CHARACTER AMENABILITY AND CONTRACTIBILITY OF ABSTRACT SEGAL ALGEBRAS

MAHMOOD ALAGHMANDAN, RASOUL NASR-ISFAHANI[™] and MEHDI NEMATI

(Received 17 December 2009)

Abstract

Let \mathcal{B} be an abstract Segal algebra with respect to \mathcal{A} . For a nonzero character ϕ on \mathcal{A} , we study ϕ -amenability, and ϕ -contractibility of \mathcal{A} and \mathcal{B} . We then apply these results to abstract Segal algebras related to locally compact groups.

2000 *Mathematics subject classification*: primary 46H05; secondary 43A07. *Keywords and phrases*: character amenable, abstract Segal algebra.

1. Introduction

Let \mathcal{A} be a Banach algebra and $\phi \in \sigma(\mathcal{A})$, consisting of all nonzero characters on \mathcal{A} . Kaniuth *et al.* [7, 8] introduced and studied the concept of ϕ -*amenability* for Banach algebras as a generalization of left amenability of Lau algebras. In fact, \mathcal{A} is called ϕ -*amenable* if there exists a bounded net (a_{α}) in \mathcal{A} such that

 $\phi(a_{\alpha}) \to 1$ and $||aa_{\alpha} - \phi(a)a_{\alpha}|| \to 0$

for all $a \in A$. Any such net is called a bounded approximate ϕ -mean.

Moreover, the notion of (right) character amenability was introduced and studied by Monfared [9]. Character amenability of \mathcal{A} is equivalent to \mathcal{A} being ϕ -amenable for all $\phi \in \sigma(\mathcal{A})$ and \mathcal{A} having a bounded right approximate identity.

For $\phi \in \sigma(\mathcal{A})$, the notion of ϕ -contractibility of \mathcal{A} was recently introduced and studied by Hu *et al.* [4]. In fact, \mathcal{A} is called ϕ -contractible if there exists a (right) ϕ -diagonal for \mathcal{A} ; that is, an element **m** in the projective tensor product $\mathcal{A} \otimes \mathcal{A}$ such that

$$\phi(\pi(\mathbf{m})) = 1$$
 and $a \cdot \mathbf{m} = \phi(a)\mathbf{m}$

for all $a \in A$, where π denotes the product morphism from $A \otimes A$ into A given by $\pi(a \otimes b) = ab$ for all $a, b \in A$.

Several authors have studied various notions of amenability for abstract Segal algebras; see, for example, Samea [13] and Tewari and Parthasarathy [14]. Here, we characterize character amenability and character contractibility of abstract Segal

^{© 2010} Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

algebras. We then give some applications of our results to abstract Segal algebras on a locally compact group G.

2. Character amenability and contractibility of abstract Segal algebras

Let \mathcal{A} be a Banach algebra with the norm $\|\cdot\|_{\mathcal{A}}$. Then a Banach algebra \mathcal{B} with the norm $\|\cdot\|_{\mathcal{B}}$ is an abstract Segal algebra with respect to \mathcal{A} if:

(1) \mathcal{B} is a dense left ideal in \mathcal{A} ;

[2]

- (2) there exists M > 0 such that $||b||_{\mathcal{A}} \le M ||b||_{\mathcal{B}}$ for all $b \in \mathcal{B}$;
- (3) there exists C > 0 such that $||ab||_{\mathcal{B}} \le C ||a||_{\mathcal{A}} ||b||_{\mathcal{B}}$ for all $a, b \in \mathcal{B}$.

We begin this section with the following result.

THEOREM 2.1. Let A be a Banach algebra and let B be an abstract Segal algebra with respect to A. Then the following statements are equivalent.

- (a) \mathcal{B} is character amenable.
- (b) A = B, and A is character amenable.
- (c) A is Banach algebra isomorphic to B and A is character amenable.

PROOF. (a) \Rightarrow (b). Suppose that \mathcal{B} is character amenable. Then \mathcal{B} has a bounded right approximate identity (e_{α}) . Since \mathcal{B} is an abstract Segal algebra, there exists C > 0 such that

$$\|ab\|_{\mathcal{B}} \le C \|a\|_{\mathcal{A}} \|b\|_{\mathcal{B}}$$

for all $a, b \in \mathcal{B}$. So, for each $b \in \mathcal{B}$,

$$\|a\|_{\mathcal{B}} = \lim_{\alpha} \|ae_{\alpha}\|_{\mathcal{B}} \le C \|a\|_{\mathcal{A}} \liminf_{\alpha} \|e_{\alpha}\|_{\mathcal{B}}$$
$$\le C \left(\sup_{\alpha} \|e_{\alpha}\|_{\mathcal{B}}\right) \|a\|_{\mathcal{A}}.$$

On the other hand, there exists M > 0 such that $||a||_{\mathcal{A}} \le M ||a||_{\mathcal{B}}$. Thus the norms $|| \cdot ||_{\mathcal{A}}$ and $|| \cdot ||_{\mathcal{B}}$ are equivalent on \mathcal{B} . Since \mathcal{B} is dense in \mathcal{A} , it follows that $\mathcal{A} = \mathcal{B}$ and \mathcal{A} is character amenable.

(b) \Rightarrow (c). Since \mathcal{B} is an abstract Segal algebra with respect to \mathcal{A} , there exists M > 0 such that

$$\|a\|_{\mathcal{A}} \le M \|a\|_{\mathcal{B}}$$

for all $a \in A$. Thus \mathcal{B} is Banach algebra isomorphic to \mathcal{A} by the open mapping theorem. The implication (c) \Rightarrow (a) is trivial.

Before we give our next result, let us present an elementary lemma.

LEMMA 2.2. Let \mathcal{A} be a Banach algebra and let \mathcal{B} be an abstract Segal algebra with respect to \mathcal{A} . Then $\sigma(\mathcal{B}) = \{\phi|_{\mathcal{B}} : \phi \in \sigma(\mathcal{A})\}.$

PROOF. Since \mathcal{B} is dense in \mathcal{A} , it follows that $\phi|_{\mathcal{B}} \neq 0$ and so $\phi|_{\mathcal{B}} \in \sigma(\mathcal{B})$. Now suppose that $\psi \in \sigma(\mathcal{B})$. Then there exists $b_0 \in \mathcal{B}$ such that $\psi(b_0) = 1$. Thus for each $b \in \mathcal{B}$,

$$\psi(b) = \psi(bb_0).$$

By assumption, there exists C > 0 such that $||bb_0||_{\mathcal{B}} \le C ||b||_{\mathcal{A}} ||b_0||_{\mathcal{B}}$ for all $b \in \mathcal{B}$ and consequently

$$|\psi(b)| = |\psi(bb_0)| \le C ||b||_{\mathcal{A}} ||b_0||_{\mathcal{B}}.$$

This shows that ψ is continuous on \mathcal{B} with respect to the norm $\|\cdot\|_{\mathcal{A}}$. Since \mathcal{B} is dense in \mathcal{A} , it follows that ψ has a unique extension $\phi \in \sigma(\mathcal{A})$.

PROPOSITION 2.3. Let \mathcal{A} be a Banach algebra and let \mathcal{B} be an abstract Segal algebra with respect to \mathcal{A} and $\phi \in \sigma(\mathcal{A})$. Then \mathcal{A} is ϕ -amenable if and only if \mathcal{B} is $\phi|_{\mathcal{B}}$ -amenable.

PROOF. Suppose that \mathcal{A} is ϕ -amenable. Then there is a bounded approximate ϕ -mean (a_{α}) in \mathcal{A} . Fix $b_0 \in \mathcal{B}$ such that $\phi(b_0) = 1$ and set

$$b_{\alpha} := a_{\alpha} b_0^2 \in \mathcal{B}$$

for all α . Since \mathcal{B} is an abstract Segal algebra with respect to \mathcal{A} , there exist C > 0 and M > 0 such that for each $b \in \mathcal{B}$,

$$\begin{aligned} \|bb_{\alpha} - \phi(b)b_{\alpha}\|_{\mathcal{B}} &\leq C \|ba_{\alpha} - \phi(b)a_{\alpha}\|_{\mathcal{A}} \|b_{0}\|_{\mathcal{A}} \|b_{0}\|_{\mathcal{B}} \\ &\leq MC \|ba_{\alpha} - \phi(b)a_{\alpha}\|_{\mathcal{A}} \|b_{0}\|_{\mathcal{B}}^{2} \to 0 \end{aligned}$$

and

$$\phi(b_{\alpha}) = \phi(a_{\alpha}) \to 1.$$

Since (a_{α}) is $\|\cdot\|_{\mathcal{A}}$ -bounded, it follows that (b_{α}) is $\|\cdot\|_{\mathcal{B}}$ -bounded. Thus \mathcal{B} is $\phi_{\mathcal{B}}$ -amenable.

Conversely, suppose that \mathcal{B} is $\phi|_{\mathcal{B}}$ -amenable. Then there is a bounded approximate $\phi|_{\mathcal{B}}$ -mean (b_{α}) in \mathcal{B} . Fix $b_0 \in \mathcal{B}$ such that $\phi(b_0) = 1$ and set

$$a_{\alpha} := b_0 b_{\alpha}$$

for all α . Since \mathcal{B} is an abstract Segal algebra, there exists M > 0 such that for each $a \in \mathcal{A}$,

$$\begin{aligned} \|aa_{\alpha} - \phi(a)a_{\alpha}\|_{\mathcal{A}} &= \|ab_{0}b_{\alpha} - \phi(a)b_{0}b_{\alpha}\|_{\mathcal{A}} \\ &\leq \|ab_{0}b_{\alpha} - \phi(a)\phi|_{\mathcal{B}}(b_{0})b_{\alpha}\|_{\mathcal{A}} + \|\phi(a)\phi|_{\mathcal{B}}(b_{0})b_{\alpha} - \phi(a)b_{0}b_{\alpha}\|_{\mathcal{A}} \\ &\leq M(\|ab_{0}b_{\alpha} - \phi|_{\mathcal{B}}(ab_{0})b_{\alpha}\|_{\mathcal{B}} + |\phi(a)| \|\phi|_{\mathcal{B}}(b_{0})b_{\alpha} - b_{0}b_{\alpha}\|_{\mathcal{B}}) \\ &\rightarrow 0 \end{aligned}$$

and

$$\phi(a_{\alpha}) = \phi|_{\mathcal{B}}(b_{\alpha}) \to 1.$$

Since $\|\cdot\|_{\mathcal{A}} \leq M \|\cdot\|_{\mathcal{B}}$, it follows that (a_{α}) is a $\|\cdot\|_{\mathcal{A}}$ -bounded approximate ϕ -mean in \mathcal{A} , and therefore \mathcal{A} is ϕ -amenable.

As a consequence of Proposition 2.3 we have the following result.

COROLLARY 2.4. Let \mathcal{B} be an abstract Segal algebra with respect to a character amenable Banach algebra \mathcal{A} . Then \mathcal{B} is ϕ -amenable for all $\phi \in \sigma(\mathcal{B})$. Moreover, \mathcal{B} is character amenable if and only if $\mathcal{A} = \mathcal{B}$. **PROPOSITION 2.5.** Let \mathcal{B} be an abstract Segal algebra with respect to a Banach algebra \mathcal{A} and $\phi \in \sigma(\mathcal{A})$. Then \mathcal{A} is ϕ -contractible if and only if \mathcal{B} is $\phi|_{\mathcal{B}}$ -contractible.

PROOF. Suppose that \mathcal{A} is ϕ -contractible. Then there is a ϕ -diagonal $\mathbf{m} \in \mathcal{A} \otimes \mathcal{A}$ for \mathcal{A} . Thus, $\phi(\pi(\mathbf{m})) = 1$ and $a\pi(\mathbf{m}) = \phi(a)\pi(\mathbf{m})$ for all $a \in \mathcal{A}$. Since \mathcal{B} is a dense left ideal in \mathcal{A} , there exists $b_0 \in \mathcal{B}$ such that $\phi(b_0) = 1$ and so

$$b_1 := b_0 \pi(\mathbf{m}) \in \mathcal{B}$$

Now, for each $b \in \mathcal{B}$ we have

$$bb_1 = \phi(b)b_1$$
 and $\phi(b_1) = 1$.

It is clear that $b_1 \otimes b_1 \in \mathcal{B} \widehat{\otimes} \mathcal{B}$ is a $\phi|_{\mathcal{B}}$ -diagonal for \mathcal{B} .

For the converse, suppose that $\mathbf{m} \in \mathcal{B} \otimes \mathcal{B}$ is a $\phi|_{\mathcal{B}}$ -diagonal for \mathcal{B} . Then $\pi(\mathbf{m}) \cdot \mathbf{m} = \mathbf{m}$ and $a\pi(\mathbf{m}) \in \mathcal{B}$ for all $a \in \mathcal{A}$. We conclude that $\phi(\pi(\mathbf{m})) = 1$ and

$$a \cdot \mathbf{m} = a \cdot (\pi(\mathbf{m}) \cdot \mathbf{m}) = a\pi(\mathbf{m}) \cdot \mathbf{m} = \phi(a)\mathbf{m}$$

for all $a \in A$; that is, **m** is a ϕ -diagonal for A.

3. Applications to group algebras

Let G be a locally compact group with left Haar measure λ_G and let $L^p(G)$, $1 \le p \le \infty$, be the usual Lebesgue space with respect to λ_G as defined in [2]. The convolution product of two measurable functions f and g at $x \in G$ is defined by

$$(f * g)(x) = \int_G f(y)g(y^{-1}x) d\lambda_G(y),$$

whenever the integral exists. Then $L^1(G)$ endowed with the norm $\|\cdot\|_1$ and the convolution product * is a Banach algebra, called the group algebra of G. Let \widehat{G} denote the dual group of G consisting of all continuous homomorphisms ρ from G into the circle group \mathbb{T} , and define $\phi_{\rho} \in \sigma(L^1(G))$ to be the character induced by ρ on $L^1(G)$; that is,

$$\phi_{\rho}(h) = \int_{G} \overline{\rho(x)} f(x) \, d\lambda_{G}(x) \quad (f \in L^{1}(G)).$$

It is known that there is no other character on $L^1(G)$; that is,

$$\sigma(L^1(G)) = \{\phi_\rho : \rho \in \widehat{G}\};\$$

see, for example, [6, Theorem 2.7.2] or [2, Theorem 23.7].

Recall that G is called amenable if $L^1(G)$ is ϕ_1 -amenable; or equivalently, there is a bounded approximate ϕ_1 -mean in $L^1(G)$.

Before we give our first result in the section, recall from [5] that every Segal algebra is an abstract Segal algebra with respect to $L^1(G)$ but not conversely; see also [10, 11]. The linear subspace $S^1(G)$ of the convolution group algebra $L^1(G)$ is said to be a Segal algebra on G if it satisfies the following conditions.

(1)
$$S^1(G)$$
 is dense in $L^1(G)$.

(2) $S^1(G)$ is a Banach space under some norm $\|\cdot\|_s$ and for each $f \in S^1(G)$

$$||f||_1 \le ||f||_s$$

- (3) $S^1(G)$ is left transition invariant and the map $x \mapsto \delta_x * f$ of G into $S^1(G)$ is continuous.
- (4) $\|\delta_x * f\|_s = \|f\|_s$ for all $f \in S^1(G)$ and $x \in G$.

PROPOSITION 3.1. Let G be an amenable locally compact group. Then any abstract Segal algebra S(G) with respect to $L^1(G)$ is ϕ -amenable for all $\phi \in \sigma(S(G))$. Moreover, S(G) is character amenable if and only if $S(G) = L^1(G)$.

PROOF. Since G is amenable, it follows that $L^1(G)$ is amenable, and so $L^1(G)$ is character amenable by [9, Corollary 2.4]. The proof is now complete by Corollary 2.4.

EXAMPLE 3.2. Let G be a compact group endowed with the normalized Haar measure. Then the convolution Banach algebra $L^{\infty}(G)$ is a symmetric abstract Segal algebra with respect to $L^1(G)$. Since G is amenable, the convolution Banach algebra $L^{\infty}(G)$ is ϕ -amenable for all $\phi \in \sigma(L^{\infty}(G))$ by Proposition 3.1. We can show that $L^{\infty}(G)$ has a right approximate identity if and only if G is finite. To see this, suppose that $L^{\infty}(G)$ has a right approximate identity. Thus $L^{\infty}(G) * L^{\infty}(G)$ is dense in $L^{\infty}(G)$, but it is well known that

$$L^{\infty}(G) * L^{\infty}(G) \subseteq L^{\infty}(G) * L^{1}(G) \subseteq C(G),$$

where C(G) is the set of all continuous functions on *G*. This will yield that C(G) is dense in $L^{\infty}(G)$ with the uniform norm. Thus $C(G) = L^{\infty}(G)$ and consequently *G* is finite by [3, Lemma 37.3]. The converse is clear.

THEOREM 3.3. Let G be a locally compact group and let $\rho \in \widehat{G}$. Then the following statements are equivalent.

(a) G is compact.

(b) All abstract Segal algebras on G are ϕ_{ρ} -contractible.

(c) There is an abstract Segal algebra on G which is ϕ_{ρ} -contractible.

PROOF. (a) \Rightarrow (b). Fix $\rho \in \widehat{G}$. Since G is compact, it follows that $\rho \in L^1(G)$ and $f * \rho = \phi_\rho(f)\rho$ for all $f \in L^1(G)$ and

$$\phi_{\rho}(\rho) = \int_{G} \rho \overline{\rho} \, d\lambda = \int_{G} |\rho|^2 \, d\lambda = 1.$$

It is clear that $\mathbf{m} = \rho \otimes \rho$ is a ϕ_{ρ} -diagonal for $L^1(G)$. Thus $L^1(G)$ is ϕ_{ρ} -contractible and hence any abstract Segal algebra on G is ϕ_{ρ} -contractible by Proposition 2.5.

(a) \Rightarrow (c). This implication is trivial.

[5]

(c) \Rightarrow (a). Suppose that there is an abstract Segal algebra with respect to $L^1(G)$ which is ϕ_{ρ} -contractible. Then $L^1(G)$ is ϕ_{ρ} -contractible by Proposition 2.5. It follows that there is a ϕ_{ρ} -diagonal for $L^1(G)$, say **m**. Thus, $\phi_{\rho}(\pi(\mathbf{m})) = 1$ and

$$f * \pi(\mathbf{m}) = \phi_{\rho}(f)\pi(\mathbf{m})$$

for all $f \in L^1(G)$. So, if we put

$$g := \overline{\rho}\pi(\mathbf{m}) \in L^1(G),$$

then $\phi_1(g) = 1$ and $f * g = \phi_1(f)g$ for all $f \in L^1(G)$; indeed,

$$\rho f * \pi(\mathbf{m}) = (\rho f * \pi(\mathbf{m})) * \pi(\mathbf{m})$$
$$= \phi_{\rho}(\rho f * \pi(\mathbf{m}))\pi(\mathbf{m})$$
$$= \phi_1(f)\pi(\mathbf{m}).$$

It follows that G is compact; see, for example, [12, Exercise 1.1.7].

COROLLARY 3.4. Let G be a locally compact group and let S(G) be an abstract Segal algebra with respect to $L^1(G)$ and $\rho \in \widehat{G}$. Then G is amenable if and only if S(G) is ϕ_{ρ} -amenable.

PROOF. Suppose that S(G) is ϕ_{ρ} -amenable. Then $L^{1}(G)$ is ϕ_{ρ} -amenable by Proposition 2.3. Thus $L^{1}(G)$ has a bounded approximate ϕ_{ρ} -mean, say (f_{α}) . Now, we define $h_{\alpha} := \overline{\rho} f_{\alpha}$ for all α . It follows that

$$\phi_1(h_\alpha) = \phi_\rho(f_\alpha) \to 1$$

and

$$f * h_{\alpha} = f * \overline{\rho} f_{\alpha} = \overline{\rho} (\rho f * f_{\alpha})$$

for all $f \in L^1(G)$. Consequently,

$$\|f * h_{\alpha} - \phi_{1}(f)h_{\alpha}\|_{1} = \|f * \overline{\rho}f_{\alpha} - \phi_{1}(f)\overline{\rho}f_{\alpha}\|_{1}$$
$$= \|\rho f * f_{\alpha} - \phi_{1}(f)f_{\alpha}\|_{1}$$
$$= \|\rho f * f_{\alpha} - \phi_{\rho}(\rho f)f_{\alpha}\|_{1} \to 0$$

Therefore, (h_{α}) is a bounded approximate ϕ_1 -mean in $L^1(G)$, and so G is amenable. The converse is trivial by Proposition 3.1.

Let *G* be a locally compact group and let A(G) be the Fourier algebra of *G* as defined in [1]. Then $\sigma(A(G))$ consists of all point evaluations ϕ_x ($x \in G$) defined by $\phi_x(f) = f(x)$ for all $f \in A(G)$.

THEOREM 3.5. Let G be a locally compact group and let SA(G) be an abstract Segal algebra with respect to A(G). Then the following statements are equivalent.

- (a) *G* is discrete.
- (b) SA(G) is ϕ_x -contractible for all $x \in G$.
- (c) SA(G) is ϕ_x -contractible for some $x \in G$.

PROOF. Suppose that *G* is discrete. Then $\chi_{\{x\}} \in A(G)$ for all $x \in G$, where $\chi_{\{x\}}$ is the characteristic function of $\{x\}$. Choose $f_0 \in SA(G)$ such that

$$||f_0 - \chi_{\{x\}}||_{A(G)} < 1/2.$$

Then $|f_0(x) - 1| < 1/2$, and so $f_0(x) \neq 0$. Thus,

$$\chi_{\{x\}} = \frac{1}{f_0(x)} f_0 \chi_{\{x\}} \in SA(G).$$

Moreover, $\phi_x(\chi_{\{x\}}) = \chi_{\{x\}}(x) = 1$ and, for each $f \in SA(G)$,

$$f \chi_{\{x\}} = f(x) \chi_{\{x\}} = \phi_x(f) \chi_{\{x\}}$$

Hence, it is clear that $\chi_{\{x\}} \otimes \chi_{\{x\}}$ is a ϕ_x -diagonal for SA(G), and consequently, SA(G) is ϕ_x -contractible. That is, (a) implies (b). That (b) implies (c) is trivial.

For (c) \Rightarrow (a), suppose that SA(G) is ϕ_x -contractible. Then there is a ϕ_x -diagonal for SA(G), say **m**. Thus

$$\pi(\mathbf{m})(x) = \phi_x(\pi(\mathbf{m})) = 1$$

and

$$f\pi(\mathbf{m}) = \phi_x(f)\pi(\mathbf{m}) = f(x)\pi(\mathbf{m})$$

for all $f \in SA(G)$. Now let $y \in G$ and choose $g \in A(G)$ such that g(y) = 0 and g(x) = 1 and also take $h \in SA(G)$ such that h(x) = 1. Therefore, $hg \in SA(G)$ satisfies $\phi_x(hg) = h(x)g(x) = 1$, and so

$$0 = hg\pi(\mathbf{m})(\mathbf{y}) = \phi_x(hg)\pi(\mathbf{m})(\mathbf{y}) = \pi(\mathbf{m})(\mathbf{y}).$$

It follows that $\chi_{\{x\}} = \pi(\mathbf{m})$. Since $\pi(\mathbf{m})$ is a continuous function on *G*, we conclude that *G* is discrete.

Acknowledgements

The authors would like to thank the referee for invaluable comments. They also thank the Center of Excellence for Mathematics at the Isfahan University of Technology for kind support.

References

- P. Eymard, 'L'algèbre de Fourier d'un groupe localement compact', *Bull. Soc. Math. France* 92 (1964), 181–236.
- [2] E. Hewitt and K. Ross, Abstract Harmonic Analysis I, Die Grundlehren der Mathematischen Wissenschaften, 115 (Springer-Verlag, Berlin, 1963).
- [3] E. Hewitt and K. Ross, Abstract Harmonic Analysis II, Die Grundlehren der Mathematischen Wissenschaften, 152 (Springer-Verlag, New York, 1970).
- Z. Hu, M. S. Monfared and T. Traynor, 'On character amenable Banach algebras', *Studia Math.* 193 (2009), 53–78.

Character amenability and contractibility of abstract Segal algebras

- [5] B. E. Johnson, 'Weak amenability of group algebras', *Bull. London Math. Soc.* 23 (1991), 281–284.
- [6] E. Kaniuth, A Course in Commutative Banach Algebras (Springer, New York, 2009).
- [7] E. Kaniuth, A. T. Lau and J. Pym, 'On φ-amenability of Banach algebras', *Math. Proc. Cambridge Philos. Soc.* 144 (2008), 85–96.
- [8] E. Kaniuth, A. T. Lau and J. Pym, 'On character amenability of Banach algebras', J. Math. Anal. Appl. 344 (2008), 942–955.
- M. S. Monfared, 'Character amenability of Banach algebras', *Math. Proc. Cambridge Philos. Soc.* 144 (2008), 697–706.
- [10] H. Reiter, L¹-algebras and Segal Algebras, Lecture Notes in Mathematics, 231 (Springer, Berlin, 1971).
- [11] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups (Clarendon Press, Oxford, 2000).
- [12] V. Runde, Lectures on Amenability (Springer, New York, 2002).

[8]

- [13] H. Samea, 'Essential amenability of abstract Segal algebras', Bull. Aust. Math. Soc. 79 (2009), 319–325.
- [14] U. B. Tewari and K. Parthasarathy, 'A theorem on abstract Segal algebras over some commutative Banach algebras', *Bull. Aust. Math. Soc.* 25 (1982), 293–301.

MAHMOOD ALAGHMANDAN, Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran e-mail: m.alaghmandan@math.iut.ac.ir

RASOUL NASR-ISFAHANI, Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran e-mail: isfahani@cc.iut.ac.ir

MEHDI NEMATI, Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran e-mail: m.nemati@math.iut.ac.ir