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Abstract. Two themes are considered in this paper. First of all in the Introduction
a comment is made about the Tzitzéica equation which occurred in the author’s work
as reported in [1]. Much recent work has referred to this equation and a representative
bibliography is given in this paper with brief comments. The second theme of this
paper is concerned with work surrounding Quantum Solitons and the author’s talk
at the ISLAND 2 meeting under the title ‘Quantum solitons’ is briefly summarised.
An extended review of this subject matter has now appeared in [2] and as there the
quantum soliton of the quantum attractive NLS model is seen as a ‘qubit’ for quantum
information purposes. It is hoped that this summary and/or the reference [2] can help
to stimulate further interest in this ‘quantum’ aspect of our subject in the solitons
community. The actual observation of a quantum soliton is also reported and a proper
theoretical description of it given. Reference is made to g-boson lattices first as a
simple example of the quantum inverse method in the Introduction and then as a
subject matter in its own right at the end of the paper.

2000 Mathematics Subject Classification. 35Q51, 81Q99.

1. Introduction. Circumstances have prevented the author from meeting the final
deadline for this paper and the present brief note must serve instead. In this note I
attempt quickly to summarise the material I was able actually to present at Auchrannie
Spa Resort on the Isle of Arran, Scotland, where the ISLAND 2 meeting was held
during June 22-27, 2003. The Organisers are to be congratulated (and thanked!) for
this excellent meeting.

A second theme of this note, actually referred to first in this Introduction,
is a comment on Tzitzéica’s equation which, following Hirota’s presentation [3] in
particular (and see the paper by Kaptsov and Shan’ko [4]) we can take in the form

(logh)y, = h—h~* (1)

obtained by the Rumanian mathematician G. Tzitzéica [5, 6] as the compatibility
condition for the Gauss equations

I'xx = (hxrx + )‘ry)/h
Py = hr 2)
Fyy = (hyry + Yy}

It is trivial to point out that when 4 = ™)) equation (1) becomes

Oy = e — e (3)
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an equation which emerged in the work of the writer [1] on the polynomial conserved
densities (p.c.d.s) of the nonlinear ‘sine-Gordon’ equations ¢, = F(¢) in 1977.
Because of a previous result [7] on the Backlund transformations (BTs), namely that the
system ¢, = F(¢)hasanauto-BT iff F(¢) = a®F(¢) for some complex valued constant
a not excluding @ = 0 where dot denotes differentiation with respect to the argument (a
situation which includes the sine-Gordon and sinh-Gordon equations and the famous
Liouville equation ¢, = ¢?) it was concluded (incorrectly!) that equation (3) could
not have a countable infinity of p.c.d.s.! But Mikhailov [8] gave a recursion formula
for an infinite set of non-trivial polynomial conserved densities for an equivalent
form of equation (3) — refuting the Theorem 9 of [1]. However, although a classical
r-matrix is now known for equation (3), and that equation’s complete integrability as
a Hamiltonian system to that extent demonstrated [9], it seems to have been solved
only very recently for its soliton solutions [4] and this by finding a trilinear form [3, 4]
for the equation. Thus although the quantum R-matrix is known [10] for the quantum
integrable field theory with Hamiltonian?

Y 2 1 2 m2 u 17214 3
= | dx{ZT1° + — (0 — = - = 4
H /x{2 +2y(8’u)+y[e +2e 3 4

with TT(x) = y ~'9,u(x) and equal time commutation relations (with 4 = 1)
(M), uy)] = —id(x — y) &)
and consequentially with equations of motion
(97 — 32)u+m’[e" —e ] =0 (6)

independent of the coupling constant y € R (y > 0) (and note that, after the canonical
transformation ,/yTl1 — I1, ¢ — ./y¢ in 'H, y serves to couple in the nonlinear part
of the system) nothing is known (I believe) about its quantum solitons the theory of
which is still to be worked out. But because of the results in [13, 14] which show that the
quantum and classical correlation functions for optical solitons can be quite similar
and because all of this mathematical structure is known anyway, it must be certain
that these quantum solitons actually exist, while comparable results for the classical
equations have already been found as has been indicated above. A possible caveat only
being that [4] suggests that the classical soliton solutions are actually quite hard to find.
Concerning ‘quantum solitons’ there is also the small point that it is really necessary
to describe first of all what we actually mean by a ‘quantum soliton’ and this was
the subject matter of my actual talk on 23 June in Arran. For those interested in the
Tzitzéica equation as such a very short additional biography is in [15, 16, 17].

I'With hindsight it is easy to see that equation (3) could have an auto BT by introducing a second field
auxiliary to the single field ¢(x, y), and see also both of [1] and the recent paper [15] below for BT’s of the
Tzitzéica equation 1.

2 For what may be the simplest example of the use of the quantum inverse method [9, 10], which otherwise
I cannot review in this short article, see e.g. the two papers [11, 12]. Incidentally these two papers concern
g-deformation (of a completely integrable Bose gas model) and “g-boson” algebras mentioned otherwise at
the end of this paper [23, 24, 25, 26, 27].
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2. Quantum solitons. According to the popular article by Izo Abram [18]
quantum solitons have been with us for a long time and their physical manifestations
could be ideal for the purposes of modern quantum information theory (including
quantum computing). Briefly, for the quantum integrable attractive Nonlinear
Schrodinger model describing optical pulse transmission in optical fibres, single soliton
solutions are evidently ‘bits’ of information which because they must ultimately have
to be quantum in character are actually quantum ‘bits’ or ‘qubits’ for quantum
information storage and transmission purposes. As such they will be the classical
soliton solutions with an additional quantum ‘itter’ imposed upon them so that
for conjugate dynamical pairs linear momentum and linear position, or indeed for
particle number and conjugate phase, this jitter is a manifestation of Heisenberg’s
uncertainty principle ApAg > % (for h=1) (or AnA¢ > %) (e.g. the ‘fluctuation’
Ap = [{|(p — p)*|)]2 about the mean of linear momentum p in the state |) i.e. p = (|p|),
satisfies the Heisenberg lower bound). Moreover the quantum state |) is a ‘coherent
state’ and these quantum pulses are coherent. Of the large number of different quantum
coherent states the best known example is the Glauber coherent state |«) which satisfies
ala) = ala), o € C, and the operator a with its adjoint a' satisfies the Heisenberg-Weyl
Lie algebra [N, a'] = af, [N, a]l = —a, [a, a'] = 1; N is the number operator (whose
eigenvalues could be the number of photons e.g.).

Pursuing these ideas I have shown with Miki Wadati, Tokyo, how the ‘quantum
soliton’ of the quantum attractive Nonlinear Schrodinger (NLS) model is the quantum
mechanical matrix element (for large enough values of the positive integers )

(n, Py (x)ln+ 1, P) = |c| ™2 expli(P — P')x] sech [n|c|% GZP/ -~ Jlr IP)} (7)

(This particular result was first found by Wadati in 1984 in the paper [19] and was
subsequently found by Lai and Haus in the paper [20] who also give results for
multisolitons.) In this expression (7) ¥/(x) is the quantum field which satisfies the
attractive Bose gas equations

2

o h N Ay A
—ihd = S— 03 — 2T

2m

®)

A

I =R, N
+ihd ! = %a&w' =2y iy

with ¢ceR and ¢ <0 and with Bose commutation relations [y/f(x), ¥(x')] =
—ih8(x — X'), [Y(x), ¥i(x)] = [¥(x), ¥ (x)] = 0. It is usual to choose units for (8)
so that Ah=1 and m = % The states |, P) in (7) are simultaneous eigenstates
of N=[ylydx, P=—3 [V, — (WiWldx = +i [T dx, H= [l +
et ildx = [[=91 o + e T gdldx and, of course, of a further countable
infinity of mutually commuting operators. They (the states |, p)) are bound states
(with ¢ < 0) which occur for the “n strings” in the complex momentum plane

1
kj=p+zln—@Qj= Dl j=12...n (€

with N|n, P) = njn, P) and P = mp. By introducing the time r by going to the
Schrédinger picture (of wave mechanics) and taking appropriate Fourier transforms
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on P, P’ with kernels e=*X, ¢="X" one finds that the matrix element (for large en-
ough n)

M, = n X ty(x)n+1,X,1)

L 1 1
= 2n|c|_%e4”’ 'sech[2n(x — X")]5 (X’ _nt X+ —x) (10)
n n

where X is identified with a point xy and n = %lcl(n + 1). The factor on the §-function
is exactly the usual one soliton solution of the classical NLS equation corresponding to
the discrete eigenvalue of the associated linear problem whichis ¢ = & + in, n > 0 with
& = 0 the classical soliton at rest. A Galilean boost operator can be used to obtain the
more general result which is the classical soliton moving at a finite velocity as shown
in [19].

Unfortunately we cannot yet say anything comparable about the quantum and
classical multi-soliton solutions (despite the results in [20]), but the classical oscillatory
solutions are exemplified by quantum ‘phonon’ solutions. The whole of this analysis
together with the comparable analysis for the quantum sine-Gordon equation is given
in the joint paper by R. K. Bullough and Miki Wadati [2] which has now appeared
in the Journal of Physics B. Quantum and Semiclassical Optics in a Special Issue on
Optical Solitons edited by P. D. Drummond et al.

Thus for further information and in the hope that the present summary will
stimulate interest of the soliton community as represented at ISLAND 2 in quantum
solitons the reader is referred to this article [2].

An additional point made at ISLAND 2 concerns actual observation of a quantum
soliton by L. Khaykovich et al. [21] in ultracold ’ Li at temperatures 7 < 107°K in 2002.
At comparable very low temperatures the metal vapours 8 Rb, 2 Na, and 7 Li display
features of the Bose-Einstein condensation predicted by Einstein in 1924. Modelled
by the quantum NLS model equations (8) in one space dimension only, both of ¥’ Rb
and Na are repulsive with ¢ > 0. However ’Li can be put into a quantum state of
negative scattering length @ and since coupling constants g = 2¢ = 4w h’a/m a < 0
means ¢ < 0. This result is a necessary condition for any quantum soliton solution
of the quantum NLS model equations (8) and in practice Khaykovich et al. [21]
report observation of a single moving pulse whose soliton density expectation value
(n+ 1, Pyt (x)y(x)|n + 1, P) is consistent with the theory advanced in our joint paper
[2]. The situation is complicated by the fact that the experimental situation is necessarily
three dimensional in space. But it is argued that the ultracold 7Li atoms first of all
undergo a transverse ‘collapse’ of Zakharov type in two space dimensions already
studied in our paper [22] and this collapse produces a strictly one dimensional system,
the one dimensional quantum soliton!

Two other quantum systems with z-string solutions (and so with quantum soliton
solutions) were reported in Arran and these bear directly on the particular theme of
the meeting which was ‘Discrete Systems and Geometry’. These two quantum systems
involve “g-boson” algebras and “g-spin operators” belonging to the quantum group
sug(2) (= Uylsu(2)]), U means universal enveloping algebra (of the Lie algebra su(2))
and ¢ € R is a ‘deformation parameter’) — see the author’s paper [23] where quantum
Bethe equations are found and solved. Classical ‘g-solitons’ and ‘g-multi-solitons’ were
first reported in [24]. At the level of the Bethe equations quantum soliton solutions
were found for the Maxwell-Bloch equations on a lattice in [25]. See also [26]. Perhaps
the simplest g-boson system is the quantum Ablowitz-Ladik equation [27].
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