
THE FREE PRODUCT OF SKEW FIELDS

Dedicated to the memory of Hanna Neumann

P. M. COHN

(Received 7 June 1972)

Communicated by M. F. Newman

1. Introduction

In a recent paper [3] it was shown that the free product K * L of two fields
(possibly skew) can be embedded in a field, and moreover, this latter can be chosen
to be the 'universal field of fractions' of K*L (cf. [4,5]). This opens up the pros-
pect of doing for skew fields what the Neumanns and others have done for groups;
indeed some sample applications were given in [3]. We pursue this topic here a
little further: our main results state (i) every ccuntably generated field can be
embedded in a 2-generator field, (ii) in a free product of rings over a field k, any
element algebraic over k is conjugate to an element in one of the factors, (iii) any
field can be embedded in a field with nth roots for each n. These results are all
analogous to well known results in group theory (cf. [8]), and although the proofs
are not just a translation of the group case, the latter is of scrr.e help. Thus (ii),
(iii) follow fairly easily, but they lead to other problems, still open, by replacing
'free product of rings' in (ii) by 'field product of fields, and in (iii) replacing 'nth
roots' by 'roots of any equation'. On the other hand, (i) is less immediate, since
'field products' need to be used in the proof, and their manipulation requires some
more technical lemmas.

I am indebted to G. M. Bergman for his helpful comments on several earlier
versions of this note.

2. The field product

Throughout, all rings have a unit element 1, preserved by homomorphisms
and inherited by subrings, and fields are not necessarily commutative; occasionally
we use the prefix 'skew' for emphasis. If AT is any ring, by a K-ring we understand
a ring R with a canonical homomorphism K -* R; since R has a 1, this is equiva-
lent to imposing on R a K-bimodule structure satisfying x(yz) = (xy)z, for x, y, z
in R or K. Given such a structure, the homomorphism is obtained by mapping
a i-> a.l, where aeK and 1 is the unit element ofR. A .K-ring is faithful if the map
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K -» R is injective; we note that if K is a field, any non-zero K-ring is faithful.
Let k be a field and (Rx) a family of non-zero (and hence faithful) /c-rings. In

each Rx we choose a right fc-basis including 1; this may be denoted by
B'x = {1}UBJ. We now form the words in U Bx; such a word is called non-inter-
acting if neighbouring factors come from diffeient sets Bx. The set of all non-
interacting words (including the empty word to represent 1) fours a ri£ht k-basis
for the free product of the Rx over k (see [1, 2j). This free picduct will be written
*RX, or if only two factors R, S are present, R*S.

Although we shall have occasion to deal with the free product directly, most
of the time we are interested in the fields that can be formed from it. Thus let (Kx)
be a family of fields containing k as a subfield and let R = *KX be their free prod-
uct; from [2] we know that R is a fir. We recall that a ring R is called &fir ( = free
ideal ring) if every (right or left) ideal of R is free as .R-module, of unique rank. If
every finitely generated right (or equivalently, left) ideal is free, of unique rank, R
is called a semifir. In [3] it was shown that every fir is embeddable in a field; we
therefore have a field L containing all the Kx. However, a minimal field containing
all the Kx may not be unique and we shall need the more precise description of the
universal field of fractions [4,5], which is uniquely determined. We briefly sum-
marize the construction from [4], which more generally, provides a universal
field of fractions for any semifir.

Let R be any ring; by an R-field we understand a field K which is an K-ring.
Such an .R-field is called epic (*) if the canonical map R -> K is a ring-epimorphism.
This is equivalent to the condition that K be generated, as a field, by the irrage of
R. A specialization of epic i?-fields K, L is an J?-ring homomorphism f:K0 -> L
from an R-subring Ko of K to L such that xf ± 0 implies x ~1 e Ko. It follows from
this that Ko is a local ring (i.e. its non-units form an ideal, cf. [4]); in fact ker / is
the maximal ideal and X0/ker f = L. Two specializations are equal if they agree
on a common subring Ko and the common restriction is a specialization. The
epic .R-fields and specializations can be shown to form a category 3FK; an initial
object in !FR, if one exists, is called a universal R-field, or in case the canonical
map is injective, a universal field of fractions for R.

For a commutative ring R, the epic .R-fields are determined up to isomor-
phism by the kernels of the canonical maps. The collection of these kernels,
the prime ideals of R, forms a category equivalent to SPR (with inclusions as maps).
This is usually written spec R and called the prime spectrum of R. In the general
case, an epic .R-field K is not determined by the elements of R that map to zero,
but by the set of square matrices over R that become singular over K. Thus the
place of the prime ideal is taken by a collection of square matrices satisfying cer-
tain conditions; this is called a prime matrix ideal, and it is possible to write

(*) This differs slightly from the usage in [4]: what are called /{-fields there are called
epic .R-fields here.
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down a brief set of conditions characterizing prime matrix ideals [4]. The collec-
tion of prime matrix ideals of a general ring R is written field-spec R; it is equiva-
lent, as a category, to ^R. In particular, it is possible to write down conditions for
field-spec R to be non-empty. We shall not give the general conditions here, as
they are not needed (see [4], chapter 7 for details), but only note one special case.

A matrix A over a ring R is said to be full if it is square, say nxn, and cannot
be written as A = PQ where P is n x r, Q is r x n and r < n. Any homomorphism
maps a non-full matrix to a non-full matrix; if it also maps every full matrix to a
full matrix it is called honest. An honest homomorphism is necessarily injective.
We recall the following result from ([4], page 283):

In a semifir R, the set of all non-full matrices is a prime matrix ideal. It is
therefore the least prime matrix ideal, the corresponding epic R-field U is the
universal field of fractions of R and the natural injection R —> U is honest. / / $
is the set of all full matrices over R, then U may be obtained as the universal R-
ring over which all matrices of Q> are invertible, briefly, U = R® is the universal
^-inverting ring ([4], page 285).

When there is an epic .R-field U in which every full matrix over R is invertible
(as here) we shall call U the fully inverting ring for R; this is necessarily the
universal field of fractions of R, and the result quoted above tells us that it exists
for any semifir. Our first result describes the extension of homomorphisms to fully
inverting rings:

PROPOSITION 2.1. Any honest homomorphism between rings R, R' wth fully
inverting rings U, U' extends uniquely to a homomorphism between U and U';
in particular, any isomorphism between R and R' extends to a unique isomor-
phism between U and U'.

PROOF. Let a be an honest homomorphism from R to R'; a maps the set of
full matrices over R to the set of full matrices over R', and hence extends uniquely
to a homomorphism between their fully inverting rings.

If (Kx) is a family of fields containing a common subfield k, then their free
product R — *KX is a semifir [2] and so has a universal field of fractions. This will
be called the field product of the Kx and written °kKx or K^L in the case of only two
factors. Clearly ' ° ' is a bifunctor on the category of fields and homomorphisms.
This is an instance where the non-commutative case runs more smoothly than the
commutative case. The 'free product' (i.e. coproduct) of two commutative k-
fields K, L in the category of commutative fc-algebras is given by their tensor
product K® L. This need not be an integral domain and so need not have a field
of fractions, and even though an epic (K ® L)-field exists, there may be no univer-
sal (K ® L)-field.

We shall also need the fact that the universal field construction and the free
product are commuting operations.
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THEOREM 2.2. Let R and S be k-rings (where k is a field) with universal
fields of fractions R, 5. Then the free product R*S has a universal field of frac-
tions isomorphic to the field product R%S.

PROOF. Clearly U =R%S is a field of fractions of R*S; we complete the proof
by showing that it is universal. Given any epic (i?*S)-field K, we have induced
mappings R -» K, S -> K, obtained by composing R*S -> K with the natural in-
clusions. Hence there are specializations R-+ K, S -> K which can be combined
to a specialization R o S —• K, necessarily unique, because its values on R*S are
prescribed. This shows that U is the universal field of fractions of R*S, as claimed.

We observe that this result applies e.g. when R, S are semifirs (containing a
field k).

3. Subfields of field products

Let k be a commutative field and fc<Z> the free £>algebra on a set X. This
algebra is a fir and hence has a universal field of fractions [4]. If K is a field gen-
erated over a central subfield k by a set X, we shall say that X generates K freely
over k or that X is a free generating set of K over k if K is the universal field of
fractions of the free algebra k(X}. In this case K itself may also be called a free
field over k; thus the free field on a single generator x over k is just the rational
function field k(x), but for more than one free generator the free field will be non-
commutative. Given any field with a central subfield k, by a free subset over k we
understand a subset Y of the field such that the subfield generated by Y is freely
generated by Y over k.

We note that a subfield of a purely transcendental (i.e. free commutative)
extension need not be free when the transcendence degree exceeds 1 (in degree 1
we have Liiroth's theorem). In the general case little is known about subfields of
fields, but it seems not unreasonable to conjecture that every subfield of a free
field (over a central subfield k) is again free over k. The proof would probably re-
quire a closer analysis of the matrix form for the elements of K. Such an attempt, if
successful, may also provide techniques for the analysis of field products.

In this section we shall show that every countable field can be embedded in a
2-generator field; this is the analogue of a theorem of Neumann ([8], Theorem
20.7) for groups. As in that case, one may ask whether there is a countable field,
or a countably generated field over k, containing a copy of every countable field
(of a given characteristic), and as for groups, the answer is 'no'. To see this (*) let
us denote for any field K, by £f{K) the set of isomorphism types of finitely gen-
erated subgroups of K*, the group of non-zero elements of K. If K is countable,
then so is ^(K). Now Smith [11] has shown that there are c = 2N° isomorphism
types of finitely generated orderable groups, and since every countable ordered

(*) I am indebted to A. Macintyre for this proof.
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group can be embedded in a countable field (of prescribed characteristic), it fol-
lows that there are c distinct sets y(K) as K runs over all countable fields of any
given characteristic. Therefore these fields cannot all be embedded in a 2-generator
field.

Let P, Q be a subrings of a ring R and suppose that A: is a common subring of
P and Q. Then there exists a fc-bimodule homomorphism

(2) P ®k Q -> R.

If the mapping (2) is injective, P and Q are said to be linearly disjoint in R over
k. We observe that this property is not generally symmetric in P and Q. With this
notion we obtain the following analogue of a lemma of Neumann ([9], cf. [8]),
implicitly used in [3].

LEMMA 3.1. Let P = %RX be the free product of a family of K-rings, where
K is afield. Given a subring Sx of each Rx and a subfield k of K where k c Sx

(for all A), suppose that for each A, the pair Sx, K is linearly disjoint in P over k.
Then the subring QofP generated by the Sx is their free product over k.

PROOF. Let Bx'= {1} UBA bs a right fc-basis for Sx (adapted to the subspace
k), then B'x is still right K-independent, by hypothesis, and can therefore be en-
larged to a right X-basis Ax = {1} *JAX of Rx (still adapted to the subspace K).
Now the non-interacting words in U Ax form a right K-basis for P; hence the
non-interacting words in U Bx are right fc-independent and they span Q. There-
fore Q is indeed the free product of the Sx over k.

We note that the sufficient condition given in this lemma is asymmetric,
hence we obtain another sufficient condition by requiring all the pairs K, Sx (in
that order) to be linearly disjoint over k.

Two further results are needed, one on field products, and one on free sets.

LEMMA 3.2. Let K be afield with a subfield k, and let P be the field product
of K and k(x), where x is an indeterminate centralizing k. Then the subfield Q of
P generated by the fields Kt = x~'Kx'(ieZ) is their field product over k.

PROOF. Take a family of copies of K indexed by Z, say (KX and denote by U
their field product over k. By the universal property of U it follows that Q is a
specialization of U. From the universal property of P = K o k(x), this special-
ization will be an isomorphism whenever there is some .K-ring L containing an
element y ¥" 0 such that the specialization of U in L which maps Kt -* y!Ky~' is
an embedding. Such an L is easily constructed:

U

L = U(y;a)
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The mapping which takes Kt to Ki+l is an automorphism of *Kt which extends to
an automorphism a, say, of U =oKt. We form the skew polynomial ring l / ^ ; a]
with commutation rule ay = ya". This is an Ore ring and so has a field of frac-
tions L = U{y,a) which has the desired properties.

LEMMA 3.3. Let E be the field generated by a family (et) of elements over a
central subfield k, and U afield freely generated by a family (ut) over k, then the
elements «, + etform a free set in the field product of U and E over k.

PROOF. The field product G = E% U has the following universal property:
given any £-field F and any family (/;) of elements off , there is a unique special-
ization from G to F (over E, with domain generated by £ and the/4) which maps
ui to /;. In particular, there are specializations from C to itself which map w, to
Uj + et (resp. to u, — et). On composing these mappings (in either order) we ob-
tain the identity mapping, hence they are inverse to each other, and so are auto-
morphisms. It follows that the ut + eit like the ut form a free set.

We can now prove our main result.

THEOREM 3.4. Let E be afield, countably generated over a central subfield
k. Then E can be embedded in afield on two generators over k.

In essence the proof runs as follows: Suppose that E is generated by (e)
(i = 0,1, •••)> where e0 - 0. We construct an extension field I generated over E
by elements x,y,z satisfying

y~'xy' = z~'xz' + ex.
Hence L is in fact generated by x, y, z alone. If we now adjoin t such that y = txt~l,
z = t~lxt, the resulting field is generated by x and t.

To prove Theorem 3.4, let Ft be the free field on x, y over k; it has a subfield
U, generated by ut = y~'xy'(i = 0,1, •••)» freely by Lemma 3.2, and similarly, let
F2 be the free field on x, z over k, with subfield V freely generated by vt = z~'xz'

O = o,i,-).
Let K be the field product of E and Fx over k : K = E o Ft. It has a sub-

field W generated by wt = ut + et(i ^ 0), freely by Lemma 3.3. We note that
w0 = M0 + e0 = x0 = x, so K is generated by x,y and the wt(i ;> 1) over k.

Let L be the field product of K and F2, amalgamating W and V along the
isomorphism w, <-» vt. We note that w0 = x = v0 and that L is generated by x, y, z
and the wh or x, y, z and the v,, or simply by x, y, z. Now L contains the isomorphic
subfields fc<x, y}, k(z, x>, hence we can adjoin t to L such that t~1xt = z, t~lyt
= x (see [3]), Theorem 6.3). It follows that L(t) so defined is generated by x and t
over k. This completes the proof of Theorem 3.4.

As in [8] we have the

COROLLARY. Every field can be embedded in a field L such that every count-
ably generated subfield of L is contained in a 2-generator subfield of L.
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PROOF. Let £ be the given field and Ex a typical countably generated subfield
(over a central subfield k, which could of course be the prime field), then there is
a 2-generator field Lx containing Ex. Form the field product Mx of E and Lx over
Ex; if we do this for each countably generated subfield of E, we get a family (Mx)
of fields, all containing E. Form their field product £ ' amalgamating E; then in E'
every countably generated subfield of E is contained in a 2-generator subfield of
£', namely Ex is contained in Lx. Now repeat the process that led from E to £' :

£ £ £ ' £ £ " £ ••• £ £m £ £M + 1 £ ••• £ £v,

where E" — U {£^ | /? < a} at a limit ordinal a, and where v is the first uncoun-
table ordinal. Then £v is a field in which every countably generated subfield is
contained ,n some £a(a < v) and hence in some 2-generator subfield of Ex+1 £ £v.
This establishes the corollary.

It is not hard to determine the algebraic elements in a free product. Let P
= *RX be a free product of a family of integral domains Rx over a field k, then
each Rk is a faithfully flat inert extension of k, and hence, by Theorem 2.2 of [2],
III, P is an integral domain. Suppose that a e P is right algebraic over k, i.e. it
satisfies an equation

(3) any0 + an~1y1+ ••• + yn = 0 (y.efc, not all 0).

Since P is an integral domain, we may assume that yn # 0. It follows that

a(a"-ly0+ - + ?„_,)(- y^1) = 1,

and hence a is a unit in P. Now any unit in P is a product of units in the factors
i?A(Theorem 2.2 of [2], III). If a is not in one of the Rx, then by taking a suitable
conjugate, we ensure that h(ar) = rh(a), where h is the height defined in [2], III.
This clearly contradicts (3), hence a lies in some Rx and we have proved

THEOREM 3.5. Let P = *RX be a free product of (not necessarily commutative)
integral domains Rx over afield k. Then any element right (or left) algebraic
over k is conjugate to an element in one of the factors.

Of course it would be more interesting (and presumably also more difficult)
to establish the analogue for field products. The conclusion of Theorem 3.5 fails
when different subfields are amalgamated. This is shown by the example corre-
sponding to Neumann's [8]: Let k be any commutative field and form the fields
Ki = k(x,y), K2 = k(y,z), K3 = k(z,x) with defining relations y~*xy = x'1,
z~xyz = y~l, x~lzx = z~1; it is clear how to construct such fields as fields of
fractions of suitable skew polynomial rings. Their free product P exists, with
amalgamations K12 = k(y), K23 = k(z), K31 = k(x); this follows as for groups.
However, in P, xyz is an element of order two: xyz = yx~lz = yz~lx~i

= z~iy~lx~i. Thus P is not even an integral domain.
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4. Algebraic extensions of skew fields

In order to be able to build a satisfactory theory of algebraic field extensions
it is necessary to solve the following basic

PROBLEM. Given any field K with a central subfield k algebraically closed
in K find an extension field E of K such that any non-constant element p of
X*/c[x] vanishes for some value of x in E.

Of course it is only necessary to find an extension in which a single equation
has a root; then the familiar process will provide an extension in which all equa-
tions have solutions. However, there is no guarantee that such an extension is
unique, nor that all its elements are algebraic over K. Now recently, Robinson
[10] has outlined a construction which leads to the notion of an algebraically
closed skew field; various people have observed that the class of algebraically
closed fields constructed in this way constitutes precisely the class of elementary
subfields of the homogeneous universal fields constructed by the methods of
Jonsson [6,7]. Both Jonsson's and Robinson's constructions depend on the fact,
proved in [3], that skew fields possess the amalgamation property.

At present we are unable to answer the above problem except in the following
special case.

THEOREM 4.1. Let K be afield and peK*k[x~\ a non-constant polynomial,
whose coefficients all lie in a commutative subfield F of K. Then there is an ex-
tension field E of K in which p = 0 has a root.

PROOF. By hypothesis, p e F[x] and there is a commutative field G containing
F in which p has a zero (e.g. the algebraic closure of F). Now take £ to be the field
product of K and G over F, then p has a zero in E.

By induction we can extend K to a field in which every polynomial with coef-
ficient in some commutative subfield of K has a zero; in particular, in such a field
every element has nth roots, for every integer n.
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