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Abstract

Web servers have to be protected against overload since overload can lead to a server
breakdown, which in turn causes high response times and low throughput. In this paper,
a stochastic model for breakdowns of server systems due to overload is proposed and
an admission control policy which protects Web servers by controlling the amount and
rate of work entering the system is studied. Requests from the clients arrive at the server
following a nonhomogeneous Poisson process and each requested job takes a random
time to be completed. It is assumed that the breakdown rate of the server depends on
the number of jobs which are currently being performed by the server. Based on the
proposed model, the reliability function and the breakdown rate function of the server
system are derived. Furthermore, the long-run expected number of jobs completed per
unit time is derived as the efficiency measure, and the optimal admission control policy
which maximizes the efficiency will be discussed.
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1. Introduction

The widespread use of Web technologies has already made the Internet an essential channel
for mass distribution of information. Nowadays, a popular website can receive more than ten
million requests per day, with normal request rates of 12 000 per minute (see Wessels (2001,
Chapter 1)). Web servers and Web clients are the fundamental architectural building blocks
in the World Wide Web. A Web client is a requester of data (content) and a Web server is the
provider of data. A Web server manages and provides the data source while Web browsers send
requests to a Web server for specific source data by means of a URL. Upon receipt of a request
initiated by a Web client, the Web server then processes the request and sends a response back
to the Web client.

The increasing number of Internet users and innovative new services such as e-commerce are
placing new demands on Web servers. For example, the increasing growth of e-commerce on
the Web means that any server breakdown time that affects the clients being served will result
in a corresponding loss of revenue. Thus, it is becoming essential for Web servers to provide
steady and stable services in addition to high speed responses. To prevent server overload, the
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amount of work entering the Web server should be controlled. For example, HP’s WebQoS
triggers rejection of requests once the server starts to be overloaded (see Bhatti and Friedrich
(1999)).

In this paper we propose a stochastic breakdown model for a Web server system and discuss
the optimal admission control policy which protects Web servers from frequent breakdowns
by controlling the amount and rate of work entering the system. Requests from the clients
arrive at the server following a nonhomogeneous Poisson process and each requested job takes
a random time to be completed. It is assumed that the breakdown rate of the server depends on
the number of jobs which is currently being performed by the server. Thus, under the proposed
model, the instantaneous susceptibility to breakdown of the server changes in time depending
on the number of jobs currently being processed. Once the demand rate exceeds a certain
level, to protect the server from high client loads, some requests must be rejected. The optimal
rejection rate which maximizes the efficiency of the Web server is also discussed.

Recently, new topics and studies on computers and computer-related systems based on
dynamic stochastic modellings are increasingly appearing in the field of applied probability.
For example, Agustin and Peña (1999) and Kvam and Peña (2005) developed dynamic reli-
ability models which generalize the famous software reliability model suggested in Jelinski
and Moranda (1972). Boland and Ni Chuív (2007) and Barghout (2010) studied software
reliability models with imperfect repair/debugging. A list of several related papers also includes
Singpurwalla (1991), Boland and Singh (2002), Boland et al. (2002), and Agustin (2003). The
topic in this study will also extend the range of research in this field (research on computer and
computer-related systems) to a new challenging direction.

This paper is organized as follows. In Section 2, a stochastic breakdown model which
represents the operating characteristic of theWeb server is proposed. Based on it, the distribution
function of the time to breakdown and the breakdown rate function of the server are derived. In
Section 3, as the efficiency measure of the Web server system, we derive the long-run expected
number of jobs completed per unit time. In Section 4, the optimal admission control policy
which maximizes the efficiency measure by controlling the amount and rate of work entering
the system is discussed. Finally, in Section 5, some concluding remarks are discussed.

2. Stochastic model and breakdown rate function

In this section we consider the stochastic modelling of the Web server breakdowns without
consideration of an admission control policy. LetX be the random time to the server breakdown
when the client demand rate is given by 0. Thus, server breakdowns in this case may include
those caused by technical difficulties, e.g. malfunctions of hardware subsystems or software
errors, etc., independently of those caused by the workload. Denote its absolutely continuous
cumulative distribution function (CDF) and the corresponding survival function (SF) byF0(t) ≡
P(X ≤ t) and F̄0(t), respectively. The baseline breakdown rate of the server is then defined
by

r0(t) ≡ f0(t)

F̄0(t)
, (1)

where f0(t) is the probability density function (PDF) ofX. Thus, the breakdown rate defined in
(1) corresponds to the ordinary failure rate function in reliability theory. Let {N(t), t ≥ 0} be
the stochastic counting process describing the arrivals of the client requests in [0,∞). Denote
the arrival times of these client requests as 0 ≡ T0 < T1 < T2 < · · · . Upon receipt of a request
initiated by a Web client, the Web server then starts to process the request and it takes a random
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Figure 1: The operating characteristics and breakdown rate process.

time for the requested job to be completed. Let Wj , j = 1, 2, . . . , be the time to the completion
of the j th requested job; we assume that the Wj s are independent and identically distributed
(i.i.d.) random variables with their common CDFGW (w), SF ḠW (w), and corresponding PDF
gW (w). The number of requests that the Web server can process simultaneously is assumed to
be sufficiently large.

In this study we assume that, during the process of each requested job, the server breakdown
rate is additionally increased by a fixed amount η and, as soon as the corresponding requested
job is completed, the increased breakdown rate then vanishes. Thus, ‘the breakdown rate
process’ of the server dynamically responds to the flow of jobs being processed. The operating
characteristics of the Web server and the corresponding breakdown rate process is depicted in
Figure 1 when the baseline breakdown rate is given by a constant r0.

As shown in Figure 1, the breakdown rate process B(t) can be mathematically defined as

B(t) = r0(t)+ η

N(t)∑
j=1

1(Tj < t ≤ Tj + Wj ), t ≥ 0,

where B(t) is the level of breakdown rate at time t . Let Y be the random time to the breakdown
of the Web server given the workload caused by the requests from Web clients. Then, given
the arrival process of the client requests and the job processing times, the conditional survival
function of Y is given by

P(Y > t | N(t), T1, T2, . . . , TN(t); W1,W2, . . . ,WN(t))

= exp

{
−

∫ t

0
B(x) dx

}

= exp

{
−

∫ t

0
r0(x) dx − η

N(t)∑
j=1

min{Wj , (t − Tj )}
}

= F̄0(t) exp

{
−η

N(t)∑
j=1

min{Wj , (t − Tj )}
}
. (2)
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The following result gives the survival function and the breakdown rate function of Y .

Theorem 1. Suppose that {N(t), t ≥ 0} is a nonhomogeneous Poisson process with intensity
function λ(t) ≥ 0, i.e. m(t) ≡ E[N(t)] = ∫ t

0 λ(x) dx. Assuming that (2) holds and that m(t)
has inverse m−1(t), the survival function of Y is given by

P(Y > t) = F̄0(t) exp

{
−η

∫ t

0
exp{−ηw}ḠW (w)m(t − w) dw

}

and the breakdown rate function of Y , denoted as r(t), is given by

r(t) = r0(t)+ η

∫ t

0
exp{−ηw}ḠW (w)λ(t − w) dw.

Proof. The unconditional survival function can be obtained by

P(Y > t) = F̄0(t)E

[
exp

{
−η

N(t)∑
j=1

min{Wj , (t − Tj )}
}]
.

Here, the expectation will be obtained by

E

[
exp

{
−η

N(t)∑
j=1

min{Wj , (t − Tj )}
}]

= E

[
E

[
exp

{
−η

N(t)∑
j=1

min{Wj , (t − Tj )}
} ∣∣∣∣ N(t)

]]
.

Observe that the joint distribution of T1, T2, . . . , Tn, given N(t) = n, is the same as the joint
distribution of order statisticsT ′

(1) ≤ T ′
(2) ≤ · · · ≤ T ′

(n) of i.i.d. random variablesT ′
1, T

′
2, . . . , T

′
n,

where the PDF of the common distribution of the T ′
j s is given by λ(x)/m(t), 0 ≤ x ≤ t :

(T1, T2, . . . , Tn | N(t) = n)
d= (T ′

(1), T
′
(2), . . . , T

′
(n)).

That is, let fT1,T2,...,Tn|N(t)(t1, t2, . . . , tn | n) and fT ′
(1),T

′
(2),...,T

′
(n)
(t1, t2, . . . , tn) be the condi-

tional joint PDF of T1, T2, . . . , Tn given N(t) = n and the joint PDF of T ′
(1), T

′
(2), . . . , T

′
(n),

respectively. Then

fT1,T2,...,Tn |N(t)(t1, t2, . . . , tn | n) = fT ′
(1),T

′
(2),...,T

′
(n)
(t1, t2, . . . , tn)

= n!
n∏
i=1

λ(ti)

m(t)
, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t.

Thus,

E

[
exp

{
−η

N(t)∑
j=1

min{Wj , (t − Tj )}
} ∣∣∣∣ N(t) = n

]

= E

[
exp

{
−η

n∑
j=1

min{Wj , (t − T ′
(j))}

}]

= E

[
exp

{
−η

n∑
j=1

min{Wj , (t − T ′
j )}

}]

= (E[exp{−ηmin{W1, (t − T ′
1)}}])n, (3)
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where the second and third equalities hold because {Wj , j = 1, 2, . . . , n} and {T ′
j , j =

1, 2, . . . , n} are i.i.d. random variables, respectively, and they are independent. In (3), for
w ≤ t ,

E[exp{−ηmin{W1, (t − T ′
1)}} | W1 = w]

=
∫ t−w

0
exp{−ηw}λ(x)

m(t)
dx +

∫ t

t−w
exp{−η(t − x)}λ(x)

m(t)
dx

= exp{−ηw}m(t − w)

m(t)
+ exp{−ηt}

∫ t

t−w
exp{ηx}λ(x)

m(t)
dx,

and, for w > t ,

E[exp{−ηmin{W1, (t − T ′
1)}} | W1 = w] = exp{−ηt}

∫ t

0
exp{ηx}λ(x)

m(t)
dx.

Then

E[exp{−ηmin{W1, (t − T ′
1)}}]

= E[E[exp{−ηmin{W1, (t − T ′
1)}} | W1]]

= 1

m(t)

(∫ t

0
exp{−ηw}m(t − w)gW (w) dw

+ exp{−ηt}
∫ t

0

∫ t

t−w
exp{ηx}λ(x) dxgW (w) dw

+ ḠW (t) exp{−ηt}
∫ t

0
exp{ηx}λ(x) dx

)

= 1

m(t)

(∫ t

0
exp{−ηw}m(t − w)gW (w) dw

+ exp{−ηt}
∫ t

0
exp{ηx}λ(x)

∫ t

t−x
gW (w) dw dx

+ ḠW (t) exp{−ηt}
∫ t

0
exp{ηx}λ(x) dx

)

= 1

m(t)

(∫ t

0
exp{−ηw}m(t − w)gW (w) dw

+ exp{−ηt}
∫ t

0
exp{ηx}λ(x)ḠW (t − x) dx

)

= 1

m(t)

(∫ t

0
exp{−ηw}m(t − w)gW (w) dw +

∫ t

0
exp{−ηw}λ(t − w)ḠW (w) dw

)

= 1

m(t)

([
− exp{−ηw}m(t − w)ḠW (w)

]t
0

−
∫ t

0
[η exp{−ηw}m(t − w)+ exp{−ηw}λ(t − w)]ḠW (w) dw

+
∫ t

0
exp{−ηw}λ(t − w)ḠW (w) dw

)

= 1

m(t)

(
m(t)− η

∫ t

0
exp{−ηw}m(t − w)ḠW (w) dw

)
.
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Thus, from (3) we have

E

[
exp

{
−η

N(t)∑
j=1

min{Wj , (t − Tj )}
}]

=
∞∑
n=0

{
1

m(t)

(
m(t)− η

∫ t

0
exp{−ηw}ḠW (w)m(t − w) dw

)}n
(m(t))n

n! exp{−m(t)}

= exp

{
−η

∫ t

0
exp{−ηw}ḠW (w)m(t − w) dw

}
.

Therefore,

P(Y > t) = F̄0(t) exp

{
−η

∫ t

0
exp{−ηw}ḠW (w)m(t − w) dw

}
. (4)

From (4),

ln P(Y > t) = −
∫ t

0
r0(x) dx − η

∫ t

0
exp{−ηw}ḠW (w)m(t − w) dw.

Now applying Leibnitz’s rule (see, e.g. Casella and Berger (2002, p. 69)), the compound failure
rate function r(t) is thus given by

r(t) = − d

dt
ln P(Y > t) = r0(t)+ η

∫ t

0
exp{−ηw}ḠW (w)λ(t − w) dw.

3. The efficiency measure of the Web server

During the operation of the Web server system, if the server breaks down then it is rebooted.
Here, after ‘rebooting’ of the server, the physical state of the server system is assumed to be
‘as good as new’. For example, after fixing the malfunctions in subsystems or in installed
software, the performance of the information technology (IT) systems (e.g. computers, servers,
etc.) could be regarded as the same as before. Furthermore, we assume that the arrival process
of the client requests after rebooting, {N∗(t), t ≥ 0}, also ‘restarts’. Here, the conditions
under which the arrival process restarts are (i) the new arrival process {N∗(t), t ≥ 0} after
rebooting is a nonhomogeneous Poisson process with the same intensity function λ(t), t ≥ 0,
and (ii) the arrival process of the client requests {N∗(t), t ≥ 0} is independent of those before
rebooting. Physically, this assumption implies that the stochastic pattern of the arrival of client
requests is independently repeated in the same manner after each rebooting. If, for example,
the intensity is increasing, under this assumption, the increasing pattern is repeated after each
rebooting (see case II of Example 1 below). Note that the assumption for ‘the restart of the
arrival process’ is automatically satisfied when the process is a homogeneous Poisson process,
i.e. when the intensity function is given by a constant. Thus, the Web server system and its
operating characteristics are ‘renewed’ on each rebooting. The time needed for rebooting of
the server is assumed to follow a continuous distribution H(t) with its mean ν.

Let M(t) be the total number of jobs completed by the Web server during (0, t]. Then, as
the measure of the performance of the Web server, we define the long-run expected number of
jobs competed per unit time:

ψ ≡ lim
t→∞

E[M(t)]
t

.
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In the following, we will call ψ ‘the efficiency of the server’. Then, by renewal theory (see,
e.g. Ross (1996, Section 3.6)),

ψ = lim
t→∞

E[M(t)]
t

= E[M]
E[Y ] + ν

,

where, E[Y ] = ∫ ∞
0 P(Y > t) dt andM is the number of jobs completed in the selected renewal

cycle.
The following theorem gives the efficiency of the server.

Theorem 2. Suppose that {N(t), t ≥ 0} is a nonhomogeneous Poisson process with intensity
function λ(t) ≥ 0. Then the efficiency is given by

ψ = 1

(
∫ ∞

0 P(Y > t) dt + ν)

×
(∫ ∞

0

[
r0(t) exp

{
−

∫ t

0
r0(x) dx

}
exp

{
−

∫ t

0
λ(x) dx

}
a(t) exp{a(t)+ b(t)}

]
dt

+
∫ ∞

0

[
exp

{
−

∫ t

0
r0(x) dx

}
exp

{
−

∫ t

0
λ(x) dx

}

× ηa(t)b(t) exp{a(t)+ b(t)}
]

dt

)
,

where

a(t) =
∫ t

0
exp{−ηv}gW (v)m(t − v) dv, b(t) =

∫ t

0
exp{−η(t − r)}ḠW (t − r)λ(r) dr,

and

a(t)+ b(t) = m(t)− η

∫ t

0
exp{−ηv}ḠW (v)m(t − v) dv.

Proof. We derive E[M]. Observe that

M =
N(Y )∑
i=1

1(Ti + Wi ≤ Y ),

where, by convention, M ≡ 0 when N(Y ) = 0. Note that M can be rewritten as

M =
N(Y )∑
i=1

1(Ri + Vi ≤ Y ),

where {(Ri, Vi), i = 1, 2, . . . , n} is a ‘randomized sample’ (that is, a random permutation) of
{(Ti,Wi ), i = 1, 2, . . . , n}. Thus,

E[M] = E

[N(Y )∑
i=1

1(Ri + Vi ≤ Y )

]
.

Now, to obtain the above expectation, we derive fR1,R2,...,Rn,V1,V2,...,Vn,Y,N(t)(r1, r2, . . . , rn, v1,

v2, . . . , vn, t, n) for n ≥ 1, using the relation

fR1,R2,...,Rn,V1,V2,...,Vn,Y,N(t)(r1, r2, . . . , rn, v1, v2, . . . , vn, t, n)

= fY |R1,R2,...,Rn,V1,V2,...,Vn,N(t)(t | r1, r2, . . . , rn, v1, v2, . . . , vn, n)

× fR1,R2,...,Rn,V1,V2,...,Vn,N(t)(r1, r2, . . . , rn, v1, v2, . . . , vn, n).
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Observe that

P(Y > t | N(t) = n, R1 = r1, . . . , Rn = rn, V1 = v1, . . . , Vn = vn)

= exp

{
−

∫ t

0
r0(x) dx − η

n∑
j=1

min{vj , (t − rj )}
}
.

Also, note that

P(Y > t +�t | N(t) = n, R1 = r1, . . . , Rn = rn, V1 = v1, . . . , Vn = vn)

= P(Y > t +�t | Y > t, N(t) = n, R1 = r1, . . . , Rn = rn, V1 = v1, . . . , Vn = vn)

× P(Y > t | N(t) = n, R1 = r1, . . . , Rn = rn, V1 = v1, . . . , Vn = vn).

Here,

P(Y > t +�t | Y > t, N(t) = n, R1 = r1, . . . , Rn = rn, V1 = v1, . . . , Vn = vn)

= 1 − P(t < Y ≤ t +�t | Y > t, N(t) = n, R1 = r1, . . . , Rn = rn,

V1 = v1, . . . , Vn = vn)

= 1 −
{(
r0(t)+ η

n∑
j=1

1(vj > t − rj )

)
�t + ηε0(�t)(λ(t)�t + o(�t))

+ ηε0(�t)

∞∑
n=2

n
(m(t +�t)−m(t))n

n! exp{−(m(t +�t)−m(t))}
}

= 1 −
{(
r0(t)+ η

n∑
j=1

1(vj > t − rj )

)
�t + ηε0(�t)(λ(t)�t + o(�t))

+ ηε0(�t)[(m(t +�t)−m(t))

− (m(t +�t)−m(t)) exp{−(m(t +�t)−m(t))}]
}

= 1 −
(
r0(t)+ η

n∑
j=1

1(vj > t − rj )

)
�t + o(�t),

where ε0(t) represents any function which satisfies limt→0 ε0(t) = 0. Therefore,

fY |R1,R2,...,Rn,V1,V2,...,Vn,N(t)(t | r1, r2, . . . , rn, v1, v2, . . . , vn, n)

= lim
�t→0

1

�t
[P(Y > t | N(t) = n, R1 = r1, . . . , Rn = rn, V1 = v1, . . . , Vn = vn)

− P(Y > t +�t | N(t) = n, R1 = r1, . . . , Rn = rn,

V1 = v1, . . . , Vn = vn)]

=
(
r0(t)+ η

n∑
j=1

1(vj > t − rj )

)
exp

{
−

∫ t

0
r0(x) dx − η

n∑
j=1

min{vj , (t − rj )}
}
.

(5)
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On the other hand, if we let (w1, w2, . . . , wn) be the realizations of (W1,W2, . . . ,Wn) and
(r(1), r(2), . . . , r(n)) be the ordered vector of (r1, r2, . . . , rn), then

fR1,R2,...,Rn,V1,V2,...,Vn,N(t)(r1, r2, . . . , rn, v1, v2, . . . , vn, n)

= 1

n!λ(r(1)) exp

{
−

∫ r(1)

0
λ(x) dx

}
λ(r(2)) exp

{
−

∫ r(2)

r(1)

λ(x) dx

}
· · ·

× λ(r(n)) exp

{
−

∫ r(n)

r(n−1)

λ(x) dx

}
exp

{
−

∫ t

r(n)

λ(x) dx

} n∏
j=1

gW (vij )

= 1

n!
n∏
j=1

(λ(rj )gW (vj )) exp

{
−

∫ t

0
λ(x) dx

}
, (6)

where vij is the element in {v1, v2, . . . , vn} which corresponds to wj , j = 1, 2, . . . , n. Thus,
by multiplying equations (5) and (6), for n ≥ 1,

fR1,R2,...,Rn,V1,V2,...,Vn,Y,N(t)(r1, r2, . . . , rn, v1, v2, . . . , vn, t, n)

= 1

n!
(
r0(t)+ η

n∑
j=1

1(vj > t − rj )

)
exp

{
−

∫ t

0
r0(x) dx − η

n∑
j=1

min{vj , (t − rj )}
}

×
n∏
j=1

(λ(rj )gW (vj )) exp

{
−

∫ t

0
λ(x) dx

}

= 1

n! r0(t) exp

{
−

∫ t

0
r0(x) dx

}
exp

{
−

∫ t

0
λ(x) dx

}

×
n∏
j=1

exp{−ηmin{vj , (t − rj )}}
n∏
j=1

(λ(rj )gW (vj ))

+ 1

n!
{
η

n∑
j=1

1(vj > t − rj )

} n∏
j=1

exp{−ηmin{vj , (t − rj )}}
n∏
j=1

(λ(rj )gW (vj ))

× exp

{
−

∫ t

0
r0(x) dx

}
exp

{
−

∫ t

0
λ(x) dx

}
.

From this,

E[M] = E

[N(Y )∑
i=1

1(Ri + Vi ≤ Y )

]

=
∞∑
n=1

∫ ∞

0

[ n∑
i=1

∫ t

0

∫ t−ri

0

∫ t

0
· · ·

∫ t

0

∫ ∞

0
· · ·

×
∫ ∞

0
fR1,R2,...,Rn,V1,V2,...,Vn,Y,N(t)(r1, r2, . . . , rn, v1, v2, . . . , vn, t, n)

× dv1 · · · dvi−1 dvi+1 · · · dvn dr1 · · · dri−1 dri+1 · · · drn dvi dri

]
dt
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=
∞∑
n=1

∫ ∞

0

[
1

n! r0(t) exp

{
−

∫ t

0
r0(x) dx

}
exp

{
−

∫ t

0
λ(x) dx

}

× n

[∫ t

0

∫ t−r

0
exp{−ηv}gW (v) dvλ(r) dr

]

×
[∫ t

0

∫ t−r

0
exp{−ηv}gW (v) dvλ(r) dr

+
∫ t

0
exp{−η(t − r)}ḠW (t − r)λ(r) dr

]n−1]
dt

+
∞∑
n=1

∫ ∞

0

[
1

n! exp

{
−

∫ t

0
r0(x) dx

}
exp

{
−

∫ t

0
λ(x) dx

}

× n(n− 1)η

[∫ t

0

∫ t−r

0
exp{−ηv}gW (v) dvλ(r) dr

]

×
[∫ t

0
exp{−η(t − r)}ḠW (t − r)λ(r) dr

]

×
[∫ t

0

∫ t−r

0
exp{−ηv}gW (v) dvλ(r) dr

+
∫ t

0
exp{−η(t − r)}ḠW (t − r)λ(r) dr

]n−2]
dt

=
∞∑
n=1

∫ ∞

0

[
1

(n− 1)! r0(t) exp

{
−

∫ t

0
r0(x) dx

}

× exp

{
−

∫ t

0
λ(x) dx

}
a(t)[a(t)+ b(t)]n−1

]
dt

+
∞∑
n=2

∫ ∞

0

[
1

(n− 2)! exp

{
−

∫ t

0
r0(x) dx

}
exp

{
−

∫ t

0
λ(x) dx

}

× ηa(t)b(t)[a(t)+ b(t)]n−2
]
,

where

a(t) =
∫ t

0

∫ t−r

0
exp{−ηv}gW (v) dvλ(r) dr =

∫ t

0
exp{−ηv}gW (v)m(t − v) dv,

and

b(t) =
∫ t

0
exp{−η(t − r)}ḠW (t − r)λ(r) dr.

Thus, we now have the desired result.

4. The optimal admission control: illustrative examples

In this section we discuss the problem of determining the optimal admission control policy
which maximizes the efficiency of the Web server by considering two illustrative examples.
We consider the cases when the intensity of the nonhomogeneous Poisson process is given by
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Figure 2: The long-run average number of jobs per unit time as a function of λ.

a constant. Then, as mentioned before, the condition for the restart of the arrival process in the
previous section is automatically satisfied.

Example 1. Let r0(t) = r0 = 0.2, η = 0.01, gW (w) = w exp{−0.5w2}, w ≥ 0, and ν = 1.0.
Case I. Nowadays, as the Web businesses are mostly global and worldwide, the connections

by Web clients to the server are made from all over the world and, in this situation, the arrival
rate would be mostly ‘time independent’. In this case, a constant intensity function can be
adopted.

Now we assume that λ(t) = λ for all t ≥ 0. Then, for this case, the long-run average number
of jobs per unit time as a function of λ, ψ(λ), is given in Figure 2.

As can be seen from Figure 2, there exists a λ∗ which maximizes ψ(λ). Therefore, the
optimal admission control policy is as follows:

(i) if λ < λ∗ then do not apply any control policy;

(ii) If λ ≥ λ∗ then, on each arrival request, randomly reject it with probability 1 − λ∗/λ, and
accept it with probability λ∗/λ.

Case II. Practically, in some situations, the arrival rate may have an increasing trend after
booting of the Web server, and then it stays at an almost constant level. Thus, it would be
meaningful to consider the case of increasing λ(t): λ(t) = 400(1 − e−10t ), t ≥ 0. In almost
all cases, the rejection policy is triggered when the arrival rate exceeds a certain threshold value
so that the processing rate should not increase anymore and be preserved as a constant level,
i.e. as the threshold level (see Bhatti and Friedrich (1999) and Voigt and Gunningberg (2001)).
Let the threshold value be λc. Then in this case, the long-run average number of jobs per unit
time as a function of λc, ψ(λc), is given in Figure 3.

Observe that, in this case, it is sufficient to search for the optimal λ∗
c which maximizesψ(λc)

in the interval [0, 400] as the maximum level (supremum) of λ(t) is given by 400. The threshold
values which exceed this level would yield the same control policy as that with λc = 400 (i.e. do
not apply any control policy). In this example, as can be seen from Figure 3, there exists a
λ∗

c < 400 which maximizes ψ(λc).

Example 2. As discussed before, to protect the server from high client loads, some requests
must be rejected. Sometimes requests from Web clients can be classified into the following two
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Figure 3: The long-run average number of jobs per unit time as a function of λc.
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p2 α

Figure 4: The flow diagram.

categories based on preliminary information, such as the client IP address, HTTP cookies, the
URL request type, or filename path, which are obtained on the arrivals of the requests: (i) the
premium request that should be processed with high priority (e.g. requests from premium clients)
and (ii) the basic requests. In this situation, when applying the admission control policy, basic
requests rather than premium requests should be rejected (see Bhatti and Friedrich (1999)).

Let {NP(t), t ≥ t} and {NB(t), t ≥ t} be two independent homogeneous Poisson processes
with constant intensities λ1 and λ2, which represent the arrival processes of the premium
requests and basic requests, respectively. On the arrivals of requests, they are classified by the
classifier. Assume that misclassifications can occur at the classification stage and that there
are two types of misclassification: (i) a premium request is misclassified into a basic request
(type I), (ii) a basic request is misclassified into a premium request (type II). The probability of
a type-I misclassification is 1−p1 and that of a type-II misclassification is 1−p2. Additionally,
assume that the random times for the completions of the premium and basic jobs follow the
same distribution, and the rewards obtained from the successful completion of the premium
and basic jobs are given by κ1 and κ2, κ1 > κ2 > 0, respectively.

If necessary, the rejection policy is applied only to jobs classified into basic jobs, and jobs
classified into premium jobs are processed without rejection. Thus, after the classification
stage, the jobs classified into basic jobs are randomly rejected with rejection probability 1 − α.
The flow diagram for the whole process is depicted in Figure 4.
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Figure 5: The long-run average reward per unit time for r0 = 0.2 and η = 0.01.

When the acceptance rate is given byα, the total arrival rate of the requests after the admission
control process is given by [λ1p1 + λ2(1 − p2)] + α[λ1(1 − p1)+ λ2p2]. Furthermore, when
a requested job is performed by the Web Server after the classification and screening stage, it
is a premium job with probability

β ≡ λ1p1 + αλ1(1 − p1)

[λ1p1 + λ2(1 − p2)] + α[λ1(1 − p1)+ λ2p2] ,

and is a basic job with probability 1 − β. If we now define the efficiency ψ(α) as the long-run
average reward per unit time (as a function of α), then

ψ(α) = (βκ1 + (1 − β)κ2)E[M]
E[Y ] + ν

,

where E[M] and E[Y ] are obtained by setting

λ(t) = [λ1p1 + λ2(1 − p2)] + α[λ1(1 − p1)+ λ2p2] for all t ≥ 0.

Then, when r0(t) = r0 = 0.2, η = 0.01, gW (w) = w exp{−0.5w2}, w ≥ 0, ν = 1.0, λ1 = 15,
λ2 = 150, p1 = p2 = 0.95, κ1 = 2.0, and κ1 = 1.0, the efficiency function ψ(α) is given in
Figure 5.

As can be seen from Figure 5, there exists a unique optimal acceptance rate α∗.

5. Concluding remarks

Recently, as the IT industry rapidly develops, new topics and studies on the testing and
operations of software, computers, and computer-related systems that exist for the purpose
of data, information, and knowledge processing are accordingly increasingly appearing in the
field of applied probability (see, e.g. Boland et al. (2002), Mi (2002), Ling and Mi (2004), and
Agustin (2003)). In this paper we proposed and considered another new topic in the field: the
problem of determining the optimal admission control policy which maximizes the efficiency
of the Web server. In order to model the operating characteristics of the Web server system, a
stochastic model was proposed so that the breakdown rate process of the server dynamically
responds to the flow of the jobs being processed. Based on the proposed model, the breakdown
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rate and the efficiency of the Web server were derived. Considering two case studies, the
optimal admission control policy which maximizes the efficiency measure by controlling the
amount and rate of work entering the system was discussed. The topic in this study could be
expanded, and the range of the study could be extended by considering and including various
practical aspects. Some helpful references could be Voigt and Gunningberg (2001) and Voigt et
al. (2001). To the authors’ knowledge, this kind of topic has not been discussed in the literature
based on a stochastic and probabilistic approach. Therefore, the topic discussed in this paper
would stimulate further related studies in the field.
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