Let \(f(X, T_1, \ldots, T_m) \) be a polynomial over an algebraic number field \(K \) of finite degree. In his paper [2], T. Kojima proved

Theorem. Let \(K = \mathbb{Q} \). If for every \(m \) integers \(t_1, \ldots, t_m \), there exists an \(r \in K \) such that \(f(r, t_1, \ldots, t_m) = 0 \), then there exists a rational function \(g(T_1, \ldots, T_m) \) over \(\mathbb{Q} \) such that

\[
 f(g(T_1, \ldots, T_m), T_1, \ldots, T) = 0.
\]

Later, A. Schinzel [6] proved

Theorem. If for every \(m \) arithmetic progressions \(P_1, \ldots, P_m \) in \(\mathbb{Z} \) there exist integers \(t_i \in P_i \) \((i \leq m)\) and an \(r \in K \) such that \(f(r, t_1, \ldots, t_m) = 0 \) then there exists a rational function \(g(T_1, \ldots, T_m) \) over \(K \) such that

\[
 f(g(T_1, \ldots, T_m), T_1, \ldots, T) = 0.
\]

In his thesis [7], S. Tung applied these theorems to solve some decidability and definability problems. In this paper, we are concerned with geometric progressions of values of \(T_1, \ldots, T_m \). We prove

Theorem 1. Assume that there exists \(a_1, \ldots, a_m \in K \) other than 0 and roots of unity such that for any \(m \) integers \(t_1, \ldots, t_m \), there exists an \(r \in K \) with \(f(r, a_1^{t_1}, \ldots, a_m^{t_m}) = 0 \). Then there exist a rational function \(g(T_1, \ldots, T_m) \) over \(K \) and \(m \) integers \(k_1, \ldots, k_m \) not more than \(k \) such that

\[
 f(g(T_1, \ldots, T_m), T_1^{k_1}, \ldots, T_m^{k_m}) = 0
\]

where \(k \) is the \(X \)-degree of \(f(X, T_1, \ldots, T_m) \).

§ 1.

In case of \(m = 1 \), Theorem 1 is an easy consequence from Theorem of P. Roquette (Theorem 2.1 [4]) as follows.
Let $\omega \in \mathbb{N} - N$ be a nonstandard natural number which is divisible by all natural number where \mathbb{N} is an enlargement of N. By the assumption of Theorem 1, there exists a $\delta \in \mathbb{K}$ such that

$$f(\delta, a^\omega) = 0.$$

Let $k_i = [K(\delta, a^\omega); K(a^\omega)]$. Since the X-degree of $f(X, T)$ is k,

$$k_i \leq k.$$

According to Theorem 2.1 in [4], we have

Theorem 2. For each natural number n, there is one and only one extension $F_n = K(a^{\omega/n})$ of $K(a^\omega)$ within \mathbb{K} such that

$$[F_n; K(a^\omega)] = n$$

where \mathbb{K} is an enlargement of K.

Hence, $K(\delta, a^\omega) = K(a^{\omega/k_i})$. Therefore there exists a rational function $g(T)$ over T such that $\delta = g(a^{\omega/k_i})$. Now we have

$$f(g(a^{\omega/k_i}), a^\omega) = 0.$$

Since a^{ω/k_i} is transcendental over K,

$$f(g(T), T^{k_i}) = 0$$

as contended.

§2.

In this section we prove Theorem 1 for the case $m = 2$. To prove it, we need iterated enlargements. Iterated enlargements are very useful method but sometime they may cause confusion. So first we discuss basic properties of iterated enlargements. Let \mathbb{K} be an enlargement of K. We consider the structure (\mathbb{K}, K) and its enlargement $*(\mathbb{K}, K) = (*\mathbb{K}, *K)$. Then $*\mathbb{K}$ is an elementary extension of \mathbb{K} but not an enlargement of \mathbb{K}. By Theorem of Roquette, for each $n \in \mathbb{N}$ and $a \in K$ other than 0 and roots of unity, the following statement is valid for (\mathbb{K}, K);

"For each $\omega \in \mathbb{N} - N$, there is one and only one extension F_n of $K(a^\omega)$ within \mathbb{K} such that $[F_n; K(a^\omega)] = n$."

By nonstandard principle, the above statement holds for $(*\mathbb{K}, *K)$;
"For each \(\omega \in {^*N} - {^*K} \), there is one and only one extension \(F_n \) of \(L \) within \({^*K} \) such that \([F_n; L] = n\)."

where \(L = \{ h(a^\omega) | h(X) \in ^*\langle K(X) \rangle \} \). It should be noted that the rational function field over \(^*K\) in the sense of the enlargement generated by \(a^\omega \) must be \(L \), not \(^*K(a^\omega)\).

Remark. \(^*K\) is an enlargement of \(^*N\), but Theorem 2 (replacing \(^*K\) and \(K \) by \(^*K\) and \(^*N\) respectively) does not hold, because \(^*N\) is not an end extension of \(^*N\), namely there exist \(c \in {^*N} - {^*N} \) and \(d \in {^*N} \) with \(c < d \). In fact, let \(c \in {^*N} \) be an element which satisfies the set of formulas \(T = \{ c < d | d \in {^*N} - N \} \cup \{ n < c | n \in N \} \). Since any finite subset of \(T \) is satisfiable and \(^*N\) is an enlargement of \(^*N\), such \(c \) exists. On the other hand, \(^*N\) is an end extension of \(N \), so \(^*N\) is also an end extension of \(^*N\), therefore \(^*K\) is not an enlargement of \(^*K\).

The following Lemma 1 has been proved in [4] but we include its proof for the convenience of the reader.

Lemma 1. Let \(M \) be any field. Then \(^*M(X)\) is relatively algebraically closed in \(*M(X)*\).

Proof. Let \(u(X)/v(X) \) be any element of \(^*M(X)\) - \(^*M(X)\) where \(u(X), v(X) \in ^*\langle M(X) \rangle \) and g.c.d. \((u(X), v(X)) = 1 \) and assume that \(u(X)/v(X) \) is algebraic over \(^*M(X)\). Then there exist \(c_0, c_1, \ldots, c_n \in ^*\langle M(X) \rangle \) with \(c_0 \neq 0 \) and \(c_0(u/v)^n + c_1(u/v)^{n-1} + \cdots + c_n = 0 \). Since \(u/v \in ^*\langle M(X) \rangle \), the degree of \(u \) or \(v \) is infinitely large. We may assume without loss of generality that the degree of \(v \) is infinitely large. Then

\[
 c_0u^n + c_1u^{n-1}v + \cdots + c_nv^n = 0
\]

\[
 c_0u^n \equiv 0 \pmod{(v)}. \]

Since g.c.d. \((u, v) = 1\),

\[
 c_0 \equiv 0 \pmod{(v)}. \]

Since the degree of \(v \) is infinitely large and the degree of \(c_0 \) is finite, \(c_0 = 0 \). This is a contradiction.

Lemma 2. Let \(a \in K \) be not 0 nor roots of unity and \(\omega \in {^*N} - {^*N} \) be divisible by all natural number. Then \(^*K(a^\omega/n)\) is the unique extension of \(^*K(a^\omega)\) of degree \(n \) within \(^*K\).

Proof. Let \(x \in ^*K \) be algebraic over \(^*K(a^\omega)\) of degree \(n \). Then \(x \in L(a^\omega/n) \) because \(L(a^\omega/n) \) is the unique extension of \(L \) of degree \(n \) within \(^*K\).
and \(*K(a^n)\) is relatively algebraically closed in \(L = \{h(a^n) | h(X) \in *(K(X))\}\) by Lemma 1.

Again by Lemma 1, \(*K(a^{\omega/n})\) is relatively algebraically closed in \(L(a^{\omega/n}) = \{h(a^{\omega/n}) | h(X) \in *(K(X))\}\). Hence \(x \in *K(a^{\omega/n})\), as contended.

Let \(\omega \in *\mathbb{N} - \mathbb{N}\) and \(\mu \in *\mathbb{N} - \mathbb{N}\) be divisible by all natural numbers. By the assumption of Theorem 1, there exists a \(\delta \in *\mathbb{K}\) with

\[
f(\delta, a_{\omega}, a_\mu) = 0.
\]

Since \(a_\mu \in *K\), \(\delta\) is algebraic over \(*K(a_\mu)\) of degree \(k_1 \leq k\). Hence by Lemma 2, \(\delta \in *K(a_{\mu/k_1})\). Let \(F\) be the relative algebraic closure of \(K(a_{\mu/k_1})\) within \(*K\). Then \(\delta \in F(a_{\mu/k_1})\) because \(F(a_{\mu/k_1})\) is relatively algebraically closed in \(*K(a_{\mu/k_1})\). By Theorem 2, \(K(a_{\mu/k_1})\) has the unique extension \(K(a_{\mu/k_1})\) of degree \(n\) within \(F\). Since \(a_{\mu/k_1}\) is transcendental over \(F\), \(K(a_{\mu/k_1}, a_\mu)\) has the unique extension \(K(a_{\mu/k_1}, a_{\mu/k_1})\) of degree \(n\) within \(F(a_{\mu/k_1})\).

Let \(k_2 = [K(\delta, a_{\mu/k_1}, a_{\mu/k_1}); K(a_{\mu/k_1}, a_{\mu/k_1})]\). Then \(k_2 \leq k\) and

\[
K(\delta, a_{\mu/k_1}, a_{\mu/k_1}) = K(a_{\mu/k_1}, a_{\mu/k_1}).
\]

Hence there exists a rational function \(g(T_1, T_2) \in K(T_1, T_2)\) such that

\[
f(g(a_{\mu/k_1}, a_{\mu/k_2}), a_{\mu}, a_\mu) = 0.
\]

Since \(a_{\mu/k_1} \in *K - *K\) and \(a_{\mu/k_2} \in *K - K\) are algebraically independent over \(K\),

\[
f(g(T_1, T_2), T_{\mu/k_1}, T_{\mu/k_2}) = 0.
\]
§ 3.

Proof of Theorem for \(m > 2 \) is essentially the same as that in Section 2. By induction on \(i \in \mathbb{N} \), we define iterated enlargements \(K_i = (\ldots,*2,K,\ldots,*K) \) as follows. Let \(K_0 = \langle K \rangle \). \(K_{i+1} \) is an enlargement of \((K_i,K) = (\ldots,*2,K,\ldots,*K,\ldots,K,K) \), i.e. \(K_{i+1} = (\ldots,*i+1(K),K) = (\ldots,*i+1K) \). Let \(\omega_j \in \mathbb{N} - \mathbb{N} \) be divisible by all natural numbers. Let \(\delta \in \langle \ldots,*K \rangle \) satisfy

\[
f(\delta, a_1^{\omega_1}, a_2^{\omega_2}, \ldots, a_m^{\omega_m}) = 0.
\]

Then by the same way as in Section 2, there exist natural numbers \(k_1, k_2, \ldots, k_m \) not more than \(k \) such that \(\delta \in K(a_1^{a_1/k_1}, \ldots, a_m^{a_m/k_m}) \). Since \(a_1^{a_1/k_1}, \ldots, a_m^{a_m/k_m} \) are algebraically independent over \(K \), there is a rational function \(g(T_1, \ldots, T_m) \in K(T_1, \ldots, T_m) \) such that

\[
f(g(T_1, \ldots, T_m), T_1^{a_1}, \ldots, T_m^{a_m}) = 0.
\]

References