H and ¢ are commutative. By the classification theorems of real hypersurfaces
in M, (c), ¢ #0, due to Okumura [11] and Montiel and Romero [9], M is locally
congruent to one of the real hypersurfaces of type A; or A, in P,C or of type Ag, A
or Ay in H,C.

Suppose that o % 0. We first prove that all principal curvatures are constant.
From Lemma 4.1 and Proposition 2.3 we see that « is constant in M. We denote
equation (3.2) by (32);jx. By (213) and (313),

y1 =201 =0. (5.2)
It follows from (32);;; and (32)1,, that
Aph1=@i)i =0 fori=>2. (5.3)

We take the indices i and j such that i 21, j# 1 and i # j. Then eliminating
(A; — A))T;j; from (iij) and (32);;;, we have

(Li); =0. (5.4)

Hence, from (5.2), (5.3) and (5.4) all principal curvatures are constant. By the
classification theorems of real hypersurfaces in M, (c), ¢ # 0, due to Kimura [7] and
Berndt [1], M is locally congruent to one of the homogeneous real hypersurfaces of
type A1 ~ E in P,C or of type Ag ~ B in H,C. So, we shall check equation (3.2) one
by one for the above model spaces.

Here since all principal curvatures are constant, we shall rewrite the condition (3.2).
For a suitable choice of a orthonormal frame field {e¢;} of each model space we set
hij = A;8;;. The Codazzi equation (2.3) asserts that

(Ai = ATk = (ke — A)Tkij — cErdij + 2&idkj — & Pin)- (5.5)
Therefore the cyclic-parallel structure Jacobi operator condition (3.2) is rewritten as

3a(Ai — A)Tijk + 3acE i — Eidjx) — (@ + )81 (L — M)djx
+38j1(Mk — Ai)Pri + Skt (A — Aj)éij} =0. (5.6)
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Casel. M,(c) = H,C. Let M be of type Ag. Then M has two distinct constant
principal curvatures & = 2 and 1. Then it is easy to see that M satisfies (5.6).

Let M be of type A or Ap. Then M has three distinct constant principal curvatures
J—c/t,/—ctanda = /—c(t + 1/t), where t = tanh r. For i, j, k > 2 we have (5.6)
because the same principal curvatures exist in {A;, A;, A¢}. Therefore, by (5.1) we
obtain (5.6). For j =1 the left-hand side of (5.6) can be expressed as

(ki — M) (@%/2 = )i (5.7)

Since 24/—ct —a #0 and 2/—c/t —a #0, it follows from Proposition 2.4 that
OV == V= and @V ;= =V =, where V, denotes the eigenspace of H with
eigenvalue A. Hence we have (A; — A;)¢;; = 0 for any i, j. This, together with (5.7),
implies (5.6). Thus the manifold M satisfies (5.6).

Let M be of type B. Put j =1 in (5.6). Thus by an argument similar to that above,

(hi — M) (@* = 2¢)pix = 0. (5.8)

M has three distinct constant principal curvatures +/—c/t, «/—ct and o =
4/ —ct/ (t2 + 1), where t =tanhr. Then, from Proposition 2.4, ¢V /t =V, and
therefore there exist indices i and j such that (A; — A;)¢;; # 0. This contradicts (5.8).

Casell. M,(c) = P,C. Let M be of type A1, A2 or B. By an argument similar to
that in Case I, real hypersurfaces of type A or A, satisfy the condition (5.6). Moreover
if &> = 2c, then real hypersurfaces of type B satisfy (5.6). The equation o> = 2c tells

us that cotr = (v/2¢c +4 + «/%)/2.

Let M be of type C, D or E. Then M has five distinct constant principal curvatures.
Put j =11in (5.5) to get

(A — A)Tki1 = (ahg — XA + Oy,
by virtue of (5.1), which implies that
2(hk — A)Tkit = ol — X)) i (5.9

Suppose that i, j, k > 2 and A; # ;. Then it follows from (5.6) that I'; ;x = 0 and
therefore 6;; = I';161. Seeing 6; A 0; of d of 6;;,

Aikj 4+ (@i HAidj + (@/2)(h 4+ 4j) + 3¢} =0,
because of (5.1) and (5.9). Puti = 1in (5.5). Then
{2AjAr —a(Aj + Ax) —2c}pjx =0 for j, k> 2.
From the above two equations it is easy to see that
Aidj+c=0 fori,j>2andX; #Aj,

which implies that M has at most three constant principal curvatures. This is a
contradiction.
This completes the proof of Theorem 1.1.
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