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1 Introduction

There are only 10 types of people in the world:
those who understand binary, and those who don’t.

In computer science, we are so accustomed to thinking about binary
numbers, that we sometimes forget that other bases are possible.

Purely Functional Data Structures—Chris Okasaki

This pearl considers the task of constructing 2-3 trees.
Hopcroft’s (1974) 2-3 trees were among the first data structures to be given a proper

functional treatment. Hoffmann and O’Donnell’s (1982) adaption was strikingly elegant,
not the least because it was far removed from the informal pointer manipulations of the
original: the balancing operations were captured by simple equational rewrite rules.

2-3 trees are an interesting blend of binary and ternary trees:

data Tree23 a
= L — leaf
| N2 (Tree23 a) a (Tree23 a) — 2-node
| N3 (Tree23 a) a (Tree23 a) a (Tree23 a) — 3-node

An element of Tree23 t is called a 2-3 tree if all leaves appear on the same level (height
condition). Two extreme instances of 2-3 trees are full binary trees of size 2h − 1 and full
ternary trees of size 3h − 1, where h is the height of the tree in each case. For example,
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2 R. Hinze

Given a sequence of elements, we seek to build a 2-3 tree—in linear time—that contains
the elements in symmetric order:

inorder · build = id

where the inorder traversal of a 2-3 tree is defined:

inorder ∷ Tree23 a → [a]
inorder L = [ ]
inorder (N2 t a u) = inorder t ++ [a] ++ inorder u
inorder (N3 t a u b v) = inorder t ++ [a] ++ inorder u ++ [b] ++ inorder v

The function inorder is surjective—there is at least one 2-3 tree of any given size—but not
injective. In other words, the specification is ambiguous. For example, there are two trees
of size 4 and two trees of size 5:

The larger the size, the more numerous the choices: for example, there are 727 trees of
size 20. But which one to pick? Now, 2-3 trees with a greater number of 3-nodes are
usually preferred as they are of lower height and have a more favourable memory foot-
print. However, 3-nodes exhibit an unwelcome asymmetry; in a 2-3 search tree, a 3-node
involves either one or two comparisons. So even though all search paths are equally long,
some may actually involve twice as many comparisons as others. Therefore, we consider
both extremes: slim trees, which contain the minimal number of 3-nodes for a given size,
and fat trees, which feature a maximal number of 3-nodes.

We discuss three approaches for defining build : top-down, bottom-up, and incremental.
The incremental approach is more flexible than the other two in that it allows us to
interleave the construction work with other operations such as queries.

2 Top-down construction

A straightforward approach to constructing a 2-3 tree is to add one element at a time,
starting with an empty tree: foldr add L. Alas, since add has to traverse the left spine of the
2-3 tree from the root to the leftmost leaf, the overall running time is θ (n log n). Perhaps a
divide-and-conquer scheme is more efficient?

If the input list is empty, we return an empty 2-3 tree. Otherwise, we put one element
aside for the root node, divide the remaining list into two halves (of roughly equal size),
recursively construct 2-3 trees, and finally combine the resulting trees and the put-aside
element. To avoid dealing with the tedious details of this binary sub-division scheme, let
us assume that the input is given by a Braun tree (Braun & Rem, 1983), rather than a list.
(A functional idiom at work: a control structure is turned into a data structure, whose fold
corresponds to the control structure.) Recall that a Braun tree is binary tree:

data Braun a = Empty | Node (Braun a) a (Braun a)
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whose shape is uniquely determined by its size. For any given node Node l a r, the left
subtree l is either exactly the same size as the right subtree r, or one element smaller:
size l � size r � size l + 1 (making “of roughly equal size” precise).

The challenge in constructing a 2-3 tree is to ensure that the height condition is met. To
this end, we annotate each intermediate 2-3 tree with its height, in the hope that the builder
can be implemented using a simple tree fold.

type Height = Int
create ∷ Braun a → (Height, Tree23 a)
create Empty = empty
create (Node l a r) = node (create l ) a (create r)
empty ∷ (Height, Tree23 a)
empty = (0, L)

The smart constructor node creates a 2-node if both argument trees have the same height.
Otherwise, it adds the shorter tree as a child of the taller one by creating a 3-node in place
of a 2-node:

node ∷ (Height, Tree23 a) → a → (Height, Tree23 a) → (Height, Tree23 a)
node (h, t) a (k, u) | h k = (h + 1, N2 t a u)
node (h, t) a (k, N2 u b v) | h + 1 k = (h + 1, N3 t a u b v)

While the definition of node is simple—deceptively simple—it is not immediately clear
that it works. It seems to rely on three assumptions, each of which requires justification:
(i) the height difference is at most one; (ii) the left tree, first argument of node, is at most
as tall as the right tree, third argument, or, more generally, smaller trees are shorter; (iii) in
case of a height difference, the root of the right tree is necessarily a 2-node.

To address the first two points, let us express the height of the 2-3 tree in terms of the
input size n. If n = 0, create returns empty, so the height is 0. Otherwise, create calls node.
Inspecting its definition, we observe that the height of the resulting tree is determined
by the height of the first argument, the left tree t of size, say, m: either n = 2 × m + 1 =
(m) + 1 + (m) or n = 2 × m + 2 = (m) + 1 + (m + 1), and in both cases the height is one
plus the height of t.

height 0 = 0
height (2 × m + 1) = 1 + height m
height (2 × m + 2) = 1 + height m

The definition of height shows that the height h of a tree created by the top-down method is
given by the length of the binary representation of the input size n, composed of the digits
1 and 2:

n = (d0 . . . dh−1)2 =
h−1∑

i=0

di × 2i with di ∈ {1, 2}

Quite reassuringly, this observation confirms (i) and (ii). For (iii) note that constructed
trees of size n and n + 1 have different height if and only if the binary representations of n
and n + 1 have different lengths, which happens when the binary increment of n features a
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cascading carry. Perhaps, it is useful to remind ourselves how to count in the {1, 2}-binary
number system:

()2, (1)2, (2)2, (11)2, (21)2, (12)2, (22)2, (111)2, (211)2, (121)2, (221)2, . . .

The definition of the binary increment, ()2 + 1 = (1)2, (1α)2 + 1 = (2α)2, and (2α)2 + 1 =
(1(α + 1))2, shows that a cascading carry takes a sequence of 2s to a sequence of 1s. Now,
writing d{n} for the digit d repeated n times, a tree of size (1{h})2 = 2h − 1 is a full binary
tree as the first equation of node always matches. Consequently, the root of the right tree
in the second equation of node is indeed necessarily a 2-node.

The top-down construction of 2-3 trees combines unfolding and folding Braun trees:

top-down ∷ [a] → Tree23 a
top-down = snd · create · braun

where braun constructs a Braun tree in linear time, see Appendix. To illustrate, for the
input list [1 . . 12] of size 12 = (212)2, the builder maps the Braun tree on the left to the
2-3 tree on the right:

The running time of top-down is clearly linear. Sometimes, we can do even better than this:

Exercise 1 Show how to construct a 2-3 tree that contains n copies of the same element in
time θ (log n). Hint: adapt the algorithm of Okasaki (1997) to 2-3 trees.

Exercise 2 The divide-and-conquer scheme above puts an element aside for the root node.
A simpler scheme divides the input sequence into two halves of roughly the same size and
then joins the recursively constructed 2-3 trees. Fill in the details.

The next exercise presents a formidable challenge. Let me know if you have solved it.

Exercise 3 The top-down construction is somewhat unsatisfactory as it creates all kinds
of trees, not just slim or fat ones. Perhaps, you can do better?

3 Bottom-up construction of 2-3 trees

3.1 Slim trees

The height condition of 2-3 trees dictates that all leaves appear on the same level, suggest-
ing, in fact, a bottom-up approach: a 2-3 tree is created level by level starting at the bottom.
We represent a level by an alternating sequence of 2-3 trees and elements,

t0 :� a1 :� t1 :� a2 :� t2 · · · tn−1 :� an :� tn �

and require that all trees have the same height (height condition). The symbols have
been chosen to resemble the graphical rendering of trees, with � marking the end of the
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alternating sequence. The builder repeatedly passes over this sequence combining adjacent
2-3 trees and elements until the sequence consists of a single 2-3 tree.

To represent alternating sequences, we introduce two general-purpose datatypes:

data a � b = a� | a :� (a � b)
data a � b = b :� (a � b)

The datatype a � b captures sequences constrained by the regular expression a(ba)∗ = aε |
aba(ba)∗ with the helper type a � b modelling ba(ba)∗.1

The function bottom creates the bottom layer of empty L trees interleaved with the given
list of elements:

bottom ∷ [a] → Tree23 a � a
bottom [ ] = L�
bottom (a : x) = L :� a :� bottom x

The implementation of a single pass is mostly straightforward:

pass-slim ∷ Tree23 a � a → Tree23 a � a
pass-slim (t :� a :� u�) = N2 t a u�
pass-slim (t :� a :� u :� b :� v�) = N3 t a u b v�
pass-slim (t :� a :� u :� b :� v :� c :� q) = N2 t a u :� b :� pass-slim (v :� c :� q)

We only have to be careful that the sequence passed to the recursive call contains at least
two trees. In particular, we cannot turn t :� a :� u :� b :� v� into N2 t a u :� b :� v� as
this would violate the height condition.

The function pass-slim favours 2-nodes over 3-nodes so that each level of the resulting
2-3 tree contains at most one 3-node. We shall see later (Section 4.1) that the trees con-
structed are actually slim in which they contain the minimal number of 3-nodes. Ternary
nodes are, of course, unavoidable as a full binary tree necessarily contains 2h − 1 elements.

The function loop-slim repeatedly invokes pass-slim until the sequence consists of a
single 2-3 tree.

loop-slim ∷ Tree23 a � a → Tree23 a
loop-slim (t�) = t
loop-slim (t :� a :� q) = loop-slim (pass-slim (t :� a :� q))
bottom-up-slim ∷ [a] → Tree23 a
bottom-up-slim = loop-slim · bottom

Each pass increases by one the height of each tree in the alternating sequence and roughly
halves its length, resulting in a linear running time overall.

3.2 Fat trees

An attractive feature of the bottom-up approach is that it can be easily modified to build
fat 2-3 trees featuring a maximal number of 3-nodes. It suffices to adapt the function
pass-slim:

1 The helper type is only needed since Haskell does not support distfix notation. However, we have allowed
ourselves the liberty of using postfix notation for�. The constructors :� and :� both associate to the right.
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pass-fat (t :�a :�u�) = N2 t a u�
pass-fat (t :�a :�u :�b :�v�) = N3 t a u b v�
pass-fat (t :�a :�u :�b :�v :�c :�w�) = N2 t a u :�b :�N2 v c w�
pass-fat (t :�a :�u :�b :�v :�c :�w :�d :�q) = N3 t a u b v :�c :�pass-fat (w :�d :�q)

Again, we are careful to pass at least two trees to the recursive call. Observe that each level
now contains at most two 2-nodes. Of course, it is not at all clear that this ensures that the
resulting 2-3 tree is fat. We defer the proof of this fact until Section 4.2.

For example, a slim 2-3 tree of size twelve contains eight 2-nodes and two 3-nodes,
while a fat tree consists of four 2-nodes and four 3-nodes:

4 Incremental construction of 2-3 trees

4.1 Slim trees

We have discarded the implementation of build as a fold, foldr add L, because add nec-
essarily has to traverse the left spine of the 2-3 tree from the root to the leftmost leaf,
resulting in an overall super-linear running-time. We can, however, improve the perfor-
mance if we reverse the left spine exposing the “hot spot,” the leftmost leaf. The diagrams
below illustrate the transformation:

The horizontal rendering of the left-spine view on the right emphasizes that the spine
amounts to a sequence of pennants: a 1-pennant consists of a 2-3 tree with an additional
element on top; likewise, a 2-pennant consists of two 2-3 trees topped with two elements.

The datatype for the left-spine view is similar to the type of 2-3 trees except that for
each node the “downward pointer” to the leftmost child has been replaced by an “upward
pointer” to the parent.

data Spine23 a
= Nil — empty spine
| D1 a (Tree23 a) (Spine23 a) — 1-pennant plus tail of spine
| D2 a (Tree23 a) a (Tree23 a) (Spine23 a) — 2-pennant plus tail of spine
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An element of Spine23 t is called a 2-3 spine if the height of the ith pennant is i, assuming
indexing starts from 1 (height condition).

To convert a tree to the left-spine view, we additionally pass in the “pointer” to the
parent:

to-spine ∷ Tree23 a → Spine23 a
to-spine t = t >> Nil
(>>) ∷ Tree23 a → Spine23 a → Spine23 a
L >> z = z
N2 t a u >> z = t >> D1 a u z
N3 t a u b v >> z = t >> D2 a u b v z

Conversely, to turn a spine into a tree we supply a “pointer” to the leftmost child:

from-spine ∷ Spine23 a → Tree23 a
from-spine z = L << z
(<<) ∷ Tree23 a → Spine23 a → Tree23 a
t << Nil = t
t << D1 a u z = N2 t a u <<z
t << D2 a u b v z = N3 t a u b v <<z

Notice that the second and third equations of << are obtained from the corresponding
equations of >> by swapping the left- and right-hand sides, renaming << to >>. Our
2-3 trees and 2-3 spines are in one-to-one correspondence, with to-spine and from-
spine witnessing the isomorphism. In particular, the conversions “translate” the height
conditions.

Exercise 4 Establish the isomorphism. Hint: prove the following generalizations:

L << (t >> z) = t << z

(t << z) >> Nil = t >> z

Remark 1 The one-to-one correspondence allows us to easily port algorithms on 2-3
trees to the left-spine view. For example, assuming ordered elements, membership and
insertion on 2-3 spines are defined:

member’ :: (Ord a) ⇒ a → Spine23 a → Bool
member’ a z = member a ( from-spine z)
insert’ :: (Ord a) ⇒ a → Spine23 a → Spine23 a
insert’ a z = to-spine (insert a ( from-spine z))

where member :: (Ord a)⇒a→Tree23 a→Bool and insert :: (Ord a) ⇒ a→Tree23 a →
Tree23 a are the corresponding operations on 2-3 search trees. Since the conversions
run in θ (log n) time, the logarithmic running-time of membership and insertion is
preserved.

Now, our goal is to construct a spine by adding one element at a time, starting with
the empty spine: foldr cons Nil. The name cons has been chosen to reflect the fact that
each element is added to the front. To see how we might implement cons, let us work
through an example: consider adding the first 2 and then 1 to the 12-element spine drawn
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above, see (2). Recall that the heights of the trees increase from left to right, an immediate
consequence of the height condition.

Adding 2 is easy: we simply turn the initial 2-node into a 3-node.
Things become interesting when we add 1, as we cannot further grow the 3-node.

To make progress, we generalize the task from adding an element to adding a pennant,
highlighted in orange (colour printing) or dark grey (grey-scale printing) below, and then
normalising to restore the height condition.

We keep the 1-pennant created for 1 and turn the 2-pennant into a 1-pennant, to be
added to the next “level”. Since the next tree on the spine is again a 2-pennant, we repeat

the manoeuvre: we keep the to-be-inserted 1-pennant and turn the 2-pennant with root
into a 1-pennant.

The next tree is finally a 1-pennant which can be grown into a 2-pennant.
The code is a direct rendering of the description above:

cons ∷ a → Spine23 a → Spine23 a
cons a z = c1 a L z

where the “carry” function c1 adds a 1-pennant (highlighted above):

c1 ∷ a → Tree23 a → Spine23 a → Spine23 a
c1 a t Nil = D1 a t Nil
c1 a t (D1 b u z) = D2 a t b u z
c1 a t (D2 b u c v z) = D1 a t (c1 b (N2 u c v) z) — new 2-node

The function maintains the invariant that the height of the 2-3 tree (second argument) is
the same as the height of the first tree hanging off the 2-3 spine (third argument).

To construct a 2-3 tree, we first build a spine and then convert it to a tree:

incremental-slim ∷ [a] → Tree23 a
incremental-slim = from-spine · foldr cons Nil

Turning to the analysis, observe that, below the spine, c1 creates 2-nodes only and each of
these 2-nodes has children of equal height.
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Thus, if we grow a spine using calls to cons only, then the trees hanging off the spine
are full binary trees. Consequently, a 1-pennant D1 a t has size 1 × 2h and a 2-pennant
D2 a t b u has size 2 × 2h, where h is the height of t and u. In other words, the shape of the
2-3 spine is determined by the binary representation of its size. The {1, 2}-binary number
system makes a second appearance: the 1-pennant D1 a t corresponds to the digit 1, with a
and t witnessing the weight of the digit; likewise, the 2-pennant D2 a t b u corresponds to
the digit 2. Moreover, consing an element to the front corresponds to incrementing a binary
number (see Section 2). Since the binary increment runs in amortized constant time, the
overall running time of incremental-slim is linear.

We can use the correspondence to the {1, 2}-number system to show that the builder
incremental-slim, like bottom-up-slim, actually produces a slim 2-3 tree. Since 3-nodes
only occur on the left spine, not below, the tree constructed has at most one 3-node on each
level. A tree with more than one 3-node on a level cannot be slim, as it can be transformed
into one with strictly fewer 3-nodes, using the identity 2 × 3 = 3 × 2 [see e.g. (1)]. The
distribution of 3-nodes on the different levels is, however, fixed as each natural number
has a unique representation in the {1, 2}-number system. Thus, the fattest slim trees, the
ones that contain exactly one 3-node on each level, are of size (2{h})2 = 2 × (2h − 1) =
2h+1 − 2. (The slimmest slim trees, those with no 3-nodes, are full binary trees of size
(1{h})2 = 2h − 1.)

Remark 2 The builder is called incremental as it is easy to interleave the construction of
the 2-3 spine with other operations such as, for example, queries:

let s1 = foldr cons s0 x1 in . . . member’ "Lisa" s1 . . .

let s2 = foldr cons s1 x2 in . . . member’ "Florian" s2 . . .

where member’ is defined in Remark 1. Interleaving conses with standard insertions is
useful, for example, if the given sequence is almost ordered.

4.2 Fat trees

Can we use the same approach to create fat 2-3 trees? Now, a slim tree contains mostly
binary nodes, whereas a fat tree contains mostly ternary ones. This observation suggests
to replace the binary number system by a ternary one, featuring the digits 1, 2, and 3. We
extend the spine datatype, adding the digit 3,

data Spine234 a
= Nil
| D1 a (Tree23 a) (Spine234 a)
| D2 a (Tree23 a) a (Tree23 a) (Spine234 a)
| D3 a (Tree23 a) a (Tree23 a) a (Tree23 a) (Spine234 a)
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and adapt the carry function c1:

c1∷ a → Tree23 a → Spine234 a → Spine234 a
c1 a t Nil = D1 a t Nil
c1 a t (D1 b u z) = D2 a t b u z
c1 a t (D2 b u c v z) = D3 a t b u c v z
c1 a t (D3 b u c v d w z) = D1 a t (c1 b (N3 u c v d w) z) — new 3-node

Since the new version of c1 only creates 3-nodes, the trees hanging off the spine are now
full ternary trees. Thus, an i-pennant Di has size i × 3h and consing an element corresponds
to the ternary increment.

That was easy except that it does not work. We cannot convert the 2-3-4 spine to a 2-3
tree: the new digit D3 has no counterpart as 2-3 trees do not feature 4-nodes. (Of course,
the approach works beautifully for 2-3-4 trees.) How to proceed?

Perhaps, we can draw some inspiration from the bottom-up approach? Recall that fat
trees contain at most two 2-nodes per level, which suggests to consider pennants whose
children are 2-nodes. Meet fractional digits:

In addition to the whole digits 1 and 2, our revised ternary number system features
the fractional digits 2/3, 4/3, and 5/3. Recall that pennants witness weighted digits: the
size of an r-pennant is r × 3h, where h is the height of the underlying 2-3 tree. Let us
briefly check that the arithmetic works out for the first pennant. The subtrees t and u
are full ternary trees of height h − 1. Thus, the size of the 2/3-pennant is 2 × (3h−1 − 1)+
2 = 2/3 × 3h as desired. (As an aside, it turns out that the digit 4/3 is not needed. The right
child of the pennant 4/3 is a 2-node, which is the third node on the level below. But fat trees
do not contain more than two 2-nodes per level, see below. For the same reason, we do not
consider 5/3-pennants whose right child is a 2-node.) We revise the datatype of 2-3 spines
accordingly (overloading the constructor names):

data Spine23 a
= Nil
| D2/3 a (Tree23 a) (Spine23 a)
| D1 a (Tree23 a) (Spine23 a)
| D5/3 a (Tree23 a) a (Tree23 a) (Spine23 a)
| D2 a (Tree23 a) a (Tree23 a) (Spine23 a)

To eliminate the digit 3 we convert a ternary number whose digits are drawn from
{1, 2, 3} to a ternary number with digits in {2/3, 1, 5/3, 2}, using the identity 3 = 1 + 2/3 × 3:
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convert ∷ Spine234 a → Spine23 a
convert Nil = Nil
convert (D1 a u z) = D1 a u (convert z)
convert (D2 a u b v z) = D2 a u b v (convert z)
convert (D3 a u b v c w z) = D1 a u (c2/3 b (N2 v c w) z) — new 2-node
c2/3 ∷ a → Tree23 a → Spine234 a → Spine23 a
c2/3 a t Nil = D2/3 a t Nil
c2/3 a t (D1 b u z) = D5/3 a t b u (convert z)
c2/3 a t (D2 b u c v z) = D2/3 a t (c2/3 b (N2 u c v) z) — new 2-node
c2/3 a t (D3 b u c v d w z) = D5/3 a t b u (c2/3 c (N2 v d w) z) — new 2-node

The conversion creates some 2-nodes below the spine. We shall see that the total number
of these is actually minimal. Before we tackle the proof, let us put the pieces together:

incremental-fat ∷ [a] → Tree23 a
incremental-fat = from-spine · convert · foldr (λa z → c1 a L z) Nil

where from-spine maps the digits D2/3 and D1 to 2-nodes, and D5/3 and D2 to 3-nodes.
The diagrams below show a slim and a fat tree generated by the incremental approach:

We have conjectured that bottom-up-fat and incremental-fat create fat trees. It is high
time to substantiate this claim. Clearly, fat trees contain at most two 2-nodes per level:
a tree with more than two 2-nodes on one level cannot be fat, as it can be transformed
into one with strictly fewer 2-nodes, using the identity 3 × 2 = 2 × 3 [see e.g. (1)]. But
is the distribution of 2-nodes across the levels also cast in stone? For slim trees we have
argued that this is indeed the case as each natural number has a unique representation
in the {1, 2}-binary number system. An analogous argument does not work here as the
{2/3, 1,5/3, 2}-ternary number system is redundant. Most naturals have multiple represen-
tations, for example, 7 = (1 2)3 = (2 5/3)3. In general, the value of a ternary numeral is
unchanged if we decrease a digit by 1 and increase the following digit by 1

3 :

(α a b β)3 = (α (a − 1) (b + 1
3 ) β)3

Interestingly, the corresponding tree rewrites do not change the number of 2-nodes, unless
the digit 4/3 is involved. For example, 15 = (1 5/3 1)3 has three 2-nodes, while (1 2/3

4/3)3

has five. By contrast, the only legal rewrites in the {2/3, 1,5/3, 2}-ternary system are
benign:

(α 5/3
2/3 β)3 = (α 2/3 1 β)3 (α 5/3

5/3 β)3 = (α 2/3 2 β)3 (3a)

(α 2 2/3 β)3 = (α 1 1 β)3 (α 2 5/3 β)3 = (α 1 2 β)3 (3b)
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We may conclude that the distribution of 2-nodes across the levels is indeed fixed. Of
course, within a single level, 2-nodes can be freely moved around. Incidentally, applying
the rewrites from left to right results in a fat tree where the 2-nodes, if any, are located in
the leftmost possible positions on each level, which relates the incremental to the bottom-
up approach. If we additionally switch from the left to the right-spine view, then we obtain
exactly the same trees as generated by the bottom-up approach!

For the record, the slimmest fat trees have size (1 2/
{h}
3 )3 = 3h—they contain exactly two

2-nodes on each level, except for the topmost, which consists of a single 2-node. (The
fattest fat trees, those with no 2-nodes, are full ternary trees of size (2{h})3 = 3h − 1.)

4.3 Fat trees revisited

It is a little awkward to first build a 2-3-4 spine and then turn it into a 2-3 spine. Also,
the approach cannot be characterized as incremental as we cannot (easily) interleave
operations on 2-3-4 spines and operations on 2-3 trees. Surely, we can do better than
that.

A close inspection of convert reveals that the resulting “numerals” satisfy two
invariants:

1. the digit 2/3 is never followed by a whole digit;
2. the digit 2 is never followed by a fractional digit.

Since (3a) and (3b) are the only rewrites available, each natural number has a unique
representation that satisfies these two invariants. The constraints guide the implementation
of cons that works directly on 2-3 spines:

cons ∷ a → Spine23 a → Spine23 a
cons a Nil = D1 a L Nil
cons a (D1 b u z) = d2 a L b u z
cons a (D2 b u c v z) = D1 a L (c2/3 b (N2 u c v) z)

The smart constructor d2 establishes the second invariant by implementing the rewrites
(3b) from left to right:

d2 ∷ a → Tree23 a → a → Tree23 a → Spine23 a → Spine23 a
d2 a t b u (D2/3 c (N2 v d w) z) = D1 a t (D1 b (N3 u c v d w) z) — rm 2-node
d2 a t b u (D5/3 c (N2 v d w) e x z) = D1 a t (d2 b (N3 u c v d w) e x z) — rm 2-node
d2 a t b u z = D2 a t b u z

The carry c2/3 assumes that its spine argument does not start with a fractional digit and
establishes the first invariant:

c2/3 ∷ a → Tree23 a → Spine23 a → Spine23 a
c2/3 a t Nil = D2/3 a t Nil
c2/3 a t (D1 b u z) = D5/3 a t b u z
c2/3 a t (D2 b u c v z) = D2/3 a t (c2/3 b (N2 u c v) z) — new 2-node

The precondition is always met as c2/3 is only called on the spine of the digit 2, which by
the second invariant is never followed by a fractional digit.
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Observe that there are two opposite movements: the carry function c2/3 creates 2-nodes
below the spine, which are then turned into 3-nodes by the smart constructor d2. For
the record, here are the numbers up to 27 encoded in the {2/3, 1,5/3, 2}-ternary number
system:

()3, (1)3, (2)3, (12/3)3, (11)3, (21)3, (15/3)3, (12)3, (22)3, (12/3
2/3)3, (112/3)3,

(212/3)3, (15/3
2/3)3, (111)3, (211)3, (15/31)3, (121)3, (221)3, (12/3

5/3)3, (115/3)3,

(215/3)3, (15/3
5/3)3, (112)3, (212)3, (15/32)3, (122)3, (222)3, (12/3

2/3
2/3)3

A standard argument shows that cons runs in amortized constant time (placing credits on
the digits 5/3 and 2), so the construction of the 2-3 spine is indeed linear.

5 Conclusion

We have discussed three approaches for constructing 2-3 trees: top-down, bottom-up,
and incremental. The last two are intimately related: the bottom-up method produces the
same trees as the incremental approach based on the right-spine view, modulo the local
rearrangements (3a) and (3b). The spine views are actually interesting data structures in
their own right—they can be seen as numerical representations (Okasaki, 1998), container
types that are modelled after some number system. The multi-purpose finger trees (Hinze
& Paterson, 2006), for example, are derived from the 2-3 spine view, symmetrizing the
design.

We have used two different number systems, depending on the desired “volume” of the
to-be-constructed trees. The {2/3, 1,5/3, 2}-ternary number system is something out of the
ordinary, but perhaps you have come across the {1, 2}-binary number system. It serves, for
example, as a blueprint for constructing red-black trees incrementally (Hinze, 1999). We
have seen that the system also underlies the top-down construction via Braun trees, see also
(Hinze, 2001). Roughly speaking, the top-down and the incremental approach are related
by Horner’s method for evaluating polynomials. To illustrate, consider the number 11:

1 × 20 + 2 × 21 + 2 × 22 = 11 = 1 + 2 × (2 + 2 × (2 + 2 × 0))

The formula on the left dictates the shape of the left-spine view: the weight of a digit is
witnessed by a pennant of the corresponding size. The formula on the right guides the top-
down construction: 1 + 2 × n instructs the builder to create two subtrees of the same size;
2 + 2 × n indicates that one subtree has to accommodate an additional element.

Natural number systems with fractional digits are a rare species. The only other sys-
tem I know of is the {1/2, 1}-binary number system for constructing 1-2 brother trees
incrementally (Hinze, 2009). A rare species, but a valuable one.
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Appendix: Braun trees

The function braun creates a Braun tree from a given list of elements such that the tree contains the
elements in symmetric order.

braun ∷ [a] → Braun a
braun x = fst (make (length x) x)
make ∷ Int → [a] → (Braun a, [a])
make 0 x = (Empty, x)
make (n + 1) x = (Node l a r, z)

where m = n div 2
(l, a : y) = make m x
(r, z) = make (n − m) y
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