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Abstract. Let G be a finite group. A minimal subgroup of G is a subgroup of prime
order. A subgroup of G is called S-quasinormal in G if it permutes with each Sylow
subgroup of G. A group G is called an MS-group if each minimal subgroup of G is S-
quasinormal in G. In this paper, we investigate the structure of minimal non-MS-groups
(non-MS-groups all of whose proper subgroups are MS-groups).
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1. Introduction. Throughout this paper G will denote a finite group. We write σ (G)
for the set of prime divisors of the order of G and | σ (G) | for their number. A minimal
subgroup of G is a subgroup of prime order. A group G is called a PN-group if each
minimal subgroup of G is normal in G. Two subgroups H and K of a group G are said to
permute if HK = KH. It is easily seen that H and K permute if and only if the set HK is
a subgroup of G. We say, following Kegel [7], that a subgroup of G is S-quasinormal in G
if it permutes with each Sylow subgroup of G. A group G is called an MS-group if each
minimal subgroup of G is S-quasinormal in G.

Schmidt and others [9] determined the structure of minimal non-nilpotent groups
(non-nilpotent groups all of whose proper subgroups are nilpotent), and Doerk [2] also
determined the structure of minimal non-supersolvable groups (non-supersolvable groups
all of whose proper subgroups are supersolvable). In [8], Sastry investigated the structure of
minimal non-PN-groups (non-PN-groups all of whose proper subgroups are PN-groups)
and proved that if G is not of prime power order and G is a minimal non-PN-group, then
one of the following two statements is true:

(1) G = PQ, where P is a normal Sylow p- subgroup of G, P =< x >G ; P is
elementary abelian; and Q is a non-normal cyclic Sylow q-subgroup of G.

(2) G = P < x >, where P is a normal ultraspecial 2-subgroup of G of order 23s

(a p-group P is called ultraspecial if P
′ = �1(P) = �(P) = Z(P)) and |x| is a

prime dividing 2s + 1.

In this paper, we investigate the structure of minimal non-MS-groups
(non-MS-groups all of whose proper subgroups are MS-groups). In Section 2, we prove
that if G is not of prime power order and is a minimal non-PN-group, then it is a minimal
non-MS-group. However, the converse statement is not true, as the following example
shows:

EXAMPLE. Let P be an extraspecial group of order 37 and exponent 3 (a p-group
P is called extraspecial if P

′ = �(P) = Z(P) and |Z(P)| = p). Then, by [3, Lemma
20.13, p. 83], Aut(P) contains an element α of order 7 which acts irreducibly on P/�(P).
Let G be the semi-direct product of P with < α >. Then it follows easily that
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(i) P contains a non-normal minimal subgroup < x >;
(ii) G is a minimal non-nilpotent group; and

(iii) G is a minimal non-MS-group.

We prove the following theorem:

THEOREM . If G is a minimal non-MS-group, then G = PQ, where P is a normal
Sylow p-subgroup of G and Q is a non-normal cyclic Sylow q-subgroup of G (q �= p), and
one of the following statements is true:

(a) G is supersolvable.
(b) P =< x >G, where | < x > | = p and < x > is not S-quasinormal in G.
(c) P is a non-abelian 2-group, �1(P) ≤ Z(G) and |Q| = q.

2. Preliminaries. In this section we collect some of the results used later.
(2.1) If each minimal subgroup of G is normal in G, then G is solvable.

Proof. This is [5, Satz 5.7, p. 436]. �
(2.2) (a) If H ≤ K ≤ G and H is S-quasinormal in G, then H is S-quasinormal in K .
(b) If H is S-quasinormal in G, then H is subnormal in G.

(c) Let H be a p-subgroup for some prime p. If H is S-quasinormal in G, then
Op(G) ≤ NG(H), where

Op(G) =< Q|Q is a Sylow q-subgroup of G, where q �= p > .

(d) If H and K are S-quasinormal in G, then < H, K > is S-quasinormal in G.

Proof. (a), (b): see Kegel [7]. �
(c) Let Q be any Sylow q-subgroup of G, where q �= p. Since H is S-quasinormal in G, it
follows that HQ is a subgroup of G. By (a) and (b), H is subnormal in HQ, and since H is
a p-subgroup of G, it follows that H is normal in HQ for each Sylow q-subgroup Q of G,
where q �= p. Hence Op(G) ≤ NG(H). �

(d) By the hypothesis, HP = PH and KP = PK for all Sylow subgroups P of G.
Now it follows easily that P< H, K >=< H, K >P, and so < H, K > is S-quasinormal
in G. �

We can now prove the following:
(2.3) If G is not of prime power order and G is a minimal non-PN-group, then G is a

minimal non-MS-group.

Proof. Suppose that G is an MS-group. By the hypothesis, there exists a minimal
subgroup H of order, say, p such that H is not normal in G. Then H is S-quasinormal
in G. Hence Op(G) ≤ NG(H) < G by (2.2)(c). Let P be a Sylow p-subgroup of G such
that H ≤ P. By the hypothesis, G is not of prime power order and is a minimal non-PN-
group, so H is normal in P. Since H is normal in P and Op(G) ≤ NG(H), we have that H
is normal in G, a contradiction. �

(2.4) Let P be a Sylow p-subgroup of G for some odd prime p. If �1(P) ≤ Z(G), then
G is p-nilpotent.

Proof. This is [5, Satz 5.5(a), p. 435]. �
(2.5) If A is a p′-group of automorphisms of the abelian p-group P which acts trivially

on �1(P), then A = 1.
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Proof. This is [4, Theorem 4.2, p. 178]. �
(2.6) Any non-abelian simple group, all of whose subgroups are solvable, is

isomorphic to one of the following simple groups:
(1) PSL(2, p), where p is a prime with p > 3 and 5 � p2 − 1;
(2) PSL(2, 2q), where q is a prime;
(3) The Suzuki group Sz(2q), where q is an odd prime;
(4) PSL(2, 3q), where q is an odd prime;
(5) PSL(3, 3).

Proof. Thompson [10]; see also [5, Bemerkung 7.5, p. 190]. �
(2.7) If G is any one of the simple groups mentioned in (2.6) other than PSL(3, 3),

then G is a Zassenhaus group of degree n + 1, where n = r or r2 according to G =
PSL(2, r) or G = Sz(r); and the stabilizer N of a point is a maximal subgroup of G.

Further, N is a Frobenius group with kernel K of order n and a cyclic complement H.

If G = PSL(2, r), then |H| = (r − 1)/d, where d = (r − 1, 2); and if G = Sz(r), then
|H| = r − 1. Also, N ′ = K and H contains a Sylow �-subgroup of G for any odd prime
divisor � of |H|, with (�, r) = 1.

Proof. See [4, Theorem 8.2, p. 41]; see also [6, pp. 182–189]. �
(2.8) Let H be a proper subgroup of G and suppose that H is subnormal in K whenever

H ≤ K < G but is not subnormal in G. Then H is contained in a unique maximal subgroup
of G.

Proof. This is [3, Lemma 14.9, p. 49]. �
(2.9) Let G be a solvable group. If each subgroup of F(G) of prime order or order 4 is

S-quasinormal in G, then G is supersolvable.

Proof. This is [1, Corollary 2]. �

3. Proofs. We first prove the following lemmas:

LEMMA 3.1. If G is an MS-group, then G is solvable.

Proof. We proceed by induction on the order of G. If each minimal subgroup of G is
normal in G, then G is solvable by (2.1). Therefore, we may assume that some minimal
subgroup H, with |H| = p say, is not normal in G. By the hypothesis, H is S-quasinormal
in G. Then Op(G) ≤ NG(H) < G by (2.2) (c) . By (2.2) (a), Op (G) is an MS-group, so
Op (G) is solvable by induction on the order of G, and since G/Op (G) is a p-group, it
follows that G is solvable. �

LEMMA 3.2. Let G be a non-solvable minimal non-MS-group. Then � (G) �= 1, and
each minimal subgroup of � (G) is normal in G.

Proof. By the hypothesis, each proper subgroup of G is an MS-group. Then, by
Lemma 3.1, each proper subgroup of G is solvable, and since G is non-solvable, it follows
that each maximal subgroup of G is non-normal in G. Let M be a maximal subgroup of
G. If M ∩ Mx = 1 for each x ∈ G\M, then G is a Frobenius group [4, Theorems 7.7 and
7.6(i), pp. 38–39], and so G is solvable, a contradiction. Therefore, M ∩ Mx �= 1 for some
x∈ G\M. Let H be a minimal subgroup of M ∩ Mx of order, say, p. By the hypothesis,
H is S-quasinormal in K whenever H ≤ K < G. Then, by (2.2) (b) , H is subnormal in
K whenever H ≤ K < G. If H is not subnormal in G, then H is contained in a unique
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maximal subgroup of G by (2.8), a contradiction. Therefore, H is subnormal in G, and so
H ≤ Op (G) by [3, Lemma 8.6 (a)]. If Op (G) is not contained in � (G) , then there exists a
maximal subgroup M1 of G such that G = Op (G) M1. Then G is solvable, a contradiction.
Hence H ≤ Op (G) ≤ � (G), and so � (G) �= 1.

Now we argue that each minimal subgroup of � (G) is normal in G. If not, then
� (G) contains a minimal subgroup H with order, say, p such that H is not normal in
G. Since � (G) is nilpotent, it follows that H is subnormal in G, and so H ≤ Op (G) .

Clearly, Op (G) Q < G for each Sylow subgroup Q of G with (p, |Q|) = 1. By the
hypothesis, H is S-quasinormal in Op (G) Q, and so HQ ≤ Op (G) Q < G. By (2.2) (a) , H
is S-quasinormal in HQ, so H is subnormal in HQ by (2.2) (b) . Since H is subnormal Hall
in HQ, it follows that H is normal in HQ. Then Op (G) ≤ NG(H) < G. Since Op (G) is
solvable and G/Op (G) is a p-group, it follows that G is solvable, a contradiction. Therefore,
each minimal subgroup of � (G) is normal in G. �

LEMMA 3.3. Let G be a non-solvable minimal non-MS-group. Let M be a subgroup
of G and Q be a Sylow q-subgroup of M, where q is an odd prime. If �1(Q) ≤ � (G) ≤ M,

then M is q-nilpotent.

Proof. Since G is non-solvable and each proper subgroup of G is solvable by Lemma
3.1, it follows that G = G′. Since �1(Q) ≤ �(G), it follows that each minimal subgroup H
of Q is normal in G by Lemma 3.2, and so G/CG(H) is abelian. Then G = G′ ≤ CG(H),
and so �1(Q) ≤ Z(G); in particular �1(Q) ≤ Z(M). Hence M is q-nilpotent by (2.4) . �

LEMMA 3.4. Let G be a non-solvable minimal non-MS-group. Then G/�(G)
contains no subgroup isomorphic to S4.

Proof. Suppose that G/�(G) contains a subgroup M/�(G) such that M/�(G) ∼=
S4. If M = G, then G/�(G) ∼= S4, and since �(G) is nilpotent, it follows that G is
solvable, a contradiction. Then we may assume that M is a proper subgroup of G.
Let Q be a Sylow 3-subgroup of M. If �1(Q) ≤ �(G) ≤ M, then M is 3-nilpotent
by Lemma 3.3, a contradiction. Therefore, Q contains some minimal subgroup H such
that H is not contained in �(G). By the hypothesis, H is S-quasinormal in M, and so
H�(G) is S-quasinormal in M. Then H�(G)/�(G) is S-quasinormal in M/�(G). By
(2.2) (b) H�(G)/�(G) is subnormal in M/�(G), and since H�(G)/�(G) is a Sylow
3-subgroup of M/�(G), it follows that H� (G) /�(G) is normal in M/�(G) ∼= S4, a
contradiction. �

LEMMA 3.5. Let G be a non-solvable minimal non-MS-group. Then G/�(G) is not
isomorphic to A5

∼= PSL (2, 5) ∼= PSL (2, 4) .

Proof. Suppose that G/�(G) ∼= A5. Then G/�(G) contains a subgroup M/�(G)
isomorphic to A4. Let Q be a Sylow 3-subgroup of M. Clearly, Q . . . , is a Sylow
3-subgroup of G, too. If �1(Q) ≤ �(G), then G is 3-nilpotent by Lemma 3.3, and so G is
solvable by Lemma 3.1, a contradiction. Therefore, Q contains some minimal subgroup H
such that H is not contained in �(G). By the hypothesis, H is S-quasinormal in M, and
so H�(G)/� (G) is S-quasinormal in M/�(G). By (2.2) (b) , H�(G)/�(G) is subnormal
in M/�(G), and since H�(G)/�(G) is a Sylow 3-subgroup of M/�(G), it follows that
H�(G)/�(G) is normal in M/�(G) ∼= A4, a contradiction. �

LEMMA 3.6. Let G be a non-supersolvable minimal non-MS-group. Suppose that G =
PQ, where P is a normal Sylow p- subgroup of G and Q is a non-normal Sylow q-subgroup
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of G. Then P = HG for some non-S-quasinormal minimal subgroup H of G or �1(P) ≤
Z(G); P is a non-abelian 2-group and |Q| = q.

Proof. Suppose that the result is not true. We treat with the following three cases:

Case 1. Each minimal subgroup of P is S-quasinormal in G and p > 2. Then
each subgroup of F(G) of prime order or order 4 is S-quasinormal in G. Hence G is
supersolvable by (2.9), a contradiction.

Case 2. Each minimal subgroup of P is S-quasinormal in G and p = 2. Let H be any
minimal subgroup of P. Then H �= P, because Q is a non-normal Sylow q-subgroup of
G. Since H is S-quasinormal in G, we have that HQ is a subgroup of G. By (2.2)(a),
H is S-quasinormal in HQ, and so H is subnormal in HQ by (2.2) (b). Since H is a
subnormal Sylow 2-subgroup of HQ, we have that H is normal in HQ. But Q is normal
in HQ, because |H| = 2. Then HQ = H × Q for each minimal subgroup H of P. If
�1(P) = P, then G = PQ = P × Q, a contradiction. Thus �1(P) < P, and �1(P)Q is
a proper subgroup of G. Since G is a minimal non-MS-group and since each minimal
subgroup of P is S-quasinormal in G, it follows that there exists a minimal subgroup L of
Q such that L is not S-quasinormal in G, and so G = PQ = PL. By the hypothesis, Q = L
is S-quasinormal in �1(P)Q, so Q is a subnormal Sylow q-subgroup of �1(P)Q. Then Q
is normal in �1(P)Q, and since �1(P) is normal in �1(P)Q, we have Q ≤ CG (�1(P)). If
CG (�1(P)) < G, then Q is S-quasinormal in CG (�1(P)) by the hypothesis. By (2.2)(b), Q
is subnormal in CG (�1(P)), and since CG (�1(P)) is normal in G, we have that Q is sub-
normal in G, and so Q is normal in G, a contradiction. Therefore, �1(P) ≤ Z(G), and since
Q is not normal in G, it follows that P is a non-abelian 2-group by (2.5), a contradiction

Case 3. There exists some non-S-quasinormal minimal subgroup H of G with
H ≤ P.

Suppose HG �= P. Then HGQ is a proper subgroup of G, and so H is S-quasinormal
in HG Q. In particular, H permutes with Q. We can repeat this argument with any Sylow
q-subgroup, and H permutes with P, so H is S-quasinormal in G, a contradiction. �

We can now prove the main theorem.

Proof. For the sake of clarity, we break the proof into five parts.
(1) G is solvable.

Suppose that G is non-solvable. Then:
(i) G = G′ and G/�(G) is a non-abelian simple group, because every proper subgroup

of G is solvable by Lemma 3.1.

(ii) G/�(G) is not isomorphic to PSL(2, 4) ∼= PSL(2, 5) ∼= A5 by Lemma 3.5.

(iii) G/�(G) is not isomorphic to PSL(2, r) or Sz (r), where r = 2q and q is an odd
prime.

Suppose that G/�(G) ∼= PSL(2, r) or Sz(r), where r = 2q and q is an odd prime. Let
� be an odd prime dividing r − 1. By (2.7), G = G/�(G) contains a proper Frobenius
subgroup M = M/�(G) with kernel K = K/�(G) and cyclic complement H = H/�(G)
of order r − 1, and H contains a Sylow �-subgroup L�(G)/�(G) of G, where L is a
sylow �-subgroup of G. If �1(L) ≤ �(G), then G is 3-nilpotent by Lemma 3.3, and so G
is solvable by Lemma 3.1, a contradiction. Therefore, we may assume that there exists a
minimal subgroup A of L such that A is not contained in �(G). By the hypothesis, A is
S-quasinormal in M, and so A = A �(G)/�(G) is S-quasinormal in M. Then A is normal
in K A, and this is a contradiction because M is a Frobenius group.
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(iv) G/�(G) is not isomorphic to PSL(2, p) or PSL(2, 3q), where p is a prime with
p > 3 and q is an odd prime.
The assertion in (iii) implies that there is no odd prime dividing p − 1 or 3q − 1.

Then p − 1 = 2n for some natural number n. By (ii) , n ≥ 4. Also, 3q − 1 = 2m

for some natural number m ≥ 4. Since p2 − 1 ≡ 0 (16) and 32q − 1 ≡ 0 (16) ,

it follows that G/�(G) contains a subgroup isomorphic to S4, contradicting
Lemma 3.4.

(v) G/�(G) is not isomorphic to PSL(3, 3).
Suppose that G/�(G) ∼= PSL(3, 3). Take Y = PSL(3, 3). Let x be an involution

in the centre of a Sylow 2-subgroup of Y. Then CY (x) ∼= GL (2, 3) by [6, Lemma 5.1,
p. 341]. Let M/�(G) be a subgroup of G/�(G) such that M/�(G) ∼= GL (2, 3) . Let Q
be a Sylow 3-subgroup of M. If �1(Q) ≤ �(G) ≤ M, then M is 3-nilpotent by Lemma
3.3, a contradiction. Therefore, we may assume that there exists a minimal subgroup L of
Q such that L is not contained in �(G). By the hypothesis, L is S-quasinormal in M, and
so L�(G)/�(G) = Q�(G)/�(G) is S-quasinormal in M/�(G). Hence L� (G) /�(G) is
normal in M/� (G) ∼= GL (2, 3), a contradiction.

Since none of the simple groups mentioned in (2.6) can be isomorphic to G/�(G), it
follows that G is solvable.

(2) |σ (G)| = 2.

Clearly, G is not of prime power order, because nilpotent groups are MS-groups. Suppose
that |σ (G)| ≥ 3. By the hypothesis, there exists a minimal subgroup H of order, say, p such
that H is not S-quasinormal in G. We argue that H is subnormal in G. By the hypothesis, H
is S-quasinormal in K whenever H ≤ K < G. Then H is subnormal in K whenever H ≤
K < G. If H is not subnormal in G, then H is contained in a unique maximal subgroup of
G by (2.8). Since |σ (G) | ≥ 3 and G is solvable by (1), it follows that H is contained in
more than one maximal subgroup of G, a contradiction. Therefore, H is subnormal in G, so
H ≤ Op(G). Clearly, HP = PH = P for each Sylow p-subgroup P of G. Since |σ (G)| ≥
3, it follows that Op(G)Q < G for each Sylow subgroup Q of G with (|Q|, p) = 1.

By the hypothesis, H is S-quasinormal in Op(G)Q, so HQ is a subgroup of G. Then H is
S-quasinormal in G, a contradiction. Therefore, |σ (G)| = 2.

(3) G has a normal Sylow subgroup.
Suppose that G has no normal Sylow subgroup. By (1), G is solvable, so G has a

normal subgroup M of prime index, say, q. Let P be a Sylow p-subgroup of G, and let
Q be a Sylow q-subgroup of G, where p and q are distinct primes. Clearly, P ≤ M. By
the hypothesis, M is an MS-group. Then by (2.2) (d) ,�1(P) is S-quasinormal in M, and
hence �1(P) is subnormal in M, and since M is normal in G, it follows that �1(P) is
subnormal in G. If �1(P) = P, then P is normal in G, a contradiction. Therefore, we may
assume that �1(P) < P. Since �1(P) is subnormal in G, we have �1(P) ≤ Op(G) < P.

Then �1(P) = �1(Op(G)) is normal in G, and so each minimal subgroup of G of order p is
S-quasinormal in G and CG(�1(P)) is normal in G. Hence, by the hypothesis, there exists
a subgroup H of order q such that H is not S-quasinormal in G. Since H�1(P) < G is an
MS-group, it follows that H�1(P)= H× �1(P), so H ≤ CG (�1(P)) . We treat with the
following two cases:

Case 1. CG (�1(P)) < G.

Then H is S-quasinormal in CG (�1(P)), and hence H is subnormal in
CG (�1 (P)), and since CG (�1(P)) is normal in G, it follows that H is subnormal
in G, so H ≤ Oq(G) < Q. Now it follows easily that H is S-quasinormal in G, a
contradiction.
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Case 2. �1(P) ≤ Z(G).
Since Q is not normal in G, it follows that p = 2 by (2.4). Since P is a non-

normal Sylow 2-subgroup of G and �1(P) ≤ Z(G), we have �1(P) ≤ O2(G) < P. By the
hypothesis, O2(G)H is an MS-group, and so H is S-quasinormal in O2(G)H. By (2.2)(b),
H is subnormal in O2(G)H, and since H is a Sylow q-subgroup of O2(G)H, we have
H ≤ CG(O2(G)). If CG (O2(G)) < G, then H is subnormal in G. Hence H ≤ Oq(G) < Q
for each Sylow q-subgroup Q of G. Clearly, POq(G) is a proper subgroup of G for each
Sylow p-subgroup P of G. By the hypothesis, H is S-quasinormal in POq(G), so H
permutes with P, and since H permutes with each q-subgroup Q of G we have that H
is S-quasinormal in G, a contradiction. Therefore, O2(G) ≤ Z (G), and so

1 < F(G/O2(G)) = F(G)/O2(G) = Oq(G)O2(G)/O2(G) ∼= Oq(G).

Clearly, each minimal subgroup of Oq(G) is S-quasinormal in G. Then each minimal
subgroup of F(G/O2(G)) is S-quasinormal in G/O2(G), and since q > 2, it follows
that G/O2(G) is supersolvable by (2.9) . Hence G/O2(G) possesses a Sylow tower of
supersolvable type, and so O2(G)Q/O2(G) is normal in G/O2(G). Then O2(G)Q is
normal in G, and since O2(G) ≤ Z(G), we have O2(G)Q = O2(G) × Q. Hence Q is a
characteristic in O2(G)Q, and since O2(G)Q is normal in G, we have that Q is normal in
G, a contradiction.

(4) G has a non-normal cyclic Sylow subgroup.
By (3) , G has a normal Sylow subgroup P for some prime, say p. Let Q be any Sylow

q-subgroup of G, where p and q are distinct primes. By (2) , G = PQ. If Q is normal in
G, then G is nilpotent, a contradiction. Therefore, Q is not normal in G. Suppose that Q is
non-cyclic. Let H be any minimal subgroup of Q. Then PH < G, and so PH = P × H.
If �1(Q) = Q, then Q ≤ CG(P), and so G is nilpotent, a contradiction. Therefore, we may
assume that �1(Q) < Q. By (2.2)(d), �1(Q) is S-quasinormal in �1(Q)P, so �1(Q)P =
�1(Q) × P. Then �1(Q) is normal in G, and so each minimal subgroup of G of order q
is S-quasinormal in G. Then, by the hypothesis, there exists a minimal subgroup L of P
such that L is not S-quasinormal in G. Since Q is non-cyclic, it follows that Q contains
two distinct maximal subgroups, say Q1 and Q2. Then PQi < G and L is normal in LQi,

where i = 1, 2. Hence LQ is a subgroup of G for each Sylow q-subgroup Q of G, and since
LP = PL = P, it follows that L is S-quasinormal in G, a contradiction.

(5) Finishing the proof.
By (2) , (3) and (4) , G = PQ, where P is a normal Sylow p-subgroup of G and Q is a

cyclic Sylow q-subgroup of G. Hence by Lemma 3.6 one of the statements (a),(b) and (c)
of the theorem holds. �
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