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Introduction

Suppose that
p- GQ — GLZ(Fp)

is a continuous, odd, irreducible representation. Then Serre, cf. [S], conjectures
that this representation is modular, i.e., arises from a newfora .Sy (I'1(M))
for positive integeré andM . We assumehatp is modular. In this is implicit the
choice of embeddings: Q — Q, and.o,: Q — C which we fix. The choice of,
also fixes a place ap which we denote by. We assume that > 3.

It is interesting to study the behaviour of newforms which give risg. tbhus
we want to study the association:

{f—=r

where on the left hand side we consider newforinghich give rise to.
Corresponding tg there is an automorphic representatiorGdiz (A o) which

we denote byr(f). The above association was studied by Hida, Ribet, Carayol,

Wiles and others, cf. for instance [H], [C] and [R]. In the work of Diamond-Taylor,

cf. [DT], itis studied in terms of analysing the local components), at primes

¢ # p, of the newformsf which figure in the above correspondence. Further the

analysis is local. By this we mean the following. A determination of the possible

admissible representationgof G L2(Qy ), such that there exists a newfoyhwith

the restriction ofr,(f) to G Ly(Z,) isomorphic to that ofr,, andf gives rise to,
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is carried out in terms of the restriction pfto a decomposition group étwhich
we denote by, (see Theorem 1 of [DT] for a more precise statement).

The aim of this paper, and its sequel, is to understand the local components at
p, i.e., the nature of,(f)’s of newformsf which give rise top. We refer to this as
the {p, p) case.

In this paper we mainly restrict our attention to forghef weight 2, such that
mp( f) is either principal series (Section 1) or special (Section 2). This determination
can be carried out by extensions of some of the methods in our earlier paper [K]. In
Section 3 we present an example which illustrates the different nature of the theory
of congruences in the(p) case. In Section 4 we sharpen the main theorem of [K]
in one case.

The results proved here refine, in some instances, those in [K], where we had
determined the coarser behaviour of tfie which give rise top. Namely, there
the p-part of the levels and nebentypes of newforfnghich give rise top, was
analysed.

In a sequelto this paper, we will determine the nature ofii¢)’s of newforms
f which give rise top solely in terms of (the isomorphism type qf), which
denotes the restriction ¢f to D,, the decomposition group at fixed by the
choice of the placg abovep, even allowing the case whem( f) is supercuspidal,
which we exclude here (but see Section 3). This will be done by a quite different
method, which perhaps is conceptually more transparent. The main ingredients of
the method are the following:

1. The proof of the ‘weight part’ of Serre’s conjectures by Edixhoven, cf. [E].

2. Ribet’s criterion forp to arise from a weight 2 newform which is speciapat
cf. [R].

3. Aversion of alemma of Carayol, cf. [C], in the setting of modular curves with
the groups7 L,(Z/p™) acting on them by automorphisms (similar to Lemma
9in [DT]).

4. The classical fact that the isomorphism types of irreducible pregresenta-
tions of GLo(Z/p") are given byL" (F,) ® x?. The notation is as follows:

L™ (F, ) is the symmetrie:-th power of the standard two-dimensional representation
overF, of GLy(Z/p"). The charactey is the one-dimensional representation into
F, of GLy(Z/p") given by the modp reduction of the determinant character
(which naturally takes values if% /p")*). Then’s andj’s are integers such that
OKngp—1land0gjg<p—2.

Using these facts the association

m(f) = pp
can be studied fully, wherg runs through newforms which give riseo

But as said earlier, in this paper we content ourselves with proving what can be
deduced from the methods of [K] (see Remark 13 of loc. cit.).
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1. Principal Series liftings

Fix anirreducible modular mgdGalois representatign In this section we analyse
the newforms which give rise @ and which are principal seriesat

In the theorem belowy is the modp cyclotomic character of7y giving the
action on they-th roots of unity. Given any mogcharacter of,,, we may naturally
associate to it a character af; by local class field theory. We normalise the
isomorphism so that an elemente Z;, goes to the element, of I,,, which is
characterised by the fact that its action @na root of unity of order a power of
p, is given by — p* . Thus in the theorem below we associate to the character
det(p)x* ¥ (for some integek) restricted td/,, the corresponding characteraf,
which we denote by the same symbol.

THEOREM 1.1. Let p be an irreducible modular mog representation which
arises fromSy (I'1(Np")) for an integerN > 1 with (N,p) = 1, and for some
integersk > 2andr > 0.

1. Let(e1,¢e2) be a pair of characters o, of finite conductor. Suppose there
is a newformf of weightk which gives rise tp and,(f) is a principal series of
the formm ({1, &2), with §; quasicharacters of), such that};|Z; = ¢; fori = 1,2.
Thene 1, as a mod character ofz is the fixed charactedet(p) x* .

2.Let(e1, e2) be apair of such characters af, i.e., of finite conductors and such
that the mog reduction ofz;¢; is the charactedetp) x*~*. Further assume that
the order of ¢, * is divisible byp. Then there exists a newforfre Sy (I'1(Mp*)),
for M|N and some non-negative integerwith 7,(f) a principal series of the
formn(£y1,£2) for some quasicharactegs of Qj, with§;|Z,, = ¢; fori = 1,2, and
such thatf gives rise to.

Proof.(1) This follows by considering the nebentypef f € Si.(To(Np?®), 1)
with 7,(f) of the form in part 1, and using the relation that (@tFrol,) =
¥(q)x(q)* L if f gives rise top (the tilde sign stands for reduction me} for
almost all primes;.

(2) Assume that we are given a pair of characterse») as in 2 of the theorem.
Let us write this pair agw?e}, w’e}) wherew is the Teichmuller character asfl
are characters of, of orders powers op.

We use Carayol’s lemma, cf. [C], which applies because in the troublesome case
of p = 3 (cf. [D]), Sg(T'1(N)) = 0, if k < 4andN < 4. Thus from the weight
part of Serre’s conjecture, in the casept= 3, the irreducibility ofp implies
N > 4, and thud';1(Np") will be torsion-free. (This remark is due to the referee.)
Carayol’s lemma, together with the well-known fact thaas also any of its twists,
arises fromsS (I'1(Np?)) (see [R1] for this), implies that arises from a newform
g in S,(I'1(Np?)), such thatr,(g) is principal series of the form(¢1, ¢2). Here
(1 is a quasicharacter of conductet with (1|Z;, = w°",e" is a character of
conductop? and ordep, c is some integer, an is an unramified quasicharacter.
Applying Carayol's lemma t@ ® w~" and using the fact that = a + b (mod
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p — 1) (which follows from part 1), we see that® w™? arises from a weight
newformh such thatr, (k) is principal series of the form(¢1, £5), whereg) = 1,2

are quasicharacters wigh|z}, = w® ey and¢, unramified. We have crucially

used the assumption tfﬁtgl is a non-trivial character d;, of order divisible by
p, as then we can apply the lemma of Carayol, where we work with the modular
curveX1(Np") for r > 2. Note that the newform above has level divisible by?.
We refer the reader to the discussion in Remarks 8 and 11 of [K] for an explanation
of how Carayol’'s lemma, applied in the setting of modular curves, yields ‘principal
series liftings’ ofp which we are using here. Succinctly, the point simply is that a
newformf in S2(I'1(Np")), such that its nebentype has conductor divisible’hy
is principal series at.

Now if we twist h by w’e}, we get a formf such thatr,(f) is of the desired
type, andf gives rise tq by construction. This proves part 2 of the theorem.

Note.The method used in part 2 of Theorem 1.1, namely to perform the oper-
ations of twisting, applying the lemma of Carayol and (un)twisting in succession,
was already used in the proof of Theorem 5 of [K].

The analysis of principal series litings by fornfisn S,.(I'1(Np?)) and where
mp(f) is principal series of type (&1, &2) (where¢; are quasicharacters @f, of
conductors dividing), which is excluded in the above theorem, is more involved.
We give below such analysis. We first consider the weight 2 case, and then deal
with higher weights, using this analysis of the weight 2 case.

We first state necessary and sufficient conditiongfr arise from a newform
in S2(I'1(Np)). These were noted in Remark 9 of [K] to follow from Proposition
8.13 and 8.18 of [G], and the proof of the weight part of Serre’s conjecture in [E].
The condition is thap|I,, ({, being the inertia group for the plaggbe of one of
the following forms:

X x
L (O 1>=

yp* 0
2 (1))

X *
> (0 X“)’

where 1< a < p — 1, x is the modp cyclotomic character, and and+)’ are the
fundamental characters of level 2 of the tame quotied}, of

The principal series liftings b of level dividingp? depend on the behaviour
of p|I,. In what follows, as a notational convenience, we will use the notgtion

or

or
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and¢; for generic unramified quasi-characters@f So for instance if; occurs
in two different places it does not mean that the same unramified quasi-character
is intended!

We divide the analysis into two cases.

CASE 1.p|I, is semisimple
In this casep| 1), is either of the form:

¢ 0
(g Xb>, *)
or
,(/)a,(/)lb 0
(0 ¢b¢/a>7 (B)

where inA,a and b are normalised so that &€ a,b < p — 2, and inB the
normalisationisthat & a < b <p — 1.

Then in casep|I, is of the form A, from what we have noted above, the
only twists of p which will arise fromS,(I'1(Np)) arep ® x %, p @ x %, p ®
x ¢ andp ® x*°. In each of these cases the twisted form arises from a new-
form in S»(T'1(Np)) such that it is principal series at and is of the form
(WP R, &), m(W TP, &), m(Wh AT, &) and (WML &), as fol-
lows from Remark 9 of [K], whose content we have recalled above. Thus we
see thatp arises from newforms irf>(I'1(Np) N Io(p?)) which are principal
series ap of the typesr(w?~1¢1, wéy) or m(w 1€y, wEs), and these are the only
possible types.

Inthe case whep| I, is of the formB, then again we may check thabit4 a+1,
the only twists ofp which will arise fromS,(I'y(Np)) arep ® x~* andp @ x1 .
In the caseé = a + 1, the only such twists ig ® x~* (see proof of Theorem
4.3 of [E]). From this we may see (as above; we skip the details)teatses
from newforms inS,(I'1(Np) N T'o(p?)) which are principal series at of type
m(w?1, wb~1E,), and this is the only possible type.

CASE 2.p|1, is non-semisimple
In this casep|,, is of the form:

X4
(0 X,,). ©

To harmonise our notations with those in [S], we assume thatl< p — 1 and
0 < b < p—2. We assume first that# b+ 1. We see then that the only twistsof
which will arise from a newform irs>(I'1(/Np)) which is principal series at, are
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p® x~andp ® x1~2. These will arise from newforms which atare principal
series of the formr(w®0=1¢y, &) andr(witt=4¢y, &), Thus we see that will
arise from newforms i%>(I"1 (Np) N To(p?)) which are principal series atof the
typen(w® 11, wbs), and these are the only possible types.

In the case whea = b+ 1 things are slightly different. Namely, whe®w " is
finite atp, then by a similar reasoning to the above (after using the fachthat°
arises fromSy(I'1(IV)) due to Mazur; see [E]), we see thedrises from a newform
in S2(T'1(Np) N To(p?)) which is principal series at of the typew® @ w(£1, £2)
(note that as: = b + 1 this is of the same form as above), and this is the only
possible type. Whep ® w ™" is not finite atp, we see by similar methods that
does not arise from any newforgin S»(I'1(Np) N To(p?)) such thatr,(f) is
principal series. Alternatively, we can deduce this more directly, as in the proof of
case 3 of Theorem 3 of [K], by noting that such a newfgfimas the property that
the corresponding magdrepresentation becomes finitepedifter base changing to
the ring of integers of a tamely ramified extensior@pf which is not the case for
pwith k(p) =p+ 1.

Summing up all this we have the following theorem:

THEOREM 1.2. There exists a newform ifi € Sa>(I'1(Np")) which gives rise
to p, such thatr,(f) is a principal series given by ® =n(1,&2), where¢; are
quasicharacters o), such that;|Z; = ew® and&;|Z;, = ew?, e a given Dirichlet
characterwhose conductor and order are both powegs ahd some given integers
c andd, iff the (unordered pair (c,d) modp — 1 is given by(with notation as
above:

1. (a,b— 1) or (a — 1,b) if p|I, is semisimple, and of the forshabove.

2. (a,b— 1) if p|I, is semisimple, and of the fori above.

3. (a — 1,0b) if p|I, is not semisimpléis of the formC abovg, and no twist op
has Serre invarianp + 1.

4. No suchec andd exists if some twist gf has Serre invarianpg + 1.

1.1. RRINCIPAL SERIESLIFTS OFLEVEL sz FORHIGHER WEIGHTS

Suppose arised fromS/ (' (N)) for some weight’ > 2, and an integeN prime
to p. We have to give a criterion fgr to arise from a newfornf € Sy (I'1(Np?))
such thatr,(f) is principal series, for all weights > 2. Just as in the proof of
Theorem 1.2 above, the main step is to give a criterion for irreduciblegn@alois
representations to arise from a newfogme Si(I'1(Np)), with 7,(g) principal
series. Here the essential observation is that one may reduce to the weight 2 case by
means of a group cohomology argument, which is quite similar to the constructions
carried ou by Hida [H1].

We study group cohomology for this. We have to consider the cohomology
groupsHY(T'1(N) N To(p), L™ (F,) ® ) wheres) is some power of the mad
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cyclotomic charactey andn = k — 2. Herel™ (I, ) is then-th symmetric power of
the standard 2-dimensional representation 8yef I'1 (N )N\Lo(p), andL" (F, ) @1
denotes that the action on the modufgF, ) (which we will abbreviate below to
L") has been twisted by the characfeof I'1(N) N I'g(p), sending a matrix

a b

c d
to1(d). We considet) as a character ofZ /p)*. We identify, in the standard way
(cf. [H]), L" (F,) with the homogeneous polynomials of degreevith coefficients
in F,, in the variables,Y .

Now we notice that, as B1(/NV) N I'o(p) module,L" ® % is reducible. More
precisely, the subspaces of the fdifn:= YL ~* are left stable by'; (V) NL'o(p),
with the successive quotient$ /L7, ; isomorphic ad’1(N) N [o(p) modules to
F, (vx"~%), wherei ranges fromi = 0, 1, . .., n, and withy the modp cyclotomic
character. The short exact sequence

0— Y™ I, —» Y 'L —» Yy L yr I, — 0,

of I'1(IV) N T'o(p) modules, gives a long exact sequence of cohomology, the part
relevant to us being:

HO(T3(N) N To(p), By (¥x"~*)) = HHTL(N) N To(p), Y~ @19)
— Hl(Fl(N) N Fo(p)7 }/71—11[,%I ® 1/)) N Hl(rl(N) N Fo(p), Fp (wxn—Zi))
— HA(Iy(N) N To(p), Y™ "L ®1)).

We need to study the above exact sequence with respect to the Hecke action on
group cohomology (see, for instance, Section 3 of [H1] or Section 6.3 of [H2], for
the definition of Hecke action on group cohomology). The map

a: HYT'1(N) NTo(p), Y™ 'L @ ¢) — HYT'1(N) NTo(p), F, (hx" %))

is not equivariant for the Hecke action, but we claim &} = ¢“T,« whereg is a
prime, coprime taVp, and the operatdf;, on the left hand side (resp. on the right
hand side) is the action of tigeth Hecke operator o }(I'y (V) NTo(p), Y LI ®
) (resp. HY(T'1(N) N To(p), By (ox™2))).

To verify the claim, we compute explicitly the Hecke action on the cohomology
groups. For convenience we dendtgN) N I'g(p) by I'. The action off, arises
from the double cosdty?I" wherey? is the matrix

o 5)
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We can write this double coset as the disjoint union of the doggt =0, ...,q—
1) and the cosely,, wherey;(j =0,...,¢ — 1) is the matrix

o)

andvy, is the matrix

q O
(i D)

with 6, € SL»(Z) congruent to

gt o
0 ¢
mod N, and the identity matrix mog. For7 € I', and 0< j < ¢, we have
YT = T, for somer; in I, and for somé, 0 < ¢ < n. Then the action dfj, on a
cocycleu € HY(I'1(N)NTo(p), Y™ 'L ®1p) is given byu|T, (1) = 38 viu(Ts),

where, denotes the main involution (see Section 6.3 of [H2]). By the definition of
«, we see that

q—1
alulTy(r)) = Y d'alu(r)) + p(a)g" " alu(r))
0

q—1
= ¢ (Z a(u(r;)) + w<q>q"-21a<u(7q>>) :
0
But the latter in turn, by the definition of the Hecke action HA(I'y(N) N
To(p), F, (1px™~%)) (see Section 3 of [H1]), is equal tda(u)|T, (7). This proves
the claim.

Note the standard fact that® and H? of the group cohomology aigisenstein
as Hecke modules. By this we mean that any maximal idexithe Hecke algebra
T;, wherei is either 0 or 2, acting oi’® and H? resp. of the group cohomology
with suitable coefficients as above, is such that the correspondingor@adois
representation

Pm:Gg = GLy(T/m)
associatedtoit, is reducible. Such maximal ideedse called Eisenstein. HeTeis

defined to be th&,-subalgebra in the ring of endomorphisms of the corresponding
cohomology group, generated by the action of the Hecke operéjofdefined
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analogously to the action aH® above). The fact thalf® and H? are Eisenstein
can be deduced, for instance, from Section 1.8 and Section 1.9 of [H].

We consider the Hecke algebra generatedpfor primesg with (¢, Np) = 1.
Thus, by the long exact sequence of cohomology above, and our computation of
the Hecke action, we see that a non-Eisenstein maximal idezfl the Hecke
algebra acting o 7Y(T'1(N) N To(p), L™ (F,) ® ¢) is in the support of one of
HYT'1(N) N To(p), F, (¥x" %)) ® x*(0 < i < n), and conversely. Here hyy*
we mean that the Hecke action has been twisted bisthpower of the determinant
character.

This yields the following theorem.

THEOREM 1.3.An irreducible mog representation arises froth € Sy (I'1(N)N
Lo(p), e), with e a character of conductags and, ( f) principal series, if and only
if p® w™" arises fromS,(I'1(Np)) for somei suchtha® < i < k — 2.

Proof. The proof follows from the above discussion on noting that a newform
f € S2(I'1(N)NTLo(p),e) has the property that,(f) is principal series.

Note.The referee has remarked that the sufficiency can also be proved using
multiplication by Eisenstein series.

By this theorem, Propositions 8.13 and 8.18 of [G], and [E], we have a complete
determination of which mod irreducible representations arise frafp(I'1 (V) N
To(p), ¢), for a given charactep of conductor dividing, at least for) a non-trivial
character.

For unramified principal series lifts of weightwe have to look atf(I'1(N),

L™ (FF,)), as in this case we only want to look &in Sy (I'1(/N)) which gives rise

to p. We may write down the irreducible components in the Jordan-Holder series
for " (IF, ) by using Lemma 3.2 of [AS]. Then using the proof of the weight part of
Serre’s conjecture in [E], we may give a criterion foto arise fromSy (I'1(N)).

This will be justified in the sequel to this paper.

After this, by the same method we employed for proving Theorem 1.2, we can
determine the types,(f) = n(¢1,£2), whereéi|Z) = we and&, = wie for
charactee of p-power conductor ang-power order, for newformg of weightk
which give rise t.

REMARK 1.4. We point outin passing that Carayol's lemma is not valid in general
for p-new quotients of spaces of cusp forms of certain levels (this is not surprising
in view of the existence of congruences betwe@hd andp-new forms!). This may

be seen concretely from the fact than an irreducible modularpmegresentation

p, With k(p) = p + 1, arises from the-new part ofS,(I'1(Np?)), for some integer

N prime top, but it does not arise from thenew part ofS,(I'1(N) N To(p?)) for

such aN. This follows from Theorem 3 of [K].
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2. Special Liftings

THEOREM 2.1. Suppose that is a character ofz,, of conductonp” with r > 0,
and writee = x® (modp) for some integew. Let p be an irreduciblemod p
representation arising fronyy (I'1(/V)) from some weight. The a necessary and
sufficient condition for there to exist a newforivof weight2 and level dividing
Np?, such thatr,(f) is isomorphic tos ® spand which gives rise tp, is that
p|D, be of the form:

(Xa+11/) % >
0 x%)’

for some unramified characterof D,,.

Proof. The proof follows upon using results of [E], the theorem of Deligne
(Theorem 2.5 of [E]), and a slight, and similarly proven, variant of part 1 of
Theorem3 of [K] (this part of that theorem is due to Ribet). This variant would say
that if ap, as above arises from a newforine S»(I'1(V)) (with nebentypey,),
then it also arises from thenew part ofS>(I'1(N) N To(p)) iff a,(h)? = ex(p)
(modyp), wheregy, is the nebentypus df.

We give the details. The necessity of the condition in the theorem follows from
the fact that ifp arises from @-new form inS>(I'1(N) N'o(p)), thenp also arises
fromg € S,4+1(I'1(N)) by Proposition 8.18 of [G]. Further theth coefficient is
forced to be a unit at the valuation given fayThen the theorem of Deligne forces
plp, to be of the form:

Xy x
0 o)’
for some unramified character ¢’ of D,,. One further knows that(p) gives the
p-th Fourier coefficient ofy. We quote the classical result of Hecke thataew
newformh of Sy(I'1(N) NTo(p)) is such that,(h)? = e;,(p), with notation as in
the preceeding paragraph. Thus we get that v’

For the sufficiency, we use the fact that, assuming pha is of the form in
the theorem, then [E] together with Proposition 8.18 of [G], gives phaty ¢
arises from a newform € S3(I'1(IN) N L'o(p)). Further, from the shape ofp,,
we see that,(h)? = 5, (p) (mod p) whereey, is the nebentypus df. Then the
result of Ribet, which is explained in part 1 of Theorem 3 of [K], yields that fact
thatp ® x ¢ also arises from @-new form inSz(I'1(N) N To(p)). From this the
sufficiency follows.

3. An Example

The purpose of this section is to discuss an example to show that, what may be
regarded as an implication in the opposite direction to that of Carayol’s lemma, is
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false. To construct this example we use some of the results of [K]. This aslo shows
that congruences in th@, p) case behave differently, in that it is difficult to guess

a priori the nature of ther,(f)’s of newformsf which give rise top (but see the
forthcoming sequel to this paper).

Thus we start from a newforrfi in S2(To(pq)), which is pg-new whereg is
a prime distinct fronmp. Denote the automorphic representation corresponding to
[ by my. We assume that the mgadrepresentatiop attached tof is irreducible,
and further that it is finite gt, but such thap| I, is not semisimple. Newformg
which meet these requirements may be constructed by starting from a newform
in S2(To(g)) with the corresponding mogrepresentatiop irreducible, such that
p|I, is not semisimple, and,(h) = £1 (modp) for the fixed place abovep.
Then we see by [R] that is congruent (in the sense of the Fourier coefficients at
almost all primes being congruent modulpto a newform of the required kind
in S2(To(pq))). By [R1] it follows that this mod representation cannot be finite
at g. Denote the indefinite quaternion algebra ramified exactly andq by B,
and denote; the algebraic group ovep defined by the multiplicative group*.
Denote byz;, the automorphic representation of the group given by the adelic
points ofG that corresponds to; by the Jacquet-Langlands correspondence.

With our assumptions offi, the main theorem of [K], see the introduction of
loc. cit., yields that the mogd representation attached foarises from a newform
g in the p-new part ofS,(I'o(¢p?)). This formg is g-new by what we have noted
above that the mog representation correspondingftas ramified atg. We claim
that,(g) is supercuspidal. This easily follows from Theorem 1.2 above. Namely,
mp(g) cannot be principal series by the classification in Theorem 1.2, and one can
rule out the case that,(g) is twist of special by inspection.

Denote byr, the automorphic representation of the group given by the adelic
point of G that corresponds to, by the Jacquet—Langlands correspondence (as
is discrete series at andg). From what we have said so far we conclude, as in
Section 5.3 of [C], (in this results of Section 5 of [Ge] get used) that

ﬁ'p(g) = Ind(B;7 QKI:;Lv 51)7

with notation exactly as in Section 5.3 of loc. cit., which we reprise below. Thus
B, = B® Q,,0, is the ring of integers oB,,, M,, is the maximal ideal of this

ring, I_{g is the group of units 00, I_{I} = 14+ M,, Qis the quadratic unramified
extension ofQ, in a fixed algebraic closure, ardlis a character of conducter

of Q* (which does not factor through the norm), which may also naturally regard
as a character dﬂf(l}. Thus the order of’ restricted tof(]S’ dividesp? — 1, and

is thus prime top, which will be crucial for us. As noted in Section 5.3 of loc.
cit., 7, (g) is then an irreducible representation of dimension 2, whose restriction
to K} is trivial, and¢’ may be regarded as a characterdf/ K}, which may be
identified with]F;z. Then the above representation is decomposed as a direct sum

of €2 andé® (o is the non-trivial automorphism @f,2) as a representation E;f)z,
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where the superscript 0 just denotes that we are considering the characte¢which
naturally induces om‘;z. We remark that a&0 is of order prime tg, its reduction
modp, which we denote by, is non-trivial. In fact¢ also does not factor through
the norm character, as is easily checked.

We considerk!, a compact open subgroup Gf(As), where we takeX} to
be a maximal open compact subgroup at all places othergtifaue as usual fix
isomorphisms7(Q,) = GL2(Q,) for v other tharp or ¢ etc.) and to be ) atp.

Just as in Section 5.4 of loc. cit. we denote the Shimura curve corresponding to
K*' by St (though note that ouk* is slightly different). This curve has the natural
action of[" := K/ K (= F,).

As in Section 5.6 of [C], we see that theadic Galois representations corre-
sponding tor; andr, intervene in thétale cohomology groqut(Sé, @), such
that the corresponding mqdGalois representations, which we denoteppyand
pg, intervening inHg(S3, F, ) are isomorphic. But from what we have noted about
the nature ofr,(f) and,(g), we claim that the induced action ofis trivial
onpy (as7,(f) is one-dimensional), while we may choose the cppyof p in
Hgt(Sé, F,) so thatl” acts by the charactéron p,. (We have already noted thét
is a non-trivial character, and more, in that it does not even factor through the norm
character.)

To see this, for instance the fact thgtcan be chosen so that the actionlof
on itis by the characte, follows from the comparison theorem betwesale and
ordinary cohomology of the cun&!. This comparison isomorphism is compatible
with the induced” and Hecke action on these cohomologies. Furthgiyes rise
to a non-zero element iiF}(S%, C) which is an eigenvector for the Hecke action
on this cohomology group, with the same eigenvalueg, @nd on whichl' acts
by the charactef’. From this the claim follows. (We thank the referee for pointing
out a mistake in this part of an earlier version.)

Thus, in conclusion, we see that we have constructed two isomorphic, irreducible
2-dimensional mog representations in thetale conomology of a Shimura curve,
which carries &-rational action of a finite abelian group, such that the action of
this abelian group on these two isomorphic representations is via different (non-
conjugate) characters.

REMARK 3.1. In fact we may further ask for a classification of the charaéteys
whichT can act on copies ofin Hg(S3, ,). This, in principle, can be answered
by the method that we have briefly outlined in the introduction, and which will be
presented in detail in a sequel.

4. Remarks on our Earlier Paper

In this section we sharpen the main theorem of [K] (stated in the introduction of
loc. cit.).
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There is a question about congruences in (fhe) case which was avoided
in the study in [K], as represented in the main theorem of the paper stated in the
introduction of loc. cit. There it was stated thatfiis a newform inS2(I'1(Np))
which giverise to anirreducible madepresentatiop, such that < k(p) < p+1,
then some Galois conjugate pfrises a-new form inS,(T'1(Np) N To(p?)). In
the case whep is ordinary, what has been said in [K] is not enough to yield more
precise information, i.e., one cannot delete the phsasee Galois conjugate .of
We now fill in this lacuna using the methods of [K].

THEOREM 4.1. Let f be a newform inS,(I'1(Np)) and assume that theod
p representatiorp (with respect to the chosen plageabovep) attached tof is
irreducible and is such tha& < k(p) < p + 1. Thenp also arises from the-new
part of Sp(T'1(Np) N To(p?)).

Proof. We use the technique of the proof of Theorem 2 in [K], the original idea
of which goes back to Ribet's ICM paper, cf. [R]. Thus we consider the natural
degeneracy map: J1(Np)?> — J(Np, Np?). The latter is the Jacobian of the
complete curve made froity (Np) NT'o(p?). The composite’ - o, whereq! is the
dual toqa, is important for us. When viewed as a2 matrix of endomorphisms
of J1(Np)?[p], it is given by:

v (O U
U, 0)°

This follows from a standard computation (heig) is the dual ofU,). Now,
becausé(p) is strictly between 2 ang+ 1, the representatignonly occurs in4,

the abelian subvariety ok (Np) whose cotangent space is spanned by forms with
non-trivial nebentype at. On A we have the relatioty, U, = p, as is well-known.
Thus a Hecke stable Galois moduleof Ji1(Np), which is isomorphic tq, is
annihilated either by, or U,. We suppose that it is annihilated by, the other
case being entirely similar. Thg, 0) is in the kernel of the above matrix. As

V' is by assumption irreducible we see, by the same method as in the proof of
Theorem 2 of [K], thatp intervenes in the intersection of theold andp-new
subvarieties of/(Np, Np?). For this we will have to use a variant of Theorem 1
of [K] (similarly proven) to the effect that the group of connected components of
the natural degenerancy madp(Np)?> — J(Np, Np?) is Eisenstein as a Hecke
module. From this the theorem follows.

CORRECTION 4.2. As pointed out by the referee of the present paper, in the
proof of Theorem 2 of [K], we have transpos&gland7;; in the formula for the
matrix i2. Fortunately this does not affect the proof there materiall{;zand7;;

play ‘symmetric roles’, and the proof can be easily corrected (for instance, instead
of consideringV, 0), we have to consid€0, V') in the proof of loc. cit.).
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