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ON THE RANDOM SAMPLING OF PAIRS,
WITH PEDESTRIAN EXAMPLES
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Abstract

For a collection of objects such as socks, which can be matched according to a
characteristic such as color, we study the innocent phrase ‘the distribution of the color
of a matching pair‘ by looking at two methods for selecting socks. One method is
memoryless and effectively samples socks with replacement, while the other samples
socks sequentially, with memory, until the same color has been seen twice. We prove
that these two methods yield the same distribution on colors if and only if the initial
distribution of colors is a uniform distribution. We conjecture a nontrivial maximum
value for the total variation distance of these distributions in all other cases.
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1. Motivation

The problem that inspires us is the following. Suppose that a drawer has 12 white and 4 black
socks. How many socks must one remove to ensure a pair of matching color? The answer, 3,
illustrates the pigeon-hole principle. The statement of detailed counts, 12 and 4, was arbitrary,
but leads to the problem that we address in this paper: what is the distribution of the color of a
matching pair?

To simplify, we take the limit as the number of socks in the drawer goes to infinity while the
proportions remain constant, e.g. 75 percent white and 25 percent black.

We consider two sensible methods for choosing ‘a matching pair’.

(M1) Select objects two at a time until a pair of the same color is selected in a single round.

(M2) Select objects one at a time until the first pair of the same color is found.

For a second example, if there are 365 equally likely colors for socks then, under
method (M2), the maximum number of socks inspected is 366, but the expected number is
23.6166 . . .. In contrast, the expected number of pairs inspected under method (M1) is exactly
365; hence, the expected number of socks inspected is 730. However, our focus is not on the
number of socks inspected, but rather on the distribution of the color of the matching pair.

In our first example, under method (M1) the odds for a white pair over a black pair are
( 12

16 )2 to ( 4
16 )2; equivalently, 122 to 42, or 32 to 12, so 9

10 th of the time the pair is white,
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and 1
10 th of the time it is black. Under method (M2), the outcomes resulting in a white pair

correspond to ww, bww, and wbw, with total probability (0.75)2 +2(0.75)2(0.25)2 = 27
32 , and

the outcomes resulting in a black pair correspond to bb, wbb, and bwb, with total probability
(0.25)2 + 2(0.75)(0.25)2 = 5

32 .
To summarize, the input is a distribution on colors, p = (0.75, 0.25), and there are two

outputs: under method (M1), the color of a pair is white with probability 0.9 and black with
probability 0.1, while under method (M2), the color of a pair is white with probability 27

32 and
black with probability 5

32 :

p = (0.75, 0.25), M1(p) = (0.9, 0.1), M2(p) = (0.843 75, 0.156 25).

Some natural questions that arise are: for an arbitrary discrete distribution p, for the color
of a single sock,

(Q1) when does M1(p) = M2(p)?

(Q2) how far apart can M1(p) and M2(p) be from each other?

There are practical algorithms [1] for sampling, exploiting the birthday paradox, that require
getting a matching pair whose color has the distribution (M1), but, under a naive oppor-
tunistic implementation, would find only a pair whose color is distributed according to (M2).
Question (Q2) concerns quantifying the error that would result from using the opportunistic
implementation.

2. Pair-derived distributions

In general, we write S for the random color of a single sock, and describe the initial
distribution of colors with

pi := P(S = i).

When the number of colors is finite, say n + 1, then we let the colors be 0, 1, 2, . . . , n, and the
distribution of S is given by p = (p0, p1, . . . , pn). Our initial example had n + 1 = 2 and
p = (p0, p1) = (0.75, 0.25). When the number of colors is infinite, we take the colors to be
0, 1, 2, . . ., and then p = (p0, p1, p2, . . .).

Method (M1) may be described as the color X of a pair of randomly chosen socks, conditional
on getting a match. More precisely, the two chosen socks have colors S and S′, and are
independent and identically distributed. We write

f2 := P(S = S′) =
∑

i

P(S = S′ = i) =
∑

i

p2
i (1)

for the probability that two randomly chosen socks match, so

P(X = i) = P(S = i | S = S′) = p2
i

f2
. (2)

Method (M2) involves a sequential procedure: pick socks one at a time until a duplicate
color is found. Suppose that when this duplicate is found, there have been k other colors, with
k = 0, 1, 2, . . .. Write i for the duplicate color, and J = {j1, . . . , jk} for the single colors,
so i /∈ J and |J | = k. The second occurrence of color i is at time k + 2, and, for the first
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k+1 socks, any permutation of the colors in {i}∪J is valid. Hence, the color Y of the matching
pair found by method (M2) has distribution given by

P(Y = i) = p2
i

∑
k

(k + 1)!
∑
J

pj1 . . . pjk
. (3)

In the sum above, |J | = k and i /∈ J .

3. When are the two pair-picking methods the same?

A discrete distribution is said to be uniform if it has finite support, say of size n+ 1, and, for
each color i in the support, pi = 1/(n + 1).

Proposition 1. If p is uniform then M1(p) = M2(p).

Proof. If p is a uniform distribution then both M1(p) and M2(p) are equal to the original
uniform distribution—by the principle of ignorance, all possible colors are alike, and, hence,
equally likely under each of the derived methods. One could alternatively calculate the point
probabilities of X and Y .

The converse is true, but not so easy to prove; we will first prove an ancillary result in
Lemma 1 below and then summarize in Theorem 1 below.

Lemma 1. Under method (M2), as specified by (3), if

pi ≥ pj > 0 then
P(Y = i)

p2
i

≤ P(Y = j)

p2
j

; (4)

hence, if
pi = pj > 0 then P(Y = i) = P(Y = j).

Also, if

pi > pj > 0 then
P(Y = i)

p2
i

<
P(Y = j)

p2
j

. (5)

Proof. Assume that pi ≥ pj > 0. Define t (i, k) to be the inner sum of (3), so

P(Y = i)

p2
i

=
∑

k

(k + 1)! t (i, k).

To prove (4), it suffices to show that if pi ≥ pj > 0 then t (i, k) ≤ t (j, k) for all k, and to
further prove (5), it suffices to show that if pi > pj then t (i, k) < t(j, k) for at least one k.
With sums always taken over sets of size k,

t (i, k) =
∑
i /∈J

pi1 · · · pik =
∑

i /∈J, j∈J

pi1 · · · pik +
∑
i,j /∈J

pi1 · · · pik ,

i.e. in the sum over sets J excluding i, we take cases according to whether or not j ∈ J . With
a similar decomposition of t (j, k), taking the difference yields

t (i, k) − t (j, k) = k(pj − pi)
∑

J ′ : i,j /∈J ′
pi1 · · · pik−1 ,

where the set J ′ = {i1, . . . , ik−1} has size |J ′| = k − 1, and corresponds to |J | with the
element i or j removed.
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Theorem 1. Over all discrete distributions p, the derived distributions of X and Y , given by
(2) and (3), are equal if and only if p is a uniform distribution.

Proof. Suppose that p is not a uniform distribution. Then we can fix i, j with pi > pj > 0.
From (5) we obtain

P(Y = i)

p2
i

<
P(Y = j)

p2
j

,

and dividing by f2 to relate with (2), and rearranging,

P(X = i)

P(X = j)
>

P(Y = i)

P(Y = j)
, (6)

which implies that X and Y have different distributions.

Theorem 1 gives a complete answer to our first question: when are the two pair-picking
methods the same? Next we turn to the second question: when the two methods are different,
how different can they be?

4. Total variation distance

We wish to quantify the following. Given a probability distribution p, with the matching pair
chosen by method (M1) or method (M2), how far apart are the two distributions with respect
to the color of the matching pair?

A metric on the space of all probability measures is the total variation distance.

Definition 1. For two real-valued random variables X and Y , the total variation distance
between the laws of X and Y is defined as

dTV(L(X), L(Y )) = sup
A⊆R

|P(X ∈ A) − P(Y ∈ A)|,

where the sup is taken over all Borel sets A ⊆ R. When there is no confusion, we write
dTV(X, Y ) instead of dTV(L(X), L(Y )).

This choice of definition is useful for probability, with the desirable property that
dTV(X, Y ) ≤ 1, and it equals sup{f : R→[0,1]}|Ef (X) − Ef (Y )|.

When X and Y are discrete random variables, an equivalent definition is

dTV(X, Y ) = 1

2

∑
k

|P(X = k) − P(Y = k)|.

Furthermore, since
∑

k P(X = k) = ∑
k P(Y = k), we can divide the summands into positive

and negative parts to obtain two more equivalent definitions.

Lemma 2. For each t ∈ R, let t+ = max(0, t) and t− = max(0, −t) denote the positive part
and negative parts of t , respectively; hence, |t | = t+ + t− and t = t+ − t−. Then

dTV(X, Y ) =
∑

k

(P(X = k) − P(Y = k))+ =
∑

k

(P(X = k) − P(Y = k))−. (7)
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For example, when X is a Bernoulli random variable with parameter θ , so that P(X = 1) =
θ = 1−P(X = 0), and Y is Bernoulli with parameter θ ′, the total variation distance is |θ − θ ′|.

Since our sample space is discrete, and the labels of the socks have no intrinsic meaning,
it does not make sense to consider metrics such as the Wasserstein distance, which assign
a metric on the sample space. A popular alternative is the Kullbach–Liebler divergence, or
relative entropy, which has the undesirable property of being asymmetric.

Definition 2. Given a discrete probability distribution p, let X have the method (M1)
distribution given by (2), let Y have the method (M2) distribution given by (3), and define
the discrepancy of p by

D(p) = dTV(X(p), Y (p)).

We could have written D(p) = dTV(X, Y ) as above, but we preferred dTV(X(p), Y (p)),
to emphasize that D(p) is the total variation distance between two probability laws, with each
law being a function of a third underlying law p.

5. Special cases

5.1. Dimension n = 1: two colors of socks

In the n = 1 case, we write p = (p0, p1) = (x, 1−x). The discrepancy D(p) = dTV(X, Y )

simplifies, via Lemma 2, to |d1|, where

d1(x) = P(X = 0) − P(Y = 0) = x2

x2 + (1 − x)2 − (x2 + 2(1 − x)x2).

The expression |d1(x)| is plotted in Figure 1.
Since d1 is a rational function in one variable, it is easily optimized over x ∈ [0, 1].

We obtain five critical numbers: 0, 1, 1
2 ,

x1 := 1

6

(
3 +

√
3(−3 + 2

√
3)

)
.= 0.696 660,

Figure 1: Plot of D(p) for p = (x, 1 − x), as a function of x ∈ [0, 1].
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and the conjugate, 1 − x1. The cusp for |d1(x)| at x = 1
2 is also critical, with |d1(

1
2 ) = 0|

corresponding to the uniform case. Evaluating |d1(x)| at these five critical numbers exhausts
all possible extremes, and the maximum value is d1(x1) = 1/

√
135 + 78

√
3

.= 0.060 846 8.

5.2. Dimension n = 2: three colors of socks

The n = 2 case can be set up similarly to the n = 1 case, but now we have three cases of
possible signs underlying absolute values. Each case is a smooth, two-dimensional surface, and
we find extremes by checking all critical values arising from points where the gradient vanishes
and are on the boundary. To avoid subscripts, we switch notation from p = (p0, p1, p2) to
p = (a, b, c), and define

f (a, b, c) := a2(1 + 2(b + c) + 6bc), T (a, b, c) = a2

a2 + b2 + c2 − f (a, b, c),

so, when p = (a, b, c), with a being the probability that a single sock has color 0, T (a, b, c) =
P(X = 0) − P(Y = 0). By symmetries involving b and c, we have

2D(p) = |T (a, b, c)| + |T (b, a, c)| + |T (c, a, b)|.
A major obstacle to this approach is the boundary, which is complicated, so instead we
parameterize in terms of (x, y) ∈ [0, 1]2 as follows:

p(x, y) = (a, b, c), where t = 1 + x + y, a = 1

t
, b = x

t
, c = y

t
.

Now taking a = a(x, y) and so on, we have three functions defined on [0, 1]2, namely,

T1(x, y) := T (a, b, c), T2(x, y) := T (b, a, c), T3(x, y) := T (c, a, b),

and so the total variation distance is given by

2dTV(X, Y ) = |T1(x, y)| + |T2(x, y)| + |T3(x, y)|.
Since 1 ≥ x, y, we have a ≥ b, c, and, since the largest mass is at 1, we know that, for all
x, y ∈ [0, 1], T1(x, y) ≥ 0. We can eliminate the case in which T1 ≥ 0, T2 ≥ 0, and T3 ≥ 0,
as this implies that T1 = T2 + T3 = 0 since T1 + T2 + T3 = 0. By Lemma 2, this case gives
D(p) = 0, not of interest in the search for the maximum value. There are three remaining
cases of sign to consider. Let

d1(x, y) = T1(x, y) + T2(x, y) − T3(x, y),

d2(x, y) = T1(x, y) − T2(x, y) + T3(x, y),

d3(x, y) = T1(x, y) − T2(x, y) − T3(x, y).

Then max dTV(X, Y ) = max(d1, d2, d3), and so it suffices to check the maximum values of
each of these rational functions.

Let us consider g(x, y) := d1(x, y). Since g is a rational function in two variables, Bezout’s
theorem (see, for example, Theorem 10 of [3, page 420]) guarantees in this case a total of 7×7 =
49 complex solutions, although some of these may be ‘at infinity’. Mathematica® produces
a set of 19 unique, easily verified solutions; when including multiplicities, this accounts for 39
of the total solutions. By hand we can find 10 solutions at ∞, so all 49 solutions have been
addressed.
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The term d2 becomes d1 under the interchange of x and y, so no further work is required
for d2. For d3, the corresponding variety has 6 × 6 = 36 solutions, and a similar calculation
accounts for the 36 solutions guaranteed by Bezout’s theorem.

We obtain the largest value of dTV from the point (x, y) given by

1 + 4x − 14x2 − 4x3 − 34x4 + 20x5 = 0, y = x, for x ∈ (0, 1),

with 2dT V given by the value z ∈ (0, 0.2) that solves

32 000 + 168 192z − 4 557 600z2 + 14 567 472z3 − 821 583z4 + 314 928z5 = 0. (8)

This solution is of the form p = (x2, (1 − x2)/2, (1 − x2)/2) for the value of x2 ∈ [0.5, 0.6]
that solves −5 + 42x2 − 114x2

2 + 168x3
2 − 153x4

2 + 54x5
2 = 0, with

x2
.= 0.582 011, D(p)

.= 0.084 294 2;
the exact value of D(p) is given by (8).

6. Conjectures about the largest possible discrepancy

The weakest conjecture is that there is some nontrivial upper bound on the discrepancy.
Formally, we define the universal constant for the pair discrepancy by

�0 := sup
p

D(p), (9)

where the supremum is over all distributions p on a finite or countable set of colors. Since the
total variation distance is always less than or equal to 1, trivially �0 ≤ 1, and the conjecture is
as follows.

Conjecture 1. The constant defined by (9) is strictly less than 1, i.e. �0 < 1.

6.1. Conjectures for a finite number of colors

If there are a finite number of colors, say n + 1 with n ≥ 0, then we can relabel the colors
as 0, 1, . . . , n so that p = (p0, . . . , pn) with

p0 ≥ p1 ≥ · · · ≥ pn ≥ 0, p0 + p1 + · · · + pn = 1. (10)

Given n > 0 and x ∈ [1/(n + 1), 1), let

p(n, x) =
(

x,
1 − x

n
, . . . ,

1 − x

n

)
, (11)

which, since to x ∈ [1/(n + 1), 1), satisfies (10).
For each n > 0, (11) defines a one-parameter family of probability distributions. At the

endpoint x = 1/(n+1), p(n, x) is a uniform distribution. Now suppose that x ∈ (1/(n+1), 1),
so that p(n, x) has p0 > p1 = p2 = · · · = pn > 0. It is obvious from (2) that P(X = 0) >

P(X = 1) = · · · = P(X = n) > 0, and Lemma 1 implies that P(Y = 0) > P(Y = 1) = · · · =
P(Y = n) > 0. That is, both X and Y have distributions in the same one-parameter family.
Finally, (6) implies that P(X = 0) > P(Y = 0), while, for i = 1 to n, P(X = i) < P(Y = i),

https://doi.org/10.1239/aap/1427814592 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1427814592


Random sampling of pairs 299

Figure 2: The discrepancy D(p) for the one-parameter families (11), n = 1 to 9 (in order from top to
bottom at x = 0.2). For each n, we plot ((n + 1)/n)x − 1/n versus D(p(x, n)) so that all nine graphs

have domain [0,1].

and, hence, using (7), for each n > 0 and x ∈ (1/(n + 1), 1), p = p(n, x) has the following
simplified expression for its discrepancy:

D(p) = P(X = 0) − P(Y = 0) = x2

x2 + (1 − x)2/n
− x2

n∑
k=0

(k + 1)!
(

n

k

)(
1 − x

n

)k

. (12)

We present plots of these functions, appropriately scaled, in Figure 2.

Conjecture 2. For every nonnegative integer n, among all probability distributions on n + 1
colors, the maximum value of D(p) is achieved by a distribution of the form p(n, xn).

A slightly stronger conjecture is the following.

Conjecture 3. For every nonnegative integer n, among all probability distributions on n + 1
colors, the maximum value of D(p) is achieved uniquely by p(n, xn), where xn =
argmaxx D(p(n, x)).

We cannot prove Conjecture 2, but we believe it to be true for the following reasons.

• It is true trivially for n = 0 and n = 1, and, by Section 5.2, for n = 2.

• By broad analogy, many symmetric payoff functions achieve their extreme values at points
with lots of symmetry. Indeed, Theorem 1 asserts that, for each n, D(p) achieves its
minimum value, 0, at the uniform distribution, corresponding to the maximum conceivable
symmetry in p, while the family in (11) corresponds to breaking symmetry somewhat,
but as little as possible.

• The one-parameter family (11) arises in other extremal problems which share the feature
that the labels on the colors are irrelevant, and only the values of the probabilities
matter. In particular, in information theory, the one-parameter families show that ‘Fano’s
inequality is sharp’; see Cover and Thomas [2, Equation (2.135), page 40].
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• For the moderate values n = 3, 4, . . . , 8, when generating a million random points from
the n-dimensional region specified by (10), the largest observed D(p) in the sample came
from a p that was close, by eye, to the form of (11).

7. Limit analysis of the one-parameter family

Theorem 2 describes a limit function �(c), and a plot of this function is shown in Figure 3.

Theorem 2. For c ∈ (0, ∞), define

�(c) = c2

1 + c2 −
∫ ∞

0
c2te−ct−t2/2 dt. (13)

For any c ∈ (0, ∞) and n > 1/c2, let p(n) = p(n, c/
√

n) be the distribution governed
by (11) with x = c/

√
n. Then

lim
n→∞ D(p(n)) = �(c), (14)

where � is defined by (13).

Proof. Extend method (M2) beyond the time of the first matching pair, i.e. pick socks forever.
For each color i, let Ni be the number of sock picks needed to get the second sock of color i.
As the color varies, these random variables are dependent, since, for any two distinct colors i, j

and time n ≥ 2, 0 = P(Ni = Nj = n) < P(Ni = n) P(Nj = n). There is a standard
technique to deal with this dependence, used in Markov chains (see, for example, [6]), which
is to take a sequence of independent, exponentially distributed holding times Y1, Y2, . . ., with
P(Yn > t) = e−t , and declare that the nth sock arrives at time Y1 +Y2 + · · ·+Yn. The number
of socks picked by time t is thus Poisson distributed, with mean t . Let Ci(t) denote the number
of socks of color i chosen by time t . As i varies, the counts Ci(t) are mutually independent;
this observation is known as Poissonization (see, for example, Exercise XII.6.3 of [4]). With
values in (0, ∞), the time Ti at which color i is first seen for the second time can be expressed
as Ti = Y1 + · · · + YNi

. The distribution of the color of the first matching pair found, initially
specified by (3), can also be expressed as

P(Y = i) = P

(
Ti < min

j �=i
Tj

)
.

For each color i, the times at which socks of color i arrive form a Poisson arrivals process with
rate pi , and, as the color varies, these processes are mutually independent; in particular, the
second arrival times Ti are mutually independent.

We are considering socks distributed according to p(n, c/
√

n), that is, with y := (1−c/
√

n),

p0 = c√
n

, p1 = y

n
, p2 = y

n
, . . . , pn = y

n
. (15)

Speed up time by a factor of
√

n; now socks of color 0 arrive at rate c, and, for each other color
i = 1 to n, socks of color i arrive at rate pi

√
n = y/

√
n. For t > 0 and each i = 1 to n, the

number Z of socks of color i collected by time t is Poisson with parameter λ = ty/
√

n, and
the event {Ti > t} is the event {Z < 2} = {Z = 0 or 1}, with probability

P(Ti > t) = exp

(
− ty√

n

)(
1 + ty√

n

)
= 1 − t2y2

2n
+ O(n−3/2).
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Figure 3: Plot of c versus �(c) for c = 0 to 10. The maximum occurs at c0
.= 1.514 and has the value

�(c0)
.= 0.183 20.

The event {min(T1, . . . , Tn) > t} is the intersection of the events {Ti > t}, so, using the
mutual independence, together with y → 1, for each t > 0,

P(min(T1, . . . , Tn) > t) =
(

1 − t2y2

2n
+ O(n−3/2)

)n

→ exp

(
− t2

2

)
.

Finally, we argue that the density of T0, the second arrival time in a Poisson process with rate c,
is given by f (t) = c2te−ct . This is a standard fact, known to some as the density of the gamma
distribution with shape parameter 2 and scale parameter c. Using the independence of T0 and
min(T1, . . . , Tn), we can condition on the value t for T0 to obtain

Pn(Y = 0) = P(min(T1, . . . , Tn) > T0)

=
∫ ∞

0
P(min(T1, . . . , Tn) > t)c2te−ct dt

→
∫ ∞

0
c2te−cte−t2/2 dt. (16)

The above amounts to a calculation of the limit, as n → ∞, of Pn(Y = 0), corresponding
to method (M2) when the underlying colors come from (15).

Of course, we must justify the passage to the limit in (16). Here we have fn(t) :=
P(min(T1, . . . , Tn)) → exp(−t2/2) =: f (t) pointwise for each t > 0, but we claim in (16)
that the integrals also converge. Interpreting the (improper) integral as the Lebesgue integral,
or alternatively as the Riemann integral, proving convergence in either case is a straightfor-
ward exercise; see, for example, Exercise 15 of [5, Chapter 2] for the Lebesgue integral and
Exercise 12 of [7, Chapter 7] for the Riemann integral.

For method (M1) the calculation is easier: using (1), we have f2 = p2
0 + p2

1 + · · · + p2
n =

(c/
√

n)2 + n(y/n)2 = c2/n + y2/n and

Pn(X = 0) = p2
0

f2
= c2/n

c2/n + y2/n
= c2

c2 + y2 → c2

c2 + 1
.
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At (12) we had already argued that once n is large enough that p0 > p1, we have the
simplification, for our one-parameter family, that D(p(n)) = Pn(X = 0) − Pn(Y = 0).
Combining this calculation of D(p(n)) with the limit values derived for Pn(Y = 0) and
Pn(X = 0), (14) follows.

We note that instead of invoking Poissonization, as in the above proof, we can argue directly
with the explicit expression in (12), to show that, under x = c/

√
n and k = t

√
n, the sum

in (12) is a Riemann approximation for
∫ ∞

0 c2te−cte−t2/2 dt .

8. Discussion

If Conjecture 2 is true, it will follow that Conjecture 1 is also true, with the value of the
universal constant for a pair of socks given by

�0 = sup
c

�(c) = 0.183 200 062 408 710 6 . . . . (17)

The argument requires two parts. The first part is to show that �0, defined in (9) as the sup of
D(p) over all discrete distributions, is equal to the sup over distributions with finite support.
This is a ‘soft’ analysis, showing first that p 
→ D(p) is continuous; hence, given p with
discrepancy greater than �0 − ε, we can find a nearby distribution p′ with finite support,
close enough to p to guarantee that its discrepancy is greater than �0 − 2ε. The second part,
giving the concrete value for �0, uses compactness: given distributions p(n) = p(n, xn) with
discrepancies converging to �0, the values cn := xn

√
n ∈ [0, ∞], n ≥ 1, lie in a compact

set, and, hence, there must be convergent subsequences. If cnk
→ c0 and c0 ∈ (0, ∞), then

the proof of Theorem 2 already shows that the associated discrepancies converge to �(c0). If
cnk

→ c0 with c0 = 0 or c0 = ∞, a small extension of the proof of Theorem 2 would show that
the associated discrepancies would converge to 0. So, indeed, cn → c0 and D(p(n)) → �(c0).

9. Shoes instead of socks: a matching left–right pair

Suppose that instead of wanting to collect a pair of matching socks we want a pair of matching
shoes. Naturally, this means one left shoe and one right shoe, both of the same color. There
are two reasonable ways to extend our study to this situation.

9.1. One distribution for left colors, another distribution for right colors

The setup here involves two discrete probability distributions, say p for the color S of a left
shoe and q for the color S′ of a right shoe. The analog of (1) is

f2 = P(S = S′) =
∑

i

P(S = S′ = i) =
∑

i

piqi

for the probability that a random left shoe and a random right shoe match. We require that, for
at least one value i, piqi > 0. The analog of (2) is the method (M1) distribution for the color
X = X(p, q) of a matching left–right pair:

P(X = i) = P(S = i | S = S′) = piqi

f2
.

For method (M2), we assume that at times 1, 3, 5, . . ., one left shoe is collected, and at times
2, 4, 6, . . ., one right shoe is collected. Suppose that at time k−1 there is not yet a matching left–
right pair, but at time k, there is; then Y = Y (p, q) is the color of the shoe collected at time k.
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(There are other sensible ways to determine the matching color under sequential collection of
shoes, for example, selecting one left and one right shoe each at time 1, 2, 3, . . . and breaking
ties via a coin flip. Even here, choices remain. For example, if the outcome is L1 = red, R1 =
blue, L2 = red, R2 = white, L3 = white, and R3 = red, then the tiebreak might be specified as
equal odds for white versus red, or, since the available matches at time 3 are (L1, R3), (L2, R3),
and (L3, R2), as 2 to 1 in favor of red over white. For this outcome, our specification in the
main text is white, since the earliest match occurs at time 5, when L3 = white is observed.)

The analog of discrepancy is now

D(p, q) = dTV(X(p, q), Y (p, q)).

It is fairly easy to see that, for this situation, the analog of Conjecture 1 is false; that is, the
supremum of the discrepancy over all pairs of distributions is no smaller than the trivial upper
bound on the total variation distance:

1 = sup
p,q

D(p, q). (18)

We give a brief sketch of a proof of (18): with a = a(n) = n−1/4 and b = b(n) = n−2/3, let
p = p(n, a) and q = p(n, b); in other words, p0 = P(S = 0) = a, q0 = P(S′ = 0) = b, and,
for i = 1 to n, pi = P(S = i) = (1 − a)/n and qi = P(S′ = i) = (1 − b)/n, with a = n−1/4

and b = n−2/3. We have p0q0 = n−11/12 and

n∑
i=1

piqi = n
1 − a

n

1 − b

n
∼ 1

n
= o(p0q0),

so the method (M1) distribution converges to a point mass at color 0, i.e. Pn(X = 0) → 1.
To see that the method (M2) distribution has, in the limit, probability 0 of getting color 0,
consider collecting alternately left and right shoes forever. At time m = 2n5/8, we will have
collected n5/8 left and n5/8 right shoes. Thanks to the small value q0 = b = n−2/3, we expect
only n−1/24 left shoes of color 0 at time m, so, with high probability, we do not yet have a
matching pair of color 0. But, at time m, for each color i = 1 to n, the number of left shoes
of color i is Binomial(m, (1 − a)/n), and, hence, is greater than 0 with probability asymptotic
to m/n ∼ n−3/8. Independently, the number of right shoes of color i is greater than 0 with
probability asymptotic to n−3/8; hence, the probability of at least one pair of color i is asymptotic
to n−3/4. The number W of colors i > 0 for which we have a pair has EW ∼ n1/4, and the n

events are negatively correlated with each other, so var W < EW . By Chebyshev’s inequality,
P(W = 0) ≤ var W/(EW)2 = O(n−1/4). So at time m we are unlikely to have any pair of
color 0, and unlikely not to have at least one pair of some other color; hence, Pn(Y = 0) → 0.

9.2. With the constraint p = q

Now suppose that we declare that the distribution p for left shoes and the distribution q for
right shoes must be equal. This does not reduce consideration of the distribution of a matching
pair to the situation for socks; under the alternating left–right procedure, if we get a blue left
shoe at time 1, a red right shoe at time 2, and another blue left shoe at time 3, then we still have
not collected a matching pair.

The analog of Conjecture 1 for the situation of a matching left–right pair of shoes under the
constraint of equal distributions is plausible.
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Figure 4: Plot of �(a, a), the limit discrepancy D(p, q) when p = q = p(n, a/
√

n). The maximum
value 0.199 808 67 . . . occurs at a = 1.562 239 . . ..

Conjecture 4. It holds that
sup
p

D(p, p) < 1. (19)

Furthermore, we can even propose a value for the universal constant for shoes, given by the
left-hand side of (19). It comes from an analog of Theorem 2. This analog of Theorem 2 is
easiest to understand without the constraint p = q.

Theorem 3. For a, b ∈ (0, ∞), define

�(a, b) = ab

1 + ab
−

∫ ∞

0
(ae−at + be−bt − (a + b)e−(a+b)t )e−t2

dt.

For a, b > 0 and sufficiently large n, let

p(n) = p

(
n,

a√
n

)
, q(n) = q

(
n,

b√
n

)
, (20)

as in (11). Then
lim

n→∞ D(p(n), q(n)) = �(a, b).

Proof. The argument closely follows the proof of Theorem 2. We omit details, apart from
sketching the main differences: under the distributions in (20), collecting left–right pairs with
mean 1/

√
n holding times between pairs, the left shoes of color 0 form a rate-a Poisson process

and the right shoes of color 0 form a rate-b Poisson process; P(no left shoe of color 0 by time t)

= e−at , P(no right shoe of color 0 by time t) = e−bt , and in the limit, the two processes are
independent, so P(no left shoe of color 0 and no right shoe of color 0 by time t) = e−(a+b)t .
Inclusion–exclusion and differentiation leads to the limit density of the time T0 at which a
left–right pair of color 0 is found, f (t) = (ae−at + be−bt − (a + b)e−(a+b)t ), instead of the
c2te−ct of Theorem 2. At time t , for each of the n other colors, we expect, asymptotically, t/

√
n

instances on the left shoe and t/
√

n instances on the right shoe, with t2/n for the asymptotic
chance of having a pair. This leads to P(min(T1, . . . , Tn) > t) → exp(−t2), instead of the
exp(−t2/2) of Theorem 2.
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While we do not have evidence for the analog of Conjecture 2—indeed, it seems daunting
to deal with the analog of Section 5.2 for left–right pairs under an equal distribution for left and
right—the analog of Conjecture 1 combined with (17) is the following plausible conjecture.
See Figure 4 for the source of the constant 0.1998 . . . .

Conjecture 5. It holds that

sup
p

D(p, p) = max
a

�(a, a)
.= 0.199 808 674 053.
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