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THE INDIVIDUAL ERGODIC THEOREM FOR
CONTRACTIONS WITH FIXED POINTS

BY
JAMES H. OLSEN

Let (X, ¥, n) be a o-finite measure space and let T take L, to L,, p fixed,
1<p <o, ||T||, =1. We shall say that the individual ergodic theorem holds for T
if for any uniform sequence k,, k,, ... (for the definition, see [2]) and for any
feL,(X), the limit

00 =tim - ¥ T4(x)

exists and is finite almost everywhere. Using Akcoglu’s ergodic theorem ([1]) to
modify slightly the proof in [4] that the individual ergodic theorem holds for T
a positive contraction of L, and L, some p>1, we see that the individual
ergodic theorem holds for any positive T:L,— L,, 1<p<w, |T]|,<1. The
purpose of this note is to point out that if there exists h# 0 with Th = h, and in
addition T: L., — L., ||T|l.=1, then the individual ergodic theorem holds for T,
without the restriction of positivity.

In [3], De La Torre proves that if there exists h#0, Th=h, and ||T|..<1,
then the Dominated Ergodic Theorem holds for T: i.e.,
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=220l

for all feL,.

In proving his result, De La Torre proves three lemmas. In the first he
proves that if there exists an h such that Th = h, |h|= 1, then the Dominated
Ergodic Theorem holds for T. The other two lemmas show that if there exists
g#0, Tg = g, then there exists such an h.

In the proof of his first lemma, De La Torre defines the operator Sf=
hT(hf), where |h|=1, Th = h, which is a contraction of L, and L.., and shows
that S is positive. Hence the individual ergodic theorem holds for S. But
T'f = hS'hf, so
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which must now exist and be finite almost everswhere for every feL,.
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We summarize this discussion by stating the result as a theorem.

THEOREM. Let T be a contraction of L, and L., p fixed, 1 <p <, and let there
exist an h#0 such that Th = h. Then the individual ergodic theorem holds for T.
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