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1

Let A denote a complex Banach algebra with unit, Inv(4) the set of
invertible elements of 4, Sp(a) and r(a) the spectrum and spectral radius
respectively of an element a of 4. Let I' denote the set of elements of 4 whose
spectra contain non-negative real numbers, i.e.

I'={aeA: Sp(a)nR* # &}.
Yood (4) has observed that I" is an example of a set Q satisfying
(i) ae Q,t = 0=tae Q,
(i) ae Q, rl@)<1=a(l—a) ' e Q,

(i) ~1¢ 0,
and has proved that every subset Q of A4 satisfying (i), (ii), (iii) is contained
inT,

We show that the conclusion Q<T also holds if (ii) is replaced by the
purely algebraic condition:

(iv) ae Q=a+a*e Q.

Our main theorem (Theorem 7) goes further than this and shows that the
function z(1—z)~! in condition (ii) can be replaced by any member of a certain
class of functions, this class containing both the functions z(1—z)~! and
z+22,

It is natural to ask whether (ii) can be replaced by the condition:

aeQ=a’eQ.
An example showing that this is not sufficient, and indeed that the semigroup
condition
a, be Q=abeQ
is not sufficient, is given by the semigroup Q = {pe®: p 2 0,0 = 0, 27/3, 4r/3}
in the algebra C.

We prove in Theorem 1 that a subset P of Inv(4) is contained in I' if it
satisfies: ae P, t>0=>tacP; acP,r(a " )<l=a—1eP; —1 ¢P. This gives
Yood’s theorem as an immediate corollary, and is one of the ingredients in the
proof of Theorem 7. The other main ingredient is an iteration procedure
previously used in the study of type 2 semi-algebras of non-negative continuous
functions (1).
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We also consider in detail the relationship between the conditions (ii) and
(iv); and end with two applications of our results.

? Theorem 1. Let P be a subset of Inv(A) such that
(i) ae P, t>0=>tae P,
(i) aeP,r(aV)<l=a—1€P,
(iii) —1 ¢ P.
Then foi' each a in P, there exists y in Sp(@)nR" such that u = (r(@Y))~* and
a—puelP.

Proof. We note first that P satisfies:
(iv) ae P, 0<t<(r(@ ') '=a—teP.

For, given ae P and 0<t<(r(a”))"!, we have r(ra"!)<1 and so, by (i) and
(i), a—t = t(t " 'a—1) e P.

Let gaeP, and let pu=sup {AeR": a—AeP}. By (iv), we have
(@) r>0. Also u<oo, for if there exists a sequence {4,} with
2,>0, lim A, = oo, and a— 4, € P, then, by (i), —1 = lim (1, 'a—1) € P, which

R— n— o
contradicts (iii).
It is clear that a—pu € P, and so it only remains to prove that u e Sp(a).
Suppose, on the contrary, that a—pu e Inv(4). There exists a sequence {4,}

with 0<A, < u, a—2,€P, and lim 1, = u. By the continuity of the inverse
n—w
mapping on Inv(4), we have lim (a—4,)"' = (a—p)~", and since, on a com-

mutative subalgebra, the spectral radius is a semi-norm dominated by the
norm, lim r((a—4,)"") = r((a—p)~*)>0. Choose ¢ with

n—ow

O<t<(r((a—p~N7"
Then, for sufficiently large n, we have
O<t< (r((a - )"n)— 1))_ 1,

and (iv) gives a—4,—t € P. But, for sufficiently large n, A, + > u, contradicting
the definition of pu.

Corollary 2 (Yood). Let Q be a subset of A such that
(i) ae Q,t = 0=tae Q,

(i) ae Q, r(@)<1=a(l—a)~' e Q,

Giii) —1 ¢ Q.

Then Sp(a)nR™ is non-void for each a in Q.
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Proof. Let P = {aeInv(4): a~'e Q}. For singular elements of Q we
have 0 € Sp(a), and so it is enough to prove that OnInv(4)cT. Fora e Inv(4),
we have Sp(@) = (Sp(a~'))™!, and so it is enough to prove that PcT. Given
ae P with r(@a"')<1, we have a~! € Q, and therefore

@-D"1'=a'(1-aH e,

a—1 € P. Thus P satisfies condition (ii) of Theorem 1, and it obviously satisfies
conditions (i) and (iii). Therefore P<T.

Notation. Let >0, let D; = {zeC: |z|>&""}, and let ® be a complex
valued function holomorphic on D; such that ®(z)—z+1-0 as | z]|—>o0. Let
functions @y, ®,, ®,, ... be defined recursively by

@y(z) =z, Oz) =P(Q_4(2)) (k=1,2,..).
Lemma 3. For all a € Inv(A4) with r(a”') <6, ®(a) is defined, and
| ®(@)—a+1 -0
as || a” ' |-0.

Proof. Let a € Inv(4) with r(a~')<8. Then Sp(a)<= D;, and the functional
calculus gives a well defined element ®(a) of 4. Since ® is holomorphic on
D;, it has the Laurent series representation

B.z™" (z € Dy).

1

O@)= Y a+

118

0 o0
But ®(z)~z+1— Y PB,z7">0 as |z|-»c0, and so ) a,z"—z+1 is a
n=1 n=20
bounded entire function that tends to zero as | z |- o0, and is therefore identically
zero. Therefore

P(z)=z—-1+

n

p1s

B.z™" (z €Dy).

1
We now have

o

O(a)—a+l= )Y Ba"

n=1
which tends to zero in norm as || a~! ||-0.
The next lemma is an adaptation of a lemma in (1).

Lemma 4. Given £>0, there exists N such that, for all n = N and all
aeInv(A4) with || a™* || <(1+2)" !, we have

(i) ®(na) € Inv(A4) and (|(@(na))"' <6 (0=Lk<n),
@) | n7'® (na)—(a—1)| <e.
Proof. We use the following well known elementary fact:
acInv(d),beA, | b-al| <3| a | '=be Inv(4) and
o=t 1=20a ). (1)
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Let e>0. By Lemma 3, there exists # with 0 <5 < 6, such that
xeInv(4), || x| <n=] @) —x+1 [ <e. @

Let aeInv(4) with |a™! || <(1+2¢)~ %, choose a positive integer N with
N>(en)™!, and let n = N. We have

(ra)~* | <(n+2ne)~" <(ne)™' <m, (3)
and so by (2), ®(na) is defined and
| ®(na)—na+1 || <e. 4)

We show, by induction, that

[ @, 1(na))™" | <n and | @(na)—ra+k | <ke (L<kSn).  (5)
The case k = 1 of (5) is given by (3) and (4). Suppose that (5) holds for some
k < n—1. Since (na—k)™! = n"'a"'(1—kn"'a™")"!, we have

lna=k)~" | =n™tla™t | I(A—kn"a™ )71 |

ntlaTt ] Y ket et

r=20

IIA

=n"ta t|(l—kn"ta”t D7

=latl(n=kla* D"

<(1+2e) Y (n—k(14+2¢)~H!

= (n(1+2e)—k)~ 1,

I(na—k)~" || <(2ne)™' <3(ke)™". (6)
(5) and (6) show that
| @(na)—(na—k)| <4 [(na—k)~* |71,
and so, by (1), ®,(na) € Inv(A4), and
I(@i(na))™" | <2 l(na—k)~" | <(ne)~! <n.
We now take x = ®,(na) in (2), and obtain
| @it 1(na)—@(na)+1 |j <e.

With (5), this gives
@y e(na)—na+k+1 | <(k+1)s,

and induction completes the proof of (5) for1 £ k £ n.
In particular, we have
| ®(na)—na+n| <ne,

and division by n gives the required inequality.

Theorem 5. Let >0 and Dy = {ze C: | z|>6"'}. Let ® be holomorphic
on D; and let ®(z)—z+1-0 as | z|»o00. Let P be a subset of Inv(A4) such
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that
(i) ae P, t>0=>tacP,
(i) aeP, ra ) <6=>P(a)e P.

Then _
aeP,r(aY)<l=a—1€P.

Proof. Letae Pwithr(a~!')<1. Amongthe algebra-norms on A equivalent
to the given norm we choose one, which we denote by || - ||, forwhich || ™' || <1.
Given ¢ with 0<e<3(la ! |7'—1), we have || a~ ! || <(1+2¢)"'. Therefore
by Lemma 4, there exists N such that for all n = N, n™1®,(na) € P and

- | n7 1@, (na)—(a—1)| <e.
Therefore a—1 € P.
Remark. As a particular case of Theorem 5 we can take
§=1,0%) =z22(1+2)" 1.
Thus if P is a subset of Inv(A) satisfying
(i) ae P, t>0=tac P,
(i) aeP, r(@a)<l=a*(1+a) ' eP,

then _
acP, rlaY)<l=a—1€P.

Corollary 6. Let 6, @ satisfy the conditions of Theorem 5, and let P be a
relatively closed subset of Inv(A) such that
(i) ae P, t>0=tae P,
(i) ae P, r(a™)<é=>d(a) € P,
(i) —1¢P.
Then for each ae P, there exists pe Sp(@nR* with p = (r(@a™Y))™* and
a—peP.

Proof. If ae P with r(a"Y)<1, then a—1 € Inv(4), and so, by Theorem 5,
a—1eP. Then Theorem 1 applies.

Notation. Let 6>0, and let F; denote the class of complex functions g
holomorphic on the disc {z € C: [z |<§}, with no zeros in the punctured disc
{ze C: 0<| z|<4}, and with power series expansion

9= 3 a2 (1z]<d)
with | & |>0, | a,, |>0.

It should be noticed that every function g holomorphic in a neighbourhood
of 0 and with g(0) = 0, g'(0) >0, g"(0)> 0 belongs to the class F; for a suitable
6>0.
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Theorem 7. Let g belong to the class Fy just defined, and let Q be a subset
of A such that
(i) ae Q,t = O=tac Q,
(i) a€ Q, r(@)<é=>g(a)€ Q,
(i) —1 ¢ 0.
Then Sp(a)nR™ is non-void for each a in Q.

Proof. We may assume Q closed, by continuity of the mapping a—g(a).
We may also assume that o, = o, = |, since the function / defined by

h(z) = ay05 g5 '2)
belongs to F;.,, where 6" =6 | o, | | o, |71, and
aeQ, r(a)<d'=r(u0; 'a)<d=>g(a,a; 1a) e Q.
We therefore assume that g € F; and
9(2) = z+ 2’ +f(2),
where f(z) = i a,z".

n'’=3
Let P = {aeInv(4): a e Q}, and ®(z) = (g(z" )" (ze D;). We have
®(2) = z2(1+z+2%(z"Y))" !, and it is easily verified that ®, P satisfy the
conditions of Corollary 6. The proofis completed as in the proof of Corollary 2.
Corollary 8. Let Q be a subset of A such that
(i) ae Q,t = 0=tac Q,
(i) ae Q, r(@<l=>a+d*€ 0,
Gii) —1¢ Q.
Then Sp(a)nR* is non-void for each a in Q.
Proof. Clear.

Remarks. It is obvious that condition (ii) in Corollary 8 can be replaced
by the stronger condition:

(i) ae A=a+a’*e Q.

An example of a set Q satisfying (i), (if) and (iii) but not (i)’ is given by
the set @ = {(¢, e €*: aeR*, —BeR*} in the algebra C? (with co-
ordinatewise multiplication).

If 0<d<1, the function g(z) = z+2z* is, a fortiori, in the class F; and so
(ii) may also be replaced by the weaker condition:

(i)” ae Q, r(a)<é=a+a*€ Q.

2

Given a closed set Q<A satisfying conditions (i) and (ii) in Corollary 8,
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an application of the Remark following Theorem 5 to the set

P ={aelnv(4): a ‘e Q}
shows that
ae OnInv(4), r(a)<l=a(l—a) 1 e Q.
In the next theorem, we show that the full force of Yood’s condition holds, i.e.
ae O, rl@<l=a(l—a) te Q.
First we give an example to show that the reverse implication does not hold,
so that this condition is not equivalent to (ii).

Example. Let a € Inv(4)nT", and let v € Sp(@)nR*. Clearly v>0. Let
P ={ea—f: a>0, $ 20, a”'f<v, « B¢ Sp(a)}. Then PclInv(4) and
xeP, t>0=>txeP.

Suppose now that x € P with r(x"')<1; ie. x = aa—p with >0, 8 = 0,
a”'B<v, a”! B¢ Sp(a) and r((@—a”"'B) ) <a. Then |A—a"'f|>a"* for all
2 € Sp(a), and in particular v—a~!f>a~!. It follows that a~!(f+1) ¢ Sp(a)
and a~'(B+1)<v. Thus x—1e€ P. We have proved that P satisfies conditions
(i) and (ii) of Theorem 1.

Let O = {xelInv(4): x~'eP}u{0}. Then Q satisfies conditions (i) and
(ii) of Corollary 2. But it is clear that in general it does not satisfy condition
(ii) of Corollary 8. For a concrete example (in which also —1 ¢ P), take
A = C[0, 1] and take a to be the function a(f) = 1+¢.

Suppose now that @ is an element of Inv(4)NI such that Sp(@)nR? is
not connected. Then we may choose v>(r(a~*)) ™! such that v is the supremum
of a component of the intersection of R* with the resolvent set of . With
this choice of v and with P defined as above, we have

sup{AieR*: a—leP} =y,

which shows that in Theorem 1 we may have u>(r(a™*))'.

Theorem 9. Let Q be a closed subset of A such that

(i) ae Q,t =2 0=tac Q,

@) ae Q, r(@<l=a+a’*e Q.
Then, ac Q, r(@)<l=a(l—a) ' e Q.

Proof. Let ae Q, and consider the sequence defined by

a,=a, ay=a,_+aj_, k=2,3,4,...

Then a, is a polynomial in @ which we may write as

a, = 'Zl wi(k)a'.

We shall prove by induction that the coefficients u,(k) satisfy the following
relations, for all i, k = 1:

pik) £ K1, ey
E.M.S.—19/1—E
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k i—-1
pi(k) = (k 1) uk+1). 2

The definition of g, shows that the p, (k) satisfy

i) = =D+ T k=D (k=) ®

Since this last sum is empty when { = 1, we have u,(k) = 1 for all k and, clearly,
(1) = Ofori = 2, so that (1) holds if either i or k is 1. Now suppose that (1)
has been established for all pairs (i, k) with 1 £ i<j and for all (i, k) with
i=jand 1 £ k<n. We shall prove that this implies that (1) holds for the
pair (j, n). Then induction first on the second coordinate and then on the first
coordinate proves (1) for all pairs (7, k).
Jji—1
We have p(n) = pj(n—1)+ Y, p(n—1)p;_(n—1) and so, by the induction
hypothesis, =t

pn) S (n=1y""+ Ji (n=1)"!(n—1y/ 7!

r=1
== (-Dnr-1)"2 < (n~-1+1)y"t=n'"?
as required.
The proof of (2) follows the same pattern. Since p,(k) = p,(k+1) =1
and p(1) = 0 for all i = 2, the cases k = 1 and i = 1 are trivial. Suppose
then, that (2) holds for 1 = k <nand 1 =i < jand consider yu;(n+1). Then,

from p;(n+1)—pin) = Z pAm)u;-,(n), the induction hypothesis gives us

r=

J r-1 j-r—1
pin+1)—p(n) 2 Z n— 1)( 1) Hj—(n— 1)( 1)
( > (pi(n)—pi(n—1))

(n— 1)H<1‘ ("—Zl)jﬂ)uj(n),

this last inequality again by the induction hypothesis. But

o) (= (5 7) = () )

and binomial expansion of the last bracket gives

e ey

ji-2 j-1
) ;1 ,'lr(”_l)uj—r(”_l)

v
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j—t
Thus p(n+1) = (ﬁin_—l) uj(n) and (2) is also proved.

Now, for each positive integer n, consider the sequence {b(k, n)} of elements
of Q defined by
b(1,n)=n""'a
b(k, n) = b(k—1, m)+(b(k—1, n))* k=23, ..,

and, finally, the diagonal sequence {nb(n, n)}. The element nb(n, n) is again a
polynomial in @ and, in fact,

nb(n, n) = 21 =l (n)a = .21 A(nd.

From (1) and (2) we see that, for all n, i,

An) £ A(n+1) £ 1.
Let B, = lim A,(n). We prove, by induction, that #; = 1 for alli. Thatf, =1
is clear, sch"Z Ay(n) = 1foralln. Leti = 2 and suppose that 8; = 1 (1 < j<i).
The relation (3) gives

(i) i) = 2=+ —— T 2= DA (n—1),
1 n—1 ;=1

which we may rearrange first as
1 i-1 1 i—1
I:(l + ;1:) - 1] Ai(n) = /{i(n— 1) —A,(n)+ ;l: j;l lj(n— l)l,-_j(n— 1),

and then as

G- 1)li(n)[1 +0 (_n 1 1)] = (n—1D(A(n—-1)—-2(n) + if An=12_ (n—1).
_ =
Since

i-1
n—»w j=1
this gives

lim (n—1D(Ai(n—1)—4(m) = (i—D(B;— D).

n—ow

But A(n—1)—A(n)<0 and Y (4(n—1)—4[(n)) converges. Therefore
n=1
Bi—1=0.

ai
1

Now suppose r(a)<1, and let b=a(l—a) = Given ¢>0, there

II'M 8
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exists IV such that < 4¢; therefore we have

o .
> @
i=N

+1 )
| nb(n, n)—b || = 'Zl(la(n)—l)ai
N . s ki .
< 2 lm=1lal+ H >, a
i=1 i=N+1
<}e+ie=c¢
if n is sufficiently large. Thus, since nb(n, n) € Q for all » and @ is closed,

be Q.

Remark. This gives an alternative proof of Corollary 8 as a consequence
of Theorem 9 and Corollary 2.

4
As applications we give the following two theorems of which the second,

at least, is already known (2).
Theorem 10. Let A be a Banach *-algebra with unit and let
0 = {x*x: xe A}.
Then either —1 € Q or Sp(@)NR* is non-void for all in Q.

Proof. Let ae Q and let r(a)<1. Then a = x*x for some x in 4 so that
a+a® = x*x+x*xx*x = x*(1 +xx*)x. Now r(xx*) = r(x*x) = r(@)<1 and
so, by Ford’s square root lemma (3), there exists & in 4 such that b* = b
and 1+xx* = b2, Thus

a+a? = x*b%x = (bx)*(bx) € Q.
It is evident that ¢ = 0, a € Q=tae Q so the result follows from Corollary 8.

Definition. A division semi-algebra in 4 is a set Q<A such that Q # {0}
and
(i) ae Q,t =2 O0=>ra€ Q,

(i) a,be Q=abe Q and (a+b) e Q,

(iii) ae Q, a # 0O=aeInv(4) anda™' € Q.

Theorem 11. Let Q be a closed division semi-algebra in A with —1 ¢ Q,
then Q = R*.

Proof. Let P = Q\{0} and suppose a€ P, r(a~*)<1 then

o0

(l_a—l)-l= Z a—n

n=0

is in Q ((ii) and (iii) imply 1 € Q and Q is closed). Since (1 —a~')"!is in Inv(4)
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(1-a ')eP and hence (a—1) = al—a~!)e P. Therefore, by Theorem 1,
there exists u = r(@™*)"! such that peSp(a) and (@a—p)e PcQ. Thus
(a—u) is a singular element of Q which gives a—u = 0.
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