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Abstract

It is known that there are no real hypersurfaces with parallel structure Jacobi operators in a nonflat
complex space form. In this paper, we classify real hypersurfaces in a nonflat complex space form whose
structure Jacobi operator is cyclic-parallel.
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1. Introduction

A complex n-dimensional Kähler manifold with Kähler structure J of constant
holomorphic sectional curvature 4c is called a complex space form and denoted by
Mn(c). As is well known, a connected complete and simply connected complex space
form is complex analytically isometric to a complex projective space PnC, a complex
Euclidean space C or a complex hyperbolic space HnC if c > 0, c = 0 or c < 0,
respectively.

The study of real hypersurfaces in complex projective space PnC was initiated by
Takagi [14], who proved that all homogeneous real hypersurfaces in PnC could be
divided into six types which are said to be of type A1, A2, B, C , D and E . He showed
also in [15] and [16] that if a real hypersurface M in PnC has two or three distinct
constant principal curvatures, then M is locally congruent to one of the homogeneous
ones of type A1, A2 or B. In particular, real hypersurfaces of type A1, A2 and B in
PnC have been studied by several authors (see Cecil and Ryan [3], Maeda [8] and
Okumura [11]).

In the case of complex hyperbolic space HnC, Montiel and Romero started the study
of real hypersurfaces in [9] and constructed some homogeneous real hypersurfaces in
HnC which are said to be of type A0, A1 and A2. Those hypersurfaces have a lot
of nice geometric properties (see Berndt [1] and Montiel and Romero [9]). In 2007
Berndt and Tamaru [2] classified all homogeneous real hypersurfaces in HnC.
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[2] Cyclic-parallel structure Jacobi operator 261

Real hypersurfaces of each type in Mn(c) have been described in detail by
Niebergall and Ryan [10].

On the other hand, the Jacobi operator field with respect to X in a Riemannian
manifold M is defined by RX = R( · , X)X , where R denotes the Riemannian
curvature tensor of M . Let M be a real hypersurface in Mn(c), c 6= 0, and ν a unit
normal vector field on M . Then a tangent vector field ξ := −Jν to M is called the
structure vector field on M . We will call the Jacobi operator on M with respect to ξ
the structure Jacobi operator on M . The structure Jacobi operator Rξ = R( · , ξ)ξ
has a fundamental role in contact geometry. Cho and the first author started the study
of real hypersurfaces in a complex space form by using the operator Rξ (see [4]).
Recently Ortega et al. [12] proved the nonexistence of real hypersurfaces in nonflat
complex space forms with parallel structure Jacobi operator. More generally, such a
result has been extended by [13] due to them.

Now let M be a real hypersurfaces in a complex space form Mn(c), c 6= 0. The
structure Jacobi operator Rξ of M is said to be cyclic-parallel if it satisfies

SR′ξ (X, Y, Z)=Sg(∇X Rξ (Y ), Z)= 0

for any vector fields X , Y and Z , where S and ∇ denote the cyclic sum and the
Riemannian connection, respectively. In Section 5, the structure Jacobi operator of
real hypersurfaces in PnC of type A1, A2 and a special case of type B, and HnC of
type A0, A1 and A2 are cyclic-parallel. The purpose of this paper is to investigate this
converse problem.

THEOREM 1.1. Let M be a real hypersurface in a complex space form Mn(c), c 6= 0,
n ≥ 3. If the structure Jacobi operator is cyclic-parallel, then M is locally congruent
to one of the following.

(I) In the case where Mn(c)= PnC:

(A1) a geodesic hypersphere of radius r , where 0< r < π/
√

4c;
(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, . . . , n − 2},

where 0< r < π/
√

4c;
(B) a tube of radius r over complex quadric Qn−1, where cot r = (

√
2c + 4+√

2c)/2.

(II) In the case where Mn(c)= HnC:

(A0) a horosphere;
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

Hn−1C;
(A2) a tube over a totally geodesic HkC for some k ∈ {1, . . . , n − 2}.

All manifolds in this paper are assumed to be connected and of class C∞ and the
real hypersurfaces are supposed to be oriented.

2. Preliminaries

We denote by Mn(c), c 6= 0, a nonflat complex space form with the Fubini–Study
metric g̃ of constant holomorphic sectional curvature 4c and Levi-Civita connection ∇̃.
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For an immersed (2n − 1)-dimensional Riemannian manifold τ : M→ Mn(c), the
Levi-Civita connection∇ of induced metric and the shape operator H of the immersion
are characterized by

∇̃X Y =∇X Y + g(H X, Y )ν, ∇̃Xν =−H X,

for any vector fields X and Y on M , where g denotes the Riemannian metric
of M induced from g̃ and ν a unit normal vector on M . In the sequel the indices
i, j, k, l, . . . run over the range {1, 2, . . . , 2n − 1} unless otherwise stated. For a
local orthonormal frame field {ei } of M , we denote the dual 1-forms by {θi }. Then the
connection forms θi j are defined by

dθi +
∑

j

θi j ∧ θ j = 0, θi j + θ j i = 0.

Then
∇ei e j =

∑
k

θk j (ei )ek =
∑

k

0ki j ek,

where we put θi j =
∑

k 0i jkθk . The almost contact metric structure (φ = (φi j ),
ξ =

∑
i ξi ei ) is induced on M by the equation

J (ei )=
∑

j

φ j i e j + ξiν.

Then the structure tensor φ and the structure vector ξ satisfy∑
k

φikφk j = ξiξ j − δi j ,
∑

j

ξ jφi j = 0,
∑

i

ξ2
i = 1, φi j + φ j i = 0,

dφi j =
∑

k

(φikθk j − φ jkθki − ξi h jkθk + ξ j hikθk),

dξi =
∑

j

ξ jθ j i −
∑
j,k

φ j i h jkθk .

(2.1)

We denote the components of the shape operator or the second fundamental tensor H
of M by hi j . The components hi j;k of the covariant derivative of H are given by∑

k hi j;kθk = dhi j −
∑

k hikθk j −
∑

k h jkθki . Then we have the equations of Gauss
and Codazzi,

Ri jkl = c(δikδ jl − δilδ jk + φikφ jl − φilφ jk + 2φi jφkl)+ hikh jl − hilh jk, (2.2)

hi j;k − hik; j = c(ξkφi j − ξ jφik + 2ξiφk j ), (2.3)

respectively.
From (2.2) the structure Jacobi operator Rξ = (4i j ) is given by

4i j =
∑
k,l

hikh jlξkξl −
∑
k,l

hi j hklξkξl + cξiξ j − cδi j . (2.4)
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First, we give the following lemma.

LEMMA 2.1. Let U be an open set in M and F a smooth function on U. We put
d F =

∑
i Fiθi . Then

Fi j − F j i =
∑

k

Fk0ki j −
∑

k

Fk0k ji .

PROOF. Taking the exterior derivative of d F =
∑

i Fiθi immediately gives the
formula . 2

REMARK 2.2. We have already proved [5, Lemma 2.1].

Now we take a local orthonormal frame field ei in such a way that:

(1) e1 = ξ ;
(2) e2 is in the direction of

∑2n−1
i=2 h1i ei ; and

(3) e3 = φe2.

Then
ξ1 = 1, ξi = 0 (i ≥ 2), h1 j = 0 ( j ≥ 3) and φ32 = 1. (2.5)

We put α := h11, β := h12, γ := h22, ε := h23 and δ := h33.
Hereafter the indices p, q, r, s, . . . run over the range {4, 5, . . . , 2n − 1} unless

otherwise stated.
Since dξi = 0,

θ12 = εθ2 + δθ3 +
∑

p
h3pθp,

θ13 = −βθ1 − γ θ2 − εθ3 −
∑

p
h2pθp,

θ1p =
∑

q
φqphq2θ2 +

∑
q
φqphq3θ3 +

∑
q,r

φqphqrθr .

(2.6)

We put
θ23 =

∑
i

X iθi , θ2p =
∑

i

Ypiθi , θ3p =
∑

i

Z piθi . (2.7)

Then it follows from dφ2i = 0 that Ypi =−
∑

qφpq Zqi or Z pi =
∑

q φpqYqi .
Equation (2.4) is rewritten as

4i j =−αhi j + h1i h1 j + cδi1δ j1 − cδi j . (2.8)

Some fundamental properties about the structure vector and the principal curvature
are stated for later use.

PROPOSITION 2.3 (Meada [8], Ki and Suh [6]). Let M be a real hypersurface in
Mn(c), c 6= 0. If the structure vector ξ is principal, then the corresponding principal
curvature α is locally constant.

PROPOSITION 2.4 (Niebergall and Ryan [10]). Let M be a real hypersurface in
Mn(c), c 6= 0. Assume that ξ is a principal curvature vector and the corresponding
principal curvature is α. If H X = r X for X ⊥ ξ , then (2r − α)HφX = (αr + 2c)φX.
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3. Real hypersurfaces with cyclic-parallel structure Jacobi operator

First we assume that SR′ξ (X, Y, Z)= 0 for any vector fields X , Y and Z . The
components 4i j;k of the covariant derivative of Rξ = (4i j ) are given by∑

k

4i j;kθk = d4i j −
∑

k

4k jθki −
∑

k

4ikθk j .

Substituting (2.8) into the above equation,∑
k

4i j;kθk = −(dα)hi j − αdhi j + (dh1i )h1 j + h1i (dh1 j )

+ α
∑

k

hk jθki − αh1 jθ1i − βh1 jθ2i − cδ j1θ1i

+ α
∑

k

hikθk j − αh1iθ1 j − βh1iθ2 j − cδi1θ1 j . (3.1)

Our assumption SR′ξ (X, Y, Z)= 0 for any vector fields X, Y and Z is equivalent
to 4i j;k +4 jk;i +4ki; j = 0. This equation is rewritten as

αkhi j + αi h jk + α j hki + α(hi jk + h jki + hki j )

− h1 j h1ik − h1kh1 j i − h1i h1k j − h1 j h1ki − h1kh1i j − h1i h1 jk

+ αh1 j (01ik + 01ki )+ αh1k(01 j i + 01i j )+ αh1i (01k j + 01 jk)

+ βh1 j (02ik + 02ki )+ βh1k(02 j i + 02i j )+ βh1i (02k j + 02 jk)

+ cδ1 j (01ik + 01ki )+ cδ1k(01 j i + 01i j )+ cδ1i (01k j + 01 jk)

− α
∑

l

hl j (0lik + 0lk j )− α
∑

l

hlk(0l j i + 0li j )

− α
∑

l

hli (0lk j + 0l jk)= 0, (3.2)

because of (3.1).
In the following we assume that β 6= 0. Let i, j, k ∈ {1, 2, 3, p, q}. Then

equation (3.2) can be stated as follows:

ε = 0, h3p = 0, (3.3)

αδ + c = 0, (3.4)

(β2
− αγ )1 − 2α

∑
p

h2pYp1 = 0, (3.5)

(αγ )3 + 2(β2
− αγ − c)X2 + 2α

∑
p

h2p(Yp3 + Z p2)= 0, (3.6)

(β2
− αγ − c)(X1 − δ)+ α

∑
p

h2p Z p1 = 0, (3.7)

(β2
− αγ )p − 2(αh2p)2 − 2(β2

− αγ )Yp2

+ 2α
∑

q
h2q(0qp2 − Yqp)= 0, (3.8)
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(αh2p)1 + α
∑

q
h pqYq1 + (β

2
− αγ )Yp1 − α

∑
q

h2q0qp1

+ α
∑
q,r

h2qφrqhr p = 0, (3.9)

αh2p(X1 − δ)−
∑

q
(αhqp + cδpq)Zq1 = 0, (3.10)

δZ p3 + h2p X3 = 0, (3.11)

(β2
− αγ − c)X3 + α

∑
p

h2p Z p3 = 0, (3.12)

(αh2p)3 − (β
2
− αγ )(X p + Yp3)+ αδ(Z p2 − X p)+ αh2p X2

+ α
∑

r
h2r (0r p3 − Zr p)= 0, (3.13)

(αh pq)1 − αh2qYp1 − α
∑

r
hrq0r p1 − αh2pYq1

− α
∑

r
h pr0rq1 + c(01qp − 01pq)= 0. (3.14)

Henceforth we shall use (3.3) without further mention.
Properly speaking, we should denote equation (2.3) by (23)i jk , for example. In this

paper we denote it simply by (i jk). Then we have the following equations (112)–
(q3p).

(112) α2 − β1 = 0,

(212) β2 − γ1 − 2
∑

p
h2pYp1 = 0,

(312) (α − δ)γ − βX2 + (γ − δ)X1 − β
2
−

∑
p

h2p Z p1 =−c,

(113) α3 + 3βδ − αβ + βX1 = 0,

(213) β3 − αδ + γ δ + (γ − δ)X1 − β
2
−

∑
p

h2p Z p1 = c,

(313) βX3 + δ1 = 0,

(223) γ3 − 2βδ + 2
∑

p
h2pYp3 + (γ − δ)X2 − βγ −

∑
p

h2p Z p2 = 0,

(323)
∑

p
h2p Z p3 − δ2 − (γ − δ)X3 = 0,

(1p1) αp + βYp1 = 0,

(12p) βp + 2
∑
q,r

h2qφrqhr p + βYp2 + α
∑

q
φqph2q = 0,

(13p) −2δh2p + βYp3 + αh2p − βX p = 0,

https://doi.org/10.1017/S0004972709000860 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000860


266 U.-H. Ki and H. Kurihara [7]

(22p) γp + 2
∑

q
h2qYqp − h2p2 −

∑
q

hqpYq2

+ β
∑

q
φqph2q + γYp2 +

∑
q

h2q0qp2 = 0,

(23p) δX p + βh2p − γ X p +
∑

q
h2q Zqp − h2p3

−

∑
q

hqpYq3 + γYp3 +
∑

q
h2q0qp3 = 0,

(33p) δp + h2p X3 −
∑

q
hqp Zq3 + δZ p3 = 0,

(21p) βp +
∑
q,r

h2qφrqhr p − h2p1 −
∑

q
hqpYq1 + γYp1 +

∑
q

h2q0qp1 = 0,

(31p) −δh2p + αh2p − βX p + h2p X1 −
∑

q
hqp Zq1 + δZ p1 = 0,

(32p) δX p + βh2p − γ X p +
∑

q
h2q Zqp + h2p X2 −

∑
q

h pq Zq2 + δZ p2 = 0,

(2pq) h2pq +
∑

r
hr pYrq − β

∑
r
φr phrq − γYpq −

∑
r

h2r0r pq − h2qp

−

∑
r

hrqYr p + β
∑

r
φrqhr p + γYqp +

∑
r

h2r0rqp = 0,

(q1p)
∑
r,s

hrqφsr hsp − α
∑

r
φrqhrq − βYqp − h pq1 + h2qYp1

+

∑
r

hrq0r p1 + h2pYq1 +
∑

r
hr p0rq1 = cφpq ,

(q3p) −δZqp − h2q X p +
∑

r
hqr Zr p − hqp3 + hq2Yp3

+

∑
r

hqr0r p3 + h p2Yq3 +
∑

r
h pr0rq3 = 0.

REMARK 3.1. We have omitted equations (1pq), (3pq), (p2q) and (pqr) since we
do not need them.

4. Key lemma

Suppose that β 6= 0. From (3.10) and (31p),

αh2p = βX p. (4.1)

This and (13p) imply that
2δh2p = βYp3, (4.2)

and so ∑
p

h2p Z p3 = 0. (4.3)
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LEMMA 4.1. H(e2) ∈ span{e1, e2}.

PROOF. It follows from (3.4), (3.11) and (4.3) that∑
p
(h2p)

2 X3 = 0.

If X3 6= 0, then obviously h2p = 0. Then X3 = 0, which together with (3.4), (3.11),
(4.2) and Ypi =−

∑
qφpq Zqi implies that h2p = 0. 2

LEMMA 4.2. Let M be a real hypersurface in a complex space form Mn(c), c 6= 0,
n ≥ 3. If the structure Jacobi operator is cyclic-parallel, then the structure vector is
principal.

PROOF. From Lemma 4.1 the matrix (h pq) is diagonalizable; that is, for a suitable
choice of a orthonormal frame field {ep} we can set

h pq = λpδpq .

Here we shall set out some equations obtained from Lemma 4.1.
From (4.1), (4.2) and (3.13),

X p = Yp3 = Z p3 = Yp2 = Z p2 = 0. (4.4)

Equations (3.5), (3.6), (3.7) and (3.12) imply that

(β2
− αγ )1 = 0, (4.5)

(αγ )3 + (β
2
− αγ − c)X2 = 0, (4.6)

(β2
− αγ − c)(X1 − δ)= 0, (4.7)

(β2
− αγ − c)X3 = 0. (4.8)

Put p = q in (3.14). Then
(αλp)1 = 0. (4.9)

Moreover, from (112)–(32p),

α2 − β1 = 0, (4.10)

β2 − γ1 = 0, (4.11)

(α − δ)γ − βX2 + (γ − δ)X1 − β
2
+ c = 0, (4.12)

α3 + 3βδ − αβ + βX1 = 0, (4.13)

β3 + γ δ + (γ − δ)X1 − β
2
= 0, (4.14)

δ1 + βX3 = 0, (4.15)

γ3 − 2βδ + (γ − δ)X2 − βγ = 0, (4.16)

δ2 + (γ − δ)X3 = 0, (4.17)

βp = 0, (4.18)

γp = 0, (4.19)
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αp = δp = 0, (4.20)

Yp1 = Z p1 = 0. (4.21)

It follows from (q1p) and (3.14) that

αβYqp = (αλpλq − α
2λp + cλp − cλq − cα)φpq + α1λpδpq . (4.22)

From this, (2pq) and (q3p),

[αβ2(λp + λq)− (λp − γ ){αλpλq − α
2λq − cα + c(λp − λq)}

− (λq − γ ){αλpλq − α
2λp − cα + c(λq − λp)}]φpq = 0, (4.23)

(λq − δ)[α{(λq)
2
− αλq − c}δpq + α1λqφpq ]

− αβ{hqp3 + (λp − λq)0qp3} = 0. (4.24)

If p = q in the above equation, then

(λp − δ){(λp)
2
− αλp − c} − β(λp)3 = 0. (4.25)

In the following we shall abbreviate the expression ‘take account of the coefficient
of θi in the exterior derivative of . . .’ to ‘see θi of d of . . .’.

Case I. Suppose that β2
− αγ − c 6= 0. From (4.7) and (4.8),

X3 = 0, X1 = δ. (4.26)

It follows from (4.10), (4.15), (4.17), (4.5) and (4.11) that

α1 = δ1 = α2 = δ2 = β1 = β2 = γ1 = 0. (4.27)

From (4.12), (4.13), (4.14) and (4.26),

βX2 + (β
2
− αγ − c)+ δ2

= 0, (4.28)

α3 + 4βδ − αβ = 0, (4.29)

β3 − β
2
+ 2γ δ − δ2

= 0. (4.30)

Seeing θ1 ∧ θ3 of d of θ23,
δ3 =−βδ − 2X2δ, (4.31)

which, together with (4.28) and (4.29), implies that

−2β2δ + αδ2
+ α(β2

− αγ − c)= 0.

Seeing θ2 of d of the above equation, we have that γ2 = 0.
Now put F = α, β, γ , and i = 1, j = 2 in Lemma 2.1. Then,

α3(γ + δ)= β3(γ + δ)= γ3(γ + δ)= 0.

If γ + δ 6= 0, then from (4.6) and (4.31) we have a contradiction. Thus γ + δ = 0,
which also contradicts (4.6) and (4.31).
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Case II-1. Suppose that

α1 = 0, (4.32)

β2
− αγ − c = 0. (4.33)

Seeing θ2 of d of (4.33),

(β2
− αγ )3 = 2ββ3 − γα3 − αγ3 = 0. (4.34)

From (4.12), (4.13, (4.14), (4.16) and (4.33),

−δγ − βX2 + (γ − δ)X1 = 0, (4.35)

α3 + 3βδ − αβ + βX1 = 0, (4.36)

β3 + (γ − δ)X1 + γ δ − αγ − c = 0, (4.37)

γ3 − 2βδ + (γ − δ)X2 + βγ = 0. (4.38)

On substituting (4.36), (4.37) and (4.38) into (4.34),

(δ − γ )(X1 − 4α)= 0,

by virtue of (4.35). If δ = γ , then by (4.33) we have a contradiction and hence

X1 = 4α. (4.39)

Substituting this equation into (4.35), (4.36) and (4.37),

βX2 = 4α(γ − δ)− δγ, (4.40)

α3 + 3βδ + 3αβ = 0, (4.41)

β3 + 3αγ − 3αδ + γ δ = 0. (4.42)

It follows from (4.16), (4.33) and (4.40) that

αγ3 + β(3αγ − 6αδ − γ δ)= 0. (4.43)

From (4.15) and (4.32) we have X3 = 0 and therefore β1 = α2 = δ2 = 0 because
of (4.10) and (4.17). Hence, by (4.5), we have γ1 = 0, and so β2 = 0. From (3.6) we
have (αγ )3 = 0. This, together with (4.33), implies that β3 = 0. Therefore it follows
from (4.18) that β is constant.

Now put F = α and β in Lemma 2.1. Then

α3(γ + X2)= 0, β3(γ + X2)= 0.

If γ + X2 6= 0, then α3 = β3 = 0. It follows from (4.20) that α and δ are constant.
Furthermore, by (4.33) we see that γ is constant. Thus from (4.41), (4.42) and (4.43),

α + δ = 0,

3αγ − 3αδ + γ δ = 0,

3αγ − 6αδ − γ δ = 0.
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Hence, by (3.4) and (4.33), α2
− c = 0 and 2β2

+ c = 0, which is a contradiction.
Therefore X1 =−γ , which, together with (4.39), implies that γ =−X1 =−4α. Thus
it follows from (4.41) that γ3 =−4α3 = 12β(δ + α). Hence, from (4.43) we have a
contradiction αδ = 0.

Case II-2. Suppose that

β2
− αγ − c = 0 and α1 6= 0. (4.44)

Here we assert that if φpq 6= 0, then λp = λq . To prove this, we assume that there exist
indices p and q such that

φpq 6= 0, λp − λq 6= 0.

Then from (4.23) and (4.44),

(λpλq − 2c)(λp + λq)− 2(α + γ − δ)λpλq − 2cγ − δ{(λp)
2
+ (λq)

2
} = 0.

(4.45)
Multiply the above equation by α3 and see θ1 of d of this equation. Then from (4.9),

(αγ )1(λpλq − c)= 2α1(cγ − cλp − cλq − αλpλq). (4.46)

On the other hand, by (4.5), (4.10), (4.15) and (4.17),

(αγ )1 = 2(γ − δ)α1, (4.47)

which, together with (4.46) and (4.47), implies that

λpλq(α + γ − δ)= c(2γ − δ − λp − λq).

Eliminate (α + γ − δ)λpλq from this and (4.45):

(αλp)(αλq)(αλp + αλq)− 2cα2(αγ − αδ)− (αδ){(αλp)
2
+ (αλq)

2
} = 0.

Multiply this equation by α3 and see θ1 of d of this equation. Then by (4.9),
(αγ )1 =−2(γ − δ)α1 and so γ = δ by virtue of (4.44) and (4.47). Thus from (3.4)
and (4.43) we have contradiction. Therefore, for all p, q such that φpq 6= 0, we have
λp = λq .

We now take p, q such that φpq 6= 0. Then, from (4.24) and λp = λq ,

β2λp − (λp − γ ){(λp)
2
− αλp − c} = 0. (4.48)

Furthermore, from (q3p), (4.9) and (4.22),

λp(λp − δ)= 0.

Note that (4.25) implies that λp 6= 0. Hence we have λp = δ. From (4.48) we have
(α + δ)(δ − γ )= 0. If α + δ = 0, then α and δ are constant, which contradicts (4.44).
Hence δ − γ = 0. However, from (4.44) we have β = 0, which is a contradiction.

Consequently we have proved β = 0, which completes the proof. 2
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5. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Let M be a real hypersurface in a complex
space form Mn(c), c 6= 0, n ≥ 3. Suppose that the structure Jacobi operator is cyclic-
parallel. From dξi = 0, (2.1) and (2.5),

01i j = λ jφ j i . (5.1)

If α = 0, then (3.2) implies that

(λi − λ j )φi j = 0 for i, j ≥ 2.

Thus H and φ are commutative. By the classification theorems of real hypersurfaces
in Mn(c), c 6= 0, due to Okumura [11] and Montiel and Romero [9], M is locally
congruent to one of the real hypersurfaces of type A1 or A2 in PnC or of type A0, A1
or A2 in HnC.

Suppose that α 6= 0. We first prove that all principal curvatures are constant.
From Lemma 4.1 and Proposition 2.3 we see that α is constant in M . We denote
equation (3.2) by (32)i jk . By (213) and (313),

γ1 = δ1 = 0. (5.2)

It follows from (32)i i i and (32)1pp that

(λp)1 = (λi )i = 0 for i ≥ 2. (5.3)

We take the indices i and j such that i 6= 1, j 6= 1 and i 6= j . Then eliminating
(λi − λ j )0i j i from (i i j) and (32)i i j , we have

(λi ) j = 0. (5.4)

Hence, from (5.2), (5.3) and (5.4) all principal curvatures are constant. By the
classification theorems of real hypersurfaces in Mn(c), c 6= 0, due to Kimura [7] and
Berndt [1], M is locally congruent to one of the homogeneous real hypersurfaces of
type A1 ∼ E in PnC or of type A0 ∼ B in HnC. So, we shall check equation (3.2) one
by one for the above model spaces.

Here since all principal curvatures are constant, we shall rewrite the condition (3.2).
For a suitable choice of a orthonormal frame field {ei } of each model space we set
hi j = λiδi j . The Codazzi equation (2.3) asserts that

(λi − λ j )0i jk = (λk − λi )0ki j − c(ξkφi j + 2ξiφk j − ξ jφik). (5.5)

Therefore the cyclic-parallel structure Jacobi operator condition (3.2) is rewritten as

3α(λi − λ j )0i jk + 3αc(ξ jφki − ξiφ jk)− (α
2
+ c){δi1(λ j − λk)φ jk

+ δ j1(λk − λi )φki + δk1(λi − λ j )φi j } = 0. (5.6)
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Case I. Mn(c)= HnC. Let M be of type A0. Then M has two distinct constant
principal curvatures α = 2 and 1. Then it is easy to see that M satisfies (5.6).

Let M be of type A1 or A2. Then M has three distinct constant principal curvatures
√
−c/t ,

√
−ct and α =

√
−c(t + 1/t), where t = tanh r . For i, j, k ≥ 2 we have (5.6)

because the same principal curvatures exist in {λi , λ j , λk}. Therefore, by (5.1) we
obtain (5.6). For j = 1 the left-hand side of (5.6) can be expressed as

(λi − λk)(α
2/2− c)φik . (5.7)

Since 2
√
−ct − α 6= 0 and 2

√
−c/t − α 6= 0, it follows from Proposition 2.4 that

φV√
−c/t = V√

−c/t and φV√
−ct = V√

−ct , where Vλ denotes the eigenspace of H with
eigenvalue λ. Hence we have (λi − λ j )φi j = 0 for any i, j . This, together with (5.7),
implies (5.6). Thus the manifold M satisfies (5.6).

Let M be of type B. Put j = 1 in (5.6). Thus by an argument similar to that above,

(λi − λk)(α
2
− 2c)φik = 0. (5.8)

M has three distinct constant principal curvatures
√
−c/t ,

√
−ct and α =

4
√
−ct/(t2

+ 1), where t = tanh r . Then, from Proposition 2.4, φV1/t = Vt and
therefore there exist indices i and j such that (λi − λ j )φi j 6= 0. This contradicts (5.8).

Case II. Mn(c)= PnC. Let M be of type A1, A2 or B. By an argument similar to
that in Case I, real hypersurfaces of type A1 or A2 satisfy the condition (5.6). Moreover
if α2
= 2c, then real hypersurfaces of type B satisfy (5.6). The equation α2

= 2c tells
us that cot r = (

√
2c + 4+

√
2c)/2.

Let M be of type C , D or E . Then M has five distinct constant principal curvatures.
Put j = 1 in (5.5) to get

(λk − λi )0ki1 = (αλk − λiλk + c)φki ,

by virtue of (5.1), which implies that

2(λk − λi )0ki1 = α(λk − λi )φki . (5.9)

Suppose that i , j , k ≥ 2 and λi 6= λ j . Then it follows from (5.6) that 0i jk = 0 and
therefore θi j = 0i j1θ1. Seeing θi ∧ θ j of d of θi j ,

λiλ j + c + (φi j )
2
{λiλ j + (α/2)(λi + λ j )+ 3c} = 0,

because of (5.1) and (5.9). Put i = 1 in (5.5). Then

{2λ jλk − α(λ j + λk)− 2c}φ jk = 0 for j, k ≥ 2.

From the above two equations it is easy to see that

λiλ j + c = 0 for i, j ≥ 2 and λi 6= λ j ,

which implies that M has at most three constant principal curvatures. This is a
contradiction.

This completes the proof of Theorem 1.1.
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