A GENUINE TOPOLOGY FOR THE FIELD OF MIKUSINSKI OPERATORS

Raimond A. Struble

Let C denote the complex algebra of continuous functions of a non-negative real variable under addition, scalar multiplication and convolution. C has no divisors of zero and its quotient field F is called the <u>field of Mikusiński operators</u> [1]. It is well known that Mikusiński has defined a sequential convergence in F which is not topological [2]. Using a recent result due to T.K. Boehem [3] we shall provide F with a sequential convergence which <u>is</u> topological.

Hereafter, let the complex algebra $\,C\,$ be endowed with the topology of compact convergence and for each $\,p\,\,\epsilon\,\,C$, let $\,S(p)\,=\,\sup\{\tau\colon\,t\leq\tau\Rightarrow p(t)\,=\,0\}\,$ denote the ordinary support number of $\,p\,\,\epsilon\,\,C$. If $\,f=p/q\,\,\epsilon\,\,F$, the number $\,S(p)\,-\,S(q)\,$ is called the support number of the operator $\,f\,\,$. The fact that this number is uniquely determined by $\,f\,\,$ follows from Titchmarsh's fundamental theorem [1] which implies that $\,S(p')\,-\,S(q')\,=\,S(p)\,-\,S(q)\,$ whenever $\,p/q\,=\,p'/q'\,$. Boehem's theorem states that if $\,\{q_n^{}\}\,\,$ is a sequence in $\,C\,\,$, then a necessary and sufficient condition that there exists a nonzero $\,q\,\,\epsilon\,\,C\,\,$ such that each $\,q_n^{}\,\,$ factors $\,q\,\,$, i.e. $\,q\,=\,q_n^{}\,\,$ r with $\,r_n^{}\,\,\epsilon\,\,$ C, is that the support numbers $\,S(q_n^{})\,\,$ are uniformly bounded on the right. In particular, this implies that every sequence $\,\{f_n^{}\}\,\,=\,\{p_n^{}/q_n^{}\}\,\,$ of operators with support numbers $\,S(p_n^{})\,-\,S(q_n^{})\,\,$ uniformly bounded on the left possesses a common denominator $\,q\,\,\epsilon\,\,$ C, i.e., $\,qf_n^{}\,=\,qp_n^{}/q_n^{}\,=\,r_n^{}\,p_n^{}\,\epsilon\,\,$ C for all $\,n\,\,$.

DEFINITION. A sequence $\{f_n\}$ of operators is said to be $\frac{\text{convergent in } F}{\text{and only if the support numbers of the sequence}} \text{ are uniformly bounded on the left and for any subsequence } \{f_i\} \text{ and for any } q \in C \text{ satisfying } qf_i \in C \text{ for all } i, \text{ the corresponding function sequence } \{qf_i\} \text{ is convergent in } C.$

This definition is meaningful since if $q_1f_i \in C$ and $q_2f_j \in C$ for all i and j, with $q_1, q_2 \neq 0$, $q_1f_i \rightarrow p_1$ and $q_2f_j \rightarrow p_2$ in C, then

 $^{^{}m 1}$ Work supported by the U.S. Army Research Office, Durham.

Note that by Boehem's theorem there exists a nonzero $q \in C$ such that $qf_n \to p$ in C.

 $p_4/q_4 = p_2/q_2$ ϵ F and so there is a unique operator limit determined by any convergent operator sequence $\{f_{_{\mathbf{n}}}\}$. According to this definition, a "constant" sequence, i.e., $f_n = f$ for all n, is convergent and converges to the "constant" and every subsequence of a convergent sequence is convergent and converges to the same operator. Moreover, if an operator sequence $\{f_n\}$ fails to converge in F to an operator f, then either the support numbers are not uniformly bounded on the left or for some subsequence $\{f_i\}$ and some nonzero $q \in C$ the corresponding function sequence $\{qf_i\}$ fails to converge to qf in C. If the support numbers are not uniformly bounded on the left, then there exists a subsequence $\{f_m\}$ with the support numbers tending monotonically to $-\infty$. If a function sequence $\{qf_i\}$ fails to converge to qf in C, then either $qf \not\in C$, or $qf \in C$ and the sequence fails to converge to the function qf uniformly on some compact set. Thus, in any event, if an operator sequence $\{f_n\}$ fails to converge in F to an operator f, there exists a subsequence $\,\{f_{\,{}_{\displaystyle m}}\}\,\,$ such that every subsequence of the latter also fails to converge in F to the operator f. These three properties guarantee that convergence in F is topological [4,5].

This new convergence concept appears to be as useful in the operational calculus as the one originally introduced by Mikusiński. In particular, addition and multiplication in F are continuous in this topology and the "standard" convergence theorems [6] are available. However, F does not become a topological field since the reciprocal mapping is not continuous [6].

EXAMPLE. Let φ be a nontrivial C^{∞} function with compact support on the positive half-line. For each positive integer n, let $a_n = \sup \big\{ \big| \varphi^{(n)}(t) \big| : t \geq 0 \big\} \,, \text{ where } \varphi^{(n)} \text{ denotes the } n^{th} \text{ derivative of } \varphi.$ Then if s denotes the derivative operator in F, the function sequence $\big\{ \frac{\varphi s^n}{n \, a_n} \big\} = \big\{ \frac{\varphi^{(n)}(t)}{n \, a_n} \big\} \quad \text{converges in C. On the other hand, if k is a positive constant and the function ψ is defined by $\psi(t) = \varphi(kt)$ for $t \geq 0$, then the function sequence <math display="block">\big\{ \frac{\psi s^n}{n \, a_n} \big\} = \big\{ \frac{k^n \varphi^{(n)}(kt)}{n \, a_n} \big\} \quad \text{does not converge}$ in C if \$k > 1\$. It follows that the operator sequence $\big\{ \frac{s^n}{n \, a} \big\} \quad \text{fails}$

to converge in F and yet it does converge in the original sense defined by Mikusiński [1].

REFERENCES

- J.G. Mikusiński, Operational calculus. (Pergamon Press, London and New York, 1959).
- 2. K. Urbanik, Sur la structure non topologique du corps des opérateurs. Studia Math. 14 (1954) 243-246.
- 3. T.K. Boehem, On sequences of continuous functions and convolutions. Studia Math. 25 (1965) 333-335.
- 4. J. Kisyński, Convergence du type L. Colloq. Math. 7 (1956-60) 205-211.
- 5. R.M. Dudley, On sequential convergence. Trans. Am. Math. Soc. 112 (1964) 483-507.
- 6. A. Erdelyi, Operational calculus and generalized functions. (Holt, Rinehart and Winston, New York, 1962).

North Carolina State University