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(KK)-PROPERTIES, NORMAL STRUCTURE AND 
FIXED POINTS OF NONEXPANSIVE MAPPINGS IN 

ORLICZ SEQUENCE SPACES 

D. VAN DULST AND V. DE VALK 

In this paper we investigate Orlicz sequence spaces with regard to 
certain geometric properties that have proved to be important in fixed 
point theory. In particular, we shall consider various Kadec-Klee type 
properties, and weak and weak* normal structure. It turns out that many 
of these properties, though generally distinct, coincide in Orlicz sequence 
spaces and that all of them are intimately related to the so-called 
A2-condition. Some of our results extend to vector-valued Orlicz sequence 
spaces. For example, we prove a rather powerful theorem on the 
preservation of weak normal structure under the formation of substitution 
spaces. There is also a fixed point theorem: the Orlicz sequence space hM 

has the fixed point property if the complementary Orlicz function M* 
satisfies the A2-condition. Another one of our results implies that, under 
this assumption on M*, hM has weak normal structure if and only if M 
also satisfies the A2-condition. Thus all Orlicz functions M such that M* 
satisfies A2 but M does not (such functions are easy to construct) provide 
illustrations of the (known) fact that weak normal structure is not 
necessary for the fixed point property to hold. 

We now fix our terminology and recall some notions needed later. For 
the definition and standard facts about Orlicz sequence spaces, in 
particular the A2-condition and the dualities h*M « lM* and l*M « /j**,, we 
refer to [12]. Let us just mention that we shall always assume Orlicz 
functions to be nondegenerate, and therefore strictly increasing. We shall 
consider the following Kadec-Klee type properties (see [8], and in 
particular [6] for the connections with normal structure and Chebyshev 
centers). A Banach space X is said to be Kadec-Klee (KK) if 

w 
x„ —» x xn —> x (in norm), 

and uniformly Kadec-Klee (UKK) if for every c > 0 there exists a 
8 = 8(e) > 0 such that 
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ORLICZ SEQUENCE SPACES 729 

v > x„ -» x 

xn\\ â \(n = 1, 2 , . . . ) 

sep(^w) > € 

=> IUII ^ 1 

(sep(x„) is defined as inf{ \\xn — xm\\:m ^ «}) , and weakly uniformly 
Kadec-Klee (WUKK) if there exists some pair (e, 8) with 0 < e < 1 and 
8 > 0 such that (*) holds. 

If X is a dual Banach space with w*-sequentially compact unit ball, or a 
subspace thereof, then (KK*), (UKK*) and (WUKK*) denote the 
properties obtained from the above by replacing weak by w*-convergence. 
For every Or liez function M the space lM is canonically isomorphic to h^*. 
Clearly, the unit ball of lM (regarded as a subset of /z^*) is closed for the 
w*-topology of hlf*, so that lM is itself isometric to a dual Banach space. 
Hence the properties (KK*), (UKK*) and (WUKK*) are meaningful for 
lM and its subspace hM. 

If (Xn) is a sequence of Banach spaces and M an Orlicz function, 
then 

(Ie 4 
denotes the Banach space of all sequences x = (xn) with xn e Xn (n = 1, 
2, . . .) and ( \\xn\\ ) <= hM, with norm 

IWI = II ( \\x„\\ ) \\M. 
The support (supp x) of a sequence x = (xn) is {n G N:XA7 ^ 0}. By 
supp x < supp jy we shall mean that max supp x < min suppjy. A Banach 
space X (resp. a dual Banach space or subspace thereof) will be said to 
have weak (resp. w*) normal structure if every weakly (resp. w*) compact 
convex subset C of X contains a non-diametral point (i.e., a point x such 
that 

sup{ ||JC — y\\\y G C} < diam C.) 

It is well known ( [7] ) that X has weak normal structure if and only if 
there exists no sequence (xn) in X such that 

w 
xn -> 0, ||jcj| â 1 (« = 1, 2 , . . .), diam{jc„:« e N} = 1, 

lim ||A:W|| = 1 and lim d(xk + x, co{X], . . . , xk) ) = 1. 
n^oo k-^oo 

Such sequences will be called w-diametral. X has the fixed point property 
(FPP) if for every weakly compact convex set C c X and for every 
nonexpansive map T.C —» C there exists a m e C with 7!x = x. It was 
proved in [10] that weak normal structure implies (FPP). The converse is 
false ( [9] ). 
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730 D. VAN DULST AND V. DE VALK 

Our notation will be standard. E.g. co denotes convex hull, diam stands 
for diameter, and d denotes distance. 

We begin with a simple and well-known fact that will be useful later. 

LEMMA 1. Let M be an Or liez function satisfying the ^-condition. Then 

(1) V/0 > 0 lim = 1, uniformly on [0, / 0] . 
X->i M(-) 

More precisely, 

(2) V 0̂ > 0 3K = K(t0) < oo VA g 1 Vf e (O , ^ 
M(\t) ^ xK 

M{t) 

Proof. It clearly suffices to prove (2). We fix /0 > 0 and, using the 
A2-condition, choose K < oo such that 

(3) ¥&! s K for all t e (0, /„]. 
M(t) ° 

Recall that M is the integral of its right derivative p and that the latter is 
nondecreasing. Hence 

*r. tp(t) S / p(s)ds = M(2t) - M(t) S KM(t), 

so 

(4) 2^- ^ - for all / e (O, t{) 
M(t) t V ° 

For all A ^ 1 and / e (0, — 1 we thus have 
A 

M(t) J ' M(s) J ' s 

This proves (2). 

Let X be a Banach space with a Schauder basis (xn). We shall say that 
(xn) satisfies the condition (C) if 

(5) Vc > 03S = 8(c) > OVJC e XVn e N 

[ ||PWJC|| = 1 A || (/ - Pn)x\\ S c => |W| â 1 + fi], 

where î 7 is the projection onto [-X̂ K = ] with kernel [^]^LW+1. This no
tion was introduced by J. P. Gossez and E. Lami Dozo ( [7] ) who proved 
that it implies weak normal structure. 

PROPOSITION 1. Let M be an Orlicz function. Then M satisfies the 
^-condition if and only if the condition (C) holds for the standard basis (en) 
ofhM. 
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Proof. We first assume the A2-condition and derive (C). Let c > 0 be 
given and let s satisfy M(s) = 1. Using (2) we first choose a > 0 
so that 

(6) My-ct) ^ aM(t) for all t e (0, s] 

and then pick 8 so that 

(7) 0 < 8 ^ 1 

and 

(8) M(—— J = ( l - ~ « ) M ( / ) for all t e (0, 5]. 

We claim that this 8 satisfies (5) for the given c. Indeed, fix x e hM and 
n <= N such that 

||PWJC|| = 1 and | | ( / - Pn)x\\ = c, 

i.e. 

(9) 2 M(|x,|)= 2 A/(^) = 1. 

Notice that \xk\ ^ s (or k = 1, . . . , n and |xA,|/c ^ s for k > n. (7), (6) and 
(9) now imply that 

do) 1 "(J^LU 1 M ( I W U « 1 M(^ )=« . 

Also, by (8) and (9) we have 

(11) 2 i^ -^-Wi-U 2 3/(W) = i-l«. 
A = l VI + 0 / V 2 / A = 1 2 

Adding (10) and (11) we conclude that 

2 M ( - ^ U > 1, 
k = \ M + fi/ 

i.e., 
IWI > 1 4- 8. 

Clearly the same conclusion holds if \\ (I — Pn)x\\ = c, so that (C) is 
established. 

Now let us assume the A2-condition does not hold. For arbitrary 8 > 0 
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732 D. VAN DULST AND V. DE VALK 

and k e N we shall then define an x e hM such that, for some n e N, 

x = Pknx, \\x\\ < 1 + 8, 

\\Pnx\\ = || (P2„ - P„)x\\ = . .. = II (Pkn - P{k-X)„)x\\ ^ 1-

Clearly, this means that (C) fails in a strong sense. Fix 8 > 0 and k e N. 
By the failure of the A2-condition we can choose t > 0 so that 

(12) M(t) < 1 

and 

(13) Ml—l— ) ^ —M(t). 
Vl + 8 / 2£ V 

We now pick n e N satisfying 

(14) —— ^ n ^ — ^ - + 1 
M(t) M(t) 

and define JC e /zM by 

ff if 1 ^ / ^ kn 
X>' ~ V0 if / ^ kn + 1. 

Then, by the first inequality in (14), 

In 

2 A/( |x,| ) = nM{t) ^ 1 for / = 1, . . . , k9 

/ = (/_!)„+! 

SO 

ll^xll = ||(P2;, - P„)x|| = . . . = \\(Pkn - P(k-])n)x\\ ^ 1. 

On the other hand (13), the second inequality in (14) and (12) yield 

2 M ( - ^ - ) = */IM(—— ) ^ -*M(0 
/ = i Vl + 8 / Vl + 8 / 2 

^ ( M ( / ) 4- 1 ) < 1, 

so ||JC|| < 1 + 8. 

Remark 1. If X has a basis satisfying condition (C), then it is known (cf. 
[7] ) that X has weak normal structure. Moreover, it was shown in [5] that 
the same conclusion holds if the given norm ||-|| on X is replaced by an 
equivalent norm of the form | | | | + ||||||, where || | | | | is any seminorm on X 
satisfying |||*||| ^ y||-|| for some y < oo. By Proposition 1 therefore, if M 
satisfies the A2-condition and |||-||| is any seminorm on hM dominated by 
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M\M t h e n 

(hM, H-IU + IIHH) 

has weak normal structure. Let us already remark at this point that the 
A2-condition also implies w* normal structure for hM, as we shall presently 
see. 

We shall now show the equivalence of the A2-condition for M with 
several Kadec-Klee type properties for hM. We first state and prove the 
part of this result that carries over to substitution spaces. 

PROPOSITION 2. Let Xn be a (KK) space for each n e N and let M be an 
Orlicz function satisfying the ^-condition. Then 

X: = ( f 0 Xn\ 

is (KK). 

Proof. Let x, x (k = 1, 2, . . .) be unit vectors in X such that 

w — lim x = x. 
k^oo 

Then clearly, 

w — lim xn = xn for each n e N, 

SO 

(15) lim i n f i l l i= HxJI (* = 1,2, . . . ) . 
/c—»oo 

It is easily seen also that 

(16) lim sup ||x*|| ^ \\xn\\ (n = 1 ,2, . . . ) . 
k-^oo 

Indeed, if not, then by passing to a subsequence if necessary, we may 
assume that for some n0 e N and e > 0 we have 

(17) \\4o\\ > ||x„o|| + € for all k e N. 

But since ||JCA|| = ||JC|| = 1 (A: = 1 ,2 , . . .), (15) and (17) lead to the 
contradiction 

oo 

1 = lim inf 2 M( ||4ll ) 
A-*oo n = l 

oo 

â 2 lim inf M( ||JC*|| ) i= M( ||* || + e) + 2 M( ||*„|| ) 
rt=l A^OO «=^«0 
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734 D. VAN DULST AND V. DE VALK 

> 2 M(\\x„\\) = 1. 
H = l 

It follows from (15) and (16) that 

Km ||x*|| = \\x„\\, 
k—>oo 

hence 

(18) lim xk„ = xn (n = 1, 2 , . . . ) , 

since every A^ is (KK). 
We now show that 

lim x = x. 
A—»oo 

Only in this part of the proof the A2-condition is needed. Let 0 < 

€ < - be arbitrary and let s = M - 1 (1). By the A2-condition there exists 

a K < oo such that 

(19) MU) ^ KMy-t) whenever 0 ^ t ^ 2s. 

Since 

2 M ( | | x J | ) = 1 
« = i 

there exists an «0 G N such that 

2 M( ||x„|| ) > 1 - p 

and therefore 

oo 

(20) 2 M( HxJI ) < ~. 
n=n0+\ K 

Next, using (18) and the fact that also 

2 M ( | | J C * | | ) = 1 for all A:, 

we pick k0 e N so that 
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(21) 2 M(\\xk„ - x„\\)<- fork ^ k0, 
n = \ K 

2 M( \\xk
n\\ ) > 1 - - for k â *0, 

and therefore also 

oo 

(22) 2 M( \\xk
n\\ ) < -i for * S % 

» = «0 + 1 ^ 

It now follows from (19), (21), the convexity of M, (22) and (20) that for 
all k ^ k0 we have 

w = l V € / , 7 = 1 ^ 2 / 

" 0 / 1 \ 

= * 2 Ml-IUf, - x j l ) 

+ * S M(V,-*„||) 

[
, oo 

- 2 M( ||xf,|| ) 
Z n = n „ -4- 1 

OO -I 

2 M( ||JC„|| ) 
- „=/!„+ 1 J 

^e + 4 1 - + l l l = 2 e < l . 
L 2 ^ 2 # J 

This means that ||JCA — x\\ < c for k ^ k0 and so the proof is complete. 

Remark 2. We cannot replace (KK) by (UKK) or (WUKK) in 
Proposition 2. Even if all Xn are uniformly convex, then X need not be 
(WUKK), as was shown in [6, Example (f) ]. 

However, in the scalar case the situation is most satisfactory: 

PROPOSITION 3. Let M be an Or liez function. Then the following are 
equivalent 

(i) M satisfies the ^-condition 
(ii) hM is (KK*), (ii)' lM is (KK*) 

(iii) hM is (UKK*), (iii)' lM is (UKK*) 
(iv) hM is (WUKK*), (iv)' lMis (WUKK*). 

K 12 /)=«„+1 

1 
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736 D. VAN DULST AND V. DE VALK 

Proof. Since (iii) trivially implies (ii) and (iv), the equivalence of (i), (ii), 
(iii) and (iv) will be established once we have proved the implications 
(i) =» (iii), (iv) => (i) and (ii) => (i). The properties (ii/, (iii/ and (iv)' 
present no problem: each of them is stronger than the corresponding 
property for hM, whereas the A2-condition is equivalent to hM = lM. 

(i) => (iii): Fix e > 0. Let us assume there is no S > 0 satisfying the 
definition of (UKK*) for this € and work towards a contradiction. Recall 
that by Proposition 1 the A2-condition is equivalent to the condition (C) 
for the standard basis (en) of hM. For each c > 0 let 8(c) > 0 be the largest 
S satisfying (5). Now we choose a < 1 so large that 

(23) . ( 1 + .(i)) > 1. 

The assumption implies the existence of a sequence (x ) in the unit ball of 
hM with sep(x ) = e that w*-converges to an x e hM with ||JC|| > a. Pick 

N so that \\P„ 
of (x ) to ;c, a k{ o 

JC|| > a and then, using the coordinatewise convergence 
= N such that 

| | P / " | | > a ioxk^k{ o-
Since sep(x ) > c, it is also clearly possible to choose kx, k2 = k{) so 
that 

(I - PnM X^) || > £. 

For at least one of these indices, say /c,, we then must have 

« < IIv 
and therefore 

1 and || (/ - Pnyi\\ > ^ 

, 0iiV'l 
This implies that 

\P.,x^\ 

1, 

ê 1 + 8 

( ' " ^ n ) ; p„x 

€ 

> -. 
2 

(0 
and so, by (23), 

||**'|| ̂  \\Pn/'\\(\ + «(0) > a(\ + «(0) > 1, 

which contradicts ||JCA||| ^ 1. 
(ii) => (i) and (iv) =̂> (i): Let us assume M fails to satisfy the 

x. A9-condition. Choose n{ o N and x e hM so that \\x 1 and P x 
Select numbers ek with 0 < tk < 1 (k = 1, 2, . . .) so that 
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lim ek = 0. 
A:—»oo 

We shall define inductively a sequence of elements y in hM with finite 
supports so that the following holds for all k: 

(24) 
supp x < supp j 1 < supp y2 < . . . < supp yk 

l~€k< H /» ^ 1, ||* + / | | < 1 + €*. 

Suppose j 1 , . . . , yk~x have been defined for some k e N and satisfy the 
requirements (24). Now choose ^ > 0 so that 

(25) M(tk)<ek 

and 

(26) M(-^—) ^ ykM(tk), 
VI + ek / 

where 

(27) y„: = 2 M( |xj ) - 2 M - ^ ) . 

(This choice of ^ is possible by the failure of the A2-condition.) Let 
mk e N satisfy 

(28) — — - 1 ^ mk^ —!— 
M(tk) M(tk) 

and put nk_x: = max s u p p / - 1 . We now define y e hM by 

= n = nk_} an vk = f^if ^ - i + ! = « = « 
1 ; ^ \ o if « ^ ^ _ ! o r « ^ «, ^_, ui A* = nk_l + m^ + 1. 

We then have, by (26), (28) and (27), 

.A: 

„ = i V 1 + C/l / „= 1 Vl + ^ / Vl + ekt 

g 2 ^ P j U + mkykM(tk) 

, = 1 V 1 + £i V H=l 1̂ + ^ 

2 M( |JCJ ) = 1, 
« = i 
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SO 

(30) \\x + / | | ^ 1 + €A.. 

Since, by (28), 

oo 

2 M(\yk\) = mkM(tk) ^ 1, 
n = \ 

and, also by (25) 

I, "Ĝ y ̂  -AT^) a rVM ," ) 

^ 7 - ^ — ( 1 - M{tk)) > — " — (1 " **) = U 

we have 

1 " «A < l l / l l ^ I-

This completes the inductive construction of (yk). 
Clearly (24) implies 

lim ||JC + yk\\ = \\x\\ = 1 and 
À—»oo 

w* — lim (x + y ) = x, 
A:-^oo 

but not 

lim (x + yk) = x. 
A—>co 

Hence hM is not (KK*). To show that also (WUKK*) fails, consider the 
normalized sequence 

Let 0 < € < 1 be arbitrary. Evidently, by (24), 

/ x + / \°° 
SCPV||x + / | | / * = * o 

for sufficiently large &0, whereas on the other hand the normalized 
sequence still w*-converges to the unit vector x. This contradicts 
(WUKK*) and thus completes the proof. 

We now aim for a characterization of the A2-condition in terms of the 
non-existence of certain diametral sequences (Proposition 5). A corollary 
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of this result will be that the A2-condition for M is equivalent to lM having 
w*-normal structure. 

We first deal with the case of substitution spaces. 

PROPOSITION 4. Let M be an Orlicz function satisfying the ^-condition 
and let Xn be (UKK) for every n e N. Then 

* = (! ®x\ 

has weak normal structure. 

Proof. If not, then, by a well-known argument of M. S. Brodskii and 
D. P. Milman ( [4], [7] ) there exists in X a w-diametral sequence, i.e., a 
sequence (x ) with the following properties: 

(31) 
xk -^ 0, \\xk\\ S I (it = 1, 2, . . .), diam{xA:£ G N} = 

lim ||xA|| = 1 and lira d(xk + \ co{x', . . . , xk} ) = 1. 
k-*oo /:—»oo 

This will lead to a contradiction. From 

w - lim xk = 0 
k-*oo 

it follows that 

w — lim xn = 0 
k—>co 

in Xn for every n e N. Our first objective is to show that in fact 

(32) lim xk
n = 0 for every « G N. 

k-^oo 

Suppose not. Then we may assume by passing to a subsequence if 
necessary, that there exist n e N and e > 0 such that 

(33) \\4\\ i= c (* = 1, 2,. ..) 

and 

(34) s e p ( 4 ) ^ i = «• 

AT < oo satisfy (2) in Lemma 1 for t0 = 2M l (1), and let y satisfy 
Now let S = 8(e) be chosen as in the definition of (UKK) for Xtv let 

- t0 = 2M~~ ' 

«I' (35) 0 < y < - and 
1 - y 

We now pick k0 e N so that 

(36) 1 â ||xA|| > 1 - y for k è Jt0. 

1 + M l — — 1 1 ( 1 - y f > 1. 
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740 D. VAN DULST AND V. DE VALK 

The sequence (JQ> — xm)™=k + 1 converges weakly to xm° for each m, so 

(37) lim inf | | j # _ /j g | |^o| | (m = l, 2 , . . .)• 
k—*oo 

Again passing to a subsequence if necessary, we may further assume 
that 

(38) L: lim ||x*° 
k-^oo 

xn\\ exists. 

Notice that, by (31) and (34), 

(39) 0 < € ^ L ^ 1. 

Now the normalized sequence 

* A: — A:0 H - 1 
( *ft - 4 V 

converges weakly to xn°/L and has separation constant =6 (by (34) and 
since \\xn° — JC„|| ^ 1 for all A:), so by the definition of 8 we get 

ê 1 

or 
(40) | | j# | | ^ (1 - 8)L. 

We now claim that 

(41) lim inf ||JC*° - xk\\ 
A'^oo 

B i 4 > > 0 : 2 * ( ^ ) + * ( * ) s . | . 
V m*n ^ P ' ^P' J 

Indeed, let us denote the right member of (41) by p0 and let p < p0 be 
arbitrary. Then 

so for some / 

2 „(!!*!!) + J
L-\ > 1, 

> 1. 
m=\ 
m ¥" n 

Using (37) and (38) it then follows that for sufficiently large k, 

™ = 1 V o / 
> 1, 

m = 1 
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so a fortiori 

lim inf ||xA° - x*|| â p 
k—*oo 

and this proves (41). 
We shall now show that p0 > 1. This contradicts (41) (since the left 

member of (41) is ^ 1 ) and therefore proves (32). Indeed, by (40), (39), the 
choice of K, (36) and (35), we have 

2 M(||**°||) + M(L) 

= 2 M(HJC^II) + M((l - S)L + SL) 

^ 2 M( ||j£°|| ) + M( ||4»|| + Se) 

^ 2 M( HJĈ H ) + A/( ||4»|| ) + M(Se) 

OO 

= 2 M( ||4?|| ) + M (Se) 
m = 1 

„ = i V I — v / V I — v / J m = l VI - y / 

1 - Y ' 
>[1 + M (? i h:)] ( 1 - Y ) " > 1 -

Hence p0 > 1. 
In the remainder of the proof we assign different meanings to y and ô. 

Let 8 > 0 satisfy (5) for c = - , where (xn) is the standard basis (en) of 

hM (recall that by Proposition 1 (5) holds for (en) ) and choose y > 0 so 
that 

1 - 3y 1 
(42) > - and 

1 - 2y 2 

(43) (1 - 2y)(l 4- 8) > 1. 

Again let k0 e N be so large that 

(44) ||x*|| > 1 ~ y for k ^ k0. 

Fix n0 e N so that 
(45) | | ( 7 - PnQ)xk°\\ < y and 

(46) | | ^ / 1 | > 1 - y. 
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Using (32) we now pick kx > k0 so that 

(47) | |7>n/ ' | | < y 

and therefore, by (44), 

(48) || (/ - P„()x
k>\\ > 1 - 2y. 

(46) and (47) now yield 

(49) \\Pn{xk° - xk<) | 

and (48) and (45) that 
^ ii V Pnx

K 

"o 
> 1 

(50) || (/ - Pn)(x
k« 

Thus, by (42) 

(51) 

**') || ^ || (/ - Pno)x
k 

> 1 - 3y. 

2y 

a - p„y 

"o\ 

(/ 

/ V ° - xk< \ 

V 1 - 2y / 

"<A l - 2V / 

> 1 and 

.A 

> 
1 2r 2 

The definition of 5 now implies that 

1 + 8, 
1 - 2Y 

so, by (43), 

x~» - X'll ^ (1 - 2y)(l + S) <k« - -* 

This contradicts the fact that 

dmm{xk:k e N} = 1, 

so the proof is complete. 

Remark 3. Other results are known about the preservation of normal 
structure under the formation of sums ( [2], [11] ), but either they concern 
finite sums, or all summands are required to be uniformly convex. Let us 
also observe that by Proposition 4 the space in Example (f) of [6] has weak 
normal structure, although it is not (WUKK). 

PROPOSITION 5. An Orlicz function M satisfies the ^-condition if and only 
if there does not exist a sequence (x ) in hM with the following properties: 

(52) 
w* 

xk -*o, \w 'II =§ 1 (k -= l, 

lim \\xk II = = 1 and lim d(x' 
k—>oo k-^oo 

1,2, . . . ) , d'mm{xk:k 

k + \ , CO{J , * A } ) 

N} = 1, 

= 1. 
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Proof. We shall call a sequence satisfying (52) a w*-diametral sequence. 
The "only if" part of the assertion is immediate from the final part of the 
proof of Proposition 4. (Note that in this scalar case the coordinatewise 
convergence (32) is given.) 

Let us now assume that the A2-condition fails to hold for M. We shall 
inductively define a w*-diametral sequence in hM. We begin by choosing 
three sequences (ak)™=]9 (bk)^=0 and (ck)^=x of positive numbers, all 
strictly increasing to 1 such that 

(53) bk<ak<ck (k = 1,2, . . . ) 

and 

(54) — = ak— + (1 - ak)±- (k = 0, 1, 2, . . .) 
ak + \ ckJt\ bk 

where the ak are numbers satisfying 

(55) 3/5 < ak < 1 

(it is easily verified that such sequences exist). 
Next we define inductively a sequence (xk) in hM with the following 

properties for all k e N: 

(56) bk_x ^ \\xk\\ <ak 

(57) bk ^ dian^jc1, . . . , J C * + 1 } ^ ck + l 

(58) bk ^ d(xk + \co{x\...,xk}) ^ ck + x 

(59) supp xk < supp xA + 1. 

Observe that (59) and the boundedness of (x ) imply that 

w* — lim x = 0, 
k^oo 

so that (x ) is a w*-diametral sequence. Put 

x]: = -(b0 + ax)ev 

Assume that x , . . . , x have been chosen and satisfy the above re
quirements. Fix n0 e N so that 

xl = P„ xl for z = 1, . . . , k. 

Since by (56) and (53) 

IIV1 + •-. + V*|| < % < c* + i 
whenever À,, . . . , X̂  ^ 0 and 
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A 

2 \ = i, 

we have 

(60) 
l « = i v ck + x ' 

A„...,AA è 0 , 2 A, = l ) < 1. 
1 = 1 ' 

Using the failure of A2 we now pick 8 > 0 so that 

(61) M[~) ë 1 

and 

M 

I 1 - rfz. J 
(62) — / * + ' è max 

^ ) 
M l " I ^A 

LA• 4-1 

From (54) and the convexity of M we get 

M(—) =i « * M ( — ) + (i - «*)M(£). 

Hence 

M 

M 

(£) -(é) 
1 « « , - ^ T + < ! - « < ) - V 

(—) «("J 
and thus, by (62), 

(i) 
l â ^ « A + ( l - « A ) *A 

(é) M 
A + r 

Consequently, using (55), we find 
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/3 

' ( - ) 
Ml - • l~a" 

> 2. 

•*k + 1 ' 

From this and (61) it follows that 

1 l >4.^i. 

Hence there exists an m e N such that 

1 ^ 1 
^ m < 

«(A) " JJ-Ï 

or 

(63) A / ( — ) < - S J l f ( f ) . 

We now define x^ + 1 by 

fc + i. _ J û it 2̂0 + 1 = « = «o -h m 
x„ : - 1 „ ., , ^ ^ ' w + 1 ë «. {S if fl0 + 1 = n = n0 

0 if \ ^ n ^ n0 or n0 

This xk + l clearly satisfies (59). We verify the other requirements. 

||** + ,||=inf{p>0: 1 ^ ( 1 ^ ) â l} 

= inflp > 0 : M ( - ) ê - }, 

so (63) yields (56). Furthermore, for every choice of X1? . . . , Â  = 0 

/=1 
1, 

we have 

11**+1 - (A,*1 + . . . 4 

= inf | p • > 0: M( 

Since, by (60), (62) and (63), 

v*"; 

p / Vp/ 
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§ M(iy,', + ... + v<5) + mMlA_\ 

Si c/A- + mM 

^ dk + m(\ - dk)M[-^-\ < dk + m(\ ~ dk)- = 1, 
Xak+\f m 

we conclude that 

\\xk+x - (A,*1 + . . . + \kx
k)\\ < c , + l. 

Since 

||xA + l | | â ||x* + 1 - ( A , * 1 + . . . A , x A ) | | 

by (59), and we already know that ||x/: + 1|| ^ bk, this establishes (58). 
Finally, (57) is immediate from (58) and the induction hypothesis, so the 
proof is complete. 

COROLLARY 1. An Orlicz function M satisfies the ^-condition if and only 
if lM (or nhi) nas w*-normal structure and if and only if Chebyshev centers 
with respect to w*-compact convex sets in lM (or hM) are (norm) compact. 

Proof. If M satisfies A2 then by Proposition 3 lM is (WUKK*) and even 
(UKK*). The "only if" now follows from the proofs of Theorem 3 and 
Theorem 4 in [6]. Now suppose the A2-condition fails. Then there exists 
a w*-diametral sequence (x ) in hM. The construction in the proof of 
Proposition 5 shows also that we may assume the supports of the x to be 
mutually disjoint. Now let C be the w*-closed convex hull of this sequence 
in lM. Clearly, diam C = 1. Let x e C be arbitrary. Then 

oo 

x = w* - lim 2 \£V, 
k = \ 

where for each n e N we have X[n) ^ 0 for all k and 

CO 

2 A<"> = 1. 
k = \ 

It follows that 

CO 

x = 2*i Xkx 
A = l 

GM 

with Xk ^ 0 for all k and 
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oo 

k = \ 

Hence 

\\x - xk\\ S (1 - X*) ||x*|| -> 1 as k -> oo. 

This shows that every x E C i s diametral. Since evidently C c /zM, we 
have now proved that hM fails to have w* normal structure. 

Our final result is a fixed point theorem. We shall prove that hM has 
the fixed point property if h%j is separable, or, equivalently, if the 
complementary function M* satisfies the A2-condition. This will follow 
from a result of J. M. Borwein and B. Sims ( [3] ): every weakly orthogonal 
Banach lattice X with Riesz angle a(X) < 2 has the (FPP). We recall that 
X is weakly orthogonal if 

lim inf lim inf || \xn\ A \xm\ || = 0 
A?—»oo m—*oo 

whenever (xn ) is a weak null sequence, and that the Riesz angle a(X) of X 
is defined as 

sup{ || \x\ V \y\ \\:\\x\\ ë 1, \\y\\ S 1}. 

PROPOSITION 6. Let M be an Or liez function and let M* satisfy the 
A2-condition. Then hM has the fixed point property. 

Proof. We begin by observing that every Orlicz sequence space hM is 
weakly orthogonal. This follows directly from the trivial fact that the map 
j^ —> |JC| A \y\ is weak-norm continuous (for every fixed x). By the result 
quoted above it therefore remains only to show that a(hM) < 2. For the 
proof of this we shall need that M* satisfies A2 if and only if 

l i m i n e >1. 
t^O M(t) 

This fact is proved in [12, p. 148] under the assumption that p is 
continuous, but it holds in general. Indeed, it is not very difficult to show 
that for every Orlicz function M there exists an equivalent Orlicz function 
Mj with continuous derivative p x and such that 

lim inf = lim inf . 
t^o Mx(t) t^o M(t) 

Since, by the equivalence of M and Mj, h\j is separable (i.e., M* satisfies 
A2) if and only if h*M is separable (i.e., M\ satisfies A2), the general 
statement is now clear from the special case mentioned above. 

Our objective is to show the existence of a 8 such that 0 < 8 < 1 
and 
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(64) M(t) S -A/( (2 - S)t) if 0 ë t ^ s: = M '(1). 

Once this is done it follows immediately that 

a(hM) s 2 - 8. 

Indeed, if |W|, ||.y|| S 1 then, by (64), 

, oo 

^ - 2 [A/(KD + M(|%|)] g i, 

2 n=\ 

so || |JC| V \y\ || â 2 - 6. Since 

limine >1, 
r-̂ o M(t) 

there exist numbers € > 0 and t0 > 0 such that 

(65) //?(/) è (1 4- e)M(t) if 0 ^ t ^ /0. 

We first deduce from (65) that 

M(a/) 
(66) M(t) ^ — p ^ - whenever a > 1 and / 

a 
o> 

a J 

Indeed, for a > 1 and 0 ^ ^ ^ /0 /a we have, by (65), 

M (at) fat v(s) 

M(t) J ' M(s) 

/ ; 
«' 1 + € 

<fe = log(a l+€), 
/ c 

so (66) follows. 
Let us now consider the case a > 1 and / e (f(/a> ^1- We WI"ite / as a 

convex combination of t0/a and a£, 

Note that by (66) and the convexity of M we have 

M(^ • at) 
\at > _ t. 

W = a 1 + t a at a 
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Hence (67) yields 

(68) M(t) è 
- 1 

a2+U 
M(at). 

at 

Let us denote the factor in brackets by F (a, t). Observe that F(a, t) is 
uniformly continuous for 

(a, t) e 
L2 J 

X Xs] 
12 J 

and that 

F(a, t) < 
1 

(replace e by 0), so in particular, F(2, t) < -. Hence for suitably small 

8 < - we have 
2 

1 
(69) F(2 - 8, 0 = - for / <o 

We can also choose 8 small enough so that 

1 
(70) 

(2 - 8) l+c 

1 
< - . 

2 

Substituting (69) and (70) in (68) and (66), respectively, we arrive at (64), 
thus completing the proof. 

Sacrificing some generality, we may now summarize our main results in 
the scalar case as follows: 

COROLLARY 2. Let M be an Orlicz function such that M* satisfies the 
A2-condition. Then hM has (FPP). Moreover, hM has weak normal structure if 
and only if M also satisfies A2. The ^-condition for M is also equivalent to 
each of the properties (KK), (UKK) and (WUKK)/or hM. 

Proof. Observe that if M* satisfies A2, then 

hM* = lM* ~ /z|/, 

so that the w* topology on hM coincides with the weak topology. The 
assertions are now clear from Propositions 3, 5 and 6. 

Remark 4. It is known (cf. [12] ) that M satisfies A2 if and only if 
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hm sup < oo. 
r-X) M(t) 

Therefore any Orlicz function M such that 

r VU) A v ' ç tp^ ^ i hm sup = oo and hm mi > 1 
f-H) M{t) ?-K) M{t) 

(it is easy to construct even piecewise linear functions of this kind) 
furnishes an example of a space with the (FPP) but without weak normal 
structure. Other such spaces are known of course ( [9], [1], [13] ) but except 
for c0 all of them seem to be rather artificial. 
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