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AV -Courant Algebroids and Generalized
CR Structures

David Li-Bland

Abstract. We construct a generalization of Courant algebroids that are classified by the third coho-

mology group H3(A,V ), where A is a Lie Algebroid, and V is an A-module. We see that both Courant

algebroids and E1(M) structures are examples of them. Finally we introduce generalized CR structures

on a manifold, which are a generalization of generalized complex structures, and show that every CR

structure and contact structure is an example of a generalized CR structure.

1 Introduction

Courant algebroids and the Dirac structures associated with them were first intro-

duced by Courant and Weinstein (see [6, 7]) to provide a unifying framework for

studying such objects as Poisson and symplectic manifolds. Aı̈ssa Wade later intro-

duced the related E1(M)-Dirac structures in [27] to describe Jacobi structures.

In [13], Hitchin defined generalized complex structures that are further described

by Gualtieri [12]. Generalized complex structures unify both symplectic and complex

structures, interpolating between the two, and have appeared in the context of string

theory [17]. In [14] Iglesias and Wade describe generalized contact structures, an

odd-dimensional analog to generalized complex structures, using the language of

E1(M)-Dirac structures.

In this paper, we shall define AV -Courant Algebroids, a generalization of Courant

algebroids that also allows one to describe E1(M)-Dirac structures. We will show that

these have a classification similar to S̆evera’s classification of exact Courant algebroids

in [24].

To be more explicit, let M be a smooth manifold, A → M be a Lie algebroid

with anchor map a : A → TM, and V → M a vector bundle that is an A-module.

If we endow V with the structure of a trivial Lie algebroid (that is, trivial bracket

and anchor), then it is well known that the extensions of A by V are a geometric

realization of H2(A,V ) (see [18]). In this paper, we introduce AV -Courant algebroids

and describe how they are a geometric realization of H3(A,V ).

We then go on to show how to simplify the structure of certain AV -Courant alge-

broids by pulling them back to certain principal bundles. Indeed, in the most inter-

esting cases, the pullbacks will simply be exact Courant algebroids.

We then introduce AV -Dirac structures, a special class of subbundles of an AV -

Courant algebroid which generalize Dirac structures. Finally, we will introduce a

special class of AV -Dirac structures, called generalized CR structures, which allow
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us to describe any complex, symplectic, CR or contact structure on a manifold, as

well as many interpolations of those structures. We show that associated with every

generalized CR structure is a Jacobi bundle, introduced by Charles-Michel Marle [21]

and Kirillov [16].

It is important to note that there are other constructions related to AV -Courant

algebroids. For instance, recently Z. Chen, Z. Liu, and Y.-H. Sheng introduced the

notion of E-Courant algebroids [5] in order to unify the concepts of omni-Lie al-

gebroids (introduced in [3], see also [4]) and generalized Courant algebroids or

Courant–Jacobi algebroids (introduced in [23] and [10] respectively; they are equiv-

alent concepts; see [23]). The key property that both E-Courant algebroids and AV -

Courant algebroids share is that they replace the R-valued bilinear form of Courant

algebroids with one taking values in an arbitrary vector bundle (E or V respec-

tively). Nevertheless, while there is some overlap between E-Courant algebroids and

AV -Courant algebroids in terms of examples, these constructions are not equivalent;

indeed, AV -Courant algebroids are classified by H3(A,V ), while there is no simple

classification of E-Courant algebroids. Moreover, this paper is distinguished from [5]

by having the definition of generalized CR manifolds as one of its main goals.

Meanwhile, generalized CRF structures, introduced and studied in great detail

by Izu Vaisman in [26], and generalized CR structures describe similar objects. To

summarize, a complex structure on a manifold M is a subbundle H ⊂ TM ⊗ C such

that

(1.1) H ⊕ H̄ = TM ⊗ C

and [H, H] ⊂ H. The definition of a CR structure simply relaxes (1.1) to H ∩ H̄ = 0.

On the other hand, the definition of a generalized complex structure replaces TM

with the standard Courant algebroid TM = T∗M⊕TM in the definition of a complex

structure, and in addition, requires H ⊂ TM ⊗ C to be isotropic.

The definition of a generalized CRF structure parallels the definition of a gen-

eralized complex structure, but relaxes the requirement that H ⊕ H̄ = TM ⊗ C

to H ∩ H̄ = 0. Among numerous interesting examples of generalized CRF struc-

tures are normal contact structures and normalized CR structures (namely those CR

structures H ⊂ TM ⊗ C for which there is a splitting TM ⊗ C = H ⊕ H̄ ⊕ Qc and

[H, Qc] ⊂ H ⊕ Qc).

Generalized CR structures differ from generalized CRF structures in multiple

ways. In particular, they replace the standard Courant algebroid with an AV -Courant

algebroid A, and furthermore, they take a different approach to describe contact and

CR structures, using only maximal isotropic subbundles but allowing H ∩ H̄ to con-

tain “infinitesimal” elements.

2 AV -Courant Algebroids

Let M be a smooth manifold, A → M a Lie algebroid, and V → M a vector bundle

that is an A-module, that is, there is a C∞(M)-linear Lie algebra homomorphism

(2.1) L· : Γ(A) → End(Γ(V ))
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satisfying the Leibniz rule. (See [18] for more details.)

For any A-module V , the sections of V ⊗ ∧∗A∗ have the structure of a graded

right ∧∗
Γ(A∗)-module, and there are several important derivations of its module

structure that we shall use throughout this paper. The first is the interior product

with a section X ∈ Γ(A),

ιX : Γ(V ⊗ ∧iA∗) → Γ(V ⊗ ∧i−1A∗),

a derivation of degree -1.

The second is the Lie derivative, a derivation of degree 0, defined to be the unique

derivation of V ⊗ ∧∗A∗ whose restriction to V is given by (2.1), and such that the

graded commutator with ι· satisfies [LX, ιY ] = ι[X,Y ]. Finally, the differential d, a

derivation of degree 1, is defined inductively by the graded commutator LX = [d, ιX]

(for all X ∈ Γ(A)).

It is easy to check that d2
= 0, and the cohomology groups of the complex (Γ(V ⊗

∧•A∗), d) are denoted H•(A,V ).

2.1 Definition of AV -Courant Algebroids

Let A be a Lie algebroid and V an A-module.

Definition 2.1 (AV -Courant Algebroid) Let A be a vector bundle over M, with a

V -valued symmetric bilinear form 〈 · , · 〉 on the fibres of A, and a bracket J · , · K on

sections of A. Suppose further that there is a short exact sequence of bundle maps

(2.2) 0 → V ⊗ A∗
j

−→ A
π
−→ A → 0

such that for any e ∈ Γ(A) and ξ ∈ Γ(V ⊗ A∗),

(2.3) 〈e, j(ξ)〉 = ιπ(e)ξ.

The bundle A with these structures is called an AV -Courant algebroid if, for f ∈
C∞(M) and e, ei ∈ Γ(A), the following axioms are satisfied:

(AV-1) Je1, Je2, e3KK = JJe1, e2K, e3K + Je2, Je1, e3KK

(AV-2) π(Je1, e2K) = [π(e1), π(e2)]

(AV-3) Je, eK =
1
2
D〈e, e〉, where D = j ◦ d

(AV-4) Lπ(e1)〈e2, e3〉 = 〈Je1, e2K, e3〉 + 〈e2, Je1, e3K〉

we will often refer to J · , · K as the Courant bracket.

Remark 2.2 Axioms (AV-1) and (AV-4) state that Je, · K is a derivation of both

the Courant bracket and the bilinear form, while Axiom (AV-2) describes the rela-

tion of the Courant bracket to the Lie algebroid bracket of A. One should interpret

Axiom (AV-3) as saying that the failure of J · , · K to be skew symmetric is only an

“infinitesimal” D( · ).
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Remark 2.3 The bracket is also derivation of A as a C∞(M)-module in the sense

that

Je1, f e2K = f Je1, e2K + a ◦ π(e1)( f ) · e2

for any e1, e2 ∈ Γ(A) and f ∈ C∞(M). In fact if e3 ∈ Γ(A),

〈a ◦ π(e1)( f ) · e2 + f Je1, e2K − Je1, f e2K, e3〉

(by (AV-4)) = 〈a ◦ π(e1)( f ) · e2 + f Je1, e2K, e3〉 − π(e1)〈 f e2, e3〉

+ 〈 f e2, Je1, e3K〉

= a ◦ π(e1)( f )〈e2, e3〉 − π(e1)〈 f e2, e3〉

+ f (〈Je1, e2K, e3〉 + 〈e2, Je1, e3K〉)

(by (AV-4)) = a ◦ π(e1)( f )〈e2, e3〉 − π(e1)〈 f e2, e3〉 + f π(e1)〈e2, e3〉

= 0,

where the last equality follows from the fact that V is an A module. Since this holds

for all e3 ∈ Γ(A), and 〈 · , · 〉 is non-degenerate, the statement follows.

Remark 2.4 One notices that (2.3) and exactness of (2.2) implies that the map

A → V ⊗ A
∗, given by e → 〈e, · 〉, is an injection. Consequently, if V is a line bundle

(as in all the known interesting examples), it follows that A ≃ V ⊗A
∗, and j must be

the composition

j : V ⊗ A∗
id⊗π∗

−−−−→ V ⊗ A
∗ ≃ A.

Remark 2.5 Any DE E-Courant algebroid (an AV -Courant algebroid with V = E

and A = DE, the gauge Lie algebroid of E) is an E-Courant algebroid. However, not

every E-Courant algebroid is a DEE-Courant algebroid, since there is no requirement

in the definition of E-Courant algebroids for the sequence (2.2) in Definition 2.1 of

AV -Courant algebroids to be exact, and the map (2.2) j : E ⊗ (DE)∗ → A is only

defined on the first jet bundle J1E ⊂ E ⊗ (DE)∗.

One could imagine some generalization of both AV -Courant algebroids and

E-Courant algebroids that ignores the requirement that (2.2) be exact in the above

definition (and perhaps allows j to be defined on a smaller domain).

Conversely, if A is an AV -Courant algebroid, then there is a natural Lie algebroid

morphism φ : A → DV resulting from the fact that V is an A-module. Consequently,

(A, 〈 · , · 〉, J · , · K, φ◦π) is an E-Courant algebroid (with E = V ). So an AV -Courant

algebroid can be thought of as an E-Courant algebroid with some additional struc-

ture, such as a exact sequence (2.2) and a factorization of the anchor map through a

Lie algebroid A. This additional structure allows for a more comprehensive under-

standing of AV -Courant algebroids, including a simple classification of AV -Courant

algebroids by H3(A,V ), and when A is a transitive Lie algebroid, a means of under-

standing both AV -Courant algebroids and AV -Dirac structures by relating them to

standard Courant algebroids and Dirac structures on principal bundles.
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2.2 Splitting

We call φ : A → A an isotropic splitting, if it splits the exact sequence (2.2), and φ(A)

is an isotropic subspace of A with respect to the inner product.

Remark 2.6 Such splittings exist. In fact we may choose a splitting λ : A → A,

which is not necessarily isotropic.

Then we have a map γ : A → V ⊗ A∗ given by the composition

γ : A
λ
−→ A

e→〈e,·〉
−−−−→ V ⊗ A

∗
id⊗λ∗

−−−−→ V ⊗ A∗.

We let φ = λ − 1
2

j ◦ γ. It is easy to check that φ is an isotropic splitting.

If φ : A → A is an isotropic splitting, then we have an isomorphism φ ⊕ j : A ⊕
(V ⊗ A∗) → A.

Proposition 2.7 Let φ : A → A be an isotropic splitting. Then under the above iso-

morphism, the bracket on A ⊕ (V ⊗ A∗) is given by

(2.4) JX + ξ,Y + ηKφ = [X,Y ] + LXη − ιY dξ + ιXιY Hφ,

where X,Y ∈ Γ(A), ξ, η ∈ Γ(V ⊗ A∗) and Hφ ∈ Γ(V ⊗ ∧3A∗), with dHφ = 0.

Furthermore, if ψ : A → A is a different choice of isotropic splitting, then ψ(X) =

φ(X) + j(ιXβ) and Hψ = Hφ − dβ, where β ∈ Γ(V ⊗ ∧2A∗).

The proof is relegated to the appendix, since it is parallel to the proof for ordinary

Courant algebroids (see [2, 24]).

Theorem 2.8 Let A be a Lie algebroid, and let V be an A-module. Then the isomor-

phism classes of AV -Courant algebroids are in bijective correspondence with H3(A,V ).

Proof If H ∈ Γ(V ⊗ ∧3A∗), and dH = 0, then let A = A ⊕ (V ⊗ A∗). We define

〈 · , · 〉 by

(2.5) 〈X + ξ,Y + η〉 = ιXη + ιY ξ,

where ξ, η ∈ Γ(V ⊗ A∗) and X,Y ∈ Γ(A). We define the bracket to be given by

equation (2.4). It is not difficult to check that this satisfies the axioms of an AV -

Courant algebroid.

Conversely, by the above proposition, every AV -Courant algebroid defines a

unique element of H3(A,V ).

3 Examples

Example 3.1 Let M be a point, then a Lie algebroid A is simply a Lie algebra,

and an A-module V is a finite dimensional representation of A as a Lie algebra.

Hi(A,V ) is simply the V -valued Lie algebra cohomology, and H3(A,V ) classifies the

AV -Courant algebroids over a point. Note that an AV -Courant algebroid over a point

is a Lie algebra if and only if V is a trivial A-representation.
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Example 3.2 (Exact Courant Algebroids) If we let A ≃ TM and V = M ×R be the

trivial line bundle over M with a trivial TM-module structure, then we may identify

T∗M with V ⊗T∗M by the map α → 1⊗α. It follows that the class of TM R-Courant

algebroids over M corresponds to the class of exact Courant algebroids (see [6,7]) on

M,

0 //T∗M
π∗

//A

π
//TM //0 .

Theorem 2.8 then corresponds to S̆evera’s classification of exact Courant algebroids.

Example 3.3 (E1(M) Structures) The bundle E1(M) was introduced by A. Wade in

[27] and is uniquely associated with a given manifold M. Within the context of this

paper, it is easiest to define E1(M) by using the language of AV -Courant algebroids.

We let A = TM ⊕ L, where L ≃ R is spanned by the abstract symbol ∂
∂t

. The

bracket is given by

[

X ⊕ f ∂
∂t

,Y ⊕ g ∂
∂t

]

A
= [X,Y ]TM ⊕ (X(g) − Y ( f )) ∂

∂t
,

where X,Y ∈ X(M) and f , g ∈ C∞(M).

Let V be the trivial line bundle spanned by the abstract symbol et , so that Γ(V ) =

{et h|h ∈ C∞(M)}. V has an A-module structure (as suggested by the choice of

symbols) given by
(

X ⊕ f ∂
∂t

)

(et h) = et (X(h) + f h).

We let A := (TM ⊕ L) ⊕ (V ⊗ (T∗M ⊕ L∗)), and define a bracket on sections by

equation (2.4). It is clear that this data defines an AV -Courant algebroid on M. If

we set H = 0 in equation (2.4), then the pair (A, J · , · K) associated with M is the

E1(M)-Structure, as introduced by Wade in [27].

Example 3.4 (Equivariant AV -Courant Algebroids on Principal Bundles) Let

ν : P → M be a G-principal bundle. Suppose that A is a Lie algebroid over P and

V is an A-module, and that there is an AV -Courant algebroid on P,

0 → V ⊗ A∗ → A → A → 0.

If the action of G on P lifts to an action by bundle maps on V , A and A, such that all

the structures involved are G-equivariant, then the quotient,

0 → (V ⊗ A∗)/G → A/G → A/G → 0,

is an A/G V/G-Courant algebroid.

Example 3.5 Let ν : P → M be a G-principal bundle, and let W be a k-dimensional

vector space possessing a linear action of G. We regard W as a trivial bundle over

P, and we consider the bundle T := TP ⊕ (W ⊗ T∗P), endowed with a W -valued

symmetric bilinear form given by equation (2.5). We also define a bracket on sections

of T by equation (2.4), where H ∈ Ω
3(P,W )G is closed, then

0 → W ⊗ T∗P
j

−→ T
π
−→ TP → 0
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is an equivariant TP W -Courant algebroid on P (where j and π are the obvious in-

clusion and projection). Thus (as in Example 3.4), we have an AV -Courant algebroid

on P/G, where A = TP/G is the Atiyah algebroid, and V = P ×G W .

Note, if W is 1-dimensional, then the TP W -Courant algebroid given above is

simply an exact Courant algebroid.

As it turns out, this is quite a general example. Indeed, if A is a transitive Lie

algebroid, then locally all AV -Courant algebroids result from such a construction

(see Section 5).

Remark 3.6 In the above example, one could replace P ×W with any flat bundle.

Example 3.7 As a special case of Example 3.5, if we take G = R, then P = M ×R is

a R-principal bundle where the action is translation. We let W = P×R be the trivial

line bundle over P and let λ ∈ R act on W by scaling by e−λ.

To describe the G-action explicitly,

λ · ((x, s), t) = ((x, s + λ), e−λt),

where λ ∈ R, (x, s) ∈ M × R = P, and ((x, s), t) ∈ P × R = W .

The quotient of the TP W -Courant algebroid on P with H = 0 under this action

is precisely the E1(M)-Structure on M = P/R.

Example 3.8 If A is a Lie algebroid over M, V is an A-module, and A is an AV -

Courant algebroid on the manifold M, and if F ⊂ M is a leaf of the singular foliation

defined by a(A), then i∗A is an i∗A i∗V -Courant algebroid on F, where i : F → M is

the inclusion.

Remark 3.9 At this point, in the most interesting examples of AV -Courant alge-

broids, V is a line bundle. Nevertheless, as mentioned in Theorem 2.8, for any Lie

algebroid A → M, any A-module V over M, and any element γ ∈ H3(A,V ), there

is an AV -Courant algebroid (unique up to isomorphism) classified by γ. It is not yet

known if these examples are of any importance.

4 AV -Dirac Structures

Definition 4.1 (AV -Dirac Structure) Let M be a manifold, let A → M be a Lie al-

gebroid over M, let V → M be an A-module, and let A be an AV -Courant algebroid.

Suppose that L ⊂ A is a subbundle, since A has a non-degenerate inner product, we

can define L⊥
= {v ∈ A | 〈v, u〉 = 0 ∀u ∈ L}.

We call L an almost AV -Dirac structure if L⊥
= L. An AV -Dirac structure is an

almost AV -Dirac structure, L ⊂ A that is involutive with respect to the bracket J · , · K.

Remark 4.2 If L ⊂ A is an AV -Dirac structure, then Je, eK =
1
2
D〈e, e〉 = 0 for any

section e ∈ Γ(L), so J · , · K is skew-symmetric when restricted to L, and then by the

other properties of the bracket, it follows that a ◦ π : L → TM is a Lie algebroid, and

π : L → A is a Lie algebroid morphism.

https://doi.org/10.4153/CJM-2011-009-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-009-1


AV -Courant Algebroids and Generalized CR Structures 945

Example 4.3 (Invariant Dirac Structure on a Principal Bundle) Using the notation

of Example 3.4, suppose that the A/G V/G-Courant algebroid A/G on M is the

quotient of a AV -Courant algebroid A on P. If L ⊂ A is an AV -Dirac structure which

is G invariant, then it is clear that L/G ⊂ A/G is an A/G V/G-Dirac structure (see

Example 3.4).

Example 4.4 (E1(M)-Dirac Structures) Using Example 3.3, we can describe E1(M),

the bundle introduced by Wade in [27], as an AV -Courant algebroid. In this context,

the E1(M)-Dirac structures (also introduced by Wade in [27]) correspond directly to

the AV -Dirac structures.

5 Transitive Lie Algebroids

5.1 Simplifying AV -Courant Algebroids

Suppose that A is a Lie algebroid, V is an A-module, and A is an AV -Courant al-

gebroid over M (where we use the notation given in the definition of AV -Courant

algebroids). We will assume for the duration of this section that M is connected, and

we require that A be a transitive Lie algebroid, namely the anchor map a : A → TM

is surjective (see [18] for more details).

Since A may be quite complicated, we wish to examine whether this AV -Courant

algebroid is the quotient of a much simpler A ′V ′-Courant algebroid on a princi-

pal bundle over M, where A ′ is a very simple Lie algebroid and V ′ is a very simple

A ′-module. To be more explicit, we wish to examine whether A results from the

construction in Example 3.5. For this to be true, it is clearly necessary that A be the

Atiyah algebroid of that principal bundle; namely, if P is the principal bundle, then

A = TP/G. The existence of such a principal bundle is equivalent to the integrability

of A as a Lie algebroid:

Proposition 5.1 Suppose that A → M is an integrable transitive Lie algebroid, that is

to say, there exists a source-simply connected Lie groupoid

Γ

s
//

t

//M

with Lie algebroid A (see [18] for more details). Then A is the Atiyah algebroid of a

principal bundle.

Conversely, if A is the Atiyah algebroid of a principal bundle, then A is an integrable

Lie algebroid.

Proof Suppose first that A is integrable, then using the notation in the statement of

the proposition, where s : Γ → M is the source map and t : Γ → M is the target map,

let x ∈ M, let P = Γx := s−1(x), and let G = Γ
x
x := s−1(x) ∩ t−1(x).

Since A is transitive, t : P → M is a surjective submersion. For clarity, we define

p := t|P. Furthermore, if y ∈ M, and g ∈ Γ
y
x , then g : p−1(x) → p−1(y) is a

diffeomorphism, so p : P → M is a fibre bundle, with its fibre diffeomorphic to G. In
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addition, G has a right action on P, given by right multiplication in the Lie groupoid.

If p−1(y) = Γ
y
x is a fibre, and g ∈ Γ

y
x , then the diffeomorphism g : p−1(x) → p−1(y)

is given by left groupoid multiplication while the action of G on P is given by right

groupoid multiplication, so it is clear that the two operations commute, from which

it follows that G preserves the fibres of P, acting transitively and freely on them. Thus

P is a principal G bundle.

Since A is the Lie algebroid of Γ, it can be identified with the right invariant vector-

fields on Γ tangent to the source fibres. However, since A is transitive, any two source

fibres are diffeomorphic by right multiplication by some element. Thus A can be

identified with the G invariant vector fields on P.

Conversely, if A is the Atiyah algebroid of some principal bundle, it obviously

integrates to the gauge groupoid associated with that principal bundle (see [9] or

Remark 5.5), and we may take Γ to be the source-simply connected cover of the

gauge groupoid.

We now examine whether V is an associated vector bundle.

Proposition 5.2 Suppose that A is an integrable transitive Lie algebroid, and V → M

is an A-module. Then there exists a (possibly disconnected) Lie group G and a simply

connected principal G-bundle P → M such that V is the quotient bundle of P × R
k, for

some G action on R
k. In this setting, the standard action of X(P) on C∞(P, R

k) induces

the module structure on V .

Proof Using the notation and the Lie groupoid described in the previous proposi-

tion, we consider Γx × Vx, where Vx is the fibre of V at x. We may assume that Γ is

source-simply connected, and, consequently, since V is an A-module, by Lie’s second

theorem there exists a Lie groupoid morphism Γ → GL(V ).1 Thus Γ acts on V , and

we have a map p̃ : Γx × Vx → V given by (g, v) → gv. This is clearly a surjective

submersion.2 Furthermore,

p̃(g, v) = p̃(g ′, v ′) ⇔ g−1g ′ ∈ Γ
x
x and v = (g−1g ′)v ′.

Thus, letting G = Γ
x
x and P = Γx, we have V ≃ (Γx ×Vx)/G ≃ (P ×Vx)/G.

Furthermore, identifying Vx with R
k, if X ∈ X(P) ≃ X(Γx), and σ ∈ C∞(P, R

k),

then the standard action of X on σ is given by X(σ)z =
∂
∂t
|t=0σ(etXz) for any z ∈ P ≃

Γx. If we suppose that X and σ are G invariant, then

p̃
(

∂
∂t
|t=0σ

(

etX(z)
)

)

=
∂
∂t
|t=0

(

e−tX p̃(σ)
)

p(z)
= (LX p̃(σ))p(z),

since we defined the action of Γ on V in terms of the A-module structure of V .

Proposition 5.3 Suppose that A is an integrable Lie algebroid, and V → M is an

A-module. Then A results from the construction given in Example 3.5. Namely, there

1See, for instance, [8, 19, 22] for more details. Here GL(V ) is the Lie groupoid of linear isomorphisms
of the fibres of V , namely GL(V )

y
x = Hom(Vx,V y ).

2Since A is transitive and M is connected, t : Γx → M is a surjective submersion. Let y ∈ M, and let
σ : U → Γx be a section (so that t ◦σ = id). Then (z, v) → σ(z)(v) : U ×Vx → VU is a diffeomorphism.
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exist a Lie group G and a principal G-bundle P → M such that A is the quotient of a

TP R
k-Courant algebroid Furthermore, if L ⊂ A is an AV -Dirac structure, then it is also

the quotient of a corresponding TP R
k-Dirac structure on P.

Consequently, if V is a line-bundle, then A is simply the quotient of an exact Courant

algebroid on P.

Proof We choose some isotropic splitting of A, so that A ≃ A⊕(V⊗A∗). The bracket

is given by equation (2.4), and the symmetric bilinear form by equation (2.5). Then

we can use the previous propositions to lift the right-hand side to a principal bundle.

By the above propositions, there exist a (possibly disconnected) Lie group G and a

simply connected G-principal bundle, ν : P → M, such that A ≃ TP/G. In addition

to this there is a G-action on W := R
dim(V ), say λ : G → GL(W ), such that V = P×G

W . In this setting, Γ(V ⊗∧iA∗) ≃ Ω
i(P,W )G, and d : Γ(V ⊗∧iA∗) → Γ(V ⊗∧i+1A∗)

is the restriction of the exterior derivative d to Ω
∗(P,W )G.

Thus since H ∈ Γ(V ⊗ ∧3A∗) ≃ Ω
3(P,W )G, it is clear that we may view H as

a G-invariant element of Ω
3(P,W ) and define the TP W -Courant algebroid W ⊗

T∗P → T → TP in terms of it: Namely, T ≃ TP ⊕ (W ⊗ T∗P) endowed with a

W -valued symmetric bilinear form given by equation (2.5), and the bracket given by

equation (2.4). (See Example 3.5 for more details on this construction.)

It is clear that A is the quotient of this TP W -Courant algebroid.

Equivalently, it is easy to see that TP = ν∗A, W = ν∗V , and T = ν∗
A. The

W -valued symmetric bilinear form on T is simply the pullback of the V -valued sym-

metric bilinear form on A, and if e1, e2 ∈ Γ(A), then Jν∗e1, ν
∗e2K = ν∗Je1, e2K, and

the bracket on T is then extended to arbitrary sections of T by Axiom (AV-3) and

Remark 2.2.

Next, let L̃ = ν∗(L) ⊂ T. It is obvious that L⊥
= L ⇒ L̃⊥

= L̃, and, similarly,

since L is involutive, so is L̃.

Thus L̃ ⊂ T is a TP W -Dirac structure, and L̃/G = L.

Example 5.4 If A = TM and V is a flat vector bundle over M, then following

the proof of Proposition 5.3 we see that G = π1(M) is the fundamental group, and

P = M̃ is the simply connected covering space of M over which the pullback of V is

a trivial vector bundle.

Remark 5.5 The above propositions construct the principal bundle P and the Lie

group G. Suppose however, that we already have a Lie group G ′ and a connected

G ′-principal bundle ν ′ : P ′ → M such that A ≃ TP ′/G ′. It will not be difficult to

see that A is the quotient of a AV -Courant algebroid on P ′.

Let G = (P ′ × P ′)/G ′, where we take the quotient by the diagonal action. Then

G
s

−→−→t
M is a Lie groupoid with Lie algebroid A, where the source map is s : [u, v] →

ν ′(v), the target map is t : [u, v] → ν ′(u), and the multiplication is [u, v] · [v, w] =

[u, w].3 Hence by Lie’s second theorem (see [8, 19, 22] for more details), since Γ, the

Lie groupoid used in the proof of Proposition 5.3, is source-simply connected, there

3An element of G is an equivalence class, which we may view as a subset of ν ′−1(y) × ν ′−1(z) that is
G invariant. As such, we may view it as the graph of an equivariant diffeomorphism ν ′−1(y) → ν ′−1(z).
The multiplication in G is simply the composition of these diffeomorphisms. See [9] for details.
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is a unique Lie groupoid morphism Φ : Γ → G that restricts to the identity map on

the Lie algebroid A.

It follows that Φ|P : P → P ′ is a covering map,4 and Φ|G : G → G ′ is a covering

morphism of Lie groups.5 It is easy to see that H = ker(Φ|G) ≃ π(P ′) and P ′
= P/H.

Thus, we may take the quotient of the TP W -Courant algebroid on P (constructed

in Proposition 5.3) by H, to form a TP ′ W/H-Courant algebroid on P ′ whose quo-

tient by G ′ is A. It is important to note that while W is a trivial vector bundle, W/H

is a flat vector bundle.

Remark 5.6 Proposition 5.3 was observed for E1(M) structures in [15].

Corollary 5.7 Suppose that V is an A-module, and M is contractible, then A is the

quotient of a TP R
k-Courant algebroid R

k ⊗ T∗P → T → TP on some principal

G-bundle, P. (See Example 3.4). Furthermore, if L ⊂ A is an AV -Dirac structure, then

it is also the quotient of a TP R
k-Dirac structure L̃ ⊂ T.

Proof Every transitive Lie algebroid is integrable over a contractible space; see [18]

for details.

5.2 Contact Manifolds

Iglesias and Wade show how to describe contact manifolds as E1(M)-Dirac structures

in [14]. Thus in light of Example 4.4, we can describe them as AV -Dirac structures.

We will now describe this same construction from a more geometric perspective,

similar to their description in [15].

To simplify things, we assume that (M, ξ) is a co-oriented contact manifold,

namely ξ ⊂ TM can be given as the kernel of a nowhere vanishing 1-form α ∈
Ω

1(M), and we use the fact that there is a one-to-one correspondence between co-

oriented contact manifolds and symplectic cones (see [1]). Recall, as in [1], that a

symplectic manifold (N, ωN ) is a symplectic cone if

• N is a principal R bundle over some manifold B, called the base of the cone, and
• the action of R expands the symplectic form exponentially, namely ρ∗λωN = eλωN ,

where ρλ denotes the diffeomorphism defined by λ ∈ R.

In particular, let

N = {q ∈ T∗M | q ∈ T∗
x M and q = eτ · αx for some x ∈ M and τ ∈ R} ⊂ T∗M,

then R acts on N by ρλ(q) = eλ ·q (for any λ ∈ R, and q ∈ N ⊂ T∗M). Furthermore

let ωN ∈ Ω
2(N) be the restriction to N of the canonical symplectic form on T∗M,

then (N, ωN ) is a symplectic cone over the base M if and only if (M, ξ) is a co-oriented

contact manifold.

Since ωN is expanded exponentially by the R-action, we can simplify things by in-

stead considering the R-invariant section 1 ⊗ ωn of Ω
2(N,W ), where W = N × R

4Here we use the identifications P = Γx and P ′ = Gx . It is a covering map, since the right invariant
vector fields, which are identified with the sections of A, span the tangent space of the source fibres.

5Here we use the identifications G = Γx
x and G′ = Gx

x .
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is the trivial line-bundle over N on which λ ∈ R acts by scaling by e−λ (see Exam-

ple 3.7).

Now X → 1 ⊗ ιXωN defines an isomorphism TN →֒→ W ⊗ T∗N. We let L ⊂
TN⊕(W⊗T∗N) be the graph of this morphism. It is easy to check that L is a maximal

isotropic subbundle of TN ⊕ (W ⊗ T∗N), and since ωN is closed, L is a TN W -Dirac

subbundle of the TN W -Courant algebroid on N defined in Example 3.7. We note

that (M, ξ) is a contact manifold if and only if L is the graph of an isomorphism, or

simply L ∩W ⊗ T∗N = 0 and L ∩ TN = 0.

As described in Example 3.7, the quotient of the TN W -Courant algebroid on N

by the R action yields an E1(M) bundle on M or an AV -Courant algebroid, where

A = TN/R, and V is the trivial line bundle on M.

Since 1 ⊗ ωN is R-invariant, it follows that its graph, L, is R-invariant; conse-

quently, L defines an E1(M)-Dirac structure that we denote by L̃ξ . It is perhaps im-

portant to note that L̃ξ is defined intrinsically. We may conclude the following(as

shown in [14]).

Proposition 5.8 (M, ξ) is a contact manifold if and only if L̃ξ ∩ V ⊗ A∗
= 0 and

L̃ξ ∩ A = 0 (under the canonical splitting).

6 CR-structures and Courant Algebroids

Suppose M is a smooth manifold; let H ⊂ TM be a subbundle, and suppose J ∈
Γ(Hom(H, H)) is such that J2

= −id. Then (H, J) is called an almost CR structure.

We let H1,0 ⊂ C⊗H ⊂ C⊗TM denote the +i-eigenbundle of J. If H1,0 is involutive,

then it is called a CR-structure. It is possible to describe this as a Courant algebroid.

We consider the bundle H∗ ⊕ H ≃ T∗M ⊕ H/ Ann(H) and the bundle map

J := − J∗ ⊕ J ∈ Γ(Hom(H∗ ⊕ H, H∗ ⊕ H∗)). It is clear that J
2

= −id. Let

L = ker(J − i) ⊕ Ann(H) ⊂ C ⊗ (TM ⊕ T∗M).

Proposition 6.1 L is involutive under the standard Courant bracket if and only if J

defines a CR structure.

Proof We notice that L = H1,0 ⊕ Ann(H1,0). Therefore, L is involutive under the

Courant bracket only if π(L) = H1,0 is involutive, where π : TM ⊕ T∗M → TM is

the projection. Thus J defines a CR structure.

Conversely, suppose that H1,0 is involutive. Then if I is the ideal generated by

Ann(H1,0) in Γ(C ⊗ ∧T∗M), then I is closed under the differential: dI ⊂ I.

In particular, if we restrict our attention to a local neighborhood on M, and αi is

a local basis for Ann(H1,0) and ξ ∈ Γ(Ann(H1,0)), then dξ =
∑

i βi ∧ αi for some

βi ∈ Ω
1(M, C). Thus, for any X ∈ Γ(H1,0), we have,

ιXdξ =

∑

i

βi(X)αi ∈ Γ(Ann(H1,0)),

and

LXξ = dιXξ + ιXdξ = ιXdξ ∈ Γ(Ann(H1,0)).

It follows that L is involutive under the standard Courant bracket.
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In the next section we shall generalize this construction.

7 Generalized CR structures

Suppose that M is a manifold; A is a Lie algebroid over M; V is an A-module of rank

one over M, and A is an AV -Courant algebroid over M. Suppose further that A has

some distinguished subbundle H ⊂ A, and consider the bundle given by

H = q(π−1(H)), where q : π−1(H) → π−1(H)/ j(V ⊗ Ann(H)).

Then the pairing on A restricts non-degenerately to H, and we have an exact sequence

0 → V ⊗ H∗
j

−→ H
π
−→ H → 0.

Definition 7.1 J ∈ Γ(Hom(H, H)) is called a generalized CR structure if:

(i) J is orthogonal (preserves the pairing on H);

(ii) J
2
= −1;

(iii) L := q−1(ker(J − i)) ⊂ C ⊗ A is involutive.

Remark 7.2 We have that L := q−1(ker(J − i)) ⊂ C ⊗ A is a maximal isotropic

subspace of A, since ker(J − i) is a maximal isotropic subspace of H. In particular,

since we assume that L is involutive, it is an AV -Dirac structure.

Remark 7.3 Here we have relaxed the requirement L ∩ L̄ = 0 in the definition of

a generalized complex structure. While we have allowed L ∩ L̄ to be non-trivial, it

must lie in j(V ⊗ Ann(H)) ⊂ V ⊗ A∗. As pointed out in Remark 2.2, this can be

interpreted as saying that L∩ L̄ only fails to be trivial up to an “infinitesimal”. On the

other hand, we still require that L be an AV -Dirac structure.

This is in contrast to the approach taken by generalized CRF structures, intro-

duced by Izu Vaisman in [26], which requires L ∩ L̄ = 0, but does not require L to be

a Dirac structure.

It is well known that one can canonically associate a Poisson structure with ev-

ery generalized complex structure. The analogue for generalized CR structures is

to endow V ⊗ A∗ with a non-trivial Lie algebroid structure, which we shall do in a

canonical fashion following the corresponding argument given for generalized com-

plex structures in [12].

We have an inclusion i : H → A, and consequently, a map J ◦ j ◦ (id ⊗ i∗) : V ⊗
A∗ → H, which (abusing notation), we shall simply call J. We consider the family of

subspaces of A given by

Dt := etJ(V ⊗ A∗) + V ⊗ Ann(H) = q−1(etJ(V ⊗ H∗)).

Since etJ
= cos(t) + sin(t)J : H → H is orthogonal, and j(V ⊗ H∗) is a lagrangian

subspace of H, it follows that Dt is lagrangian for each t .

The following proposition is a slight generalization of a result of Gualtieri [12].
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Proposition 7.4 (Gualtieri) The family Dt of almost AV -Dirac structures is integrable

for all t.

Proof Let ξ1, ξ2 ∈ Γ(V ⊗A∗), then since V ⊗A∗ ⊂ L⊕ L̄, we may choose X j ∈ Γ(L)

and Y j ∈ Γ(L̄), such that ξ j = X j +Y j . It follows that Jξ j = iX j − iY j +V ⊗Ann(H).

In fact, since L ∩ L̄ = V ⊗ Ann(H), by choosing X j and Y j appropriately, we may

suppose that iX j − iY j is any given representative of J ◦ i∗(ξ j) in π−1(H). Abusing

notation, we will use the term J(ξ j) and our particular choice of representative iX j −
iY j interchangeably. Then,

JJξ1, Jξ2K − Jξ1, ξ2K = JiX1 − iY1, iX2 − iY2K − JX1 + Y1, X2 + Y2K

= −2JX1, X2K − 2JY1,Y2K

and

JJξ1, ξ2K − Jξ1, Jξ2K = JiX1 − iY1, X2 + Y2K − JX1 + Y1, iX2 − iY2K

= 2iJX1, X2K − 2iJY1,Y2K.

Thus, since L and hence L̄ are involutive, we have JJξ1, Jξ2K−Jξ1, ξ2K+V ⊗Ann(H) =

J(JJξ1, ξ2K − Jξ1, Jξ2K) + V ⊗ Ann(H).

We let a = cos(t) and b = sin(t), and we have,

J(a + bJ)ξ1, (a + bJ)ξ2K

= ab(Jξ1, Jξ2K + JJξ1, ξ2K) + b2JJξ1, Jξ2K

= ab(Jξ1, Jξ2K + JJξ1, ξ2K) + b2(JJξ1, Jξ2K − Jξ1, ξ2K).

So modulo V ⊗ Ann(H), we see that

J(a+bJ)ξ1, (a+bJ)ξ2K+V ⊗Ann(H) = b(a+bJ)(Jξ1, Jξ2K+JJξ1, ξ2K)+V ⊗Ann(H)

Since Jξ1, Jξ2K + JJξ1, ξ2K ∈ V ⊗ A∗, it follows that (cos(t) + sin(t)J)(V ⊗ A∗) +

V ⊗ Ann(H) is involutive.

We next consider the map P : V ⊗ A∗ → H
i
−→ A, which for ξ, η ∈ V ⊗ A∗, is

given by

〈P(ξ), η〉 =
〈

∂
∂t
|t=0etJ(ξ), η

〉

= 〈Jξ, η〉 (= 〈i ◦ π ◦ J ◦ j ◦ i∗(ξ), η〉).

Clearly, since J is an orthogonal almost complex structure on H, P will be given by

an element of Γ(V ∗ ⊗ ∧2A), which we will also denote by P. Adapting a proposition

given in [12], we have the following.

Proposition 7.5 (Gualtieri) The bivector field P = i ◦ π ◦ J ◦ j ◦ i∗ : V ⊗ A∗ → A

defines a Lie algebroid structure on V ⊗ A∗. The bracket is given by

[ξ, η] = ιP(·,ξ)dη − ιP(·,η)dξ + d(P(ξ, η))),

where ξ, η ∈ V ⊗ A∗, and the anchor map is given by ξ → a ◦ P(ξ, ·)V ⊗ A∗ → TM,

where a : A → TM is the anchor map of A. Furthermore, the map ξ → a◦P(ξ, ·) : V ⊗
A∗ → A is a Lie-algebroid morphism.
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The proof is an adaptation of one found in [12].

Proof We choose a splitting of the AV -Courant algebroid and use the isomorphism

and notation described in Proposition 2.7. Then if we choose t sufficiently small, the

AV -Dirac structures Dt can be described as the graphs of βt ∈ Γ(V ∗ ⊗ ∧2A).

In [24], it was shown that the integrability condition of a twisted Poisson structure

β over a 3-form background γ is [β, β] = ∧3β̃(γ), where β̃ : T∗M → TM is given

by β̃(ξ)(η) = β(ξ, η). We would like to derive a similar equation for βt , but we have

not defined a bracket for sections of V ∗ ⊗ ∧2A. In order to define such a bracket, we

first define a sheaf of rings over M.

We let F := (S(V ) ⊗ S(V ∗))/I, where S(V ) denotes the symmetric algebra gener-

ated by V , and I is the ideal generated by u⊗ f − f (u) for f ∈ Γ(V ∗) and u ∈ Γ(V ).

Since V is one dimensional, if t ∈ Γ(V ) is a local basis, then F is locally isomorphic

to C∞(M)[t, t−1] as a ring. It is clear that it has a well-defined Z grading, which for

a homogeneous v ∈ F, we denote by ṽ.

Γ(S(V )⊗ S(V ∗)) is a Γ(A) module, where sections of Γ(A) act as derivations, and

it is easy to check that Γ(I) is a sub-module. Thus it is clear that Γ(A) acts on Γ(F)

by derivations satisfying the Leibniz rule with respect to the ring structure on F.

We define a bracket on F ⊗∧∗A, as follows (for v, w ∈ Γ(F) and P, Q ∈ Γ(∧∗A)):

• [X, v] = Xv for any X ∈ Γ(A), and [v, w] = 0;
• [P ∧ Q, v] = P ∧ [Q, v] + (−1)|Q|[P, v] ∧ Q;
• [P, Q] is given by the Schouten–Nijenhuis bracket;
• [vP, wQ] = (v[P, w])Q − (−1)(|P|−1)(|Q|−1)(w[Q, v])P + vw[P, Q].

If we write |vP| = i for P ∈ ∧iA, and deg(vP) = (ṽ, |vP|), then it is clear that our

bracket satisfies the following identities (for homogeneous a, b, c ∈ Γ(F ⊗ ∧∗A)):

• deg(ab) = deg(a) + deg(b) and deg([a, b]) = deg(a) + deg(b) − (0, 1);
• (ab)c = a(bc) and ab = (−1)|a||b|ba;
• [a, bc] = [a, b]c + (−1)(|a|−1)|b|b[a, c];
• [a, b] = −(−1)(|a|−1)(|b|−1)[b, a];
• [a, [b, c]] = [[a, b], c] + (−1)(|a|−1)(|b|−1)[b, [a, c]].

We next extend d to a map d : F ⊗ ∧iA∗ → F ⊗ ∧i+1A∗ in the obvious way. We

also have a natural F-bilinear pairing on Γ(F ⊗ ∧∗A∗) × Γ(F ⊗ ∧∗A), which for

vi , w j ∈ F, αi ∈ Γ(A∗), and X j ∈ Γ(A), is given by

〈(v1 ⊗α1) · · · (vp ⊗αp), (w1 ⊗X1) · · · (wq ⊗Xq)〉 =

{

0 if p 6= q,

det(viw j ⊗ αi(X j)) if p = q.

We define a morphism ι : F ⊗ ∧∗A → End(F ⊗ ∧∗A∗) by 〈ξ, PQ〉 = 〈ιPξ, Q〉. For

P ∈ F ⊗ A, ιP is a derivation.

We also define a morphism ῐ : F⊗∧∗A∗ → End(F⊗∧∗A) by 〈ξη, P〉 = 〈ξ, ῐ(η)P〉.
For α ∈ F ⊗ A∗, ῐ(α) is a derivation on the right. Namely, ῐ(α)(PQ) = Pῐ(α)Q +

(−1)|Q|(ῐ(α)P)Q (where P, Q ∈ F ⊗ ∧∗A are homogeneous).

Next, we notice that ι[P,Q] = −[[ιQ, d], ιP]. This is easy to check, following the

argument given in [20]. Also following an argument in [20] one can verify that, for
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η ∈ Γ(F ⊗ A∗),

ῐ(η)[P, Q] − [P, ῐ(η)Q] − (−1)|Q|−1[ῐ(η)P, Q] =

(−1)|Q|−2(ῐ(dη)(PQ) − Pῐ(dη)Q − (ῐ(dη)P)Q).

From this, we calculate, for any β ∈ Γ(F ⊗ ∧2A) and ξ, η ∈ Γ(F ⊗ A∗),

[ῐ(ξ)β, ῐ(η)β] =
1
2
ῐ(ξη)[β, β] + [β, 〈ηξ, β〉] + 1

2
(ῐ(ηdξ)β2 − ῐ(ξdη)β2)

− 〈dξ, β〉ῐ(η)β + 〈dη, β〉ῐ(ξ)β.

Furthermore, it is not difficult to verify that [β, 〈ηξ, β〉] = ῐ(dβ(η, ξ))β, while

1
2
(ῐ(ηdξ)β2 − ῐ(ξdη)β2) − 〈dξ, β〉ῐ(η)β + 〈dη, β〉ῐ(ξ)β = ῐ(ιῐ(ξ)βdη − ιῐ(η)βdξ)β.

Thus, we have, for β ∈ Γ(V ∗ ⊗ ∧2A),

J−ῐ(ξ)β + ξ,−ῐ(η)β + ηKφ

= [ῐ(ξ)β, ῐ(η)β] − ιῐ(ξ)βdη + ιῐ(η)βdξ + d(β(ξ, η)) + ιῐ(ξ)βιῐ(η)βH

= ῐ(ιῐ(ξ)βdη − ιῐ(η)βdξ − d(β(ξ, η)))β − ιῐ(ξ)βdη + ιῐ(η)βdξ + d(β(ξ, η))

+ 1
2
ῐ(ξη)[β, β] + ιῐ(ξ)βιῐ(η)βH.

It follows that βt defines an AV -Dirac structure under our chosen splitting if and only

if 1
2
ῐ(ηξ)[βt , βt ] = ῐ(ιῐ(ξ)βt

ιῐ(η)βt
H)βt . To rewrite this, we let β̃ : F ⊗ A∗ → F ⊗ A be

the map α → −ῐ(α)β. The condition is then [βt , βt ] = 2 ∧3 β̃t (H). We differentiate

both sides by t and evaluate at 0. Since we have P =
∂
∂t

∣

∣

0
βt and β0 = 0, the cubic term

vanishes, and we see that the condition is [P, P] = 0. The result follows immediately

from this.

We also have a bracket { · , · } on Γ(V ), which for v, w ∈ Γ(V ) is given by

(7.1) {v, w} = P(dv, dw).

It satisfies the following properties (for f ∈ C∞(M)):

• { · , · } is bilinear;
• {v, w} = −{w, v};
• {v, f w} = f {v, w} + (a ◦ P(dv)( f ))w;
• {u, {v, w}} = {{u, v}, w} + {v, {u, w}} (for any u, v, w ∈ Γ(V )).

Since V is a line-bundle, this is quite similar to a Poisson structure. In particular,

if U ⊂ M is an open set on which σ ∈ Γ(V |U ) is a local basis such that P(σ) = 0,

then we have a morphism

ρ : C∞(U )
f→ f σ
−−−−→ Γ(V |U ),
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which allows us to define a Poisson structure on U , by

{ f , g} = ρ−1{ρ( f ), ρ(g)}.

In particular, if in some neighborhood U ⊂ M, V admits a non-zero A-parallel

section σ ∈ Γ(V |U ), then P(σ) = 0, and thus U is endowed with a Poisson structure.

In fact, the Poisson structure associated with U in this way is unique up to a constant

multiple. Furthermore, if it exists at one point on a leaf of A, then it exists for any

neighborhood of any point in that leaf.

Remark 7.6 (Poisson Structure on a Leaf of A) Suppose that F ⊂ M is a connected

leaf of the foliation given by A, then a : A|F → TF is a Lie algebroid, and we have an

exact sequence of Lie algebroids given by 0 → L = ker(a) → A|F → TF → 0, where

L is actually a bundle of Lie algebras. The following are equivalent:

• V admits an A|F-parallel section for any neighborhood U ⊂ F;
• L acts trivially on V |F ;
• Lx acts trivially on Vx, for some point x ∈ F.6

Note that, up to a constant multiple, there is a unique A-parallel section of V |F .

Thus, if σ ∈ Γ(V |F) is a non-zero A-parallel section, we can associate a Poisson

structure with F, unique up to a constant multiple.

Remark 7.7 (Jacobi Bundle) A Jacobi bundle, introduced by Marle in [21] and

Kirillov in [16], is a line bundle P → M over a manifold M, together with a bilinear

map { · , · } : Γ(P)×Γ(P) → Γ(P) on the sections of P and a map Γ(P)
s→Xs

−−−→ Γ(TM)

such that

• { · , · } is bilinear;
• {v, w} = −{w, v} (for any v, w ∈ Γ(P));
• {v, f w} = f {v, w} + (Xv( f ))w (for any f ∈ C∞(M) and v, w ∈ Γ(P));
• {u, {v, w}} = {{u, v}, w} + {v, {u, w}} (for any u, v, w ∈ Γ(P)).

It follows that V together with the bracket (7.1) is a Jacobi bundle canonically

associated with the generalized CR structure.

Suppose for some U ⊂ M there is a choice of a local basis σ ∈ Γ(V |U ). We may

consider the isomorphism

ρ : C∞(U )
f→ f σ
−−−−→ Γ(V |U ),

which allows us to define a bracket on C∞(U ) by [ f , g]σ = ρ−1{ρ( f ), ρ(g)}. One

notices that this bracket endows C∞(U ) with a Lie algebra structure that is local in

the sense that the linear operator

D f : C∞(U )
g→[ f ,g]σ

−−−−−→ C∞(U )

6This follows from the fact that for any x, y ∈ F there is a Lie algebroid morphism of A covering
a diffeomorphism of M that takes x to y. In addition these morphisms can be assumed to come from
flowing along a section of A, and hence extend to V .
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is local for all f ∈ C∞(U ). It is an important result (see [11, 16, 25]) that for any

local Lie algebra structure, there exists unique Λ ∈ Γ(∧2TM), and E ∈ Γ(TM) with

[Λ,Λ] = −2Λ ∧ E and [Λ, E] = 0 such that

[ f , g]σ = { f , g}Λ + f LXg − gLX f ,

where { f , g}Λ = ῐd f ῐdgΛ.

The triple (U ,Λ, E) is then called a Jacobi structure. Note however the dependence

of Λ and E on σ; this is unlike the local Poisson structure that (if it exists) is unique

up to a constant multiple.

Example 7.8 (CR Structures) As described in Section 6, a CR-structure on a man-

ifold M can be described by a generalized CR structure. In this case, V can be taken

to be the trivial bundle, and A can be taken to be TM. It follows from the above

discussion that there is a Poisson structure P ∈ Γ(∧2TM) associated with the CR

structure.

If L ⊂ C⊗TM is the CR-structure, and H = Re(L⊕L̄) ⊂ TM, then P(T∗M) ⊂ H.

So the symplectic foliation associated with P is everywhere tangent to H.

Example 7.9 (Quotients of Generalized Complex Structures) If the procedures de-

scribed in Examples 4.3 and 3.4 are applied to a generalized complex structure, then

one obtains a generalized CR structure.

Example 7.10 (Contact Structures and Generalized Contact Structures) Suppose

that M is a contact manifold, then there is a canonical way to associate a generalized

CR structure with M. In particular, if N = M × R is its symplectization, then N

admits a generalized complex structure corresponding to its symplectic structure.

R acts on N, and the quotient is a generalized CR structure on M (in the sense of

Examples 3.7 and 4.4).

This procedure is also described in [14,15], where they describe it as a generalized

contact structure. In fact any generalized contact structure results from the quotient

of generalized complex structure, and as such can also be described as a generalized

CR structure.

Since the Lie algebroid A and the vector bundle V describe an E1(M) structure,

as given in Example 3.3, it can be checked that V does not admit parallel sections,

and thus, in general, P ∈ Γ(V ∗ ⊗ ∧2A) does not describe a Poisson structure, but

rather a Jacobi structure. When the generalized contact structure is simply a contact

structure, then P corresponds to a Jacobi structure describing the contact structure.

To be more explicit, we let M be a contact manifold with contact distribution

ξ ⊂ TM, and N = M × R its symplectization, where we let t : M × R → R be the

projection to the second factor, and ω ∈ Ω
2(N) denote the corresponding symplectic

form. (That is, ω = et (dη + dt ∧ η), where η ∈ Ann(ξ) is nowhere vanishing.) We

note that L ∂
∂t
ω = ω.

Since N is a symplectic manifold, we can associate a canonical generalized com-

plex structure J : TN⊕T∗N → TN⊕T∗N with it on the standard Courant algebroid

0 → T∗N → TN ⊕ T∗N → TN → 0
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(see [12] for details).

The Poisson bivector π ∈ Γ(∧2TN) associated with this generalized complex

structure has the property that L∂/∂tπ = −π (since it is the Poisson bivector cor-

responding to ω). It follows that we can write π = e−t (Λ + ∂/∂t ∧ E) for E ∈ Γ(M),

and Λ ∈ Γ(∧2M). Then [π, π] = 0 implies that

0 = [π, π] =

[

e−t
(

Λ + ∂
∂t
∧ E

)

, e−t
(

Λ + ∂
∂t
∧ E

)

]

= e−2t [Λ,Λ] − 2e−2t
Λ ∧ E + 2e−2t ∂

∂t
∧ [Λ, E].

From this it follows that [Λ,Λ] = −2Λ ∧ E and [Λ, E] = 0, which are the defining

conditions for a Jacobi structure (Λ, E) on M.

Now, we consider the TM ⊕ R − R Courant algebroid structure on M, given by

taking the quotient by the G = R action on N = M × R,

0 → T∗N/G → (TN ⊕ T∗N)/G → TN/G → 0,

and the generalized CR structure on M given by quotient homomorphism

J := J/G : (TN ⊕ T∗N)/G → (TN ⊕ T∗N)/G.

They define an AV -Courant algebroid, where A = TN/G, and the bundle V →
M is trivial, with Γ(V ) ≃ C∞(N)G (this is in fact an E1(M) structure; see [14]).

Abusing notation, we denote by et ∈ Γ(V ) the section associated with the G-invariant

function et ∈ C∞(N).

Then the bivector P ∈ Γ(V ∗ ⊗∧2A) associated with the generalized CR structure

on M is simply e−t (Λ + ∂
∂t
∧ E), and it defines a Jacobi structure on M, with bivector

field Λ and vector field E. Since Λ
n ∧ E 6= 0 (where dim(M) = 2n + 1), this Jacobi

structure corresponds to a contact structure. In fact, the contact distribution is given

by span{ῐαΛ | α ∈ T ∗ M}, and if θ ∈ Ω
1(M) satisfies ῐθΛ = 0 and ῐθE = 1, then

θ is a contact form. It is not difficult to see that this is the original contact structure,

ξ, defined on M. (In fact, if ω = et (dη + dt ∧ η) is the symplectic form on N (where

η ∈ Ann(ξ) is nowhere vanishing), then E is a reeb vector field for η and θ = η.)

We must note that, if instead of trivializing V by the section et ∈ Γ(V ), we made

the transformation et → f et , for some nowhere vanishing f ∈ C∞(M), then the

appropriate changes to the Jacobi structure would be Λ → f Λ, E → f E − ῐd f Λ,

and the transformation for the contact form would be θ → 1
f
θ. Thus it is clear

that the freedom to modify the trivializing section of V by a scalar multiple does

not change the contact distribution and fully accounts for the freedom to change the

contact form by a scalar multiple. Indeed the generalized CR structure is defined

intrinsically.

A Appendix: Proof of Proposition 2.7

Suppose that M is a manifold, A is a Lie algebroid over M, V is an A-module over M,

and A is an AV -Courant algebroid over M.

For X,Y ∈ Γ(A), we have the following identities:
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• [ιX, ιY ] = 0;
• [d, ιX] = LX ;
• [LX, ιY ] = ι[X,Y ];
• [d, d] = 0;
• [LX, d] = 0;
• [LX,LY ] = L[X,Y ].

We will provide the proof we promised for Proposition 2.7, which we restate here.

Proposition A.1 Let φ : A → A be an isotropic splitting. Then under the isomorphism

φ ⊕ j : A ⊕ (V ⊗ A∗) → A, the bracket is given by

JX + ξ,Y + ηKφ = [X,Y ] + LXη − ιY dξ + ιXιY Hφ,

where X,Y ∈ Γ(A), ξ, η ∈ Γ(V ⊗ A∗), and Hφ ∈ Γ(V ⊗ ∧3A∗), with dHφ = 0.

Furthermore, if ψ : A → A is a different choice of isotropic splitting, then ψ(X) =

φ(X) + j(ιXβ), and Hψ = Hφ − dβ, where β ∈ Γ(V ⊗ ∧2A∗).

Proof The proof will follow immediately from the following lemmas.

Lemma A.2 If ξ ∈ Γ(V ⊗ A∗) and e ∈ Γ(A), then Je, j(ξ)K = j(Lπ(e)ξ).

Proof Let e1, e2 ∈ Γ(A), ξ ∈ Γ(V ⊗ A∗),

〈Je1, j(ξ)K, e2〉 = Lπ(e1)〈 j(ξ), e2〉 − 〈 j(ξ), Je1, e2K〉

= Lπ(e1)ιπ(e2)ξ − ιπ([e1,e2])ξ = Lπ(e1)ιπ(e2)ξ − ι[π(e1),π(e2)]ξ

= Lπ(e1)ιπ(e2)ξ − [Lπ(e1), ιπ(e2)]ξ = ιπ(e2)Lπ(e1)ξ = 〈 j(Lπ(e1)ξ), e2〉.

Lemma A.3 If ξ ∈ Γ(V ⊗ A∗) and e ∈ Γ(A), then J j(ξ), eK = − j(ιπ(e)dξ).

Proof

J j(ξ), eK = D〈 j(ξ), e〉 − Je, j(ξ)K = j(dιπ(e)ξ) − j(Lπ(e)ξ)

= j(dιπ(e)ξ − (ιπ(e)dξ + dιπ(e)ξ)) = − j(ιπ(e)dξ).

Lemma A.4 If φ : A → A is an isotropic splitting and if X,Y ∈ Γ(A), then

Jφ(X), φ(Y )K − φ([X,Y ]) = j(ιXιY H),

where H ∈ Γ(V ⊗ ∧3A∗).

Proof Let φ be an isotropic splitting, and X,Y, Z ∈ Γ(A). Then

π
(

Jφ(X), φ(Y )K − φ([X,Y ])
)

= 0,

so by exactness of the sequence (2.2), Jφ(X), φ(Y )K−φ([X,Y ]) ∈ j(Γ(V ⊗A∗)). We

define H by

H(X,Y, Z) =
〈

φ(Z), Jφ(X), φ(Y )K − φ([X,Y ])
〉

=
〈

φ(Z), Jφ(X), φ(Y )K
〉
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where the second equality follows since φ is an isotropic splitting. It is obvious that H

is tensorial in Z. Furthermore, making repeated use of the fact that φ is an isotropic

splitting, we check that H is skew-symmetric:

〈φ(Z), Jφ(X), φ(Y )K〉 =
〈

φ(Z),−Jφ(Y ), φ(X)K + D〈φ(X), φ(Y )〉
〉

= −
〈

φ(Z), Jφ(Y ), φ(X)K
〉

and

0 = LX〈φ(Z), φ(Y )〉 =
〈

Jφ(X), φ(Z)K, φ(Y )
〉

+
〈

φ(Z), Jφ(X), φ(Y )K
〉

It follows that H ∈ Γ(V ⊗ ∧3A∗).

Lemma A.5 Using the notation of the previous lemmas, dH = 0.

Proof Using the fact that [LX, ιY ] = ι[X,Y ], it is easy to show that

dιZιY ιX + ιZιY ιXd = LZιY ιX + LY ιXιZ + LXιZιY + ιZι[Y,X] + ιY ι[X,Z] + ιXι[Z,Y ].

Let φ : A → A be an isotropic splitting. We shall use the identification

A ⊕ (V ⊗ A∗)
φ⊕ j

−−→ A

explicitly throughout this section. We have, for X,Y, Z ∈ Γ(A),

JX,Y Kφ = [X,Y ] + ιXιY H.

Then using Axiom (AV-1) from the definition of an AV -Courant algebroid, we see

that

0 = JZ, JY, XKφKφ − JJZ,Y Kφ, XKφ − JY, JZ, XKφKφ

= JZ, [Y, X] + ιY ιXHKφ − J[Z,Y ] + ιZιY H, XKφ − JY, [Z, X] + ιZιXHKφ

= JZ, [Y, X]Kφ + LZιY ιXH − J[Z,Y ], XKφ + ιXdιZιY H − JY, [Z, X]Kφ − LY ιZιXH

= JZ, [Y, X]Kφ − J[Z,Y ], XKφ − JY, [Z, X]Kφ

+ LZιY ιXH + LXιZιY H + LY ιXιZH − dιZιY ιXH

= [Z, [Y, X]] + ιZι[Y,X]H − [[Z,Y ], X] − ι[Z,Y ]ιXH − [Y, [Z, X]] − ιY ι[Z,X]H

+ LZιY ιXH + LXιZιY H + LY ιXιZH − dιZιY ιXH

= [Z, [Y, X]] − [[Z,Y ], X] − [Y, [Z, X]] + ιZι[Y,X]H + ιXι[Z,Y ]H + ιY ι[X,Z]H

+ LZιY ιXH + LXιZιY H + LY ιXιZH − dιZιY ιXH

= ιZιY ιXdH.
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Lemma A.6 Let φ : A → A and ψ : A → A be two isotropic splittings, and let Hφ

and Hψ be the elements of Γ(V ⊗ ∧3A∗) associated with the corresponding splittings.

Namely, if X,Y ∈ Γ(A), then Jφ(X), φ(Y )K = φ([X,Y ]) + jιXιY Hφ, and similarly for

Hψ .

Then there exists β ∈ Γ(V ⊗ ∧2A∗) such that ψ(X) = φ(X) + j(ιXβ) and Hψ =

Hφ − dβ.

Proof Since φ and ψ are splittings, we see that

π((φ − ψ)(X)) = 0.

Thus, by the exactness of the sequence (2.2), (φ − ψ)(X) = j ◦ S(X) for some linear

map S : A → V ⊗ A∗.

However since the splittings are isotropic,

0 = 〈φ(X), φ(Y )〉

= 〈ψ(X) + j ◦ S(X), ψ(Y ) + j ◦ S(Y )〉

= S(X)(Y ) + S(Y )(X),

so we can define β ∈ Γ(V ⊗ ∧2A∗) by ιXβ = S(X). Then, we see that

ψ([X,Y ]) + ιXιY Hψ = Jφ(X) + j(ιXβ), φ(Y ) + j(ιY β)K

= φ([X,Y ]) + j(LXιY β − ιY dιXβ + ιXιY Hφ)

= φ([X,Y ]) + j(ιXιY Hφ) + j(LXιY β − ιY LXβ + ιY ιXdβ)

= φ([X,Y ]) + j(ιXιY Hφ) + j(ι[X,Y ]β + ιY ιXdβ)

= φ([X,Y ]) + j(ι[X,Y ]β) + j(ιXιY Hφ − ιXιY dβ)

= ψ([X,Y ]) + j(ιXιY Hφ − ιXιY dβ),

so we have Hψ = Hφ − dβ.
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[22] I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions. Amer. J. Math. 124(2002), no. 3,
567–593. doi:10.1353/ajm.2002.0019

[23] J. M. Nunes da Costa and J. Clemente-Gallardo, Dirac structures for generalized Lie bialgebroids. J.
Phys. A 37(2004), no. 7, 2671–2692. doi:10.1088/0305-4470/37/7/011

[24] P. S̆evera and A. Weinstein, Poisson geometry with a 3-form background. Prog. Theor. Phys. Suppl.
144(2001), 145–154.

[25] K. Shiga, Cohomology of Lie algebras over a manifold I. J. Math Soc. Japan 26(1974), 324–61.
doi:10.2969/jmsj/02620324

[26] I. Vaisman, Generalized CRF-structures. Geom. Dedicata 133(2008), 129–154.
doi:10.1007/s10711-008-9239-z

[27] A. Wade, Conformal Dirac structures. Lett. Math. Phys. 53(2000), no. 4, 331–348.
doi:10.1023/A:1007634407701

Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4
e-mail: david.libland@gmail.com

https://doi.org/10.4153/CJM-2011-009-1 Published online by Cambridge University Press

http://dx.doi.org/10.2307/2001258
http://dx.doi.org/10.4007/annals.2003.157.575
http://dx.doi.org/10.1088/0305-4470/36/1/311
http://dx.doi.org/10.1093/qmath/hag025
http://dx.doi.org/10.1016/j.geomphys.2004.06.006
http://dx.doi.org/10.1088/0305-4470/39/16/006
http://dx.doi.org/10.1007/s00220-004-1265-6
http://dx.doi.org/10.1016/S0040-9383(98)00069-X
http://dx.doi.org/10.1016/S0393-0440(97)80009-5
http://dx.doi.org/10.1353/ajm.2002.0019
http://dx.doi.org/10.1088/0305-4470/37/7/011
http://dx.doi.org/10.2969/jmsj/02620324
http://dx.doi.org/10.1007/s10711-008-9239-z
http://dx.doi.org/10.1023/A:1007634407701
https://doi.org/10.4153/CJM-2011-009-1

