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Introduction

Suppose that

�:GQ ! GL2(�Fp)

is a continuous, odd, irreducible representation. Then Serre, cf. [S], conjectures
that this representation is modular, i.e., arises from a newformf 2 Sk(�1(M))
for positive integersk andM . Weassumethat� is modular. In this is implicit the
choice of embeddings�p: �Q ,! �Qp and�

1
: �Q ,! C which we fix. The choice of�p

also fixes a place of�Q which we denote byp. We assume thatp > 3.
It is interesting to study the behaviour of newforms which give rise to�. Thus

we want to study the association:

ffg ! �;

where on the left hand side we consider newformsf which give rise to�.
Corresponding tof there is an automorphic representation ofGL2(A Q) which

we denote by�(f). The above association was studied by Hida, Ribet, Carayol,
Wiles and others, cf. for instance [H], [C] and [R]. In the work of Diamond–Taylor,
cf. [DT], it is studied in terms of analysing the local components�`(f), at primes
` 6= p, of the newformsf which figure in the above correspondence. Further the
analysis is local. By this we mean the following. A determination of the possible
admissible representations�` ofGL2(Q`), such that there exists a newformf with
the restriction of�`(f) toGL2(Z`) isomorphic to that of�`, andf gives rise to�,
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is carried out in terms of the restriction of� to a decomposition group at` which
we denote by�` (see Theorem 1 of [DT] for a more precise statement).

The aim of this paper, and its sequel, is to understand the local components at
p, i.e., the nature of�p(f)’s of newformsf which give rise to�. We refer to this as
the (p; p) case.

In this paper we mainly restrict our attention to formsf of weight 2, such that
�p(f) is either principal series (Section 1) or special (Section 2). This determination
can be carried out by extensions of some of the methods in our earlier paper [K]. In
Section 3 we present an example which illustrates the different nature of the theory
of congruences in the (p; p) case. In Section 4 we sharpen the main theorem of [K]
in one case.

The results proved here refine, in some instances, those in [K], where we had
determined the coarser behaviour of thef ’s which give rise to�. Namely, there
thep-part of the levels and nebentypes of newformsf which give rise to�, was
analysed.

In a sequel to this paper, we will determine the nature of the�p(f)’s of newforms
f which give rise to� solely in terms of (the isomorphism type of)�p, which
denotes the restriction of� to Dp, the decomposition group atp fixed by the
choice of the placep abovep, even allowing the case when�p(f) is supercuspidal,
which we exclude here (but see Section 3). This will be done by a quite different
method, which perhaps is conceptually more transparent. The main ingredients of
the method are the following:

1. The proof of the ‘weight part’ of Serre’s conjectures by Edixhoven, cf. [E].
2. Ribet’s criterion for� to arise from a weight 2 newform which is special atp,

cf. [R].
3. A version of a lemma of Carayol, cf. [C], in the setting of modular curves with

the groupsGL2(Z=p
n) acting on them by automorphisms (similar to Lemma

9 in [DT]).
4. The classical fact that the isomorphism types of irreducible modp representa-

tions ofGL2(Z=p
r) are given byLn(Fp)
 �j. The notation is as follows:

Ln(Fp) is the symmetricn-th power of the standard two-dimensional representation
overFp of GL2(Z=p

r). The character� is the one-dimensional representation into
F�p of GL2(Z=p

r) given by the modp reduction of the determinant character
(which naturally takes values in(Z=pr)�). Then’s andj’s are integers such that
0 6 n 6 p� 1 and 06 j 6 p� 2.

Using these facts the association

�p(f)! �p

can be studied fully, wheref runs through newforms which give rise to�.
But as said earlier, in this paper we content ourselves with proving what can be

deduced from the methods of [K] (see Remark 13 of loc. cit.).
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1. Principal Series liftings

Fix an irreducible modular modpGalois representation�. In this section we analyse
the newforms which give rise to�, and which are principal series atp.

In the theorem below,� is the modp cyclotomic character ofGQ giving the
action on thep-th roots of unity. Given any modp character ofIp, we may naturally
associate to it a character ofZ�p by local class field theory. We normalise the
isomorphism so that an elementx 2 Z�p goes to the element�x of Ip, which is
characterised by the fact that its action on�, a root of unity of order a power of
p, is given by�! �x

�1
. Thus in the theorem below we associate to the character

det(�)�1�k (for some integerk) restricted toIp, the corresponding character ofZ�p,
which we denote by the same symbol.

THEOREM 1.1. Let � be an irreducible modular modp representation which
arises fromSk(�1(Np

r)) for an integerN > 1 with (N; p) = 1, and for some
integersk > 2 andr > 0.

1. Let ("1; "2) be a pair of characters ofZ�p of finite conductor. Suppose there
is a newformf of weightk which gives rise to� and�p(f) is a principal series of
the form�(�1; �2), with �i quasicharacters ofQ�p such that�ijZ�p = "i for i = 1;2.
Then"1"2 as a modp character ofZ�p is the fixed characterdet(�)�1�k.

2.Let("1; "2)be a pair of such characters ofZ�p, i.e., of finite conductors and such
that the modp reduction of"1"2 is the characterdet(�)�1�k. Further assume that
the order of"1"

�1
2 is divisible byp. Then there exists a newformf 2 Sk(�1(Mps)),

for M jN and some non-negative integers, with �p(f) a principal series of the
form�(�1; �2) for some quasicharacters�i of Q�p , with �ijZ�p = "i for i = 1;2, and
such thatf gives rise to�.

Proof.(1) This follows by considering the nebentype of f 2 Sk(�0(Np
s);  )

with �p(f) of the form in part 1, and using the relation that det(�)(Frobq) =
~ (q)�(q)k�1 if f gives rise to� (the tilde sign stands for reduction modp) for
almost all primesq.

(2) Assume that we are given a pair of characters("1; "2) as in 2 of the theorem.
Let us write this pair as(!a"01; !

b"02) where! is the Teichmuller character and"0i
are characters ofZ�p of orders powers ofp.

We use Carayol’s lemma, cf. [C], which applies because in the troublesome case
of p = 3 (cf. [D]), Sk(�1(N)) = 0, if k 6 4 andN 6 4. Thus from the weight
part of Serre’s conjecture, in the case ofp = 3, the irreducibility of� implies
N > 4, and thus�1(Np

r) will be torsion-free. (This remark is due to the referee.)
Carayol’s lemma, together with the well-known fact that�, as also any of its twists,
arises fromSk(�1(Np

2)) (see [R1] for this), implies that� arises from a newform
g in Sk(�1(Np

2)), such that�p(g) is principal series of the form�(�1; �2). Here
�1 is a quasicharacter of conductorp2 with �1jZ

�

p = !c"00; "00 is a character of
conductorp2 and orderp; c is some integer, and�2 is an unramified quasicharacter.
Applying Carayol’s lemma to� 
 !�b and using the fact thatc � a + b (mod
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p � 1) (which follows from part 1), we see that� 
 !�b arises from a weightk
newformh such that�p(h) is principal series of the form�(�01; �

0

2), where�0i = 1;2
are quasicharacters with�01jZ

�

p = !a�b"01"
0�1
2 and�02 unramified. We have crucially

used the assumption that"1"
�1
2 is a non-trivial character ofZ�p of order divisible by

p, as then we can apply the lemma of Carayol, where we work with the modular
curveX1(Np

r) for r > 2. Note that the newformg above has level divisible byp2.
We refer the reader to the discussion in Remarks 8 and 11 of [K] for an explanation
of how Carayol’s lemma, applied in the setting of modular curves, yields ‘principal
series liftings’ of� which we are using here. Succinctly, the point simply is that a
newformf in S2(�1(Np

r)), such that its nebentype has conductor divisible bypr,
is principal series atp.

Now if we twist h by !b"02, we get a formf such that�p(f) is of the desired
type, andf gives rise to� by construction. This proves part 2 of the theorem.

Note.The method used in part 2 of Theorem 1.1, namely to perform the oper-
ations of twisting, applying the lemma of Carayol and (un)twisting in succession,
was already used in the proof of Theorem 5 of [K].

The analysis of principal series liftings by formsf in Sk(�1(Np
2)) and where

�p(f) is principal series of type�(�1; �2) (where�i are quasicharacters ofQ�p of
conductors dividingp), which is excluded in the above theorem, is more involved.
We give below such analysis. We first consider the weight 2 case, and then deal
with higher weights, using this analysis of the weight 2 case.

We first state necessary and sufficient conditions for� to arise from a newform
in S2(�1(Np)). These were noted in Remark 9 of [K] to follow from Proposition
8.13 and 8.18 of [G], and the proof of the weight part of Serre’s conjecture in [E].
The condition is that�jIp (Ip being the inertia group for the placep) be of one of
the following forms:

1:

 
�a �

0 1

!
;

or

2:

 
 a 0
0  0a

!
;

or

3:

 
� �

0 �a

!
;

where 16 a 6 p � 1; � is the modp cyclotomic character, and and 0 are the
fundamental characters of level 2 of the tame quotient ofIp.

The principal series liftings of� of level dividingp2 depend on the behaviour
of �jIp. In what follows, as a notational convenience, we will use the notation�1
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and�2 for generic unramified quasi-characters ofQ�p . So for instance if�1 occurs
in two different places it does not mean that the same unramified quasi-character
is intended!

We divide the analysis into two cases.

CASE 1.�jIp is semisimple
In this case�jIp is either of the form:

 
�a 0
0 �b

!
; (A)

or  
 a 0b 0
0  b 0a

!
; (B)

where inA; a and b are normalised so that 06 a; b 6 p � 2, and inB the
normalisation is that 06 a < b 6 p� 1.

Then in case�jIp is of the formA, from what we have noted above, the
only twists of� which will arise fromS2(�1(Np)) are� 
 ��a; � 
 ��b; � 

�1�a and� 
 �1�b. In each of these cases the twisted form arises from a new-
form in S2(�1(Np)) such that it is principal series atp and is of the form
�(!b�a�1�1; �2); �(!

a�b�1�1; �2); �(!
b�a+1�1; �2) and �(!a�b+1�1; �2), as fol-

lows from Remark 9 of [K], whose content we have recalled above. Thus we
see that� arises from newforms inS2(�1(Np) \ �0(p

2)) which are principal
series atp of the types�(!b�1�1; !

a�2) or�(!a�1�1; !
b�2), and these are the only

possible types.
In the case when�jIp is of the formB, then again we may check that ifb 6= a+1,

the only twists of� which will arise fromS2(�1(Np)) are�
 ��a and�
 �1�b.
In the caseb = a + 1, the only such twists is� 
 ��a (see proof of Theorem
4.3 of [E]). From this we may see (as above; we skip the details) that� arises
from newforms inS2(�1(Np) \ �0(p

2)) which are principal series atp of type
�(!a�1; !

b�1�2), and this is the only possible type.

CASE 2.�jIp is non-semisimple
In this case�jp is of the form:

 
�a �

0 �b

!
: (C)

To harmonise our notations with those in [S], we assume that 16 a 6 p � 1 and
0 6 b 6 p�2. We assume first thata 6= b+1. We see then that the only twists of�
which will arise from a newform inS2(�1(Np)) which is principal series atp, are
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� 
 ��b and� 
 �1�a. These will arise from newforms which atp are principal
series of the form�(!a�b�1�1; �2) and�(!1+b�a�1; �2). Thus we see that� will
arise from newforms inS2(�1(Np)\�0(p

2)) which are principal series atp of the
type�(!a�1�1; !

b�2), and these are the only possible types.
In the case whena = b+1 things are slightly different. Namely, when�
!�b is

finite atp, then by a similar reasoning to the above (after using the fact that�
!�b

arises fromS2(�1(N)) due to Mazur; see [E]), we see that� arises from a newform
in S2(�1(Np) \ �0(p

2)) which is principal series atp of the type!b 
 �(�1; �2)
(note that asa = b + 1 this is of the same form as above), and this is the only
possible type. When� 
 !�b is not finite atp, we see by similar methods that�
does not arise from any newformf in S2(�1(Np) \ �0(p

2)) such that�p(f) is
principal series. Alternatively, we can deduce this more directly, as in the proof of
case 3 of Theorem 3 of [K], by noting that such a newformf has the property that
the corresponding modp representation becomes finite atp after base changing to
the ring of integers of a tamely ramified extension ofQp , which is not the case for
� with k(�) = p+ 1.

Summing up all this we have the following theorem:

THEOREM 1.2. There exists a newform inf 2 S2(�1(Np
r)) which gives rise

to �, such that�p(f) is a principal series given by" 
 �(�1; �2), where�i are
quasicharacters ofQ�p such that�1jZ

�

p = "!c and�2jZ
�

p = "!d; " a given Dirichlet
characterwhose conductor and order are both powers ofp, and some given integers
c and d, iff the (unordered) pair (c; d)modp � 1 is given by(with notation as
above):

1. (a; b� 1) or (a� 1; b) if �jIp is semisimple, and of the formA above.
2. (a; b� 1) if �jIp is semisimple, and of the formB above.
3. (a� 1; b) if �jIp is not semisimple(is of the formC above), and no twist of�

has Serre invariantp+ 1.
4. No suchc andd exists if some twist of� has Serre invariantp+ 1.

1.1. PRINCIPAL SERIESLIFTS OFLEVEL Np2 FORHIGHER WEIGHTS

Suppose� arised fromSk0(�1(N)) for some weightk0 > 2, and an integerN prime
to p. We have to give a criterion for� to arise from a newformf 2 Sk(�1(Np

2))
such that�p(f) is principal series, for all weightsk > 2. Just as in the proof of
Theorem 1.2 above, the main step is to give a criterion for irreducible modpGalois
representations to arise from a newformg 2 Sk(�1(Np)), with �p(g) principal
series. Here the essential observation is that one may reduce to the weight 2 case by
means of a group cohomology argument, which is quite similar to the constructions
carried ou by Hida [H1].

We study group cohomology for this. We have to consider the cohomology
groupsH1(�1(N) \ �0(p); L

n(�Fp) 
  ) where is some power of the modp
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cyclotomic character� andn = k�2. HereLn(�Fp) is then-th symmetric power of
the standard 2-dimensional representation over�Fp of�1(N)\�0(p), andLn(�Fp)
 
denotes that the action on the moduleLn(�Fp) (which we will abbreviate below to
Ln ) has been twisted by the character of �1(N) \ �0(p), sending a matrix

 
a b

c d

!

to (d). We consider as a character on(Z=p)�. We identify, in the standard way
(cf. [H]), Ln(�Fp) with the homogeneous polynomials of degreen, with coefficients
in �Fp , in the variablesX;Y .

Now we notice that, as a�1(N) \ �0(p) module,Ln 
  is reducible. More
precisely, the subspaces of the formLni := Y iLn�i are left stable by�1(N)\�0(p),
with the successive quotientsLni =L

n
i+1 isomorphic as�1(N) \ �0(p) modules to

�Fp( �
n�2i), wherei ranges fromi = 0;1; : : : ; n, and with� the modp cyclotomic

character. The short exact sequence

0! Y n�i�1
L
n
i+1 ! Y n�i

L
n
i ! Y n�i

L
n
i =Y

n�i�1
L
n
i+1 ! 0;

of �1(N) \ �0(p) modules, gives a long exact sequence of cohomology, the part
relevant to us being:

H0(�1(N) \ �0(p); �Fp( �
n�2i))! H1(�1(N) \ �0(p); Y

n�i�1Lni+1 
  )

! H1(�1(N) \ �0(p); Y
n�1Lni 
  )! H1(�1(N) \ �0(p); �Fp( �

n�2i))

! H2(�1(N) \ �0(p); Y
n�i�1

L
n
i+1 
  ):

We need to study the above exact sequence with respect to the Hecke action on
group cohomology (see, for instance, Section 3 of [H1] or Section 6.3 of [H2], for
the definition of Hecke action on group cohomology). The map

�:H1(�1(N) \ �0(p); Y
n�i

L
n
i 
  )! H1(�1(N) \ �0(p); �Fp( �

n�2i))

is not equivariant for the Hecke action, but we claim that�Tq = qiTq� whereq is a
prime, coprime toNp, and the operatorTq on the left hand side (resp. on the right
hand side) is the action of theq-th Hecke operator onH1(�1(N)\�0(p); Y

n�iLni 

 ) (resp.,H1(�1(N) \ �0(p); �Fp( �

n�2i))).
To verify the claim, we compute explicitly the Hecke action on the cohomology

groups. For convenience we denote�1(N) \ �0(p) by �. The action ofTq arises
from the double coset�
q� where
q is the matrix 

1 0
0 q

!
:
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We can write this double coset as the disjoint union of the coset�
j(j = 0; : : : ; q�
1) and the coset�
q, where
j(j = 0; : : : ; q � 1) is the matrix

 
1 j

0 q

!
;

and
q is the matrix

�q

 
q 0
1 1

!
;

with �q 2 SL2(Z) congruent to

 
q�1 0
0 q

!

modN , and the identity matrix modp. For � 2 �, and 06 j 6 q, we have

j� = �j
`, for some�j in �, and for somè;0 6 ` 6 n. Then the action ofTq on a
cocycleu 2 H1(�1(N)\�0(p); Y

n�iLni 
 ) is given byujTq(�) =
Pq

0 

�
ju(�j),

where� denotes the main involution (see Section 6.3 of [H2]). By the definition of
�, we see that

�(ujTq(�)) =
q�1X

0

qi�(u(�j)) +  (q)qn�i�(u(�q))

= qi

0
@q�1X

0

�(u(�j)) +  (q)qn�2i�(u(�q))

1
A :

But the latter in turn, by the definition of the Hecke action onH1(�1(N) \
�0(p); �Fp( �

n�2i)) (see Section 3 of [H1]), is equal toqi�(u)jTq(�). This proves
the claim.

Note the standard fact thatH0 andH2 of the group cohomology areEisenstein
as Hecke modules. By this we mean that any maximal idealm of the Hecke algebra
Ti, wherei is either 0 or 2, acting onH0 andH2 resp. of the group cohomology
with suitable coefficients as above, is such that the corresponding modp Galois
representation

�m:GQ ! GL2(T=m)

associated to it, is reducible. Such maximal idealsmare called Eisenstein. HereTi is
defined to be the�Fp-subalgebra in the ring of endomorphisms of the corresponding
cohomology group, generated by the action of the Hecke operatorsTq (defined
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analogously to the action onH1 above). The fact thatH0 andH2 are Eisenstein
can be deduced, for instance, from Section 1.8 and Section 1.9 of [H].

We consider the Hecke algebra generated byTq for primesq with (q;Np) = 1.
Thus, by the long exact sequence of cohomology above, and our computation of
the Hecke action, we see that a non-Eisenstein maximal idealm of the Hecke
algebra acting onH1(�1(N) \ �0(p); L

n(�Fp) 
  ) is in the support of one of
H1(�1(N) \ �0(p); �Fp( �

n�2i)) 
 �i(0 6 i 6 n), and conversely. Here by
�i

we mean that the Hecke action has been twisted by thei-th power of the determinant
character.

This yields the following theorem.

THEOREM 1.3.An irreducible modp representation arises fromf 2 Sk(�1(N)\
�0(p); "), with " a character of conductorp and�p(f) principal series, if and only
if �
 !�i arises fromS2(�1(Np)) for somei such that0 6 i 6 k � 2.

Proof.The proof follows from the above discussion on noting that a newform
f 2 S2(�1(N) \ �0(p); ") has the property that�p(f) is principal series.

Note.The referee has remarked that the sufficiency can also be proved using
multiplication by Eisenstein series.

By this theorem, Propositions 8.13 and 8.18 of [G], and [E], we have a complete
determination of which modp irreducible representations arise fromSk(�1(N) \
�0(p);  ), for a given character of conductor dividingp, at least for a non-trivial
character.

For unramified principal series lifts of weightk we have to look atH1(�1(N),
Ln (Fp)), as in this case we only want to look atf in Sk(�1(N)) which gives rise
to �. We may write down the irreducible components in the Jordan-Holder series
for Ln(Fp) by using Lemma 3.2 of [AS]. Then using the proof of the weight part of
Serre’s conjecture in [E], we may give a criterion for� to arise fromSk(�1(N)).
This will be justified in the sequel to this paper.

After this, by the same method we employed for proving Theorem 1.2, we can
determine the types�p(f) = �(�1; �2), where�1jZ

�

p = !a" and �2 = !d" for
character" of p-power conductor andp-power order, for newformsf of weightk
which give rise to�.

REMARK 1.4. We point out in passing that Carayol’s lemma is not valid in general
for p-new quotients of spaces of cusp forms of certain levels (this is not surprising
in view of the existence of congruences betweenp-old andp-new forms!). This may
be seen concretely from the fact than an irreducible modular modp representation
�, with k(�) = p+1, arises from thep-new part ofS2(�1(Np

2)), for some integer
N prime top, but it does not arise from thep-new part ofS2(�1(N) \ �0(p

2)) for
such aN . This follows from Theorem 3 of [K].
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2. Special Liftings

THEOREM 2.1. Suppose that" is a character ofZ�p of conductorpr with r > 0,
and write " � �a (mod p) for some integera. Let � be an irreduciblemod p
representation arising fromSk(�1(N)) from some weightk. The a necessary and
sufficient condition for there to exist a newformf of weight2 and level dividing
Np2r, such that�p(f) is isomorphic to" 
 spand which gives rise to�, is that
�jDp be of the form: 

�a+1 �

0 �a 

!
;

for some unramified character ofDp.
Proof. The proof follows upon using results of [E], the theorem of Deligne

(Theorem 2.5 of [E]), and a slight, and similarly proven, variant of part 1 of
Theorem3 of [K] (this part of that theorem is due to Ribet). This variant would say
that if a�, as above arises from a newformh 2 S2(�1(N)) (with nebentype"h),
then it also arises from thep-new part ofS2(�1(N) \ �0(p)) iff ap(h)2 � "h(p)
(modp), where"h is the nebentypus ofh.

We give the details. The necessity of the condition in the theorem follows from
the fact that if� arises from ap-new form inS2(�1(N)\�0(p)), then� also arises
from g 2 Sp+1(�1(N)) by Proposition 8.18 of [G]. Further thep-th coefficient is
forced to be a unit at the valuation given byp. Then the theorem of Deligne forces
�jDp

to be of the form:

 
� 0 �

0  

!
;

for some unramified character ; 0 of Dp. One further knows that (p) gives the
p-th Fourier coefficient ofg. We quote the classical result of Hecke that ap-new
newformh of S2(�1(N) \ �0(p)) is such thatap(h)2 = "h(p), with notation as in
the preceeding paragraph. Thus we get that =  0.

For the sufficiency, we use the fact that, assuming that�jDp
is of the form in

the theorem, then [E] together with Proposition 8.18 of [G], gives that� 
 ��a

arises from a newformh 2 S2(�1(N) \ �0(p)). Further, from the shape of�jDp
,

we see thatap(h)2 � "h(p) (mod p) where"h is the nebentypus ofh. Then the
result of Ribet, which is explained in part 1 of Theorem 3 of [K], yields that fact
that�
 ��a also arises from ap-new form inS2(�1(N) \ �0(p)). From this the
sufficiency follows.

3. An Example

The purpose of this section is to discuss an example to show that, what may be
regarded as an implication in the opposite direction to that of Carayol’s lemma, is
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false. To construct this example we use some of the results of [K]. This aslo shows
that congruences in the(p; p) case behave differently, in that it is difficult to guess
a priori the nature of the�p(f)’s of newformsf which give rise to� (but see the
forthcoming sequel to this paper).

Thus we start from a newformf in S2(�0(pq)), which ispq-new whereq is
a prime distinct fromp. Denote the automorphic representation corresponding to
f by �f . We assume that the modp representation� attached tof is irreducible,
and further that it is finite atp, but such that�jIp is not semisimple. Newformsf
which meet these requirements may be constructed by starting from a newformh

in S2(�0(q)) with the corresponding modp representation� irreducible, such that
�jIp is not semisimple, andap(h) � �1 (modp) for the fixed placep abovep.
Then we see by [R] thath is congruent (in the sense of the Fourier coefficients at
almost all primes being congruent modulop) to a newform of the required kind
in S2(�0(pq))). By [R1] it follows that this modp representation cannot be finite
at q. Denote the indefinite quaternion algebra ramified exactly atp andq by B,
and denote�G the algebraic group overQ defined by the multiplicative groupB�.
Denote by��f , the automorphic representation of the group given by the adelic
points of �G that corresponds to�f by the Jacquet–Langlands correspondence.

With our assumptions onf , the main theorem of [K], see the introduction of
loc. cit., yields that the modp representation attached tof , arises from a newform
g in thep-new part ofS2(�0(qp

2)). This formg is q-new by what we have noted
above that the modp representation corresponding tof is ramified atq. We claim
that�p(g) is supercuspidal. This easily follows from Theorem 1.2 above. Namely,
�p(g) cannot be principal series by the classification in Theorem 1.2, and one can
rule out the case that�p(g) is twist of special by inspection.

Denote by��g the automorphic representation of the group given by the adelic
point of �G that corresponds to�g by the Jacquet–Langlands correspondence (asg

is discrete series atp andq). From what we have said so far we conclude, as in
Section 5.3 of [C], (in this results of Section 5 of [Ge] get used) that

��p(g) = Ind(B�

p ;
 �K1
p ;
��0);

with notation exactly as in Section 5.3 of loc. cit., which we reprise below. Thus
Bp = B 
 Qp ;Op is the ring of integers ofBp;Mp is the maximal ideal of this
ring, �K0

p is the group of units ofOp; �K
1
p := 1+Mp;
 is the quadratic unramified

extension ofQp in a fixed algebraic closure, and��0 is a character of conductorp
of 
� (which does not factor through the norm), which may also naturally regard
as a character of
 �K1

p . Thus the order of��0 restricted to�K0
p dividesp2 � 1, and

is thus prime top, which will be crucial for us. As noted in Section 5.3 of loc.
cit., ��p(g) is then an irreducible representation of dimension 2, whose restriction
to �K1

p is trivial, and��0 may be regarded as a character of�K0
p=

�K1
p , which may be

identified withF�
p2 . Then the above representation is decomposed as a direct sum

of ��0 and��0� (� is the non-trivial automorphism ofFp2 ) as a representation ofF�
p2 ,
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where the superscript 0 just denotes that we are considering the character which��0

naturally induces onF�
p2 . We remark that as��0 is of order prime top, its reduction

modp, which we denote by�, is non-trivial. In fact� also does not factor through
the norm character, as is easily checked.

We consider�K1, a compact open subgroup of�G(A f ), where we take�K1
v to

be a maximal open compact subgroup at all places other thanp (we as usual fix
isomorphisms�G(Qv ) = GL2(Qv ) for v other thanp or q etc.) and to be�K1

p at p.
Just as in Section 5.4 of loc. cit. we denote the Shimura curve corresponding to
�K1 byS1 (though note that our�K1 is slightly different). This curve has the natural
action of�� := �K0

p=
�K1
p(= F�

p2).
As in Section 5.6 of [C], we see that thep-adic Galois representations corre-

sponding to��f and��g intervene in théetale cohomology groupH1
�et(S

1
�Q
; �Qp), such

that the corresponding modp Galois representations, which we denote by�f and
�g, intervening inH1

�et(S
1
�Q
; �Fp) are isomorphic. But from what we have noted about

the nature of��p(f) and ��p(g), we claim that the induced action of�� is trivial
on �f (as ��p(f) is one-dimensional), while we may choose the copy�g of � in
H1
�et(S

1
�Q
; �Fp) so that�� acts by the character� on�g. (We have already noted that�

is a non-trivial character, and more, in that it does not even factor through the norm
character.)

To see this, for instance the fact that�g can be chosen so that the action of��
on it is by the character�, follows from the comparison theorem betweenétale and
ordinary cohomology of the curveS1. This comparison isomorphism is compatible
with the induced�� and Hecke action on these cohomologies. Further,g gives rise
to a non-zero element inH1(S1

C ; C ) which is an eigenvector for the Hecke action
on this cohomology group, with the same eigenvalues asg, and on which�� acts
by the character��0. From this the claim follows. (We thank the referee for pointing
out a mistake in this part of an earlier version.)

Thus, in conclusion, we see that we have constructed two isomorphic, irreducible
2-dimensional modp representations in théetale cohomology of a Shimura curve,
which carries aQ-rational action of a finite abelian group, such that the action of
this abelian group on these two isomorphic representations is via different (non-
conjugate) characters.

REMARK 3.1. In fact we may further ask for a classification of the characters� by
which �� can act on copies of� in H1

�et(S
1
�Q
; �Fp). This, in principle, can be answered

by the method that we have briefly outlined in the introduction, and which will be
presented in detail in a sequel.

4. Remarks on our Earlier Paper

In this section we sharpen the main theorem of [K] (stated in the introduction of
loc. cit.).
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There is a question about congruences in the(p; p) case which was avoided
in the study in [K], as represented in the main theorem of the paper stated in the
introduction of loc. cit. There it was stated that iff is a newform inS2(�1(Np))
which give rise to an irreducible modp representation�, such that 2< k(�) < p+1,
then some Galois conjugate of� arises ap-new form inS2(�1(Np) \ �0(p

2)). In
the case when� is ordinary, what has been said in [K] is not enough to yield more
precise information, i.e., one cannot delete the phrasesome Galois conjugate of.
We now fill in this lacuna using the methods of [K].

THEOREM 4.1. Let f be a newform inS2(�1(Np)) and assume that themod
p representation� (with respect to the chosen placep abovep) attached tof is
irreducible and is such that2 < k(�) < p+ 1. Then� also arises from thep-new
part ofS2(�1(Np) \ �0(p

2)).
Proof.We use the technique of the proof of Theorem 2 in [K], the original idea

of which goes back to Ribet’s ICM paper, cf. [R]. Thus we consider the natural
degeneracy map�: J1(Np)

2 ! J(Np;Np2). The latter is the Jacobian of the
complete curve made from�1(Np)\�0(p

2). The composite�0 ��, where�0 is the
dual to�, is important for us. When viewed as a 2� 2 matrix of endomorphisms
of J1(Np)

2[p], it is given by:

�0 � � =

 
0 Up

U 0

p 0

!
:

This follows from a standard computation (hereU 0

p) is the dual ofUp). Now,
becausek(�) is strictly between 2 andp+1, the representation� only occurs inA,
the abelian subvariety ofJ1(Np) whose cotangent space is spanned by forms with
non-trivial nebentype atp. OnA we have the relationUpU

0

p = p, as is well-known.
Thus a Hecke stable Galois moduleV of J1(Np), which is isomorphic to�, is
annihilated either byUp or U 0

p. We suppose that it is annihilated byU 0

p, the other
case being entirely similar. Then(V;0) is in the kernel of the above matrix. As
V is by assumption irreducible we see, by the same method as in the proof of
Theorem 2 of [K], that� intervenes in the intersection of thep-old andp-new
subvarieties ofJ(Np;Np2). For this we will have to use a variant of Theorem 1
of [K] (similarly proven) to the effect that the group of connected components of
the natural degenerancy mapJ1(Np)

2 ! J(Np;Np2) is Eisenstein as a Hecke
module. From this the theorem follows.

CORRECTION 4.2. As pointed out by the referee of the present paper, in the
proof of Theorem 2 of [K], we have transposedTp andT �p in the formula for the
matrixR. Fortunately this does not affect the proof there materially, asTp andT �p
play ‘symmetric roles’, and the proof can be easily corrected (for instance, instead
of considering(V;0), we have to consider(0; V ) in the proof of loc. cit.).
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