A moduli curve for compact conformally-Einstein Kähler manifolds

Andrzej Derdzinski and Gideon Maschler

Abstract

We classify quadruples (M, g, m, τ) in which (M, g) is a compact Kähler manifold of complex dimension $m>2$ and τ is a nonconstant function on M such that the conformally related metric g / τ^{2}, defined wherever $\tau \neq 0$, is an Einstein metric. It turns out that M then is the total space of a holomorphic $\mathbb{C} P^{1}$ bundle over a compact Kähler-Einstein manifold (N, h). The quadruples in question constitute four disjoint families: one, well known, with Kähler metrics g that are locally reducible; a second, discovered by Bérard Bergery (1982), and having $\tau \neq 0$ everywhere; a third one, related to the second by a form of analytic continuation, and analogous to some known Kähler surface metrics; and a fourth family, present only in odd complex dimensions $m \geqslant 9$. Our classification uses a moduli curve, which is a subset \mathcal{C}, depending on m, of an algebraic curve in \mathbb{R}^{2}. A point (u, v) in \mathcal{C} is naturally associated with any (M, g, m, τ) having all of the above properties except for compactness of M, replaced by a weaker requirement of 'vertical' compactness. One may in turn reconstruct M, g and τ from (u, v) coupled with some other data, among them a Kähler-Einstein base (N, h) for the $\mathbb{C} P^{1}$ bundle M. The points (u, v) arising in this way from (M, g, m, τ) with compact M form a countably infinite subset of \mathcal{C}.

Introduction

This paper may be treated as a sequel to [DM03] and [DM05]. It provides a classification, up to biholomorphic isometries, of compact Kähler manifolds in complex dimensions $m>2$ that are almost-everywhere conformally Einstein. Specifically, we describe all quadruples (M, g, m, τ) which satisfy the following condition.
Condition 0.1. M is a compact complex manifold of complex dimension $m \geqslant 3$ with a Kähler metric g and a nonconstant C^{∞} function $\tau: M \rightarrow \mathbb{R}$ such that the conformally related metric $\tilde{g}=g / \tau^{2}$, defined wherever $\tau \neq 0$, is an Einstein metric.

When $m=2$, we also classify quadruples (M, g, m, τ) satisfying a slightly different condition:
Condition 0.2. Condition 0.1 holds, except for the requirement that $m \geqslant 3$, now replaced by $m=2$. In addition, $d \tau \wedge d \Delta \tau=0$ everywhere in M.

Our classification of quadruples satisfying Conditions 0.1 and 0.2 is summarized in Theorems $0.3,2.3$ and 2.4. By Theorem $0.3, M$ must be the total space of a holomorphic $\mathbb{C} P^{1}$ bundle over a compact Kähler-Einstein manifold (N, h) such that the metrics g and h make the bundle projection $M \rightarrow N$ a horizontally homothetic submersion, in the sense of [Gud90], with totally geodesic fibres.

[^0]
A. Derdzinski and G. Maschler

The moduli curve mentioned in the title plays a prominent role in our construction. It is a subset \mathcal{C} of an algebraic curve in \mathbb{R}^{2}, depending also on the complex dimension $m \geqslant 2$ (see Definition 1.1). Any quadruple (M, g, m, τ) satisfying Condition 0.1 or Condition 0.2 gives rise to a point $(u, v) \in \mathcal{C}$, defined as follows. If g is locally reducible as a Kähler metric, $(u, v)=(0,0)$. Otherwise, we set $u=\min \tau / c$ and $v=\max \tau / c$, with $c \in \mathbb{R} \backslash\{0\}$ characterized by the property that $|\nabla \tau|^{2}$ is a rational function of τ having a unique real pole at c (Remark 3.3). The points obtained in this way form a countably infinite subset of \mathcal{C}, the elements of which will be referred to as p-rational points.

The quadruple (M, g, m, τ) can in turn be explicitly reconstructed from the corresponding p-rational point (u, v) and the integer $m \geqslant 2$ coupled with suitable input data. Those data consist of a compact Kähler-Einstein manifold (N, h) with $\operatorname{dim}_{\mathbb{C}} N=m-1$, a holomorphic line bundle \mathcal{L} over N, a $\mathrm{U}(1)$ connection in \mathcal{L} with a curvature form Ω, and a constant $c \in \mathbb{R} \backslash\{0\}$, which satisfy specific additional requirements. The latter requirements, which involve (u, v) through the values at (u, v) of the functions δ and p defined in $\S 2$, are imposed on the Ricci form $\rho^{(h)}$ of h, its Kähler form $\omega^{(h)}$, and the signum of its Einstein constant κ. Namely, $\operatorname{sgn} \kappa$ must equal the value of δ at (u, v), and one of the following two cases has to occur:

$$
\begin{align*}
& \text { (a) } \kappa \neq 0 \text { and } \Omega \text { equals } \pm \rho^{(h)} \text { times the value of } p \text { at }(u, v) \text {, } \\
& \text { (b) } \kappa=0 \text { and } \Omega \text { is a nonzero real multiple of } \omega^{(h)} \text {, } \tag{0.1}
\end{align*}
$$

with a specific sign \pm in (a) (see Remark 3.1).
In $\S \S 3$ and 4 we use such $m,(u, v)$ and input data to construct examples of quadruples (M, g, m, τ) satisfying Condition 0.1 or Condition 0.2 . Those are the only possible examples: in fact, in § 39 we prove the following classification result.

Theorem 0.3. For any p-rational point (u, v) on the moduli curve \mathcal{C}, with a fixed integer $m \geqslant 2$, input data as above exist. Applying to any such data the construction of § 3 , if $(u, v) \neq(0,0)$, or that of $\S 4$, if $(u, v)=(0,0)$, we always obtain a quadruple (M, g, m, τ) satisfying Condition 0.1 or Condition 0.2.

Conversely, every quadruple (M, g, m, τ) that satisfies Condition 0.1 or Condition 0.2 is, up to a τ-preserving biholomorphic isometry, obtained from the construction of § 3 or $\S 4$ applied to some p-rational point $(u, v) \in \mathcal{C}$ and some input data with the properties just listed.

By requiring the point (u, v) corresponding to a quadruple fulfilling Condition 0.1 or Condition 0.2 to lie in one of four subsets of \mathcal{C}, described in Remark 2.2, we divide these quadruples into the following four disjoint families:
(i) The first, well-known family of such quadruples (M, g, m, τ) involves locally reducible Kähler metrics g on flat $\mathbb{C} P^{1}$ bundles M. For all of them, $\tau=0$ somewhere in M. See $\S 4$.
(ii) A second family of such (M, g, m, τ) was found by Page [Pag78] ($m=2$) and Bérard Bergery [Bér82] ($m \geqslant 3$), who constructed the corresponding conformally-Kähler compact Einstein manifolds $\left(M, g / \tau^{2}\right)$. This time, $\tau \neq 0$ everywhere in M. (See § 44 and [Bes87, ch. $\left.9, \S \mathrm{~K}\right]$.) The Kähler metric conformal to Page's metric was independently discovered by Calabi [Cal82, Cal85] (see also [CV96]). As a consequence of our classification, Page's and Bérard Bergery's examples just mentioned represent the only quadruples (M, g, m, τ) satisfying Condition 0.2 or Condition 0.1 which are globally conformally Einstein, that is, have $\tau \neq 0$ everywhere.
(iii) Our third family exists in every complex dimension $m \geqslant 2$. Its quadruples (M, g, m, τ) all have $\tau=0$ at some point of M. This family is closely related, through a form of analytic continuation, to the second family, while, for $m=2$, it consists precisely of the examples already found by Hwang and Simanca [HS97] and Tønnesen-Friedman [Tøn02]. See § 45.

Conformally-Einstein Kähler manifolds

(iv) Finally, in every odd complex dimension $m \geqslant 9$, we exhibit in $\S 46$ a new, fourth family of quadruples satisfying Condition 0.1. It is distinguished by a natural notion of duality (Remark 28.4): every quadruple in the first three families is its own dual, but none in the fourth family is.
Although Theorem 0.3 completely classifies quadruples (M, g, m, τ) that satisfy Condition 0.1 or Condition 0.2 , it does not even address the question of existence of p-rational points (not to mention their number and the range of values assigned to them by p). We remedy this by providing such information separately for each of the four families. In particular, we show that the number of p-rational points is: one for the first family (§ 4); infinite for the third family (§ 45 and Theorem 2.4); finite in the second and fourth families, where it also varies with m so that, as $m \rightarrow \infty$, it is asymptotic to a positive constant times m^{2} (Theorem 2.3).

The results just quoted also describe the range of values of p for each family, which in turn characterizes the class of line bundles \mathcal{L} that may occur among the input data. See § 40.

Although only p-rational points are directly used in our classification of quadruples satisfying Condition 0.1 or 0.2 , the other points of \mathcal{C} have a similar geometric interpretation. Namely, the last two paragraphs are valid even if one replaces p-rational points with arbitrary points of \mathcal{C}, provided that, instead of compactness of M and N, one only requires M to be vertically compact, which amounts to compactness of the $\mathbb{C} P^{1}$ fibres, but not necessarily of the base N. See Appendix C.

The paper is organized as follows. We define the moduli curve \mathcal{C} in $\S 1$. Then, in § 2, we state our main results, which, in addition to Theorem 0.3 , include a topological description of \mathcal{C} and the theorems, mentioned above, about the number of p-rational points in various subsets of \mathcal{C}.

After describing, in $\S \S 3$ and 4 the two constructions mentioned in Theorem 0.3, we devote Sections 5 through 38 to establishing relevant properties of several rational functions of one or two variables (also depending on an integer $m \geqslant 2$), with the goal - achieved in $\S \S 33$ and 38 of describing the components of \mathcal{C} and the values assumed by p on them. Finally, $\S \S 39$ and 40 contain a proof of Theorem 0.3 and various comments, while in the last six sections we discuss the cardinalities of specific sets of p-rational points.

1. The moduli curve

Following [DM03] we define, for any fixed integer $m \geqslant 1$, rational functions F, E, Σ of $t \in \mathbb{R}$ by

$$
\begin{align*}
& F(t)=\frac{(t-2) t^{2 m-1}}{(t-1)^{m}}, \quad E(t)=(t-1) \sum_{j=1}^{m} \frac{j}{m}\binom{2 m-j-1}{m-1} t^{j-1}, \\
& \Sigma(t)=\sum_{j=1}^{m} \frac{j}{m}\binom{2 m-j-1}{m-1} t^{j-1}, \quad \text { so that } E(t)=(t-1) \Sigma(t) \tag{1.1}
\end{align*}
$$

Any real constants A, B, C now give rise to a rational function Q with

$$
\begin{equation*}
Q(t)=(t-1)[A+B E(t)+C F(t)], \quad \text { for } E, F \text { as in (1.1) } \tag{1.2}
\end{equation*}
$$

(cf. [DM03, formula (21.5)]). For a fixed integer $m \geqslant 2$, let

$$
\begin{equation*}
\mathbf{V}=\operatorname{Span}\{t-1,(t-1) E,(t-1) F\}, \quad \text { with } E, F \text { as in }(1.1) \tag{1.3}
\end{equation*}
$$

t being the identity function. Thus, \mathbf{V} is the three-dimensional real vector space, depending on m, of all rational functions of the form (1.2) with $A, B, C \in \mathbb{R}$.

Given a nontrivial closed interval $I \subset \mathbb{R}$, we will impose on $Q \in \mathbf{V}$ and I one or more of the following five conditions (cf. [DM05, § 19]):

A. Derdzinski and G. Maschler

(I) Q is analytic on I, that is, I does not contain 1 unless $C=0$ in (1.2).
(II) $Q=0$ at both endpoints of I.
(III) $Q \neq 0$ at all interior points of I at which Q is analytic.
(IV) $\dot{Q}=d Q / d t$ exists and is nonzero at both endpoints of I.
(V) The values of \dot{Q} at the endpoints of I exist and are mutually opposite.

Definition 1.1. Let $m \geqslant 2$ be a fixed integer. The moduli curve is the set $\mathcal{C} \subset \mathbb{R}^{2}$ consisting of $(0,0)$ and all (u, v) with $u<v$ for which there exists a function Q in the space \mathbf{V} given by (1.3), satisfying all of conditions $(\mathrm{I})-(\mathrm{V})$ on the interval $I=[u, v]$.

Remark 1.2. Conditions (I) and (III) alone imply that 1 cannot be an interior point of I. In fact, if $1 \in I$, condition (I) gives $C=0$, and so $Q(1)=0$ due to (1.2). Thus, by condition (III), 1 is an endpoint of I.

2. Main results

In this section we state our main results, other than Theorem 0.3 . We begin by defining some functions in the $u v$-plane \mathbb{R}^{2} and subsets of \mathbb{R}^{2}. One such subset, the moduli curve \mathcal{C}, has already been introduced in Definition 1.1.

Most objects discussed here depend on an additional parameter, in the form of an integer $m \geqslant 2$. So does, for instance, the degree $3(m-2)$ symmetric polynomial T with

$$
\begin{equation*}
T(u, v)=\frac{1}{m-1} \sum_{k=m}^{2 m-2}(-1)^{m+k}\binom{2 m-1}{k+1}\binom{k-2}{m-2}(u v)^{2 m-k-2} \Theta_{k}(u, v) \tag{2.1}
\end{equation*}
$$

where $u, v \in \mathbb{R}$ and $\Theta_{k}(u, v)=\sum_{j=1}^{k-1} j(k-j) u^{j-1} v^{k-j-1}$. (Our definition of T, in Lemma 17.3, is different, but we prove equality (2.1) later, in Lemma 30.4(a).)

For the rational function $G=E-F / 2$ of the variable t, where E, F are given by (1.1), we prove in $\S \S 21-22$ the existence and uniqueness of a negative real number z, depending on m, such that $G(z)=0$ (if m is even), or $G(z)=E(0)$ (if m is odd). Using z, we define a function $\delta: \mathcal{C} \rightarrow\{-1,0,1\}$, depending on m, on the moduli curve: we set $\delta=1$ at those $(u, v) \in \mathcal{C} \backslash\{(0,0)\}$ at which $T(u, v)=0$, and $\delta=\operatorname{sgn}[(u-z)(u-1)]$ at all other points $(u, v) \in \mathcal{C}$.

Let p now be the rational function of the variables u, v, depending also on m, and given by

$$
\begin{equation*}
p=\frac{2(u-1) \lambda-u^{2}}{(u-2) u}, \quad \text { where } \lambda=(2-1 / m)[1-B \Sigma(0) / A] \tag{2.2}
\end{equation*}
$$

with $(A, B, C)=(E(u) F(v)-F(u) E(v), F(u)-F(v), E(v)-E(u))$ for E, F, Σ as in (1.1). For u, v with $u \neq 1 \neq v$, these A, B, C are, up to a nonzero overall factor, the unique coefficients such that $Q(u)=Q(v)=0$ for the corresponding Q with (1.2); see Lemma 10.1.

The restriction of p to $\mathcal{C} \backslash\{(0,0)\}$ is nonzero and finite (that is, well defined) at all points with the sole exception, for even m only, of $\left(z, z^{*}\right)$, where $z^{*}=z /(z-1)$. It is also convenient to modify p by declaring its value at $(0,0)$ to be 0 . See $\S 34$ for details.

Definition 2.1. Given a fixed integer $m \geqslant 2$, by a p-rational point we mean any point (u, v) of \mathcal{C} at which either $\delta=0$, or $\delta=-1$ and the value of p is rational, or, finally, $\delta=1$ and p equals n / d for some $n \in \mathbb{Z}$ and $d \in\{1, \ldots, m\}$.

For instance, $(0,0)$ is p-rational, with the values $\delta=-1$ and $p=0$.

Conformally-Einstein Kähler manifolds

Figure 1. The components !, I of \mathcal{C} and, for odd m, the two beams of X, are the thick curve segments, each contained in \mathcal{H} except for the \mathcal{T}-beam of \mathbf{X}, contained in \mathcal{T}. For $m=3$, the set \mathcal{T} consists of the isolated point $(0,0)$ and three disjoint real-analytic curves in \mathbb{R}^{2}, diffeomorphic to \mathbb{R}. (See Remark 30.5.)

Let \mathcal{H} denote the hyperbola $u v=u+v$ in the $u v$-plane \mathbb{R}^{2}, and let $\mathcal{T} \subset \mathbb{R}^{2}$ be the set of zeros of the polynomial (2.1). In Theorem 33.1 we show that the moduli curve \mathcal{C} is a subset of $\mathcal{H} \cup \mathcal{T}$ for odd m, while, if m is even, $\mathcal{C}=\{(u, v) \in \mathcal{H}:(u, v) \neq(1,1)$ and $u \leqslant v\}$. Thus, \mathcal{H} does not depend on m, and \mathcal{C} is the same for all even m. In addition, \mathcal{C} has the following decomposition into connected components:

$$
\begin{equation*}
\mathcal{C}=!\cup \boldsymbol{I} \quad \text { if } m \text { is even; } \mathcal{C}=X \cup!\cup \boldsymbol{I} \text { if } m \text { is odd. } \tag{2.3}
\end{equation*}
$$

Specifically, the X component exists for odd m only and is contained in $\mathcal{H} \cup \mathcal{T}$, so that it is the union of its \mathcal{H}-beam $\mathbf{X} \cap \mathcal{H}$ and \mathcal{T}-beam $\mathrm{X} \cap \mathcal{T}$. The sets X and! depend on m, and the \mathcal{T}-beam $\mathrm{X} \cap \mathcal{T}$ of X is the intersection of \mathcal{T} with $(-\infty, 0) \times(0,1)$. Next, $\mathrm{X} \cap \mathcal{H},!$ and I are subsets of the hyperbola \mathcal{H}, namely, the segments of \mathcal{H} that project onto the following intervals in the u axis: $(-\infty, z)$ (for $\mathbf{X} \cap \mathcal{H}$ and odd m), or $(w, 0$] (for ! and odd m), or $(-\infty, 0]$ (for ! and even m), or $(1,2)$ (for I and any m), with z defined above, and a constant $w \in(z, 0)$ described in $\S 21$, and also depending on the odd integer m.

The symbols $\mathrm{X},!$ and I imitate the topology of the sets in question: $\mathrm{I}, \mathrm{X} \cap \mathcal{H}, \mathrm{X} \cap \mathcal{T}$ and ! are real-analytic submanifolds of \mathbb{R}^{2} and ! is diffeomorphic to $(0,1]$, while the other three are diffeomorphic to \mathbb{R}, and the two beams $\mathrm{X} \cap \mathcal{H}$ and $\mathrm{X} \cap \mathcal{T}$ forming X have a single, transverse intersection. See Figure 1, Proposition 29.1(ii) and Remark 33.3.

Remark 2.2. The four families of quadruples satisfying Condition 0.1 or Condition 0.2 , mentioned in the Introduction, correspond to a decomposition of the moduli curve \mathcal{C} into the following four disjoint subsets, from which the p-rational points then are chosen. For the first family, it is the subset consisting of $(0,0)$ alone; for the second, the I component; for the third, $\boldsymbol{I} \backslash\{(0,0)\}$, augmented (only when m is odd) by the \mathcal{H}-beam $\mathrm{X} \cap \mathcal{H}$ of the X component; and, for the fourth family, the empty set if m is even, or, if m is odd, the \mathcal{T}-beam $\mathrm{X} \cap \mathcal{T}$ minus its unique intersection point with the \mathcal{H}-beam.

The next two results, proved in $\S \S 44-46$ and 38 , describe the 'sizes' of the four families.

A. Derdzinski and G. Maschler

Theorem 2.3. For any given integer $m \geqslant 2$, the set of p-rational points is a countably infinite subset of the moduli curve \mathcal{C}. Its intersections with $\mathrm{I}, \mathrm{X} \cap \mathcal{H}$ and $\mathrm{X} \cap(\mathcal{T} \backslash \mathcal{H})$, which we denote, respectively, by $\mathcal{S}_{m}^{1}, \mathcal{S}_{m}^{\mathcal{H}}$ and $\mathcal{S}_{m}^{\mathcal{T}}$, are all finite, and their cardinalities satisfy the asymptotic relations
(a) $\left|\mathcal{S}_{m}^{1}\right| / m^{2} \rightarrow 3 / \pi^{2} \approx 0.304 \quad$ as $m \rightarrow \infty$,
(b) $\left|\mathcal{S}_{m}^{\mathcal{H}}\right| / m^{2} \rightarrow 9 \sqrt{2}(\sqrt{2}+1) / \pi^{2} \approx 3.113$ as odd $m \rightarrow \infty$,
(c) $\left|\mathcal{S}_{m}^{\mathcal{T}}\right| / m^{2} \rightarrow(6-4 \sqrt{2}) / \pi^{2} \approx 0.035 \quad$ as odd $m \rightarrow \infty$,
where $\mathrm{X}, \mathcal{S}_{m}^{\mathcal{H}}$ and $\mathcal{S}_{m}^{\mathcal{T}}$ are defined for odd m only. The values assumed by p on $\mathcal{S}_{m}^{\mathcal{H}}$, or $\mathcal{S}_{m}^{\mathcal{T}}$, all lie in the interval $(-2,0)$, or, respectively, $(-1,0)$. In addition, we have in the following:
(d) the rational function p maps \mathcal{S}_{m}^{1} bijectively onto the set of all rational numbers in $(0,1)$ with positive denominators not exceeding m;
(e) if m is odd, p assumes the values -1 and $-1+1 / m$ at a unique pair of points of $\mathcal{S}_{m}^{\mathcal{H}}$. Therefore, $\left|\mathcal{S}_{m}^{\mathcal{H}}\right| \geqslant 2 ;$
(f) the set $\mathcal{S}_{m}^{\mathcal{T}}$ is empty if $m \in\{3,5,7\}$, while $\left|\mathcal{S}_{m}^{\mathcal{T}}\right| \geqslant 2$ if m is odd and $m \geqslant 9$. Moreover, $\left|\mathcal{S}_{9}^{\mathcal{T}}\right|=2$ and $\left|\mathcal{S}_{m}^{\mathcal{T}}\right| \geqslant 2(m-17)$ for any odd $m \geqslant 19$.

Theorem 2.4. Given an integer $m \geqslant 2$, the set of p-rational points in the $!$ component of \mathcal{C} is countably infinite.
(i) If m is odd, the values of p on! all lie in $(0,1 / m)$.
(ii) For even m, the set of those p-rational points in! at which $\delta=1$ or, respectively, $\delta=-1$, is mapped by p bijectively onto the set of rational numbers in $(-\infty,-1)$ that have positive denominators not exceeding m or, respectively, onto the set of rational numbers in $[0, \infty)$.

3. Examples with locally irreducible metrics

We now present a construction of quadruples satisfying Condition 0.1 or 0.2 , which is a variation on one described in [DM05]. It uses the fact that, given an integer $m \geqslant 2$ and a p-rational point $(u, v) \neq(0,0)$ on the moduli curve \mathcal{C} (cf. Definitions 1.1 and 2.1),
(i) $1 \notin I$ for the nontrivial closed interval $I=[u, v]$,
(ii) a function Q of the form (1.2) satisfying conditions (I)-(V) of $\S 1$ on I is unique up to a constant factor,
(iii) for Q as in (ii), one has $A=0$ in (1.2) if and only if the value of δ at (u, v) is 0 , while, if $A \neq 0$ in (1.2), the derivative of Q at u equals $m A$ times the value of p at (u, v).
Here δ and p are the functions defined in the lines preceding (2.2).
Assertions (i)-(iii), as well as the existence and uniqueness of the number z (needed to define δ) will be proved later in the text (see Remark 19.3, Lemma 9.1, Remark 38.1, and § 21). However, due to the fundamental role of the construction in the overall structure of the paper, we chose to present it here instead of postponing it until (i)-(iii) have been established. No results obtained in this section will be used before $\S 39$.

We begin the construction by fixing an integer $m \geqslant 2$, a p-rational point $(u, v) \neq(0,0)$ and input data $N, h, \mathcal{L}, \Omega, c$ with the properties listed in and immediately before (0.1). We then let ε be the constant value of $\operatorname{sgn}[c(t-1)]$ for $t \in I=[u, v]$ (cf. (i)) and define $a \in \mathbb{R} \backslash\{0\}$ by requiring that $\Omega=-2 \varepsilon a \omega^{(h)}$ in both cases of (0.1), Then, by (ii),

$$
\begin{equation*}
\varepsilon \in\{1,-1\} \text { and } \varepsilon c(t-1)>0 \text { for every } t \in I \text {, while } Q \geqslant 0 \tag{3.1}
\end{equation*}
$$ on I and $2|a c|$ is the value of $|d Q / d t|$ at the endpoints of I

Conformally-Einstein Kähler manifolds

for a unique rational function Q of the form (1.2) satisfying conditions (I)-(V) of $\S 1$ on I. Thus, the construction does not depend on Q as an additional parameter.

Remark 3.1. We choose the sign \pm in (0.1.a) so that $\pm a c<0$, for a as above. Hence, by (3.1), $\dot{Q}(u)=\mp 2 a c$, where $\dot{Q}=d Q / d t$.

On the other hand, we may view our input data as consisting of c and a compact Kähler Einstein manifold (N, h) of complex dimension $m-1$ having the Ricci form $\rho^{(h)}=\kappa \omega^{(h)}$ for $\kappa=\varepsilon m A / c$, a complex line bundle \mathcal{L} over N, and a $\mathrm{U}(1)$ connection in \mathcal{L} with the curvature form $\Omega=-2 \varepsilon a \omega^{(h)}$,
where A is determined by Q via (1.2) and $\omega^{(h)}$ denotes the Kähler form of (N, h). In fact, our choice of a, which is precisely the formula for Ω in (3.2), also gives $\kappa=\varepsilon m A / c$ for the Einstein constant κ of h. Namely, since we required, before (0.1), that $\delta=\operatorname{sgn} \kappa$, (iii) shows that κ and A are either both zero, or both nonzero. If $\kappa \neq 0$, (0.1.a) yields $-2 \varepsilon a \omega^{(h)}=\Omega= \pm p \kappa \omega^{(h)}$, so that $a=\mp \varepsilon p \kappa / 2$. Therefore, $\varepsilon c k=\mp 2 a c / p=\dot{Q}(u) / p=m A$ by Remark 3.1 and (iii), as required.

Next, let us choose a positive function r of the variable t restricted to the interior of I, such that $d r / d t=\operatorname{acr} / Q$. As a consequence of conditions (II)-(IV) in $\S 1, \log r$ and r have the ranges $(-\infty, \infty)$ and $(0, \infty)$. We may thus treat t along with $\tau=c t$ and Q, restricted to the interior of I, as functions of a new variable $r \in(0, \infty)$, so that $u=\inf t$ and $v=\sup t$ for $t:(0, \infty) \rightarrow \mathbb{R}$.

The total space of the line bundle in (3.2) is denoted by the same symbol \mathcal{L}, and r also stands for the function $\mathcal{L} \rightarrow(0, \infty)$ which, restricted to each fibre, is the norm corresponding to the $\mathrm{U}(1)$ structure. Being functions of $r>0$, both t and $\tau=c t$, as well as Q, become functions on $\mathcal{L} \backslash N$, where $N \subset \mathcal{L}$ is the zero section.

We now define a metric g on the complex manifold $\mathcal{L} \backslash N$ by letting g on each fibre of \mathcal{L} coincide with $Q /(a r)^{2}$ times the standard Euclidean metric, declaring the horizontal distribution of the connection in \mathcal{L} to be g-normal to the fibres, and requiring that g restricted to the horizontal distribution equals $2|\tau-c|$ times the pullback of h under the projection $\mathcal{L} \rightarrow N$.

Finally, let the compact complex manifold M be the projective compactification of \mathcal{L}, that is, the Riemann-sphere bundle obtained when the total spaces of \mathcal{L} and its dual \mathcal{L}^{*} are glued together by the biholomorphism $\mathcal{L} \backslash N \rightarrow \mathcal{L}^{*} \backslash N$ which sends each $\phi \in \mathcal{L}_{y} \backslash\{0\}, y \in N$, to the unique $\chi \in \mathcal{L}_{y}^{*}$ with $\chi(\phi)=1$.

Theorem 19.3 in [DM05] now shows that g and $\tau=c t$ have C^{∞} extensions to M such that the resulting quadruple (M, g, m, τ) satisfies Condition 0.1 or Condition 0.2.

Remark 3.2. The equation $d r / d t=a c r / Q$ determines r only up to a positive constant factor. A different choice of r thus amounts to rescaling the Hermitian fibre metric in \mathcal{L}, and the resulting quadruple is equivalent to the original one under an obvious biholomorphic isometry.

Remark 3.3. The constants c, u, v used in the above construction are in turn uniquely determined by the biholomorphic-isometry type of the resulting quadruple (M, g, m, τ). Specifically, one easily sees that the g-gradient $\nabla \tau$ of τ equals a times the 'identity' vertical field on \mathcal{L}, which in turn gives $g(\nabla \tau, \nabla \tau)=Q(\tau / c)$. Thus, c is the unique real pole of $|\nabla \tau|^{2}$ treated as a rational function of the variable τ (cf. Remark 33.4), while $u=\min \tau / c$ and $v=\max \tau / c$, since $\tau / c=t$.

A purely local definition of c is also possible, even in a much more general situation; see [DM03, Lemma 12.5 (and Corollary 9.3)]. Finally, if m is fixed, u and v depend only on the homothety class of the Riemannian metric on the 2 -sphere obtained by restricting g to some, or any, fibre of the $\mathbb{C} P^{1}$ bundle M. (We will not use this fact, which follows since τ is a Killing potential, while the fibre geometry determines the corresponding Killing field uniquely up to a factor.)

A. Derdzinski and G. Maschler

Remark 3.4. All quadruples (M, g, m, τ) constructed here are locally irreducible in the sense that no open submanifold of (M, g) is biholomorphically isometric to a Cartesian product of lowerdimensional Kähler manifolds.

In fact, the horizontal and vertical distributions on M then consist of eigenvectors of both the Ricci tensor r of g and the second covariant derivative $\nabla d \tau$ of τ relative to g, with some eigenvalue functions λ, μ for r and ϕ, ψ for $\nabla d \tau$, all of which are also functions of t, that is, of τ. (We borrow these notations from [DM03, formula (7.4)], cf. [DM03, § 8].) One then has $Q=2(\tau-c) \phi$ and $(\lambda-\mu) \tau=2(m-1)(\tau-c) d \phi / d \tau$. Thus, in view of conditions (I)-(III) in $\S 1, \phi$ is not constant on any nonempty open subset of M, and so g, restricted to any such subset, cannot be Einstein. Local irreducibility of (M, g) now follows from [DM03, Corollaries 13.2(iii) and 9.3].

4. Other examples

We now describe examples of quadruples (M, g, m, τ) satisfying Condition 0.1 or Condition 0.2 for which g is locally reducible as a Kähler metric.

Given an integer $m \geqslant 2$, real constants $\kappa<0$ and $c \neq 0$, a compact Kähler-Einstein manifold (N, h) of complex dimension $m-1$ with the Ricci tensor $\mathrm{r}^{(h)}=\kappa h$, and a holomorphic line bundle \mathcal{L} over N carrying a fixed flat $\mathrm{U}(1)$ connection, let $\mathcal{E}=N \times \mathbb{R}$ be the product real-line bundle over N with the obvious flat connection and Riemannian fibre metric. Next, let M be the unit-sphere bundle of the direct $\operatorname{sum} \mathcal{L} \oplus \mathcal{E}$. Thus, M is a 2 -sphere bundle over N. Since the direct-sum connection in $\mathcal{L} \oplus \mathcal{E}$ is flat and compatible with the direct-sum metric, its horizontal distribution is both integrable and tangent to the submanifold M, and so it gives rise to an integrable distribution on M, which may also be called horizontal, and whose leaves, along with the $\mathbb{C}{ }^{1}$ fibres, form, locally in M, the factor manifolds of a Cartesian-product decomposition.

Let g now be a metric on M such that the horizontal distribution is g-normal to the fibres and g restricted to it is the pullback of h under the bundle projection $M \rightarrow N$, while g on each fibre equals $(3-2 m) / \kappa$ times the standard unit-sphere metric. Thus, (M, g) is a Kähler manifold since, locally, it is a Riemannian product with the factor manifolds which are a 2 -sphere S^{2} of constant Gaussian curvature $\kappa /(3-2 m)$ and (N, h), while the 2 -sphere factors can be coherently oriented, which makes them Kähler manifolds of complex dimension one.

Finally, let $\tau: M \rightarrow \mathbb{R}$ be the composite $M \rightarrow \mathcal{L} \oplus \mathcal{E} \rightarrow \mathcal{E} \rightarrow \mathbb{R} \rightarrow \mathbb{R}$ of the inclusion mapping of M, followed by the direct-sum projection morphism, further followed by the Cartesian-product projection $\mathcal{E}=N \times \mathbb{R} \rightarrow \mathbb{R}$, finally followed by the multiplication by the nonzero constant c in \mathbb{R}. In terms of a local Riemannian-product decomposition just described, with the S^{2} factor treated as the sphere of radius $\sqrt{(3-2 m) / \kappa}$ about 0 in a Euclidean 3 -space V, our τ is a function on M, constant in the direction of the N factor, and, as a function $\tau: S^{2} \rightarrow \mathbb{R}$, it is the restriction to S^{2} of a nonzero linear homogeneous function $V \rightarrow \mathbb{R}$.

The quadruple (M, g, m, τ) then satisfies Condition 0.1 or Condition 0.2 ; see [DM05, § 18] or [DM03, § 25].

We adopt the artificial (but useful) convention that all quadruples just described are represented by just one p-rational point $(0,0)$ on the moduli curve \mathcal{C}. The objects used in the construction are a special case of input data $N, h, \mathcal{L}, \Omega, c$ of the kind described in the lines preceding (0.1). Namely, $\Omega=0$, and so (0.1.a) holds, since $p=0$ and $\delta=-1$ at the p-rational point (0,0) (see the line following Definition 2.1).

5. Some functional relations

This and the next 28 sections contain a detailed discussion of conditions (I)-(V) of § 1 .

Let F, E and Σ be the rational functions of the real variable t defined by (1.1) for a fixed integer $m \geqslant 2$. By (1.1), the derivative $\dot{F}=d F / d t$ is given by

$$
\begin{equation*}
\text { (a) } \dot{F}(t)=\frac{t^{2 m-2}}{(t-1)^{m+1}} \Lambda(t), \quad \text { where (b) } \Lambda(t)=m t^{2}-2(2 m-1)(t-1)>0 \tag{5.1}
\end{equation*}
$$

The dependence of F, E, Σ on m will usually be suppressed in our notation. Here, however, we make it explicit by writing F_{m}, E_{m}, Σ_{m} rather than F, E, Σ. For $m \geqslant 2$ one then has
(i) $F_{m}(t)=\frac{t^{2}}{t-1} F_{m-1}(t)$,
(ii) $E_{m}(t)=\frac{t^{2}}{t-1} E_{m-1}(t)-\frac{1}{m}\binom{2 m-2}{m-1}, \quad E_{1}(t)=t-1$.

Namely, (5.2.i) follows from (1.1) and (5.2.ii) is obtained by expanding the difference of the two sides into powers of t via (1.1). (See also [DM03, paragraph preceding (21.3)].) Thus,

$$
\begin{equation*}
\frac{E}{F}=\frac{E_{m-1}}{F_{m-1}}-\binom{2 m-2}{m-1} \frac{1}{m F}, \quad \text { where } E=E_{m} \text { and } F=F_{m} \tag{5.3}
\end{equation*}
$$

Consequently, for every $t \in \mathbb{R} \backslash\{0,1,2\}$, induction on $m \geqslant 2$ gives

$$
\begin{equation*}
\frac{d}{d t}[E / F]=-\binom{2 m}{m} \frac{(t-1)^{m}}{(t-2)^{2} t^{2 m}} \tag{5.4}
\end{equation*}
$$

Specifically, the inductive step comes from relation (5.3), in which one differentiates $1 /(m F)$ using (5.1.a), then replaces F with the expression in (1.1), and, finally, applies (5.1.b). Hence

$$
\begin{array}{ll}
\text { (i) } t(t-1)(t-2) \dot{F}(t)=\Lambda(t) F(t) & \text { for all } t \in \mathbb{R} \backslash\{1\}, \\
\text { (ii) } t(t-1)(t-2) \dot{E}(t)=\Lambda(t) E(t)-2(2 m-1)(t-1) \Sigma(0) & \text { for } t \in \mathbb{R} \tag{5.5}
\end{array}
$$

with Λ as in (5.1.b). In fact, (5.5.i) is obvious from (5.1.a) and (1.1), while (5.5.ii) follows if one rewrites (5.4) multiplied by F using the quotient rule for derivatives, (5.5.i), and the definitions of F, Σ in (1.1). Also, by (1.1),

$$
\begin{equation*}
\text { (i) } \Sigma(0)=\dot{\Sigma}(0)=\frac{1}{m}\binom{2 m-2}{m-1}, \quad \text { (ii) } E(0)=-\Sigma(0), \quad \text { (iii) } \dot{E}(0)=0 \tag{5.6}
\end{equation*}
$$

Remark 5.1. The coefficients of the polynomial Σ given by (1.1), for any fixed integer $m \geqslant 1$, are all positive, and so $\Sigma(t)>0$ whenever $t \geqslant 0$. Therefore, all real roots of Σ are negative. The same applies to the derivative $\dot{\Sigma}$ when $m \geqslant 2$. Consequently, by (1.1), $E(u)<0<E(v)$ whenever $0 \leqslant u<1<v$.

Let Q be a rational function of the form (1.2) with some coefficients $A, B, C \in \mathbb{R}$, for a fixed integer $m \geqslant 2$. Then, with $\lambda=(2-1 / m)[1-B \Sigma(0) / A]$,

$$
\begin{equation*}
\frac{\dot{Q}(u)}{m A}=\frac{2(u-1) \lambda-u^{2}}{(u-2) u} \text { if } u \in \mathbb{R} \backslash\{0,1,2\}, \quad A \neq 0 \text { and } Q(u)=0 \tag{5.7}
\end{equation*}
$$

In fact, $t(t-1)(t-2) \dot{Q}(t)=[t(t-2)+\Lambda(t)] Q(t)-(t-1) A \Lambda(t)-2(2 m-1)(t-1)^{2} B \Sigma(0)$, as one sees using (1.2), (5.5) and, again, (1.2). Thus, $u(u-2) \dot{Q}(u)=-A \Lambda(u)-2(2 m-1)(u-1) B \Sigma(0)$ for any $u \in \mathbb{R} \backslash\{1\}$ with $Q(u)=0$, and (5.1.b) yields (5.7).

6. Monotonicity intervals

Let F, E be the rational functions of the variable $t \in \mathbb{R}$, defined by (1.1) with an integer $m \geqslant 2$. By (1.1), (5.1) and (5.4), F (or E / F) has a nonzero derivative everywhere in $\mathbb{R} \backslash\{0,1\}$ (or, respectively, in $\mathbb{R} \backslash\{0,1,2\}$). One also easily sees that the rational functions F and E / F

A. Derdzinski and G. Maschler

of the real variable t have the values/limits at $\pm \infty, 0,1,2$ listed below. One-sided limits, if different, are separated by a vertical arrow indicating the direction of the jump. The slanted arrows show which kind of strict monotonicity the given function has on each of the four intervals forming $\mathbb{R} \backslash\{0,1,2\}$.

value or limit at:	$-\infty$	0		1		2		$+\infty$	
for $F(m$ even $):$	$+\infty$	\searrow	0	\searrow	$-\infty$	\nearrow	0	\nearrow	$+\infty$
for $F(m$ odd $):$	$-\infty$	\nearrow	0	\nearrow	$+\infty \downarrow-\infty$	\nearrow	0	\nearrow	$+\infty$
for $E / F(m$ even $):$	1	\searrow	$-\infty \uparrow+\infty$	\searrow	0	\searrow	$-\infty \uparrow+\infty$	\searrow	1
for $E / F(m$ odd $):$	1	\nearrow	$+\infty \downarrow-\infty$	\nearrow	0	\searrow	$-\infty \uparrow+\infty$	\searrow	1

7. Some inequalities

For the rational functions F, E given by (1.1) with any fixed integer $m \geqslant 2$, we have

$$
\begin{align*}
& \text { (a) } E<F \text { on }(-\infty, 0] \text {, (b) } E>0 \text { on }(1, \infty) \text {, (c) } E>F \text { on }(1, \infty) \text {, } \tag{7.1}\\
& \text { (d) if } m \text { is odd, } E<0 \text { on }(-\infty, 1) \text {. }
\end{align*}
$$

In fact, (7.1.b) is clear from Remark 5.1. Next, (7.1.a) and (7.1.c) follow since (6.1) gives $E / F<1$ and $F>0$ on $(-\infty, 0)$ for even m, and $E / F>1>0>F$ on $(-\infty, 0)$ for odd m, while, for all m, it yields $E / F<0$ and $F<0$ on (1,2) (so that $F<0<E$ there), as well as $E / F>1$ and $F>0$ on $(2, \infty)$. (Also, $E(0)<0<E(2)$ and $F(0)=F(2)=0$ by Remark 5.1 and (1.1).) Finally, for odd m, we have $E<0$ both on $(-\infty, 0$] (from the inequalities just listed) and on (0,1) (from Remark 5.1), which implies (7.1.d).

8. A linear-independence property

With $E(t)$ as in (1.1) for a fixed integer $m \geqslant 2$, we define a polynomial function $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ by

$$
\begin{equation*}
\mathbf{r}(t)=(t-1)^{m} \mathbf{i}+(t-1)^{m} E(t) \mathbf{j}+(t-2) t^{2 m-1} \mathbf{k} \tag{8.1}
\end{equation*}
$$

where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ form the standard basis of \mathbb{R}^{3}. Note that, as $\dot{E}(0)=0$ by (5.6.iii),

$$
\begin{equation*}
\mathbf{r}(0)=-\dot{\mathbf{r}}(0) / m=(-1)^{m}[\mathbf{i}+E(0) \mathbf{j}], \quad \mathbf{r}(1)=-\mathbf{k} . \tag{8.2}
\end{equation*}
$$

Proposition 8.1. For any integer $m \geqslant 2$ and $u, v \in \mathbb{R}$ with $u \neq v$, the vectors $\mathbf{r}(u), \mathbf{r}(v)$ defined as in (8.1) are linearly independent.

Proof. Writing $\mathbf{r}=(\xi, \eta, \zeta)$ we have $\xi(t) \neq 0$ for $t \neq 1$, while $\mathbf{r}(1)=(0,0,-1)$ by (8.2). Therefore, our assertion follows if one of u, v equals 1 . On the other hand, $\zeta(t) / \xi(t)=F(t)$ for $t \neq 1$, with $F(t)$ as in (1.1). This proves our assertion in the case where u and v are both greater than 1 or both less than 1 , since, according to $(6.1), F$ is injective both on $(-\infty, 1)$ and on $(1, \infty)$.

Therefore, switching u and v if necessary, we may assume that $u<1<v$. Contrary to our assertion, let $\mathbf{r}(u)$ and $\mathbf{r}(v)$ be linearly dependent. Now (8.1) gives $(u-1)^{-m} \mathbf{r}(u)=(v-1)^{-m} \mathbf{r}(v)$, and hence, by $(1.1), F(u)=F(v)$ and $E(u)=E(v)$. However, the last equality contradicts the relation $E(u)<E(v)$, which is immediate both when $0 \leqslant u<1<v$ (see Remark 5.1) and in the case where $u<0<1<v$ (since (7.1.a) and (7.1.c) then yield $E(u)<F(u)=F(v)<E(v))$. This contradiction completes the proof.

9. Condition (II) of $\S 1$

For $Q \in \mathbf{V}$ and \mathbf{V} as in (1.3) with a fixed integer $m \geqslant 2$, we have

$$
\begin{align*}
& \text { (i) }(t-1)^{m-1} Q(t)=\mathbf{p} \cdot \mathbf{r}(t) \text {, and } \\
& \text { (ii) }(t-1)^{m} \dot{Q}(t)=(t-1) \mathbf{p} \cdot \dot{\mathbf{r}}(t)-(m-1) \mathbf{p} \cdot \mathbf{r}(t) \text {, with } \tag{9.1}\\
& \text { (iii) } \mathbf{p}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k} \in \mathbb{R}^{3} \text {, }
\end{align*}
$$

where $\mathbf{r}(t), \mathbf{i}, \mathbf{j}, \mathbf{k}$ are as in (8.1), while • denotes the inner product of \mathbb{R}^{3}, and A, B, C correspond to Q via (1.2). (In fact, (1.2) gives (9.1.i), and differentiation then leads to (9.1.ii).) Thus, given such Q, \mathbf{V} and m, we have
(a) $\dot{Q}(0)=0 \quad$ whenever $Q \in \mathbf{V}$ and $Q(0)=0$,
(b) if $Q \in \mathbf{V}$, then $Q(u)=0$ if and only if $\mathbf{p} \cdot \mathbf{r}(u)=0$,
for any $u \in \mathbb{R}$, where $\mathbf{p} \in \mathbb{R}^{3}$ corresponds to Q as in (9.1.iii). Namely, from (8.2) we have $\mathbf{p} \cdot \mathbf{r}(0)=$ $-\mathbf{p} \cdot \dot{\mathbf{r}}(0) / m=(-1)^{m}[A+B E(0)]$ which, combined with (9.1), gives $\dot{Q}(0)=-Q(0)=A+B E(0)$, and hence (9.2.a). Next, when $u \neq 1$, (9.2.b) is clear from (9.1.i), while, if $u=1$, condition $Q(1)=0$ is, by (1.2) with (1.1), equivalent to $C=0$, that is (cf. (9.1.iii) and (8.2)), to $0=\mathbf{p} \cdot \mathbf{k}=-\mathbf{p} \cdot \mathbf{r}(1)$.

Lemma 9.1. Given an integer $m \geqslant 2$ and a nontrivial closed interval $I \subset \mathbb{R}$, those $Q \in \mathbf{V}$ which vanish at both endpoints of I form a one-dimensional vector subspace of the space \mathbf{V} with (1.3). Thus, $Q \in \mathbf{V} \backslash\{0\}$ satisfying condition (II) of $\S 1$ on I exists, for any such m, I, and is unique up to a nonzero constant factor.

Explicitly, up to a factor, $(t-1)^{m-1} Q(t)=[\mathbf{r}(u) \times \mathbf{r}(v)] \cdot \mathbf{r}(t)$, where u, v denote the endpoints of I and \mathbf{r} is given by (8.1), while and \times denote the inner product and vector product in \mathbb{R}^{3}.

In fact, up to a factor, \mathbf{p} in (9.1.i) equals $\mathbf{r}(u) \times \mathbf{r}(v) \neq \mathbf{0}$, since $\mathbf{r}(u)$ and $\mathbf{r}(v)$ are linearly independent (Proposition 8.1) and orthogonal to \mathbf{p} (by (9.2.b)).

10. A determinant formula for $Q(t)$

Given an integer $m \geqslant 2$ and a nontrivial closed interval I, let $Q \in \mathbf{V} \backslash\{0\}$, with \mathbf{V} as in (1.3), be a function satisfying condition (II) of $\S 1$ on I. Such Q, which exists and is unique up to a factor, for any m and I, is explicitly described in Lemma 9.1. Let us now also assume that $u \neq 1 \neq v$, where u and v are the endpoints of I. With F, E as in (1.1) for our fixed $m \geqslant 2$, (8.1) and (1.1) give $\mathbf{r}(t)=(t-1)^{m} \mathbf{w}(t)$ for $t \neq 1$, with $\mathbf{w}(t)=\mathbf{i}+E(t) \mathbf{j}+F(t) \mathbf{k}$. Thus, $(t-1)^{-1} Q(t)=$ $(u-1)^{m}(v-1)^{m}[\mathbf{w}(u) \times \mathbf{w}(v)] \cdot \mathbf{w}(t)$ by Lemma 9.1, that is, up to another factor,

$$
Q(t)=(t-1) H(t) \quad \text { for all } \quad t \in \mathbb{R} \backslash\{1\}, \quad \text { where } \quad H(t)=\operatorname{det}\left[\begin{array}{ccc}
1 & E(u) & F(u) \tag{10.1}\\
1 & E(v) & F(v) \\
1 & E(t) & F(t)
\end{array}\right]
$$

Writing H, F, E for $H(t), F(t), E(t)$, and ()$^{\cdot}=d / d t$, we have, by (10.1),
(i) $H=E_{0} F_{1}-F_{0} E_{1}+\left(F_{0}-F_{1}\right) E+\left(E_{1}-E_{0}\right) F$,
(ii) $\dot{H}=\left(F_{0}-F_{1}\right) \dot{E}+\left(E_{1}-E_{0}\right) \dot{F}$, where
(iii) $E_{0}=E(u), \quad E_{1}=E(v), \quad F_{0}=F(u), \quad F_{1}=F(v)$.

Lemma 10.1. Let \mathbf{V} be the space (1.3) for a fixed integer $m \geqslant 2$, and let a nontrivial closed interval $I \subset \mathbb{R}$ have the endpoints u, v with $u \neq 1 \neq v$. If a function $Q \in \mathbf{V}$ satisfies condition (II) of $\S 1$ on I, that is, $Q(u)=Q(v)=0$, while $(A, B, C) \in \mathbb{R}^{3}$ corresponds to Q as in (1.2), then, up to a

A. Derdzinski and G. Maschler

nonzero overall factor,

$$
\begin{equation*}
(A, B, C)=(E(u) F(v)-F(u) E(v), F(u)-F(v), E(v)-E(u)) . \tag{10.3}
\end{equation*}
$$

This is clear from (1.2), (10.2.i) and (10.2.iii), as $Q(t)=(t-1) H(t)$ by (10.1).

11. A convexity lemma

According to $\S 6$, the variable t may, on suitable intervals, be diffeomorphically replaced with F. As shown next, this makes E or $-E$ a convex function of F.

Lemma 11.1. Let F, E, Λ be as in (1.1) and (5.1) for an integer $m \geqslant 2$. Then

$$
\begin{equation*}
\frac{d}{d t}[\dot{E} / \dot{F}]=\binom{2 m}{m} \frac{m(t-1)^{m}}{[\Lambda(t)]^{2} t^{2 m-2}} \quad \text { at every real } t \neq 0, \text { with }()^{\cdot}=d / d t \tag{11.1}
\end{equation*}
$$

In fact, let $\gamma=\binom{2 m}{m}$. Writing F for $F(t)$, etc., let us differentiate (5.4) multiplied by F^{2} and then multiply the result by \dot{F} / F, obtaining $\dot{F} \ddot{E}-E \dot{F} \ddot{F} / F=-\gamma F^{-1} \dot{F} d\left[t^{-1}(t-2)^{-1} F\right] / d t$. Also, multiplying (5.4) by $F \ddot{F}$ we get $\dot{E} \ddot{F}-E \dot{F} \ddot{F} / F=-\gamma t^{-1}(t-2)^{-1} \ddot{F}$. Subtracting the last two relations, we see that $(\dot{F} \ddot{E}-\dot{E} \ddot{F}) / \gamma$ coincides with $L^{-1} \ddot{F}-F^{-1} \dot{F} d[F / L] / d t$ for $L=t(t-2)$, which, for any given C^{2} functions F, L of the real variable t, obviously equals $L^{-2} F d[L \dot{F} / F] / d t$ wherever $F L \neq 0$. Hence $\dot{F} \ddot{E}-\dot{E} \ddot{F}=\gamma L^{-2} F d[L \dot{F} / F] / d t$ with $L=t(t-2)$. Let us now divide both sides by $(\dot{F})^{2}$ and successively replace: $d[L \dot{F} / F] / d t$ by $m t(t-2) /(t-1)^{2}$ (noting that $L \dot{F} / F=\Lambda(t) /(t-1)$, cf. (5.5.i), and using (5.1.b)), then \dot{F} by the expression provided by (5.5.i), F by its description in (1.1), L by $t(t-2)$ and, finally, γ by $\binom{2 m}{m}$. This yields (11.1) (also at $t \in\{0,2\}$, as both sides are rational functions of t).

Remark 11.2. Let F, E be as in (1.1) for an integer $m \geqslant 2$, and let ()$^{*}=d / d t$. By (11.1) and (5.1.b), \dot{E} / \dot{F} then has a nonzero derivative everywhere in $\mathbb{R} \backslash\{0,1\}$. The values/limits of \dot{E} / \dot{F} at $\pm \infty, 0,1$ are listed below. We use the notations of § 6, with slanted arrows indicating, again, the monotonicity type of \dot{E} / \dot{F}.

value or limit at:	$-\infty$	0	1		$+\infty$	
for $\dot{E} / \dot{F}(m$ even $):$	1	\nearrow	$+\infty \downarrow-\infty$	\nearrow	0	\nearrow
for $\dot{E} / \dot{F}(m$ odd $):$	1	\searrow	1			
($-\uparrow+\infty$	\searrow	0	\nearrow	1		

In fact, the rational function \dot{E} / \dot{F} must have some limits at $\pm \infty$. By l'Hospital's rule, they coincide with those of E / F in $\S 6$. (Both E, F have infinite limits at $\pm \infty$, cf. § 6.) The limits of \dot{E} / \dot{F} at 1 and 0 are easily found using (1.1) and (5.1): \dot{F} has a pole at 1 , and \dot{E} does not, while \dot{F} has at 0 a zero of order $2 m-2$, greater than the order of a zero at 0 for the degree $m-1$ polynomial \dot{E}.

Proposition 11.3. Given an integer $m \geqslant 2$, let $Q \in \mathbf{V} \backslash\{0\}$, with \mathbf{V} as in (1.3), satisfy condition (II) of $\S 1$ on a nontrivial closed interval I with $0 \notin I$ and $1 \notin I$. Then Q must also satisfy conditions (I), (III) and (IV) of § 1.

Proof. Since $1 \notin I$, condition (I) follows. Let us now suppose that all the assumptions hold, yet, contrary to our claim, one of conditions (III) and (IV) fails. In view of condition (II), the function H with (10.1) then not only vanishes at both endpoints u, v of I, but, in addition, its derivative $\dot{H}=$ $d H / d t$ is zero at one of the endpoints (if condition (IV) fails), or $H=0$ at some interior point of I (if condition (III) fails; note that, to evaluate \dot{H} at an endpoint, e.g., u, we may treat the ($t-1$) factor in (10.1) like a nonzero constant, since $u \neq 1$ and $Q(u)=0$). In either case, Rolle's theorem gives $\dot{H}=0$ at two distinct points of I. On the other hand, by (10.2) and Lemma 10.1, $\dot{H}=0$ at precisely those t at which $\dot{E} / \dot{F}=-C / B$. Note that I is contained in one of the intervals $(-\infty, 0),(0,1),(1, \infty)$, and

Conformally-Einstein Kähler manifolds

hence, according to (6.1), F is strictly monotone on I, so that $B \neq 0$ by Lemma 10.1 ; however, for a similar reason, \dot{E} / \dot{F} is strictly monotone on I (see Remark 11.2), and so it cannot assume the value $-C / B$ twice. This contradiction completes the proof.

12. Conditions (III) and (IV) with an endpoint at 1

The following lemma lists some obvious facts that will help us understand which integers $m \geqslant 2$ and nontrivial closed intervals I containing 1 as an endpoint have the property that a function $Q \in \mathbf{V} \backslash\{0\}$ satisfying condition (II) of $\S 1$ on I also satisfies conditions (III) and (IV). See also Lemma 9.1.

For most of our discussion, the symbol E has stood for the function appearing in (1.1) with a fixed integer $m \geqslant 2$. The following obvious lemma, however, is an exception, as we allow E to be much more general.
Lemma 12.1. Let $E: \mathbb{R} \rightarrow \mathbb{R}$ be any function. For $A, B \in \mathbb{R}$ with $B \neq 0$, and $t \in \mathbb{R}$, let us set

$$
\begin{equation*}
Q(t)=(t-1)[A+B E(t)] . \tag{12.1}
\end{equation*}
$$

(i) If $u \in \mathbb{R} \backslash\{1\}$, the condition $Q(u)=0$ holds if and only if $E(u)=-A / B$.
(ii) Given $t, u \in \mathbb{R}$ with $E(u)=-A / B$, we have $Q(t)=0$ if and only if $t=1$ or $E(t)=E(u)$.
(iii) If E is of class C^{1} and $E(1)=0$, while $u \in \mathbb{R} \backslash\{1\}$ and $E(u)=-A / B$, then, with () standing for $d / d t$,
(a) $\dot{Q}(1)=0$ if and only if $E(u)=0$,
(b) $\dot{Q}(u)=0$ if and only if $\dot{E}(u)=0$,
(c) $\dot{Q}(1)+\dot{Q}(u)=0$ if and only if $\dot{\Sigma}(u)=0$, where $\Sigma(t)=(t-1)^{-1} E(t)$ for $t \neq 1$.

Remark 12.2. Let \mathbf{V} be the space (1.3) with a fixed integer $m \geqslant 2$. For any nontrivial closed interval I, a function $Q \in \mathbf{V} \backslash\{0\}$ satisfying condition (II) of $\S 1$ on I exists and is unique up to a factor (see Lemma 9.1). In the case where the endpoints of I are $v=1$ and $u \neq 1$, this Q is given by (12.1) with any constants $B \neq 0$ and A chosen so that $E(u)=-A / B$, for E as in (1.1).

In fact, (12.1) implies (1.2), while, by Lemma 12.1(i), such a choice of A, B gives condition (II) of § 1 .

The next section comprises facts we need in order to apply Lemma 12.1 to $E(t)$ and $Q(t)$ given by (1.1) and (1.2). The eventual conclusions about functions $Q \in \mathbf{V}$ satisfying conditions (II), (III) and (IV) of $\S 1$ on intervals I with an endpoint at 1 will be presented later; see (iii) in § 16 .

13. Monotonicity properties of \boldsymbol{E}

Let $\dot{E}=d E / d t$ with $E(t)$ as in (1.1) for an integer $m \geqslant 2$. By (5.6.i) and (5.6.ii), $E(0)<0$ and $\dot{E}(0)=E(1)=0$. The following claims will be verified in $\S 14$.

If m is even, then $\dot{E}(t) \neq 0$ for every $t \in \mathbb{R} \backslash\{0\}$ and there exists a unique $\tilde{z} \in \mathbb{R} \backslash\{1\}$ with $E(\tilde{z})=0$. This unique \tilde{z} is negative. With the notations and conventions of $\S 6$, we then have the following.

value or limit at:	$-\infty$	\tilde{z}	0	1		$+\infty$		
for $E(m$ even $):$	$+\infty$	\searrow	0	\searrow	$E(0)$	\nearrow	0	\nearrow

If m is odd, there exist unique numbers $\tilde{z}, \tilde{w} \in \mathbb{R} \backslash\{0\}$ with $E(\tilde{z})=E(0)$ and $\dot{E}(\tilde{w})=0$. They satisfy the relations $\tilde{z}<\tilde{w}<0$ and $E(0)<E(\tilde{w})<0$. Also, $\dot{E} \neq 0$ everywhere in $\mathbb{R} \backslash\{\tilde{z}, \tilde{w}, 0,1\}$, and, in the notations of $\S 6$, we have the following.

value or limit at:	$-\infty$		\tilde{z}		\tilde{w}	0		1		$+\infty$
for $E(m$ odd $):$	$-\infty$	\nearrow	$E(0)$	\nearrow	$E(\tilde{w})$	\searrow	$E(0)$	\nearrow	0	\nearrow
		$+\infty$								

A. Derdzinski and G. Maschler

14. Proofs of the claims made in $\S 13$

According to Remark 11.2 , if m is even, \dot{E} / \dot{F} is positive on $(-\infty, 0) \cup(1, \infty)$ and negative on $(0,1)$, while, if m is odd, \dot{E} / \dot{F} vanishes at a unique $\tilde{w} \in(-\infty, 0)$, is positive on $(-\infty, \tilde{w}) \cup(0,1) \cup(1, \infty)$, and is negative on $(\tilde{w}, 0)$. Combined with the signs of \dot{F} on the individual intervals (cf. the slanted arrows for F in § 6), this yields the required signs of \dot{E}, that is, slanted arrows for E in $\S 13$. (As (1.1) gives $\dot{E}(t)=\Sigma(t)+(t-1) \dot{\Sigma}(t)$, we have $\dot{E}(1)=\Sigma(1)>0$ by Remark 5.1.)

Since E is a nonconstant polynomial, its limits at $\pm \infty$ are infinite, with the signs required in $\S 13$ (see the slanted arrows). This proves all statements except for those involving \tilde{z} and the relation $E(0)<E(\tilde{w})<0$ for odd m. However, $E(0)<E(\tilde{w})$ as E is decreasing on $[\tilde{w}, 0]$, so that the already established monotonicity pattern of E gives, for all m, the existence and uniqueness of \tilde{z} along with $\tilde{z}<0(m$ even $)$ or $\tilde{z}<\tilde{w}(m$ odd $)$. Finally, if m is odd, $E(\tilde{w})<0$ by (7.1.d).

15. Conditions equivalent to (III) and (IV)

Lemma 15.1. Given an integer $m \geqslant 2$, let the functions E, F, H be given by (1.1) and (10.2) for any fixed $u, v \in \mathbb{R}$ with $u \neq 1 \neq v \neq u$. If the restrictions of E and H to the interval $(-\infty, 1)$ of the variable t are treated as continuous functions of the new variable $F \in \mathbb{R}$, differentiable on $\mathbb{R} \backslash\{0\}$, $c f . \S 6$, then

$$
\begin{equation*}
\text { (i) } H=A+B E+C F, \quad \text { (ii) } d H / d F=C+B d E / d F \tag{15.1}
\end{equation*}
$$

wherever $F \neq 0$, with A, B, C defined by (10.3). In addition, $d^{2} E / d F^{2}<0$ wherever $F \neq 0$, which, if $B<0$, amounts to $d^{2} H / d F^{2}>0$.

In fact, (10.2.i) and (10.3) give (15.1.i), and hence (15.1.ii), while $d^{2} E / d F^{2}<0$ by (5.1) and (11.1), so that (15.1.ii) with $B<0$ yields $d^{2} H / d F^{2}>0$.

Proposition 15.2. Given an integer $m \geqslant 2$ and a nontrivial closed interval $I \subset \mathbb{R}$ with the endpoints u, v, such that 0 is an interior point of I and $1 \notin I$, let F, E, \mathbf{V} be as in (1.1) and (1.3), and let $Q \in \mathbf{V} \backslash\{0\}$ satisfy on I condition (II) of $\S 1$.

With A, B, C depending on u, v as in (10.3) and with $\dot{F}=d F / d t, \dot{E}=d E / d t$, we then have $B \dot{F}(u) \dot{F}(v) \neq 0$. In addition, Q and I satisfy conditions (I), (III) and (IV) of $\S 1$ if and only if one of the following two conditions holds:
(i) $\dot{E}(u) / \dot{F}(u)<-C / B<\dot{E}(v) / \dot{F}(v)$, with the endpoints u, v of I switched, if necessary, to ensure that $(-1)^{m}(u-v)>0$, or
(ii) $A / B>-E(0)$.

Proof. Our assumption on I states that $u<0<v<1$ or $v<0<u<1$. As in (10.2.iii), let us set $F_{0}=F(u), F_{1}=F(v)$. As $(-1)^{m} \dot{F}<0$ on $(-\infty, 0) \cup(0,1)$ and $F(0)=0$, cf. (6.1), the additional assumption $(-1)^{m}(u-v)>0$ made in (i) now gives $F_{0}<0<F_{1}$, while, by (10.3), $B<0$ and $B \dot{F}(u) \dot{F}(v) \neq 0$.

Let H be the function defined in (10.1) (that is, (10.2)) for our u, v. Using the coordinate change $t \mapsto F=F(t)$, as in Lemma 15.1, we may treat E and H not as functions of $t \in(-\infty, 1)$, but rather as functions of the variable $F \in \mathbb{R}$, continuous at $F=0$ and of class C^{∞} everywhere else. Then, as $\dot{E} / \dot{F}=d E / d F$,

$$
\begin{equation*}
\text { condition (i) means that } d H / d F \text { is positive at } F=F_{0} \text { and negative at } F=F_{1} \tag{15.2}
\end{equation*}
$$

by (15.1.ii) with $B<0$, while, by (15.1.i) with $F(0)=0$ (cf. (1.1)) and $B<0$,

$$
\begin{equation*}
\text { inequality (ii) states that } H<0 \text { at } F=0 \tag{15.3}
\end{equation*}
$$

Also, since H and Q are, up to a nonzero factor, related by (10.1), conditions (III) and (IV) of $\S 1$ for our pair Q, I mean that $H \neq 0$ at all F with $F_{0}<F<F_{1}$, while $d H / d F \neq 0$ at $F=F_{0}$ and $F=F_{1}$.

In fact, to see if $d H / d F=(d H / d t) /(d F / d t)$ is zero or not, we only need to apply $d / d t$ to the $Q(t)$ factor in (10.1), as $Q(u)=Q(v)=0$, while, by (5.1), $d F / d t \neq 0$ when $0 \neq t \neq 1$.

Let Q and I now satisfy conditions (I), (III) and (IV) of $\S 1$. By (15.4), H must be nonzero throughout the whole interval $\left(F_{0}, F_{1}\right)$ of the variable F, and $d H / d F \neq 0$ at the endpoints F_{0}, F_{1}. Thus, H is positive (or negative) on (F_{0}, F_{1}), which yields the clause about H in (15.2) (or (15.3)), and hence (i) (or, respectively, (ii)).

Conversely, let us assume (i) or (ii). In case (i), using (15.2) and the inequality $d^{2} H / d F^{2}>0$ whenever $F \neq 0$ (Lemma 15.1), we see that $d H / d F$ is positive for all F with $F_{0}<F<0$, and negative if $0<F<F_{1}$. As $H=0$ at both $F=F_{0}$ and $F=F_{1}$, this in turn gives $H>0$ at every F with $F_{0}<F<F_{1}$. Since, by (15.2), $d H / d F \neq 0$ at the endpoints F_{0}, F_{1}, conditions (III) and (IV) of $\S 1$ for Q and I follow in view of (15.4) (while condition (I) is obvious as $1 \notin I$).

Finally, let us consider the remaining case (ii). By (15.3), we then have $H<0$ at $F=0$. It now follows that $d H / d F<0$ at $F=F_{0}$ and $H \neq 0$ (so that $H<0$) everywhere in the interval $\left(F_{0}, 0\right)$. In fact, if either of these claims failed, we could find F_{2}, F_{3} with $F_{0} \leqslant F_{2} \leqslant F_{3}<0, d H / d F \geqslant 0$ at $F=F_{2}$, and $H=0$ at $F=F_{3}$. (Specifically, we set $F_{2}=F_{3}=F_{0}$ if $d H / d F \geqslant 0$ at $F=F_{0}$; while, if $H=0$ at some F_{3} in ($F_{0}, 0$), we can use Rolle's theorem to select F_{2}.) Since $d H / d F$ is a strictly increasing function of $F \in\left(F_{0}, 0\right)$ (as $d^{2} H / d F^{2}>0$ by Lemma 15.1), we have $d H / d F>0$ on ($F_{3}, 0$), which is not possible as $H=0$ at $F=F_{3}$ and $H<0$ at $F=0$. A completely analogous argument shows that, if (ii) holds, we must have $d H / d F>0$ at $F=F_{1}$ and $H \neq 0$ (that is, $H<0$) everywhere in the interval ($0, F_{1}$). In other words, by (15.4), assuming (ii) we obtain conditions (I), (III) and (IV) of § 1 as well. This completes the proof.

16. Positivity

Let \mathbf{V} be the space (1.3) for a given integer $m \geqslant 2$. According to Lemma 9.1, for every nontrivial closed interval I, a function $Q \in \mathbf{V} \backslash\{0\}$ satisfying on I condition (II) of $\S 1$ exists and is unique up to a constant factor. We will say that I satisfies the positivity condition if, in addition to condition (II), we also have conditions (I), (III) and (IV) of § 1 for some, or any, such Q.

Now let $m \geqslant 2$ be fixed. The discussion in the preceding sections has determined that for any given nontrivial closed interval I the positivity condition holds as follows:
(i) Always, if I contains neither 0 nor 1 (Proposition 11.3).
(ii) Never, if I contains 1 as an interior point or 0 as an endpoint. This is clear from Remark 1.2 or, respectively, the fact that, by (9.2.a), condition (II) of $\S 1$ for the endpoint 0 contradicts condition (IV).
(iii) When I contains 1 as an endpoint: if and only if the other endpoint lies in $(-\infty, \tilde{z}) \cup(0, \infty)$ for the number $\tilde{z}<0$ defined in § 13. (See below.)
(iv) When I contains 0 as an interior point and does not contain 1 at all: if and only if the endpoints u, v of I satisfy (i) or (ii) in Proposition 15.2.

Only (iii) still requires an explanation. Namely, as $1 \in I$, condition (I) of $\S 1$ gives $C=0$, so that (1.2) becomes (12.1), and the remaining endpoint $u \neq 1$ determines Q up to a factor via Lemma 12.1(i). Hence, by Lemma 12.1, parts (ii), (iii)(a) and (iii)(b), conditions (IV) and (III), in addition to (II) and (I), amount to requiring that $E(u) \dot{E}(u) \neq 0$ and $E(t) \neq E(u)$ for all t in

A. Derdzinski and G. Maschler

the open interval connecting 1 and u. The claims made in (iii) now are trivial consequences of the descriptions in $\S 13$ of the monotonicity intervals for E and the roots of E and \dot{E}.

17. Factorization of condition (V)

Lemma 17.1. Let Φ, φ be polynomials in two variables u, v. Then Φ is divisible by φ if
(i) $\operatorname{deg} \varphi=1$, while $\Phi=0$ wherever $\varphi=0$, or
(ii) $\varphi=(u-v)^{3}$ and Φ is antisymmetric, while $\partial \Phi / \partial v=0$ wherever $u=v$.

In fact, (i) is clear if we use new affine coordinates ξ, η with $\varphi=\xi$. Next, for Φ as in (ii), $\tilde{\Phi}=\Phi /(v-u)$ is, by (i), a symmetric polynomial with $\tilde{\Phi}=\partial \Phi / \partial v$ wherever $u=v$. Thus, for the new coordinates ξ, η given by

$$
\begin{equation*}
u=\xi+\eta, \quad v=\xi-\eta, \quad \text { that is, } \quad \xi=(u+v) / 2, \quad \eta=(u-v) / 2, \tag{17.1}
\end{equation*}
$$

$\tilde{\Phi}$ is even in η (and so it is a polynomial in ξ and η^{2}) and vanishes wherever $\eta=0$ (due to the assumption on $\partial \Phi / \partial v$). Hence, by (i), $\tilde{\Phi}$ is divisible by η^{2}.
Lemma 17.2. With F, E as in (1.1) for an integer $m \geqslant 2$, and ()$^{\cdot}=d / d t$, let

$$
\begin{equation*}
\Pi(u, v)=(v-1)\{[F(v)-F(u)] \dot{E}(v)-[E(v)-E(u)] \dot{F}(v)\} . \tag{17.2}
\end{equation*}
$$

Then, for A, B depending on u, v as in (10.3), $u(u-2) v(v-2)[\Pi(u, v)-\Pi(v, u)]$ equals

$$
\begin{equation*}
2(u v-u-v) \text { times }[m u v-(2 m-1)(u+v-2)] A+(2 m-1)(u+v-2) B \Sigma(0) . \tag{17.3}
\end{equation*}
$$

In fact, by (17.2) and (5.5),

$$
\begin{aligned}
& u(u-2) v(v-2)[\Pi(u, v)-\Pi(v, u)] \\
& \quad=[v(v-2) \Lambda(u)+u(u-2) \Lambda(v)] A+2(2 m-1)[u(u-2)(v-1)+v(v-2)(u-1)] B \Sigma(0),
\end{aligned}
$$

with Λ as in (5.1). This proves our claim, since

$$
v(v-2) \Lambda(u)+u(u-2) \Lambda(v)=2 m(u v-u-v)[u v-(2-1 / m)(u+v-2)]
$$

and

$$
\begin{equation*}
u(u-2)(v-1)+v(v-2)(u-1)=(u v-u-v)(u+v-2) . \tag{17.4}
\end{equation*}
$$

Lemma 17.3. For any integer $m \geqslant 2$, there exists a unique symmetric polynomial T in the variables u, v such that, for Π as in (17.2),

$$
\begin{equation*}
(u-1)^{m}(v-1)^{m}[\Pi(u, v)-\Pi(v, u)]=2(v-u)^{3}(u v-u-v) T(u, v) . \tag{17.5}
\end{equation*}
$$

Proof. Multiplication by $(u-1)^{m}(v-1)^{m}$ turns (17.3), as well as $\Pi(u, v)$ and $\Pi(v, u)$, into polynomials in u, v (cf. (17.2), (1.1) and (5.1)). Lemmas 17.1 and 17.2 now show that the left-hand side of (17.5) is a polynomial divisible by $u v-u-v$.

On the other hand, Π in (17.2) clearly vanishes whenever $u=v$. Also, the $\partial \Phi / \partial v$ clause in Lemma 17.1(ii) is satisfied by both $\Phi=\Pi$ and $\Phi(u, v)=\Pi(v, u)$. (One verifies this without evaluating \ddot{E}, \ddot{F}, since, in the Leibniz-rule expression for the partial derivative, only the factors $F(v)-F(u)$ and $E(v)-E(u)$ need to be differentiated, as they vanish when $u=v$.) In view of Lemma 17.1(ii) and the last paragraph, the polynomial on the left-hand side of (17.5) divided by $u v-u-v$ is still divisible by $(v-u)^{3}$. This completes the proof.
Lemma 17.4. Given an integer $m \geqslant 2$ and a nontrivial closed interval $I \subset \mathbb{R}$ with the endpoints $v=1$ and $u \neq 1$, let $\dot{\Sigma}=d \Sigma / d t$ for Σ defined by (1.1). Also, let \mathbf{V} be the space (1.3) and let $Q \in \mathbf{V} \backslash\{0\}$ be a function, unique up to a factor, which satisfies condition (II) of § 1 on I; cf. Lemma 9.1. Equality $\dot{\Sigma}(u)=0$ is then necessary and sufficient for Q and I to satisfy condition (V) of $\S 1$.

Conformally-Einstein Kähler manifolds

In fact, as 1 is an endpoint of I, condition (II) gives (I) and we have (1.2) with $C=0$, that is, (12.1) for some $B \neq 0$ and A with $E(u)=-A / B$ (see Lemma 12.1(i)). Conditions $\dot{\Sigma}(u)=0$ and (V) now are equivalent by Lemma 12.1(iii)(c).

Theorem 17.5. Given an integer $m \geqslant 2$ and a nontrivial closed interval I with endpoints u, v, let a function $Q \in \mathbf{V} \backslash\{0\}$, with \mathbf{V} as in (1.3), satisfy on I condition (II) of $\S 1$, that is, $Q(u)=Q(v)=0$. By Lemma 9.1, such Q exists and is unique up to a constant factor. Also, let ()$^{\cdot}=d / d t$.

Then Q satisfies condition (V) of $\S 1$, that is, $\dot{Q}(u)+\dot{Q}(v)=0$, if and only if, for the polynomials Σ, T defined in (1.1) and Lemma 17.3, one of the following three cases occurs:

$$
\begin{align*}
& \text { (a) } u=1 \quad \text { and } \dot{\Sigma}(v)=0, \quad \text { or } \quad v=1 \quad \text { and } \dot{\Sigma}(u)=0 \text {, } \\
& \text { (b) } u v=u+v, \tag{17.6}\\
& \text { (c) } T(u, v)=0 \quad \text { and } u \neq 1 \neq v \text {. }
\end{align*}
$$

Proof. If one of u, v equals 1 , our assertion, stating in this case that condition (V) is equivalent to (17.6.a), is nothing else than Lemma 17.4. Let us therefore assume that $u \neq 1 \neq v$, and consider a function $Q \in \mathbf{V} \backslash\{0\}$ satisfying on I condition (II). Using the subscript convention (10.2.iii) (also for functions of t other than $E, F)$, we can rewrite (V) as $0=\dot{Q}_{0}+\dot{Q}_{1}=(u-1) \dot{H}_{0}+(v-1) \dot{H}_{1}$ (see (10.1); by condition (II), $H_{0}=H_{1}=0$). Thus, condition (V) states that

$$
\begin{equation*}
(u-1)\left[\left(F_{1}-F_{0}\right) \dot{E}_{0}-\left(E_{1}-E_{0}\right) \dot{F}_{0}\right]+(v-1)\left[\left(F_{1}-F_{0}\right) \dot{E}_{1}-\left(E_{1}-E_{0}\right) \dot{F}_{1}\right]=0 \tag{17.7}
\end{equation*}
$$

cf. (10.2.ii), and so $\Pi(v, u)=\Pi(u, v)$, for Π given by (17.2). As $u \neq 1 \neq v \neq u$, (17.5) shows that, when $u \neq 1 \neq v$, condition (V) holds if and only if we have (17.6.b) or (17.6.c). Since, conversely, (17.6.b) implies that $u \neq 1 \neq v$, this completes the proof.

Conditions (17.6.b) and (17.6.c) are not mutually exclusive: when m is odd, they may occur simultaneously, with $u \neq v$. See Lemma 25.2(b) in § 25.

18. First subcase of condition (V): condition (17.6.a)

Let $m \geqslant 2$ be a fixed integer. We will now find all pairs Q, I formed by a function $Q \in \mathbf{V} \backslash\{0\}$, with \mathbf{V} as in (1.3), and a nontrivial closed interval I such that $1 \in I$ and Q satisfies on I the boundary conditions (II) and (V) of § 1. As we show in Proposition 18.3 below, such Q, I exist if and only if m is odd, and then they are unique up to multiplication of Q by a nonzero constant.

With ()$^{\cdot}=d / d t,(1.1)$ gives $(t-1) \dot{\Sigma}(t)=\dot{E}(t)-\Sigma(t)$ for all real t. Multiplying this by $t(t-1)(t-2)$ and using (5.5.ii), (1.1) and (5.1.b), we easily obtain

$$
\begin{equation*}
t(t-1)(t-2) \dot{\Sigma}(t)=\left[(m-1)(t-2)^{2}+2\right] \Sigma(t)-2(2 m-1) \Sigma(0) \tag{18.1}
\end{equation*}
$$

Remark 18.1. We will repeatedly use the following obvious fact. If the derivative of a C^{1} function Φ on an interval \mathcal{I} is positive wherever $\Phi=0$ in \mathcal{I}, then there exists at most one $t \in \mathcal{I}$ with $\Phi(t)=0$. If such t exists, then $\Phi<0$ on $(-\infty, t) \cap \mathcal{I}$ and $\Phi>0$ on $(t, \infty) \cap \mathcal{I}$.

Proposition 18.2. Given an integer $m \geqslant 2$, let Σ be the polynomial in (1.1), and let $X(t)=$ $2(2 m-1) \Sigma(0)\left[(m-1)(t-2)^{2}+2\right]^{-1}$.
(a) If m is even, then $\dot{\Sigma}=d \Sigma / d t$ has no real roots.
(b) If m is odd, $\dot{\Sigma}$ has exactly one real root s, and that root is negative.
(c) $X(t)>0$ for all $t \in \mathbb{R}$. For any $t<0$, we have $\dot{\Sigma}(t)=0$ if and only if $\Sigma(t)=X(t)$.

Proof. The function X is positive since $\Sigma(0)>0$ (cf. (5.6.i)), and so (18.1) yields (c). Next, one and only one of the following two conditions must hold:

A. Derdzinski and G. Maschler

(i) $\dot{\Sigma}>0$ and $\Sigma<X$ everywhere in $(-\infty, 0)$.
(ii) There exists a unique $s \in(-\infty, 0)$ with $\dot{\Sigma}(s)=0$, and then $\Sigma>X$ on $(-\infty, s)$, while $\Sigma(s)=$ $X(s)$ and $\Sigma<X$ on $(s, 0)$.
In fact, the definition of X easily gives
(d) $\dot{X}=d X / d t$ is positive everywhere in $(-\infty, 0]$,
(e) $X(0)=\Sigma(0)$ and $\dot{X}(0)<\dot{\Sigma}(0)$,
the last inequality being clear as $\dot{X}(0)=(2 m-2) \Sigma(0) /(2 m-1)$, while $\dot{\Sigma}(0)=\Sigma(0)>0$ (see (5.6.i)). Now let $\Phi=X-\Sigma$. By (d) and (c), $\dot{\Phi}>0$ wherever $\Phi=0$ in $(-\infty, 0)$. Thus, according to Remark 18.1, if some $s \in(-\infty, 0)$ has $\dot{\Sigma}(s)=0$ (that is, $\Phi(s)=0$, cf. (c)), then such s is unique, while $\Phi<0$ on $(-\infty, s)$ and $\Phi>0$ on $(s, 0)$. This yields (ii). However, if no such s exists, we have $\Phi \dot{\Sigma} \neq 0$ everywhere in $(-\infty, 0)$. Hence $\dot{\Sigma}>0$ on $(-\infty, 0]$, as $\dot{\Sigma}(0)>\dot{X}(0)>0$ by (d) and (e). Also, by $(\mathrm{e}), \dot{\Phi}(0)<0=\Phi(0)$, so that $\Phi(t)>0$ for all $t<0$ close to 0 . Thus, $\Phi>0$ on $(-\infty, 0)$, and so $\Sigma<X$ on $(-\infty, 0)$, which gives (i).

In case (i), Remark 5.1 shows that $\dot{\Sigma}$ has no real roots, and so m is even (as $\operatorname{deg} \dot{\Sigma}=m-2$). In the remaining case (ii), $\dot{\Sigma}$ has exactly one real root s (cf. Remark 5.1), and so m must be odd, which is clear since Σ is a polynomial of degree $m-1$ with a positive leading coefficient, cf. (1.1), while $\Sigma>X>0$ on $(-\infty, s)$ by (ii) and (c). This yields (a) and (b), completing the proof.

Proposition 18.3. For a fixed integer $m \geqslant 2$, let F, E, Σ, \mathbf{V} be given by (1.1) and (1.3). The following two conditions are equivalent:
(i) There exist a nontrivial closed interval I containing 1 and a function $Q \in \mathbf{V} \backslash\{0\}$ satisfying on I conditions (II) and (V) of § 1 .
(ii) The integer m is odd.

If m is odd, Q, I in (i) are unique up to multiplication of Q by a nonzero constant. Specifically, the endpoints of I then are 1 and the unique $s \in(-\infty, 0)$ with $\dot{\Sigma}(s)=0$, cf. Proposition 18.2(b), while Q is given by (12.1) for any constants $B \neq 0$ and A with $E(s)=-A / B$.

In fact, if m is even, $\dot{\Sigma}(u) \neq 0$ for all $u \in \mathbb{R}$ (Proposition 18.2(a)); thus, by Remark 1.2 and Lemma 17.4, no pair Q, I has the properties listed in (i).

Conversely, if m is odd, Lemma 17.4, Proposition $18.2(\mathrm{~b})$ and Remark 1.2 imply both the existence of a pair Q, I with (i), and the uniqueness of the interval I, the endpoints of which must be those described in our assertion. Finally, the uniqueness of Q up to a factor and its required form are immediate from Remark 12.2.

19. Failure of positivity in case (17.6.a)

In this section we show (Proposition 19.2) that case (17.6.a) of condition (V) in § 1 cannot occur simultaneously with the positivity condition introduced in § 16.

Lemma 19.1. Given an odd integer $m \geqslant 3$, let s be the unique real number with $\dot{\Sigma}(s)=0$ for Σ as in (1.1), cf. Proposition 18.2(b). Then, with \tilde{z}, \tilde{w} as in § 13,

$$
\begin{array}{ll}
\text { (i) } s \leqslant-\eta, & \text { where } \eta=(2 m-3) /[3(m-2)], \\
\text { (ii) } \Sigma(t) \geqslant \Sigma(s)>0 & \text { for all } t \in \mathbb{R}, \tag{19.1}\\
\text { (iii) } \tilde{z} \leqslant s<\tilde{w}<0, & \text { and } \tilde{z}<s \text { if } m>3 .
\end{array}
$$

Proof. Differentiating Σ in (1.1), we obtain $\dot{\Sigma}(t)=\sum_{k=2}^{m} a_{k} t^{k-2}$ with coefficients $a_{k}>0$ such that $a_{k} / a_{k+1}=[1-2 /(k+1)][1+(m-1) /(m-k)]$, where both factors in square brackets clearly

Conformally-Einstein Kähler manifolds

are increasing positive functions of $k=2, \ldots, m-1$. Thus, $a_{k} / a_{k+1} \geqslant a_{2} / a_{3}=\eta$ (cf. (19.1.i)), that is, $a_{k} \geqslant a_{k+1} \eta$, and so $\dot{\Sigma}(-\eta)=\left(a_{2}-a_{3} \eta\right)+\left(a_{4}-a_{5} \eta\right) \eta^{2}+\cdots+\left(a_{m-1}-a_{m} \eta\right) \eta^{m-3} \geqslant 0$. As $\dot{\Sigma}$ is an odd-degree polynomial with a positive leading coefficient and with a unique root at s, it must be negative on $(-\infty, s)$ and positive on (s, ∞), so that the last inequality proves (19.1.i), and $\Sigma(t) \geqslant \Sigma(s)$ for all $t \in \mathbb{R}$. Furthermore, Proposition $18.2(\mathrm{c})$, with $t=s$, gives $\Sigma(s)=X(s)>0$ for $X(t)$ as in Proposition 18.2, which yields the remaining inequality in (19.1.ii).

In the remainder of this proof, all inequalities are strict if $m>3$. First, $0 \leqslant(2 m-5)(m-3)=$ $(2 m-3)(m-1)-6(m-2)$ (since $m \geqslant 3)$, so that $\eta \geqslant 2 /(m-1)$ for η as in (19.1.i). Now (19.1.i) yields $s \leqslant-2 /(m-1)$. This gives $[(m-1) s+2] s \geqslant 0$ and $[(m-1) s+2] s \Sigma(0) \geqslant 0$ (since $\Sigma(0)>0$ by (5.6.i)). As $\dot{\Sigma}(s)=0$, the right-hand side of (18.1) with $t=s$ vanishes, which, multiplied by $s-1$, reads $\left[(m-1)(s-2)^{2}+2\right] E(s)-2(2 m-1)(s-1) \Sigma(0)=0$ (see (1.1)). Adding this side-by-side to the last inequality we get $\left[(m-1)(s-2)^{2}+2\right][E(s)+\Sigma(0)] \geqslant 0$. Hence $E(s) \geqslant-\Sigma(0)=E(0)$ (cf. (1.1)). Also, as $\dot{E}(t)=\Sigma(t)+(t-1) \dot{\Sigma}(t)$ (by (1.1)) and $\dot{\Sigma}(s)=0$, (19.1.ii) gives $\dot{E}(s)=\Sigma(s)>0$. Since $\tilde{w}<0$ (see $\S 13$) and $s<0$, while $E(s) \geqslant E(0)$ and $\dot{E}(s)>0$ (see above), (13.2) yields (19.1.iii). This completes the proof.

Proposition 19.2. Given an integer $m \geqslant 2$, there exists no function $Q \in \mathbf{V}$, for \mathbf{V} as in (1.3), satisfying conditions (I)-(V) of § 1 on any nontrivial closed interval I that contains 1.

In fact, let conditions (I), (II) and (V) hold for Q and I. By Proposition 18.3, m is odd, and the endpoint of I other than 1 is the unique $s<0$ with $\dot{\Sigma}(s)=0$. However, by (19.1.iii), s fails the 'positivity test' in (iii) of § 16 , that is, Q and I cannot satisfy all four conditions (I)-(IV).
Remark 19.3. For the moduli curve \mathcal{C} defined at the end of $\S 1$ and any point $(u, v) \in \mathcal{C} \backslash\{(0,0)\}$, Proposition 19.2 clearly implies that $1<u<v$ or $u<v<1$.

Example 19.4. For $m=3$, we have $\tilde{z}=s=-1$ and $\tilde{w}=-2 / 3$ in (19.1.iii). In fact, $-1,-1,-2 / 3$ are the unique negative roots of $E-E(0), \dot{\Sigma}$ and \dot{E}, since, by (1.1), $\Sigma(t)=t^{2}+2 t+2$ for $m=3$, and so $E(t)=t^{3}+t^{2}-2, E(t)-E(0)=t^{2}(t+1), \dot{\Sigma}(t)=2(t+1)$ and $\dot{E}(t)=t(3 t+2)$. See also Example 27.4 and the end of $\S 21$.

20. Second subcase of condition (V): condition (17.6.b)

In this section we explicitly classify all pairs Q, I that satisfy the boundary conditions (II) and (V) of $\S 1$ and are of type (17.6.b).

Given an integer $m \geqslant 2$, let F, E be as in (1.1). Then, for all $t \in \mathbb{R} \backslash\{1\}$,

$$
\begin{equation*}
\text { (i) } F\left(t^{*}\right)=-F(t), \quad \text { (ii) } E\left(t^{*}\right)=E(t)-F(t) \tag{20.1}
\end{equation*}
$$

where t^{*} is, for any $t \neq 1$, given by either of the two equivalent relations

$$
\begin{equation*}
\text { (a) } t^{*}=t /(t-1), \quad \text { (b) } t^{*}-1=1 /(t-1) \tag{20.2}
\end{equation*}
$$

In fact, (20.1.i) is immediate from (1.1), and (20.1.ii) is easily verified by induction on m, using (5.2). Since (20.2.a) is equivalent to (20.2.b), we obtain the following lemma.

Lemma 20.1. The assignment $u \mapsto u^{*}$ with $u^{*}=u /(u-1)$ is an involution of $\mathbb{R} \backslash\{1\}$, decreasing both on $(-\infty, 1)$ and on $(1, \infty)$. It interchanges the interval $(1,2]$ with $[2, \infty)$, and $(-\infty, 0]$ with $[0,1)$, while its fixed points are 0 and 2.
Lemma 20.2. Given an integer $m \geqslant 2$ and a real number $u \notin\{0,1,2\}$, let $v=u^{*}$, where $u^{*}=$ $u /(u-1)$. Formula (10.1) then defines a function $Q \in \mathbf{V} \backslash\{0\}$, for \mathbf{V} as in (1.3), for which conditions (I), (II) and (V) of § 1 hold on the nontrivial closed interval I with the endpoints u, v. Moreover, u, v satisfy condition (17.6.b).

A. Derdzinski and G. Maschler

In fact, $u \neq v$ since $u \notin\{0,1,2\}$ (cf. Lemma 20.1). Thus, in view of (10.1), $Q \in \mathbf{V} \backslash\{0\}$ and condition (II) holds. Also, by Lemma 20.1, $1 \notin I$, which implies condition (I). Finally, relation $v=u^{*}$ is nothing else than (17.6.b). Theorem 17.5 now gives condition (V) for Q and I.

Theorem 20.3. Let $m \geqslant 2$ be a fixed integer. Assigning to each real number u with $u<0$ or $1<u<2$ the interval $I=[u, v]$ with $v=u /(u-1)$ and the function Q defined up to a factor by (10.1), with E, F as in (1.1), we obtain a bijective correspondence between
(i) the subset $(-\infty, 0) \cup(1,2)$ of \mathbb{R}, and
(ii) the set of all equivalence classes, modulo multiplication of Q by nonzero scalars, of pairs Q, I formed by a nontrivial closed interval $I \subset \mathbb{R}$ and a function $Q \in \mathbf{V} \backslash\{0\}$, with \mathbf{V} as in (1.3), such that Q and I satisfy condition (II) of § 1 and (17.6.b), i.e., $Q(u)=Q(v)=0$ and $u v=u+v$, where u, v are the endpoints of I.

Proof. That I and Q described above have the properties listed in (ii) is clear from Lemma 20.2. Injectivity of our assignment is obvious since Q, I obtained from the given u determine u uniquely (as the lower endpoint of I).

To show that the assignment is surjective, let us fix Q, I as in (ii), and let $I=[u, v]$. Since u, v satisfy (17.6.b), we have $(u-1) v=u$, so that $u \neq 1$ and $v=u^{*}$ (notation of (20.2)). As $u<v$, this gives $u<0$ or $1<u<2$ (cf. Lemma 20.1). Lemma 10.1 now shows that Q is, up to a factor, given by (1.2) with (10.3), that is, by (10.1). Thus, the equivalence class of Q, I is the image of u under our assignment, which completes the proof.

21. Another rational function

Given an integer $m \geqslant 2$, we define a rational function G of the variable t by

$$
\begin{equation*}
G=E-F / 2, \quad \text { with } E, F \text { as in (1.1). } \tag{21.1}
\end{equation*}
$$

For any $t \in \mathbb{R} \backslash\{1\}$ we then have, with $t^{*}=t /(t-1)$ as in (20.2) and ()$^{*}=d / d t$,
(a) $G\left(t^{*}\right)=G(t)$,
(b) $\dot{G}\left(t^{*}\right) / \dot{F}\left(t^{*}\right)=-\dot{G}(t) / \dot{F}(t) \quad$ if $t \neq 0$,
(c) $t(t-1)(t-2) \dot{G}(t)=\Lambda(t) G(t)-2(2 m-1)(t-1) \Sigma(0)$,
(d) $G(0)=-\Sigma(0)<0, \quad \dot{G}(0)=0$,
(e) $(2 m-3) \ddot{G}(0)=m \Sigma(0)>0$,
(f) $G(2)=(2 m-1) \Sigma(0), \quad \dot{G}(2)=0$,
where Λ is given by (5.1.b). In fact, (21.2.a), which is immediate from (21.1) and (20.1), states that G restricted to either of the intervals $(-\infty, 1)$ or $(1, \infty)$ is an even function of the new variable $F \in(-\infty, \infty)$, cf. $\S 6$ and (20.1.i). As the derivative $d G / d F=\dot{G} / \dot{F}$ of the even function G is odd, (21.2.b) follows. (Also, $\dot{F} \neq 0$ on $\mathbb{R} \backslash\{0,1\}$ by (5.1).) Next, (5.5) and (21.1) yield (21.2.c), while (1.1) gives $F(0)=\dot{F}(0)=0$, and so (21.2.d) is immediate from (5.6). Finally, (21.2.e) and (21.2.f) are easily obtained from (21.2.c) by evaluating it at $t=2$, or differentiating it once/twice at $t=2$ and, respectively, $t=0$.

Note that (20.1) and (21.1) lead to the following special case of (10.3):

$$
\begin{equation*}
(A, B, C)=(-2 F(u) G(u), 2 F(u),-F(u)) \quad \text { whenever } u \neq 1 \text { and } v=u^{*} . \tag{21.3}
\end{equation*}
$$

If m is even, $\dot{G}=d G / d t$ is negative on $(-\infty, 0)$ and there exists a unique negative real number z with $G(z)=0$. The following diagram uses slanted arrows to describe the monotonicity type of G

Conformally-Einstein Kähler manifolds

(that is, the sign of \dot{G}) on some specific intervals, and lists the limits of G at their endpoints.

value or limit at:	$-\infty$	z	0	
for $G(m$ even $)$		$+\infty$	$\searrow 0$	$\searrow E(0)$

For odd m, there exist unique numbers $z, w \in(-\infty, 0)$ with $G(z)=E(0)$ and $\dot{G}(w)=0$. Moreover, $z<w<0$ and $E(0)=G(z)<G(w)<0$, while $\dot{G}>0$ on $(-\infty, w)$ and $\dot{G}<0$ on $(w, 0)$. With the same notation as in (21.4), we have the following.

value or limit at:	$-\infty$		z	w	0	
for $G(m$ odd $):$	$-\infty$	\nearrow	$E(0)$	\nearrow	$G(w)$	\searrow

Remark 21.1. Note the analogy between z, w for G and \tilde{z}, \tilde{w} for E in $\S 13$. Also, if m is odd, $z<\tilde{z}$ by (21.5), since $F<0$ on $(-\infty, 0)$ (see (6.1)), and so at \tilde{z} we have $G=E-F / 2>E=E(0)$.

The above claims, justified in the next section, lead to a general conclusion about the rational function G given by (21.1) with a fixed integer $m \geqslant 2$, which, by (1.1), has just one pole, at 1 . Namely, $G \neq 0$ everywhere in $\mathbb{R} \backslash\{1\}$ for odd m, while, if m is even, G has two zeros in $\mathbb{R} \backslash\{1\}$, located at z and $z^{*}=z /(z-1)$. In fact, as $G(w)<0$, (21.4) and (21.5) show that $G \neq 0$ everywhere in $(-\infty, 0]$ except at z for even m, while (7.1.c) and (1.1) give $E>F \geqslant 0$ on $[2, \infty)$, so that $E>F / 2$ and $G>0$ on $[2, \infty)$. A similar assertion about the remaining intervals now follows since, by (21.2.a), G is invariant under the involution in Lemma 20.1, which sends $[0,1)$ and $(1,2]$ onto $(-\infty, 0]$ and, respectively, $[2, \infty)$.

For $m=3$ we have $2 z=1-\sqrt{3}-(2 \sqrt{3})^{1 / 2}, 6 w=2-\sqrt{10}-(8 \sqrt{10}-10)^{1 / 2}$. Thus, $z \approx-1.2966$ and $w \approx-0.8456$. In fact, $2(t-1)^{3}[G(t)-E(0)]=t^{2}\left[t^{2}-(1+\sqrt{3})(t-1)\right]\left[t^{2}-(1-\sqrt{3})(t-1)\right]$ by (21.1) and (1.1), and, similarly, since $E(t)=t^{3}+t^{2}-2$ (cf. Example 19.4), we obtain $6(t-1)^{4} \dot{G}(t)=$ $t(t-2)\left[3 t^{2}-(2+\sqrt{10})(t-1)\right]\left[3 t^{2}-(2-\sqrt{10})(t-1)\right]$.

22. Proofs of (21.4) and (21.5)

According to (6.1), $(-1)^{m} F(t) \rightarrow \infty$ and $2 G(t) / F(t) \rightarrow 1$ as $t \rightarrow-\infty$. (Note that $2 G / F=$ $-1+2 E / F$, cf. (21.1).) Therefore, by (5.1) and (21.1) with ()$^{\cdot}=d / d t$,

$$
\begin{align*}
& \text { (i) }(-1)^{m} G(t) \rightarrow \infty \quad \text { as } \quad t \rightarrow-\infty, \\
& \text { (ii) } 2 \dot{G} / \dot{F}=-1+2 \dot{E} / \dot{F} \quad \text { and } \quad(-1)^{m} \dot{F}<0 \quad \text { on } \quad(-\infty, 0) . \tag{22.1}
\end{align*}
$$

If m is even, Remark 11.2 and (22.1.ii) give $2 \dot{G} / \dot{F}>1$, and hence $2 \dot{G}<\dot{F}<0$, on $(-\infty, 0)$. As $G(0)=E(0)<0$ by (5.6), this and (22.1.i) show that z exists, is unique, and (21.4) holds.

Now let m be odd. By (22.1.ii) and Remark $11.2,2 \dot{G} / \dot{F}$ decreases on $(-\infty, 0)$ from 1 to $-\infty$, assuming the value 0 at a unique $w<0$. Since $\dot{F}>0$ on $(-\infty, 0)$ (see (22.1.ii)), we have $\dot{G}>0$ on $(-\infty, w)$ and $\dot{G}<0$ on $(w, 0)$. Thus $G(w)$ is the maximum value of G in $(-\infty, 0]$, and so $G(w)>G(0)=E(0)$. As G increases on $(-\infty, w)$ from $-\infty$ (see (22.1.i)) to $G(w)$, it assumes the intermediate value $E(0)$ exactly once in $(-\infty, w)$, and not at all in $[w, 0)$ (where it decreases to the limit $E(0)$), which gives the existence and uniqueness of z and the relation $z<w$. Finally, on $(-\infty, 0)$ we have $F<0$ and $E / F>1 / 2$ by (6.1), and hence $G=E-F / 2<0$, so that $G(w)<0$.

23. Positivity and type (17.6.b)

In $\S 20$ we classified all those pairs Q, I, satisfying conditions (II) and (V) of $\S 1$, that are of type (17.6.b). We will now determine which of them also satisfy the positivity condition of $\S 16$ or, equivalently, the remaining conditions (I), (III) and (IV).

A. Derdzinski and G. Maschler

Proposition 23.1. Given $u \in \mathbb{R} \backslash\{0,1,2\}$, let $v=u^{*}$ with $u^{*}=u /(u-1)$, cf. (20.2). Also, let \mathbf{V} be the space (1.3) for a fixed integer $m \geqslant 2$, and let $Q \in \mathbf{V} \backslash\{0\}$ be a function satisfying condition (II) in § 1 on the closed interval I with the endpoints u, v. By Lemma 9.1, such Q exists and is unique up to a factor. Then, the pair Q, I satisfies all five conditions $(I)-(V)$ in § 1 if and only if
(a) m is even, or
(b) m is odd, while $u \notin[z, w]$ and $v \notin[z, w]$, with z, w as in $\S 21$.

Proof. Relation $v=u^{*}$ amounts to (17.6.b), and hence implies condition (V) (Theorem 17.5). Therefore we just need to show that (a) or (b) holds if and only if Q, I satisfy (I), (III) and (IV), that is, the positivity condition of $\S 16$.

First, let one of u, v lie in $(1,2) \cup(2, \infty)$. Then so does the other (Lemma 20.1), and the positivity condition for Q, I follows from (i) in $\S 16$, while, at the same time, we have (a) or (b), as $[z, w] \subset$ $(-\infty, 0)$ when m is odd (see § 21).

Thus, it suffices to prove our assertion in the remaining case where u and $v=u^{*}$ both lie in $(-\infty, 0) \cup(0,1)$, that is (cf. Lemma 20.1) one of them is in $(-\infty, 0)$ and the other in $(0,1)$. The hypotheses of Proposition 15.2 now are satisfied; also, $F(u) \neq 0$ by (1.1), so that (21.3) gives $B \neq 0, C / B=-1 / 2$ and $A / B=-G(u)$. Using (21.3), we may now rephrase conditions (i) and (ii) of Proposition 15.2 as follows:
(i) $\dot{G}(u) / \dot{F}(u)<0<\dot{G}(v) / \dot{F}(v)$, provided that u and $v=u^{*}$ have been switched, if necessary, so that $(-1)^{m}(u-v)>0$.
(ii) $G(u)<E(0)$.

We will show that (a) or (b) holds if and only if one of these conditions (i) and (ii) is satisfied, thus obtaining our assertion as a direct consequence of Proposition 15.2.

Let us first suppose that neither (a) nor (b) holds, that is, m is odd and one of u, v lies in $[z, w]$. As $w<0$, ordering u, v as in (i) (so that $u<v$), we obtain $u \in[z, w]$ and $v \in(0,1)$. Since $G(u) \geqslant E(0)$ (see (21.5)), condition (ii) cannot be satisfied. Also, $\dot{G}(u) \geqslant 0$ (see (21.5)); as $\dot{F}>0$ on $(-\infty, 0)$ for odd m by (5.1), this gives $\dot{G}(u) / \dot{F}(u) \geqslant 0$, and (i) fails as well. Thus, if (i) or (ii) is satisfied, we must have (a) or (b).

To prove the converse, let us now assume (a) or (b) and order u, v as in (i). If m is even, we thus have $u^{*}=v<0<u<1$ and $\dot{G}(v)<0$ (cf. (21.4)). Hence, as (5.1) yields $\dot{F}<0$ on $(-\infty, 0) \cup(0,1)$, (21.2.b) implies the double inequality in (i). On the other hand, if m is odd, we have $u<0<v<1$ and, as $w<0$, condition (b) leads to two possible cases: $u<z$, or $w<u<0$. If $u<z$, (21.5) gives $G(u)<E(0)$, that is, (ii); while, if $w<u<0$, (21.5) shows that $\dot{G}(u)<0$, which, combined with (21.2.b) and the fact that $\dot{F}>0$ on $(-\infty, 0)$ by (5.1), again gives the double inequality in (i). This completes the proof.

24. More on the polynomial T

Given an integer $m \geqslant 2$, let α, β, ϕ, f be the polynomials in u, v with

$$
\begin{align*}
& \text { (a) } \alpha=(u-1)^{m}(v-2) v^{2 m-1} E(u)-(v-1)^{m}(u-2) u^{2 m-1} E(v), \\
& \text { (b) } \beta=(v-1)^{m}(u-2) u^{2 m-1}-(u-1)^{m}(v-2) v^{2 m-1}, \tag{24.1}\\
& \text { (c) } \phi=u+v-2, \quad f=m u v-(2 m-1) \phi,
\end{align*}
$$

for E as in (1.1). Thus, with A, B depending on $u, v \in \mathbb{R} \backslash\{1\}$ as in (10.3),

$$
\begin{equation*}
\alpha=(u-1)^{m}(v-1)^{m} A, \quad \beta=(u-1)^{m}(v-1)^{m} B . \tag{24.2}
\end{equation*}
$$

Conformally-Einstein Kähler manifolds

Lemmas 17.3 and 17.2 imply that the product of $u(u-2) v(v-2)$ and the right-hand side of (17.5) equals $(u-1)^{m}(v-1)^{m}$ times $2(u v-u-v)$ times the expression (17.3). Dividing by $2(u v-u-v)$ and using (17.5), (24.1) and (24.2), we obtain, for the polynomial T given by (17.5),
(i) $(v-u)^{3} u(u-2) v(v-2) T(u, v)=f \alpha+c \beta \phi$, where
(ii) $c=(2 m-1) \Sigma(0)>0$, with $\Sigma(0)$ as in (5.6.i).
(This c is not related to the symbol c in the Introduction and $\S \S 1-4$.) For $v=1$, (24.1) gives $\alpha=-(u-1)^{m} E(u), \beta=(u-1)^{m}$ and $\phi=u-1, f=(1-m) u+2 m-1$, so that (24.3.i) with $v=1$ becomes

$$
\begin{array}{ll}
\text { (a) } u(u-2) T(u, 1)=(u-1)^{m-2} W(u) & \text { for all } u \in \mathbb{R}
\end{array} \text { where } \quad \begin{array}{ll}
\text { (b) } W(u)=[(m-1) u-2 m+1] \Sigma(u)+(2 m-1) \Sigma(0) & \text { for } u \in \mathbb{R} .
\end{array}
$$

Also, with F, Σ, G, T given by (1.1), (21.1) and (17.5) for an integer $m \geqslant 2$,

> (a) $u^{5}(u-2)^{5} T\left(u, u^{*}\right)=2(u-1)^{2} F(u) S(u)$ for all $u \neq 1$, where
> (b) $S(u)=\left[(m-1) u^{2}-2(2 m-1)(u-1)\right] G(u)+(2 m-1)\left(u^{2}-2 u+2\right) \Sigma(0)$
and $u^{*}=u /(u-1)$ for $u \neq 1$. In fact, setting $v=u^{*}$ in (24.1.c) we get $(u-1) \phi=(u-1)^{2}+1$ and $(1-u) f=(m-1) u^{2}-2(2 m-1)(u-1)$. Since $(u-1)(v-u)=(u-1)^{2} v(v-2)=u(2-u)$ whenever $v=u^{*}$, we obtain (24.5.a) by setting $v=u^{*}$ in (24.3.i) and noting that (24.2) with $v=u^{*}$ reads $\alpha=A$ and $\beta=B$ (cf. (20.2.b)), while A, B with $v=u^{*}$ are in turn given by (21.3).

Finally, for any integer $m \geqslant 2$, applying $\partial / \partial u$ to (24.3.i) at $u=0$ and using (24.1) with $\dot{E}(0)=0$ (see (5.6.iii)), we obtain

$$
\begin{equation*}
2 T(0, v)=(-1)^{m} m \Sigma(0) v^{2 m-4} \quad \text { for all } v \in \mathbb{R}, \quad \text { with } \Sigma(0) \text { as in (5.6.i). } \tag{24.6}
\end{equation*}
$$

25. The sign of T on a specific curve

Let T be the polynomial in u, v given by (17.5) for any fixed integer $m \geqslant 2$. In this section we describe the behavior of $\operatorname{sgn} T$ on the intersection of the half-plane $u<0$ with the hyperbola \mathcal{H} given by $u v=u+v$ (that is, $v=u^{*}$, cf. (20.2)). Such a description will allow us, later in § 29, to draw important conclusions about zeros of T in the region $u<0<v \leqslant 1$, while in § 32 we will explain why this is the only region that matters.

We need the next result to prove Lemmas 25.2 and 26.1. See also Example 27.4.
Lemma 25.1. Given $c \in \mathbb{R} \backslash\{0\}$ and C^{1} functions $\alpha, f, \psi, \lambda, \mu, \Psi$ on an open interval, let ($)^{\prime}$ be the derivative operator followed by multiplication by some fixed C^{1} function. If $\alpha^{\prime}=\lambda \alpha-c \mu$ and $\Psi=f \alpha+c \psi$, then, at every point where $\Psi=0$,
(a) $c^{-1} f \Psi^{\prime}=\left(\psi^{\prime}-\lambda \psi-f \mu\right) f-\psi f^{\prime}$,
(b) $c^{-1} f \Psi^{\prime}=\left(f \phi^{\prime}-\phi f^{\prime}\right) \beta-(\phi \nu+f \mu) f$ provided that, in addition, $\psi=\beta \phi$ and $\beta^{\prime}=\beta \lambda-\nu$ for some C^{1} functions ϕ, β, ν.
In fact, any point with $\Psi=0$ has $f \alpha=-c \psi$, and hence $f \alpha^{\prime}=\lambda f \alpha-c f \mu=-c(\lambda \psi+f \mu)$, so that (a) is immediate as $\Psi=f \alpha+c \psi$ and $f(f \alpha)^{\prime}=\left(f \alpha^{\prime}\right) f+(f \alpha) f^{\prime}$. To obtain (b), it now suffices to replace ψ and ψ^{\prime} in (a) by $\beta \phi$ and, respectively, $\beta \phi^{\prime}+\beta^{\prime} \phi=\phi^{\prime} \beta+(\beta \lambda-\nu) \phi$.
Lemma 25.2. Given an integer $m \geqslant 2$, let T, S be the polynomial and rational function with (17.5) and (24.5.b). Also, let $u^{*}=u /(u-1)$ for $u \neq 1$, cf. (20.2).
(a) If m is even, $T\left(u, u^{*}\right)>0$ for every $u<0$.
(b) If m is odd, the equation $T\left(x, x^{*}\right)=0$ has a unique negative real solution x. With this x we have $T\left(u, u^{*}\right)>0$ for all $u \in(-\infty, x)$ and $T\left(u, u^{*}\right)<0$ for all $u \in(x, 0)$, as well as $x<z$, where z is defined as in $\S 21$.

A. Derdzinski and G. Maschler

(c) If m is odd, $\operatorname{sgn}(u-x)=\operatorname{sgn} S(u)$ for x as in (b) and any $u \in(-\infty, 0]$.
(d) We have $d\left[T\left(u, u^{*}\right)\right] / d u<0$ at every $u<0$ with $T\left(u, u^{*}\right)=0$.

Proof. By (21.2.d), $S(0)=\dot{S}(0)=0$ and $(2 m-3) \ddot{S}(0)=8 m(m-1) \Sigma(0)>0$, where ()$^{\cdot}=d / d t$. Thus, $S(t)>0$ for $t<0$ near 0 . Also, $(-1)^{m} S(t) \rightarrow \infty$ as $t \rightarrow-\infty$, since, by (22.1.i), $(-1)^{m} S(t) / t^{2} \rightarrow \infty$ as $t \rightarrow-\infty$.

In view of (21.2.c), the assumptions of Lemma 25.1 are satisfied by $\alpha=G(t)$ with (21.1), $f=(m-1) t^{2}-2(2 m-1)(t-1), \psi=t^{2}-2 t+2, \lambda=\Lambda(t)$ with (5.1.b), $\mu=2(t-1), \Psi=S(t)$, the constant (24.3.ii), and ()$^{\prime}=t(t-1)(t-2) d / d t$. Also, $f=\lambda-t^{2}$ (by (5.1.b)) and $\psi=t^{2}-\mu$, so that $\lambda \psi+f \mu=\lambda t^{2}-\lambda \mu+\lambda \mu-\mu t^{2}=(\lambda-\mu) t^{2}=m t^{2}(t-2)^{2}$ and $\psi^{\prime}-\lambda \psi-f \mu=-t(t-2)[(m-2) t(t-2)-2]$. Moreover, $\psi f^{\prime}=2 t(t-1)(t-2)\left(t^{2}-2 t+2\right)[(m-1) t-2 m+1]$. The right-hand side in Lemma 25.1(a) thus equals $-m(m-1) t^{2}(t-2)^{4}$. Using Lemma 25.1(a), with both sides divided by $t(t-2)$, we see that $(t-1) f \dot{S}(t)=-m(m-1) c t(t-2)^{3}$ at every $t \in \mathbb{R} \backslash\{0,1,2\}$ at which $S(t)=0$. This gives $\dot{S}(t)>0$ for every $t<0$ with $S(t)=0$, as the quadratic polynomial f, having a positive value and a negative derivative at $t=0$, must be positive for all $t<0$. Remark 18.1 for $\Phi=S$ and $\mathcal{I}=(-\infty, 0)$, combined with the signs of S near $-\infty$ and 0 determined in the last paragraph, now gives (c) with some (unique) $x<0$, as well as $S>0$ on $(-\infty, 0)$ if m is even. Since $S(x)=0$, the definition of S leads to a rational expression for $G(x)$ in terms of x, which easily shows that $G(x)<E(0)=-\Sigma(0)$ (cf. (5.6.ii)), so that $x<z$ by (21.5). Also, as sgn $F=(-1)^{m}$ on $(-\infty, 0)$, cf. (6.1), relation (24.5.a) yields $\operatorname{sgn} T\left(u, u^{*}\right)=(-1)^{m} \operatorname{sgn} S(u)$ for $u<0$. Hence (a), (b) and (d) follow, completing the proof.

26. The differential of T at points where $T=0$

Lemma 26.1. Given an integer $m \geqslant 2$, let $T, \beta, \phi, f, \Psi, \zeta, \theta$ be the polynomials in u, v given, respectively, by (17.5), (24.1.b), (24.1.c), the formula

$$
\begin{equation*}
\Psi=(v-u)^{3} u(u-2) v(v-2) T(u, v), \tag{26.1}
\end{equation*}
$$

$\zeta=(u-1)^{m-1}(v-2) v^{2 m-1}$, and $\theta=(v-1)^{m-1}(u-2) u^{2 m-1}$. For the constant c with (24.3.ii) we then have, at every point (u, v) at which $\Psi=0$,

$$
\begin{array}{llll}
(m c)^{-1} f \partial \Psi / \partial u & =(u-v) f \zeta-v(v-2) \beta & \text { unless } & u(u-2)=0, \\
(m c)^{-1} f \partial \Psi / \partial v & =(u-v) f \theta-u(u-2) \beta & & \text { unless } \tag{26.2}
\end{array} \quad v(v-2)=0 .
$$

Proof. The assumptions of Lemma 25.1(b) hold for β, ϕ, f, Ψ, c chosen as above, α as in (24.1.a), $\psi=\beta \phi, \lambda=2(m u-2 m+1), \mu=2(u-1) \zeta, \nu=-\Lambda(u) \zeta$, with Λ given by (5.1.b), and ($)^{\prime}=$ $u(u-2) \partial / \partial u$, where the variable v is fixed.

This is clear as $\Psi=f \alpha+c \phi \beta$ by (26.1) and (24.3.i), while $\alpha^{\prime}=\lambda \alpha-c \mu$ and $\beta^{\prime}=\beta \lambda-\nu$ in view of (5.5.ii) with $\Lambda(u)+m u(u-2)=2(u-1)(m u-2 m+1)$, which is immediate from (5.1.b).

Now $\phi^{\prime}=u(u-2), f^{\prime}=u(u-2) l(v)$, and so $f \phi^{\prime}-\phi f^{\prime}$ equals $u(u-2)$ times $f-\phi l(v)=$ $m u v-[2 m-1+l(v)] \phi=m v(u-\phi)=-m v(v-2)$ with $l(v)=m v-2 m+1$, that is, $f \phi^{\prime}-\phi f^{\prime}=$ $-\operatorname{muv}(u-2)(v-2)$.

Finally, $(2 m-1) \mu-\nu=[2(2 m-1)(u-1)+\Lambda(u)] \zeta=m u^{2} \zeta$ (cf. (5.1.b)). Therefore, $\phi \nu+f \mu=$ $\phi \nu+[m u v-(2 m-1) \phi] \mu=-[(2 m-1) \mu-\nu] \phi+m u v \mu=-m u^{2} \phi \zeta+m u v \mu=-m u(u-2)(u-v) \zeta$. Dividing both sides of the equality in Lemma 25.1 (b) by $m u(u-2)$, we arrive at the first relation in (26.2). The second one is obtained by evaluating the first at the point (v, u) rather than (u, v). In fact, switching u, v causes ζ to be replaced by θ, while f is symmetric in u, v and β, Ψ are anti-symmetric, so that the values of $\partial \Psi / \partial u$ at (v, u) and $\partial \Psi / \partial v$ at (u, v) are mutually opposite. This completes the proof.

Conformally-Einstein Kähler manifolds

Lemma 26.2. For any integer $m \geqslant 2$, let $R, \widetilde{\Xi}$ be the polynomials in real variables u, v with $R=1$ if m is even, $R=u v(u+v)-\left(u^{2}+v^{2}\right)$ if m is odd, and $\widetilde{\Xi}=\left[(u-1) v^{2}\right]^{m-1}-\left[(v-1) u^{2}\right]^{m-1}$ for all m. Then $\widetilde{\Xi}=(v-u)(u v-u-v) R \Xi$ for some polynomial Ξ in u, v such that $\Xi>0$ on $\mathbb{R}^{2} \backslash\{(0,0),(1,1)\}$.

This is clear since $\xi^{2 n}-\eta^{2 n}=(\xi-\eta)(\xi+\eta)\left(\xi^{2 n-2}+\xi^{2 n-4} \eta^{2}+\cdots+\eta^{2 n-2}\right)$ and $\xi^{m-1}-\eta^{m-1}=$ $(\xi-\eta)\left(\xi^{m-2}+\xi^{m-3} \eta+\cdots+\eta^{m-2}\right)$ for an integer $n \geqslant 1$ or an even integer $m \geqslant 2$, and $\xi, \eta \in \mathbb{R}$. In both cases, the last factor is positive unless $\xi=\eta=0$. (In fact, if m is even and $\eta \neq 0$, then η is both a simple root and the unique real root of the polynomial $\xi \mapsto \xi^{m-1}-\eta^{m-1}$.) Our assertion now follows if we use $n=(m-1) / 2$ when m is odd, and set $\xi=(u-1) v^{2}, \eta=(v-1) u^{2}$, so that $\xi-\eta=(v-u)(u v-u-v)$ and $\xi+\eta=u v(u+v)-\left(u^{2}+v^{2}\right)$.

For f, R depending on (u, v) as in (24.1.c) and Lemma 26.2 with a fixed $m \geqslant 2$,

$$
\begin{equation*}
f \geqslant m>0 \quad \text { and } \quad(-1)^{m} R \geqslant 0 \quad \text { whenever } \quad u-1 \leqslant 0<v \leqslant 1 \tag{26.3}
\end{equation*}
$$

In fact, $f=m \tilde{u} \tilde{v}+(m-1)(\tilde{u}+\tilde{v})+m$ for $\tilde{u}=1-u$ and $\tilde{v}=1-v$, so that $f \geqslant m$ as $\tilde{u}, \tilde{v} \geqslant 0$. It now follows that $(-1)^{m} R \geqslant 0$ if one adds up the inequalities obtained from multiplying the relations $v \leqslant 1$ and $u \geqslant 1$ by u^{2} and, respectively, v^{2}.

Lemma 26.3. Given an integer $m \geqslant 3$, for T as in Lemma 17.3 we have, at every point $(u, v) \in \mathbb{R}^{2}$ at which $u<0<v \leqslant 1$ and $T(u, v)=0$,

$$
\begin{equation*}
(-1)^{m} \operatorname{sgn} d_{\mathbf{w}} T=\operatorname{sgn}(u v-u-v) \quad \text { and } \quad d T \neq 0 \tag{26.4}
\end{equation*}
$$

$d_{\mathbf{w}}$ being the directional derivative for the vector field $\mathbf{w}=(u-1, v-1)$ on \mathbb{R}^{2}.
Proof. With c, f, Ψ as in (24.3.ii), (24.1.c) and (26.1), let Φ stand for the value of $(m c)^{-1} f d_{\mathbf{w}} \Psi$ at any fixed (u, v) with $u<0<v \leqslant 1$ and $T(u, v)=0$. Thus, $d_{\mathbf{w}}$ applied to (26.1) gives $\operatorname{sgn} d_{\mathbf{w}} T=-\operatorname{sgn} \Phi$ at (u, v), as $c f>0$ (see (26.3)). Also, $f=(u-2)(m v-2 m+1)+v$. Hence Φ, being, by (26.2), the difference of $(u-v)\left[(u-1)^{m}(v-2) v^{2 m-1}+(v-1)^{m}(u-2) u^{2 m-1}\right] f$ and $u(u-2)(v-1) \beta+v(v-2)(u-1) \beta$ at (u, v), must equal the sum of the two expressions

$$
\begin{aligned}
& (u-v)[(u-2)(m v-2 m+1)+v]\left[(u-1)^{m}(v-2) v^{2 m-1}+(v-1)^{m}(u-2) u^{2 m-1}\right] \\
& {[u(u-2)(v-1)+v(v-2)(u-1)]\left[(u-1)^{m}(v-2) v^{2 m-1}-(v-1)^{m}(u-2) u^{2 m-1}\right]}
\end{aligned}
$$

In both displayed products, either of the two factors enclosed in square brackets is a sum of two polynomials; of these eight polynomials, four are manifestly divisible by $u-2$. Direct multiplications in both displayed lines, performed to evaluate Φ, thus give rise to eight product terms, of which only two, $v(v-2)(u-1)$ times $(u-1)^{m}(v-2) v^{2 m-1}$ and $(u-v) v$ times $(u-1)^{m}(v-2) v^{2 m-1}$, fail to explicitly contain $u-2$ as a factor; their sum, however, is $(u-2)(v-1)(u-1)^{m}(v-2) v^{2 m}$. Thus, the polynomial in u, v representing the value Φ is divisible by $u-2$, and the calculation just outlined gives

$$
\begin{align*}
\Phi /(u-2)= & u(u-1)^{m}(v-1)(v-2) v^{2 m-1} \\
& -(u v-u-v)[u+(v-2)] u^{2 m-1}(v-1)^{m} \\
& +(u-v)[(m u-2 m+1)(v-2)+u] u^{2 m-1}(v-1)^{m} \\
& +(v-2)[(m v-2 m+1) u-(m-1)(v-2) v](u-1)^{m} v^{2 m-1} \tag{26.5}
\end{align*}
$$

(The second line of (26.5) is the result of combining two of the four terms containing the factor $u^{2 m-1}(v-1)^{m}$ with the aid of (17.4).) The right-hand side can, as before, be rewritten as the sum of polynomial product terms, with each of the three square brackets contributing to two of them; this time, there are seven such terms, and five of them are manifestly divisible by $v-2$, while the other two add up to $[(u+v-u v)+(u-v)] u^{2 m}(v-1)^{m}$, that is, $v-2$ times $-u^{2 m+1}(v-1)^{m}$.

A. Derdzinski and G. Maschler

Consequently, as a polynomial in u, v, our $\Phi /(u-2)$ is divisible by $v-2$ and, proceeding just as we did above to evaluate $\Phi /(u-2)$, we obtain

$$
\begin{align*}
\Phi /[(u-2)(v-2)]= & {\left[(m-1) u^{2}-(m+1) u v-2(m-1) u+2 m v\right] u^{2 m-1}(v-1)^{m} } \\
& -\left[(m-1) v^{2}-(m+1) u v-2(m-1) v+2 m u\right] v^{2 m-1}(u-1)^{m} . \tag{26.6}
\end{align*}
$$

The relation $\left[(v-1) u^{2}\right]^{m-1}=\left[(u-1) v^{2}\right]^{m-1}-\widetilde{\Xi}$, for $\widetilde{\Xi}$ as in Lemma 26.2, allows us to replace the factor $u^{2 m-1}(v-1)^{m}=\left[(v-1) u^{2}\right]^{m-1}(v-1) u$ with $-(v-1) u \widetilde{\Xi}+(v-1) u(u-1)^{m-1} v^{2 m-2}$, while $\widetilde{\Xi}=(v-u)(u v-u-v) R \Xi$ by Lemma 26.2. It now easily follows that Φ is equal to the product of $(u-2)(v-2)(u-v)(u v-u-v)$ and

$$
\begin{equation*}
\left[(m-1) u^{2}-(m+1) u v-2(m-1) u+2 m v\right](v-1) u R \Xi+(m-1)(u+v-2)(u-1)^{m-1} v^{2 m-2} . \tag{26.7}
\end{equation*}
$$

As $u<0<v \leqslant 1$, all four terms within the square brackets in (26.7) are positive. The signs of the other four factors $(v-1), u, R, \Xi$ in that line are, respectively, $(-$ or 0$),-,\left((-1)^{m}\right.$ or 0$),+$ (cf. (26.3) and Lemma 26.2), while those of the four factors in the second line are $+,-,(-1)^{m-1},+$, so that sgn of (26.7) equals $(-1)^{m}$, which clearly yields the first relation in (26.4). The second one then is immediate from the first, since, by Lemma $25.2(\mathrm{~d}), d T \neq 0$ at our (u, v) also in the case where $v=u^{*}$, that is, $u v-u-v=0$. This completes the proof.
Remark 26.4. By (26.4), 0 is a regular value of T in $\mathcal{R}=(-\infty, 0) \times(0,1]$, that is, in the region \mathcal{R} in the $u v$-plane \mathbb{R}^{2} given by $u<0<v \leqslant 1$. Thus, if the set of zeros of T in \mathcal{R} is nonempty, its connected components are one-dimensional real-analytic submanifolds of \mathcal{R}, possibly with boundary. When m is odd, that set of zeros is nonempty, as it contains (x, x^{*}) (see Lemma 25.2(b)).

27. An analytic curve segment with $T=0$

The meaning of the symbol r in this section is not related to its use in $\S 3$.
Lemma 27.1. Let a real number $q_{*} \in[-1,0)$ and a C^{1} function Y of the real variables q, r, defined on the square $\mathcal{S}=(-1,0) \times[0,1]$, satisfy the conditions
(i) $\partial Y / \partial r<0$ at every interior point of \mathcal{S} at which $Y=0$,
(ii) $\operatorname{sgn} Y(q, 1)=\operatorname{sgn}\left(q-q_{*}\right)$ and $Y(q, 0)>0$,
for all $q \in(-1,0)$. Then the following assertions hold.
(a) $Y>0$ on $\left(q_{*}, 0\right) \times[0,1]$.
(b) For every $q \in\left(-1, q_{*}\right]$ there exists a unique $r \in[0,1]$ with $Y(q, r)=0$.
(c) The coordinate function q, restricted to the set of all zeros of Y in the square \mathcal{S}, maps it homeomorphically onto $\left(-1, q_{*}\right]$. In particular, that set of zeros is empty when $q_{*}=-1$.

In fact, by (ii), both $Y(q, 0)$ and $Y(q, 1)$ are positive if $q \in\left(q_{*}, 0\right)$, so that (i) and Remark 18.1 with $\Phi(r)=-Y(q, r)$ and $\mathcal{I}=[0,1]$ yield (a). Next, r required in (b) exists for $q \in\left(-1, q_{*}\right]$, since (ii) gives $Y(q, 0)>0 \geqslant Y(q, 1)$, and it is unique in view of Remark 18.1 (for Φ as above) and (i). Finally, q sends the set of zeros of Y bijectively onto ($-1, q_{*}$], while continuity of its inverse mapping (that is, of the function $q \mapsto r$) follows from an obvious subsequence argument.

We define a rational function q of the variables u, v and a constant q_{*} by

$$
\begin{equation*}
q=(v-u) /(u+v-2), \quad q_{*}=(2-x) x /\left[(x-1)^{2}+1\right] \in(-1,0) \tag{27.1}
\end{equation*}
$$

for x as in Lemma 25.2(b). Thus, x and q_{*} also depend on an odd integer $m \geqslant 3$.
Remark 27.2. We have $q_{*} \in(-1,0)$ in (27.1) since the assignment $x \mapsto q_{*}$ is an increasing diffeomorphism $(-\infty, 0) \rightarrow(-1,0)$. In fact, it is the composite $(-\infty, 0) \rightarrow(1, \infty) \rightarrow(-1,0)$ of the decreasing diffeomorphisms $x \mapsto \zeta=(x-1)^{2}$ and $\zeta \mapsto q_{*}=(1-\zeta) /(1+\zeta)=-1+2 /(1+\zeta)$.

Conformally-Einstein Kähler manifolds

Theorem 27.3. Let Z be the set of all $(u, v) \in \mathbb{R}^{2}$ with $u<0<u^{*} \leqslant v \leqslant 1$ and $T(u, v)=0$, where $u^{*}=u /(u-1)$ and T is the polynomial with (17.5) for a given integer $m \geqslant 2$. Also, let q, q_{*}, x be as in (27.1) and Lemma 25.2(b).
(a) If m is even, Z is empty.
(b) If m is odd, Z is a real-analytic compact curve segment embedded in \mathbb{R}^{2}.

For odd m, there exists a unique negative real number y with $T(y, 1)=0$. The endpoints of the curve segment Z then are $\left(x, x^{*}\right)$ and $(y, 1)$, while the restriction of q to Z is a homeomorphism $q: Z \rightarrow\left[-1, q_{*}\right]$ sending $(y, 1)$ and $\left(x, x^{*}\right)$ onto -1 and, respectively, q_{*}.

Proof. At any (u, v) with $u<0$ and $v=1$, (26.4) reads: $(-1)^{m} d[T(u, 1)] / d u>0$, provided that $T(u, 1)=0$. The assumptions of Remark 18.1 thus are satisfied by $\Phi(u)=(-1)^{m} T(u, 1)$ on the interval $\mathcal{I}=(-\infty, 0)$. Also, $\Phi(0)>0$ by (24.6), while $(-1)^{m} \Phi(u) \rightarrow \infty$ as $u \rightarrow-\infty$ (since W in (24.4) is a degree m polynomial with leading coefficient $m-1>0$, cf. (1.1)). Remark 18.1 now shows that equation $T(y, 1)=0$ has no negative real solutions y when m is even, and has exactly one such solution when m is odd.

The formula $\Upsilon(u, v)=(q, r)$ with q as in (27.1) and $r=u(v-1) / v$ defines a diffeomorphism $\Upsilon: \mathcal{K} \rightarrow \mathcal{S}$ of the set \mathcal{K} in the $u v$-plane, formed by all (u, v) with $u \leqslant 0<v<1$ and $u^{*} \leqslant v$, onto the square $\mathcal{S}=(-1,0) \times[0,1]$ in the $q r$-plane. This is an easy exercise; for instance, $u+v-2<0$ on \mathcal{K}, as $u \leqslant 0$ and $v<2$, so that $-1<q<0$, while $r=u / v^{*}$, and so $0 \leqslant r \leqslant 1$ as $v^{*} \leqslant u \leqslant 0$, that is, $0 \leqslant u^{*} \leqslant v$ (cf. Lemma 20.1). Also, solving $v-u=(u+v-2) q$ for v, we can rewrite the condition $r=u(v-1) / v$, for any $(q, r) \in \mathcal{S}$, as the equation $(q+1)(u-r-1) u+2 q r=0$, which is quadratic in u and has a positive leading coefficient, while its left-hand side is nonpositive at both $u=0$ and $u=1$, so that its only nonpositive real root is simple. Solving it for u and using our expression for v in terms of u and q, we now get an explicit description of the inverse Υ^{-1}.

The diffeomorphism $\Upsilon: \mathcal{K} \rightarrow \mathcal{S}$ sends $(-1)^{m} T: \mathcal{K} \rightarrow \mathbb{R}$ and the vector field $\mathbf{w}=(u-1, v-1)$ on \mathcal{K} onto the function $Y=(-1)^{m} T \circ \Upsilon^{-1}: \mathcal{S} \rightarrow \mathbb{R}$ and a vector field on \mathcal{S}. The latter equals a positive function times the coordinate vector field in the direction of r, which is clear since $d_{\mathbf{w}} q=0$ for q treated as a function of u, v, while $v^{2} d_{\mathbf{w}} r=(v-1)[(u-1) v+u]>0$ on \mathcal{K}, as $v>0$ and $v-1$, $u-1, u$ are all negative. Thus, by (26.4), our Y satisfies (i) in Lemma 27.1, since the inequality $u v \leqslant u+v$ (that is, $u^{*} \leqslant v$) gives $u v-u-v<0$ on the interior of \mathcal{K}.

Moreover, Υ also maps the boundary curves of \mathcal{K}, parameterized by $u \mapsto\left(u, u^{*}\right)$ and, respectively, $v \mapsto(0, v)$ with $u \in(-\infty, 0)$ and $v \in(0,1)$, onto the boundary curves for \mathcal{S}, given by $q \mapsto(q, 1)$ and $q \mapsto(q, 0)$ with $q \in(0,1)$, in such a way that the curve parameter q is an increasing (or, respectively, decreasing) function of u (or v). Lemma 25.2, parts (a) and (b), and (24.5) now show that Y satisfies condition (ii) in Lemma 27.1 as well, provided that we set $q_{*}=-1$ when m is even, and define q_{*} as in (27.1) when m is odd. Note that, for odd m, the function on \mathcal{K} corresponding under Υ to the coordinate function q on \mathcal{S} is, obviously, $q: \mathcal{K} \rightarrow \mathbb{R}$ given by (27.1), the value of which at $\left(x, x^{*}\right)$ is q_{*}.

Lemma 27.1 and Remark 26.4, combined with our initial conclusion about the equation $T(y, 1)=$ 0 , now yield both (a) and (b), completing the proof.

Example 27.4. If $m=3$ we have $x=-(\sqrt{5}+1) / 2$ and $y=-3 / 2$ for x, y as in Lemma 25.2(b) and Theorem 27.3. This is clear from Lemma 25.2 (c) and (24.4) since, using (1.1) and the explicit expressions for Σ and E in Example 19.4, we obtain $(t-1)^{3} S(t)=t^{2}(t-2)^{4}\left(t^{2}+t-1\right)$ and $W(t)=t(t-2)(2 t+3)$. Now $x^{2}=1-x$, so that $(x-1)^{2}+1=3(1-x)$ and hence $q_{*}=-\sqrt{5} / 3$.

A. Derdzinski and G. Maschler

28. A further symmetry

In view of Lemma 20.1, for u^{*}, v^{*} as in (20.2) the assignment

$$
\begin{equation*}
\mathcal{U} \ni(u, v) \mapsto\left(v^{*}, u^{*}\right) \in \mathcal{U}, \quad \text { where } \quad \mathcal{U}=(\mathbb{R} \backslash\{1\}) \times(\mathbb{R} \backslash\{1\}), \tag{28.1}
\end{equation*}
$$

is an involution $\mathcal{U} \rightarrow \mathcal{U}$ and its fixed-point set is the hyperbola \mathcal{H} given by $v=u^{*}$. The importance of (28.1) for our discussion is due to Proposition 28.2 below.

Both \mathcal{H} and (28.1) appear particularly simple if one replaces u, v by new affine coordinates a, b with $u=a+1, v=b+1$. The equation of \mathcal{H} then becomes $a b=1$ (cf. (20.2.b)), while (28.1) reads $(a, b) \mapsto(1 / b, 1 / a)$. In other words, let us shift the origin from $(u, v)=(0,0)$ to $(u, v)=(1,1)$, so as to treat the original $u v$-plane as the $a b$-plane \mathbb{R}^{2} with linear coordinates a, b. We may now endow the latter with the indefinite inner product corresponding to the quadratic function $(a, b) \mapsto a b$. This makes \mathcal{H} a unit pseudocircle centered at the origin, while (28.1) acts through division of any non-null vector (a, b) by its inner square $a b$. Thus, (28.1) forms the pseudo-Euclidean analogue of the Euclidean conformal inversion $\mathbf{x} \mapsto \mathbf{x} /|\mathbf{x}|^{2}$.

Lemma 28.1. For F, E, Π as in (1.1) and (17.2) with a fixed integer $m \geqslant 2$, let $\tilde{F}(t)=(t-1) \dot{F}(t)$, $\tilde{E}(t)=(t-1) \dot{E}(t)$, where ()$^{\cdot}=d / d t$. We then have $\tilde{F}\left(t^{*}\right)=\tilde{F}(t), \tilde{E}\left(t^{*}\right)=\tilde{F}(t)-\tilde{E}(t)$, and $\Pi\left(u^{*}, v^{*}\right)=\Pi(u, v)$ for any $t, u, v \in \mathbb{R} \backslash\{1\}$, with t^{*}, u^{*}, v^{*} defined as in (20.2).

In fact, $d t^{*} / d t=-1 /(t-1)^{2}$ by (20.2.b). Applying $d / d t$ and the chain rule to (20.1), we get $\dot{F}\left(t^{*}\right)=(t-1)^{2} \dot{F}(t)$ and $\dot{E}\left(t^{*}\right)=(t-1)^{2}[\dot{F}(t)-\dot{E}(t)]$, which yields the first two relations, and (with (17.2), (20.1) and (20.2.b)) also the third.

Proposition 28.2. Given an integer $m \geqslant 2$, let $T(u, v)$ be as in (17.5), and let $u, v \in \mathbb{R} \backslash\{1\}$. Then, with t^{*}, u^{*}, v^{*} defined as in (20.2), the following assertions hold.
(a) $\widetilde{T}\left(u^{*}, v^{*}\right)=\widetilde{T}(u, v)$, where $\widetilde{T}(u, v)=(u-1)^{2-m}(v-1)^{2-m} T(u, v)$.
(b) The involution (28.1) leaves invariant the function $\operatorname{sgn} T$.
(c) The set $\left\{(u, v) \in \mathbb{R}^{2} \mid T(u, v)=0\right.$ and $\left.u \neq 1 \neq v\right\}$ is invariant under (28.1).

This is clear, as $(u-1)(v-1) \theta\left(u^{*}, v^{*}\right)=-\theta(u, v)$ both for $\theta(u, v)=v-u$ and for $\theta(u, v)=$ $u v-u-v$. Using (17.5), Lemma 28.1 and (20.2.b), we now obtain $(u-1)^{2 m-4}(v-1)^{2 m-4} T\left(u^{*}, v^{*}\right)=$ $T(u, v)$, and (20.2) gives (a), while (a) with $T(u, v)=T(v, u)$ yields (b), and (b) implies (c).

Remark 28.3. The involution (28.1) admits an interesting algebraic-geometric interpretation in terms of the projective plane in which the $a b$-plane corresponding (as described above) to the original $u v$-plane is canonically embedded. Namely, the homogeneous-coordinate form of (28.1) is $[a: b: c] \mapsto[a b: a c: b c]$, so that (28.1) is a quadratic transform with the centers $[0: 0: 1]$, $[0: 1: 0]$ and $[1: 0: 0]$. (See [GH94, pp. 496-498].) In other words, (28.1) consists of a blow-up at the three centers, followed by a blow-down of the three projective lines through each pair of centers. The three centers lie in the projective closure $\overline{\mathcal{T}}$ of the curve \mathcal{T} with the equation $T=0$, and one can show that $m-2$ is their common algebraic multiplicity. Hence they are singularities of $\overline{\mathcal{T}}$ for odd $m>3$, while $\overline{\mathcal{T}}$ also has a fourth singularity, of multiplicity $2(m-2)$, at the point $[a: b: c]$ with $a=b=-1, c=1$, that is, at the origin of the $u v$-plane.

Proposition 28.2 thus states that $\overline{\mathcal{T}}$ is invariant under a quadratic transform with centers which, for odd $m>3$, are its low-order singularities.

Remark 28.4. A well-known involution (cf. [ACG05]) assigns to a quadruple (M, g, m, τ) satisfying Condition 0.1 or Condition 0.2 , such that g is not locally reducible as a Kähler metric, its dual $(\hat{M}, \hat{g}, \hat{m}, \hat{\tau})$. Here \hat{M}, M coincide as real manifolds, but have different complex structures, so that $\hat{m}=m$, while $\hat{g}=c^{2} g /(\tau-c)^{2}$ and $\hat{\tau}=c \tau /(\tau-c)$, for c determined by (M, g, m, τ) as in Remark 3.3.

Conformally-Einstein Kähler manifolds

(See Theorem 0.3 and $\S 4$.) This duality involution induces the mapping (28.1) on $\mathcal{C} \backslash\{(0,0)\}$ when (M, g, m, τ) is replaced by the point $(u, v) \in \mathcal{C}$ associated with it as in the Introduction or Remark 3.3.

29. Equation $T(u, v)=0$ with $u<0<v<1$

Proposition 29.1. Given an integer $m \geqslant 2$, let Γ be the set of all $(u, v) \in \mathbb{R}^{2}$ with $u<0<v<1$ and $T(u, v)=0$, for T as in Lemma 17.3.
(i) If m is even, Γ is empty.
(ii) If m is odd, Γ is a real-analytic submanifold of \mathbb{R}^{2}, diffeomorphic to \mathbb{R}, containing the point $\left(x, x^{*}\right)$ described in Lemma 25.2(b), and invariant under the involution (28.1). Furthermore, (28.1) keeps $\left(x, x^{*}\right)$ fixed and interchanges the two connected components of $\Gamma \backslash\left\{\left(x, x^{*}\right)\right\}$. One of these components is unbounded, while the closure of the other is the compact curve segment Z appearing in Theorem 27.3(b). For q and q_{*} as in (27.1), the function q sends either component homeomorphically onto $\left(-1, q_{*}\right)$, while its value at $\left(x, x^{*}\right)$ is q_{*}.

Proof. Let $K=Z \cap(\mathbb{R} \times\{1\})$, with Z as in Theorem 27.3. Thus, Γ is the union of the set $Z \backslash K$ and its image under the involution (28.1). (In fact, Proposition 28.2(c) and Lemma 20.1 show that (28.1) sends the set $(-\infty, 0) \times(0,1)$ onto itself by interchanging its subsets lying 'above' and 'below' the hyperbola $v=u^{*}$ and keeping each point of the hyperbola fixed.) Now (i) follows from Theorem 27.3(a).

If m is odd, Theorem 27.3 gives $K=\{(y, 1)\}$, while both $Z \backslash\{(y, 1)\}$ and its image under (28.1) contain $\left(x, x^{*}\right)$ (Theorem 27.3(b)), so that their union Γ is connected. Thus, according to Remark 26.4, Γ is contained in \mathbb{R}^{2} as a (connected) one-dimensional real-analytic submanifold without boundary. Finally, by (20.2.a), $v^{*} \rightarrow-\infty$ and $u^{*} \rightarrow y^{*}$ as $(u, v) \in Z \backslash\{(y, 1)\}$ approaches $(y, 1)$, which shows that Γ is unbounded. This completes the proof.
Lemma 29.2. Given an integer $m \geqslant 3$, let T, A, B, λ and μ be the rational functions of u, v defined in Lemma 17.3 and (10.3) with E, F, Σ as in (1.1), along with the formulae

$$
\begin{equation*}
\lambda=(2-1 / m)[1-B \Sigma(0) / A] \tag{29.1}
\end{equation*}
$$

and $\mu=u v /(u+v-2)$. Then

$$
\begin{equation*}
\mu-\lambda=\frac{(v-u)^{3} u(u-2) v(v-2) T(u, v)}{m(u+v-2)(u-1)^{m}(v-1)^{m} A} \tag{29.2}
\end{equation*}
$$

in the sense of equality between rational functions. Also, $0<\mu<1$ at any $(u, v) \in(-\infty, 0) \times(0,1]$. Finally, when m is odd and $(u, v) \in(-\infty, 0) \times(0,1)$:
(i) $A<0$ at (u, v), with A as in (10.3);
(ii) $T(u, v)=0$ if and only if $\lambda=\mu$ at (u, v).

In fact, $0<\mu<1$ on $(-\infty, 0) \times(0,1]$ as $(u-1)(v-1) \geqslant 0>-1$ there, and hence also $u+v-2<u v<0$. Next, dividing (24.3.i) by $m \alpha \phi$, with α, ϕ as in (24.1), and using (24.2), (24.3.ii) and (29.1), we obtain (29.2). Finally, if m is odd, $F(u)<0<F(v)$ as $u<0<v<1$ (see (6.1)). Thus, $e_{u}-e_{v}>0$ for $e_{u}=E(u) / F(u), e_{v}=E(v) / F(v)$ (as $e_{v}<0<1<e_{u}$ by (6.1)), and so $A=\left(e_{u}-e_{v}\right) F(u) F(v)<0$, which proves (i). Now (ii) follows: the denominators involved (including those in (29.1)), and the factor $(v-u) u(u-2) v(v-2)$, are all nonzero when $u<0<v<1$. (See (i) and note the obvious relation $u+v-2<0$.)

Proposition 29.3. Given an odd integer $m \geqslant 3$ and real numbers u, v with $u<0<v<1$, let T be the polynomial defined by (17.5), and let $Q \in \mathbf{V} \backslash\{0\}$ be a function satisfying condition (II) of $\S 1$

A. Derdzinski and G. Maschler

on the interval $I=[u, v]$, where \mathbf{V} is the space (1.3). In view of Lemma 9.1, such Q exists and is unique up to a nonzero constant factor.

If $T(u, v)=0$, then Q and I satisfy all five conditions $(I)-(V)$ of $\S 1$.
In fact, $\lambda=\mu>0$ at (u, v) in view of Lemma 29.2(ii) and relation $\mu>0$ in Lemma 29.2. Thus, by Lemma 29.2(i) and (29.1), $\lambda A<0$ and $B \Sigma(0)>A$ at (u, v), with A, B, Σ given by (10.3) and (1.1). However, (10.3) also yields $B<0$, as F is strictly increasing on $(-\infty, 1)$ (see §6). Hence $A / B>$ $\Sigma(0)=-E(0)$, cf. (5.6.ii). Proposition 15.2 now implies that Q and I satisfy conditions (I), (III) and (IV), while relation $T(u, v)=0$ yields condition (V) (see Theorem 17.5).

30. Expansions of T about $(0,0)$ and $(1,1)$

For E, c as in (1.1) and (24.3.ii) with an integer $m \geqslant 2$, we have $c=\binom{2 m-1}{m-1}$ (see (5.6.i) and (5.6.iii)), and there exists a polynomial D such that, for all $u \in \mathbb{R}$,

$$
\begin{align*}
& \text { (a) }(u-1)^{m} E(u)=(u-2) u^{2 m-1}+D(u) \\
& \text { (b) } D(u)-c(u-1)^{m}=(u-2) \sum_{j=0}^{m-1}(-1)^{m+j}\binom{2 m-1}{j}\binom{2 m-j-2}{m-1} u^{j} \tag{30.1}
\end{align*}
$$

Namely, $D_{1}(u)=1$ and, by (5.2.ii), $D_{m}(u)=u^{2} D_{m-1}(u)-m^{-1}\binom{2 m-2}{m-1}(u-1)^{m}$ whenever $m \geqslant 2$, for $D=D_{m}$ defined by (30.1.a). Now $D(u)=m^{-1} \sum_{j=0}^{m-1}(-1)^{m+j+1}\binom{2 m}{j}\binom{2 m-j-2}{m-1} u^{j}$, which follows from easy induction on m, and amounts to (30.1.b).

Lemma 30.1. Every symmetric polynomial in the variables u, v can be uniquely written as a combination of the products $(u v)^{j} \Theta_{k}(u, v)$, where $j \geqslant 0$ and $k \geqslant 2$ are integers, and $\Theta_{k}(u, v)=$ $\sum_{j=1}^{k-1} j(k-j) u^{j-1} v^{k-j-1}$.

In fact, the space of degree m homogeneous symmetric polynomials in u, v has the obvious basis $\Phi_{\rho}=(u v)^{\rho}\left(u^{m-2 \rho}+v^{m-2 \rho}\right)$ with $\rho \in \mathbb{Z}$ and $0 \leqslant \rho \leqslant m / 2$. Then $\tilde{\Phi}_{\rho}=(u v)^{\rho} \Theta_{m-2 \rho+2}(u, v)$ form another basis of that space. Namely, $\tilde{\Phi}_{\rho}$ equals $(m-\rho+1) \Phi_{\rho}$ plus a combination of Φ_{σ} with $\rho<\sigma \leqslant m / 2$, as one sees pairing up, for each j, the j th and $(k-j)$ th terms in the formula for $\Theta_{k}(u, v)$. Thus, the triangular matrix expressing the $\tilde{\Phi}_{\rho}$ through the Φ_{ρ} is invertible.

Remark 30.2. By Lemma 30.1, any symmetric polynomial Φ in the variables a, b has an expansion $\sum_{j, k} \mathbf{c}_{j, k}(a b)^{j} \Theta_{k}(a, b)$ with some unique coefficients $\mathbf{c}_{j, k}$, indexed by integers j, k, and such that $\mathbf{c}_{j, k} \neq 0$ for at most finitely many pairs j, k, all of which have $j \geqslant 0$ and $k \geqslant 2$. Expanding $(a-b)^{3} \Theta_{k}(a, b)$ into powers of a and b, we get

$$
\begin{equation*}
(a-b)^{3} \Theta_{k}(a, b)=(k-1) a^{k+1}-(k+1) a^{k} b+(k+1) a b^{k}-(k-1) b^{k+1} \tag{30.2}
\end{equation*}
$$

and so, for any $\rho, \sigma \in \mathbb{Z}$, the coefficient of $a^{\rho} b^{\sigma}$ in the monomial expansion of $(b-a)^{3} \Phi$ is

$$
\begin{equation*}
(\sigma-\rho-2) \mathbf{c}_{\rho, \sigma-\rho-1}+(\rho-\sigma-2) \mathbf{c}_{\rho-1, \sigma-\rho+1}+(\sigma-\rho+2) \mathbf{c}_{\sigma, \rho-\sigma-1}+(\rho-\sigma+2) \mathbf{c}_{\sigma-1, \rho-\sigma+1} . \tag{30.3}
\end{equation*}
$$

Lemma 30.3. Let $L(u, v)=E(u) f-c \phi$ with E, c as in (1.1), (24.3.ii) and ϕ, f depending on $u, v \in \mathbb{R}$ as in (24.1) for a fixed integer $m \geqslant 2$. Then, for $a, b \in \mathbb{R}$,
(i) $E(a+1)=2 \sum_{j=1}^{m} j(m+j)^{-1} \gamma(j) a^{j}$, and
(ii) $L(a+1, b+1)=\left(a^{2}-1\right) \sum_{j=1}^{m}(j b-j+1) \gamma(j) a^{j-1}$, where $\gamma(j)=\binom{2 m-1}{m-j}$.

Conformally-Einstein Kähler manifolds

Proof. We prove (i) by induction on $m \geqslant 1$, writing, as in (5.2), E_{m}, γ_{m} for E, γ. If $m=1$, (i) is trivial as $E_{1}(a+1)=a$. The inductive step now follows: Equation (5.2.ii) multiplied by $2 m-1$ gives $(2 m-1) E_{m}(a+1)=(2 m-1) a^{-1}(a+1)^{2} E_{m-1}(a+1)-\gamma_{m}(1)$. Assuming (i) for $m-1$ rather than the given $m \geqslant 2$, let us first substitute for $E_{m-1}(a+1)$, in the last equality, the sum as in (i) involving the $\gamma_{m-1}(j)$ instead of $\gamma_{m}(j)$, then multiply by $(a+1)^{2}$ and make the summation index j coincide with the exponent in a^{j}, next replace $(2 m-1)(m+j-1)^{-1} \gamma_{m-1}(j)$ by $(2 m-2)^{-1}(m-j) \gamma_{m}(j)$, as well as $(m-j+1) \gamma_{m}(j-1)$ by $(m+j-1) \gamma_{m}(j)$ and $\gamma_{m}(j+1)$ by $(m+j)^{-1}(m-j) \gamma_{m}(j)$. This yields (i) for m, as required. Assertion (ii) will in turn follow once we establish the identities:
(iii) $(m+a-m a) E(a+1)-a \gamma(1)=\left(a^{2}-1\right) \sum_{j=1}^{m}(1-j) \gamma(j) a^{j-1}$,
(iv) $(m a-m+1) E(a+1)-\gamma(1)=\left(a^{2}-1\right) \sum_{j=1}^{m} j \gamma(j) a^{j-1}$.

In fact, to get (ii) one can add (iv) multiplied by b to (iii), as (24.1.c) for $(u, v)=(a+1, b+1)$ gives $f=(m a-m+1) b+(m+a-m a)$ and $\phi=a+b$.

To prove (iii) and (iv), we use (i) to rewrite all four expressions as combinations of the powers a^{j} and verify that the corresponding coefficients agree. Such coefficients, found by expressing $\gamma(j \pm 1)$ through $\gamma(j)$ (as above, with the subscript m), turn out to be $0, \gamma(2)$ and $1-m$ for $j=0,1$ and $m+1$ in (iii), $-\gamma(1)$ and m for $j=0$ and $m+1$ in (iv), while for (iii) and $j=2, \ldots, m$ (or, respectively, (iv) and $j=1, \ldots, m)$ the coefficient equals $2 \gamma(j) /[(m+j)(m-j+1)]$ times $3 m j-2 m j^{2}+m^{2}+j^{2}-m-j$ (or, respectively, times $2 m j^{2}-m j-m^{2}-j^{2}+j$). This completes the proof.

Lemma 30.4. Let $m \geqslant 2$ be an integer. For the polynomials T, Θ_{k} defined as in Lemmas 17.3 and 30.1, and $u, v, a, b \in \mathbb{R}$, we then have $\operatorname{deg} T=3(m-2)$ and
(a) $T(u, v)=\frac{1}{m-1} \sum_{k=m}^{2 m-2}(-1)^{m+k}\binom{2 m-1}{k+1}\binom{k-2}{m-2}(u v)^{2 m-k-2} \Theta_{k}(u, v)$,
(b) $T(a+1, b+1)=\sum_{j=0}^{m-2} \sum_{k=m-j}^{2 m-j-2} \mathbf{c}_{j k}(a b)^{j} \Theta_{k}(a, b)$, with $\mathbf{c}_{j k}$ given by
(c) $\mathbf{c}_{j k}=\frac{(2 m-1)(m-j-1)(k-m+j+1)}{(m-1)\left(k^{2}-1\right)}\binom{2 m-2}{j}\binom{2 m-2}{k+j}$.

Proof. Formula (24.3.i) with $(u, v)=(a+1, b+1)$ gives $(b-a)^{3}\left(a^{2}-1\right)\left(b^{2}-1\right) T(a+1, b+1)=$ $\left(b^{2}-1\right)(b+1)^{2 m-2} a^{m} L(a+1, b+1)-\left(a^{2}-1\right)(a+1)^{2 m-2} b^{m} L(b+1, a+1)$, for L as in Lemma 30.3. By Lemma 30.3(ii), this polynomial equality yields

> (i) $(b-a)^{3} T(a+1, b+1)=\Psi(a, b)-\Psi(b, a)$, as well as
> (ii) $\Psi(a, b)=\sum_{\rho=m}^{2 m-1} \sum_{\sigma=0}^{2 m-1} \mathbf{d}_{\rho \sigma} a^{\rho} b^{\sigma}, \quad$ where Ψ is the polynomial with
> (iii) $\left(a^{2}-1\right) \Psi(a, b)=(b+1)^{2 m-2} a^{m} L(a+1, b+1)$, and
> (iv) $\mathbf{d}_{\rho \sigma}=\binom{2 m-1}{\rho}\binom{2 m-1}{\sigma}[m-(\rho+\sigma)+2 \rho \sigma /(2 m-1)]$.

According to Lemma 30.1, $T(a+1, b+1)=\sum_{j, k} \mathbf{c}_{j, k}(a b)^{j} \Theta_{k}(a, b)$ with $\mathbf{c}_{j, k}$ as in Remark 30.2. In terms of the conditions

$$
\begin{equation*}
\text { (i) } 0 \leqslant \sigma \leqslant m-1<\rho<2 m, \quad \text { (ii) } 0 \leqslant \rho \leqslant m-1<\sigma<2 m \tag{30.5}
\end{equation*}
$$

A. Derdzinski and G. Maschler

for $\rho, \sigma \in \mathbb{Z}$, these $\mathbf{c}_{j, k}$ satisfy the following system of linear equations:

$$
\text { expression (30.3) equals } \begin{cases}\mathbf{d}_{\rho \sigma} & \text { in case (30.5.i) } \tag{30.6}\\ -\mathbf{d}_{\rho \sigma} & \text { in case (30.5.ii), } \\ 0 & \text { otherwise }\end{cases}
$$

with $\rho, \sigma \in \mathbb{Z}$ and $\mathbf{d}_{\rho \sigma}$ as in (30.4.iv); see (30.4.i) and Remark 30.2. Moreover, the $\mathbf{c}_{j, k}$ form the unique solution to (30.6), under the finiteness requirement of Remark 30.2. (The coefficients of $a^{\rho} b^{\sigma}$ in the expansion of the right-hand side of (30.4.i) are zero for those ρ, σ which both lie in the range $m, \ldots, 2 m-1$, due to the subtraction in (30.4.i) and the obvious symmetry relation $\mathbf{d}_{\rho \sigma}=\mathbf{d}_{\sigma \rho}$.)

We now show that by setting $\mathbf{c}_{j, k}=\mathbf{c}_{j k}$ for $\mathbf{c}_{j k}$ as in (c) when j and $j+k-m$ lie in $\{0, \ldots, m-2\}$, and $\mathbf{c}_{j, k}=0$ otherwise, one obtains a solution to (30.6).

First, let us assume (30.5.i). If $\sigma=0$, all but the third term on the left-hand side then must vanish, as they involve $\mathbf{c}_{j, k}$ with $k<0$ or $j<0$, and we get (30.6) by considering the separate cases $m=\rho=2$ and $\rho>2$. If $\sigma=m-1$, only the fourth term may be nonzero (as the others involve $\mathbf{c}_{j, k}$ with $k<0$ or $k=0$ or $j=m-1$), and (30.6) is easily verified. If, however, $0<\sigma<m-1<\rho<2 m$, the first two terms vanish as they have $j>m-2$, and two cases are possible: $\rho=m=\sigma+2$ (so that the third term, with $k=1$, is zero, and (30.6) easily follows), or $\rho-\sigma>2$, and a simple calculation again gives (30.6).

Now let (30.5.ii) be satisfied. Interchanging ρ and σ we reduce this case to (30.5.i), since both sides of (30.6) are antisymmetric in ρ, σ (as the second line arises from the first by switching ρ, σ and changing the sign, while $\mathbf{d}_{\rho \sigma}=\mathbf{d}_{\sigma \rho}$).

However, if we have neither (30.5.i) nor (30.5.ii), the right-hand side vanishes, and so do all four terms on the left-hand side, as our bounds on j and $j+k-m$ in the definition of $\mathbf{c}_{j, k}$ show that condition (30.5.i) (or (30.5.ii)) is necessary for the second (or first) line to contain a nonzero term. Uniqueness of the solution to (30.6) now proves (b).

Next, with c, ϕ, f and $L(u, v)=E(u) f-c \phi$ as in Lemma 30.3, (30.4.iii) for $(a, b)=(u-1, v-1)$ and (30.1.a) show that $(u-2) u \Psi(u-1, v-1)$ equals $v^{2 m-2}\left[(u-2) u^{2 m-1}+D(u)-c(u-1)^{m}\right] f+$ $c v^{2 m-2}(u-1)^{m}(f-\phi)$. Using (30.1.b) and the relation $f-\phi=m(u-2)(v-2)$, we can now divide both sides by $u-2$, obtaining a polynomial expression for $u \Psi(u-1, v-1)$ that involves two expansions in powers of u, coming from (30.1.b) and the binomial formula for $(u-1)^{m}$. As $m c=(2 m-1)\binom{2 m-2}{m-1}$ by (24.3.ii) and (5.6.i), the overall coefficient of the 0 th power of u is zero and so we can divide both sides by u, getting

$$
\begin{align*}
\Psi(u-1, v-1)= & (u v)^{2 m-2}[m u v-(2 m-1)(u+v-2)] \\
& +\sum_{j=0}^{m-2}(-1)^{m+j}\binom{2 m-1}{j}\binom{2 m-j-3}{m-1} u^{j} v^{2 m-1} \\
& +\frac{2 m-1}{m-1} \sum_{j=1}^{m-1}(-1)^{m+j}\binom{2 m-2}{j-1}\binom{2 m-j-3}{m-2} u^{j} v^{2 m-2} \tag{30.7}
\end{align*}
$$

Assertion (a) claims that $T=\Phi$ for a polynomial Φ given by $\Phi(u, v)=\sum_{j, k} \mathbf{c}_{j, k}(u v)^{j} \Theta_{k}(u, v)$ with a specific new meaning of the coefficients $\mathbf{c}_{j, k}$. Clearly, (a) will follow if we prove that the equality $(v-u)^{3} T(u, v)=\Psi(u-1, v-1)-\Psi(v-1, u-1)$, immediate from (30.4.i), still holds when T is replaced by Φ. This, according to Remark 30.2 , amounts to showing that (30.3), for any $\rho, \sigma \in \mathbb{Z}$, equals the coefficient of $u^{\rho} v^{\sigma}$ in the expansion of $\Psi(u-1, v-1)-\Psi(v-1, u-1)$. The latter coefficient is easily obtained from the right-hand side of (30.7), with no contribution from the first line (which is symmetric in u, v). Also, $\mathbf{c}_{j, k}$ are nonzero only for integers j, k with $j+k=2 m-2$ and $0 \leqslant j \leqslant m-2$, and so, for any given $\rho, \sigma \in \mathbb{Z}$, at most one of the four expressions $\mathbf{c}_{j, k}$ occurring
in (30.3) may be nonzero. Specifically, the first (or second, third, fourth) $\mathbf{c}_{j, k}$ in (30.3) is nonzero only if $0 \leqslant \rho \leqslant m-2$ and $\sigma=2 m-1$, or $1 \leqslant \rho \leqslant m-1$ and $\sigma=2 m-2$, or $0 \leqslant \sigma \leqslant m-2$ and $\rho=2 m-1$, or, respectively, $1 \leqslant \sigma \leqslant m-1$ and $\rho=2 m-2$. The required equality is easily verified in each of these four cases, while both sides are zero when none of the four cases occurs. We have thus established (a). Finally, $\operatorname{deg} T=3(m-2)$, as the k th term in (a) is homogeneous of degree $4 m-k-6$. This completes the proof.
Remark 30.5. Let $m=3$. Lemma 30.4(a) then yields $T(u, v)=5\left(u v^{2}+v u^{2}\right)-\left(3 u^{2}+3 v^{2}+4 u v\right)=$ $2\left[5(\xi-1) \xi^{2}-(5 \xi+1) \eta^{2}\right]$, with ξ, η given by (17.1). Figure 1 thus conveys the correct idea of what the set given by $T(u, v)=0$ looks like when $m=3$. Namely, the lines $v=u$ and $v=-u$ are the ξ and η coordinate axes, while $T(u, v)=0$ amounts to $\xi \neq-1 / 5$ and $\eta^{2}=(\xi-1) \xi^{2} /(\xi+1 / 5)$. This gives $\xi \geqslant 1$ or $\xi<-1 / 5$, and $\eta= \pm \xi[1-6 /(5 \xi+1)]^{1 / 2}$.

31. The sign of T on specific regions

Assertion (i) below is needed only to derive (ii) and (iii); however, (ii) and (iii) also follow from our formula (30.2) combined with Lemma 17.2 of [DM05] for $\beta=u / v$.
Lemma 31.1. For an integer $k \geqslant 2$, any $u, v \in \mathbb{R}$, and Θ_{k} as in Lemma 30.1, the following assertions hold.
(i) $\Theta_{k}(u, v)=\sum_{1 \leqslant j \leqslant k / 2} j\binom{k+1}{2 j+1} \xi^{k-2 j} \eta^{2 j-2}$ for ξ, η given by (17.1).
(ii) If k is even, $\Theta_{k}(u, v)>0$ unless $u=v=0$, while $\Theta_{k}(0,0)=0$.
(iii) If k is odd, $\operatorname{sgn}\left(\Theta_{k}(u, v)\right)=\operatorname{sgn}(u+v)$.

Here (i) is straightforward if one multiplies both sides by $(u-v)^{3}=8 \eta^{3}$ and verifies that the resulting polynomials in ξ, η coincide by applying (17.1) and the binomial formula to rewrite the right-hand side of (30.2) as a function of ξ, η. Now (ii) and (iii) follow since, when k is even (or odd), (i) expresses $\Theta_{k}(u, v)$ as a sum of squares (or, respectively, as ξ times a sum of squares).

Let T be the polynomial defined by (17.5) with any given integer $m \geqslant 2$. Then $T=1$ for $m=2$ (cf. Lemma 30.4(a)), while, if $m \geqslant 3$,
(a) $\operatorname{sgn} T=(-1)^{m} \quad$ at any $(u, v) \neq(0,0)$ with $(u+v) u v \leqslant 0$,
(b) $\operatorname{sgn} T=(-1)^{m} \quad$ on $[0,1) \times[0,1)$ except at $(0,0)$,
(c) $\operatorname{sgn} T=(-1)^{m}$ on $(-\infty, 0] \times(-\infty, 0]$ except at $(0,0)$,
(d) $\operatorname{sgn} T=1 \quad$ on $[1, \infty) \times[1, \infty)$ except at $(1,1)$.

In fact, let $u+v \geqslant 0$ and $u v \leqslant 0$, or $u+v \leqslant 0$ and $u v \geqslant 0$. The even k (or odd k) summands in Lemma 30.4(a) are nonnegative by Lemma 31.1(ii) (or, respectively, Lemma 31.1(iii)). This yields (31.1.a), and hence (31.1.c). Next, as $u^{*}, v^{*} \in(-\infty, 0]$ whenever $u, v \in[0,1)$ (cf. Lemma 20.1), (31.1.c) and Proposition 28.2(b) imply (31.1.b). Finally, Lemmas 30.4(b), 31.1(ii) and 31.1(iii) give (31.1.d).

32. Third subcase of condition (V): condition (17.6.c)

Let \mathbf{V} be the space (1.3) for a given integer $m \geqslant 2$, and let us fix $u, v \in \mathbb{R}$ with $u \neq v$. By Lemma 9.1, there exists $Q \in \mathbf{V} \backslash\{0\}$ satisfying condition (II) of $\S 1$ on the interval I with the endpoints u, v, and such Q is unique up to a constant factor.

For these Q, I, condition (V) of $\S 1$ holds if and only if (u, v) satisfies one of the three conditions in (17.6). (See Theorem 17.5.) The question of finding direct descriptions of the three sets in the

A. Derdzinski and G. Maschler

$u v$-plane \mathbb{R}^{2} defined by (17.6.a), (17.6.b) and, respectively, (17.6.c) has an obvious answer for (17.6.b), the set being the hyperbola $v=u^{*}$ (that is, $u v=u+v$). As for (17.6.a), Proposition 18.2 yields an answer: (17.6.a) defines for odd m the two-point set $\{(1, s),(s, 1)\}$, and for even m the empty set.

Our real interest lies, however, in those (u, v) for which Q, I chosen above satisfy all five conditions (I)-(V) in § 1. This leads to switching our focus from the three solution sets in \mathbb{R}^{2} (see the last paragraph) to their respective subsets obtained by imposing on Q, I also the positivity condition of § 16. For (17.6.a), the resulting subset is empty (Proposition 19.2), while in the case of (17.6.b) an explicit description of that subset is provided by Proposition 23.1.

That new focus also explains why, unlike the approach to (17.6.a) and (17.6.b) outlined above, our discussion of (17.6.c) bypasses the step of first describing the set given by (17.6.c) alone. Instead, we proceed directly to discuss the subset of the $u v$-plane \mathbb{R}^{2} defined by requiring that Q, I corresponding to the given (u, v) with $u \neq v$ satisfy both (17.6.c) and conditions (I) $-(\mathrm{V})$. This subset turns out to be empty for even m, while for odd m it is the union of the curve $\Gamma \subset(-\infty, 0) \times(0,1)$ described in Proposition 29.1(ii) and the image of Γ under the symmetry $(u, v) \mapsto(v, u)$.

In fact, a point (u, v) in this subset can never satisfy any of the following conditions: $u=1$ or $v=1$ (by (17.6.c)), $u v=0$, or $u<1<v$, or $v<1<u$ (see (ii) in §16). Also, u, v cannot both lie in $(-\infty, 0),(0,1)$, or $(1, \infty)$ (by (17.6.c) and (31.1.b)-(31.1.d)). This leaves $u<0<v<1$ or $v<0<u<1$ as the only possibilities, so that our claim follows from Proposition 29.1 and the symmetry of T.

33. A synopsis of conditions (I)-(V)

The moduli curve defined in $\S 1$ is the subset \mathcal{C} of \mathbb{R}^{2}, depending on an integer $m \geqslant 2$, and formed by all pairs (u, v) such that either $(u, v)=(0,0)$, or $u<v$ and all five conditions $(\mathrm{I})-(\mathrm{V})$ in $\S 1$ are satisfied by the interval $I=[u, v]$ and some function $Q \in \mathbf{V} \backslash\{0\}$, with \mathbf{V} as in (1.3). In view of Lemma 9.1, (u, v) then determines Q uniquely up to a constant factor, while Lemma 10.1 and Remark 12.2 provide a choice of such Q for which A, B, C in (1.2) are specific rational functions of u, v. Namely, they are given by (10.3) (if $1 \notin I$), or by $(A, B, C)=(-E(t), 1,0)$ (if $\{u, v\}=\{1, t\}$).

The next result clearly implies (2.3) with the sets I, ! and X defined in $\S 2$.
Theorem 33.1. Let $u^{*}=u /(u-1)$ for $u \neq 1$. A pair $(u, v) \in \mathbb{R}^{2}$ lies in the moduli curve \mathcal{C}, defined as above for a fixed integer $m \geqslant 2$, if and only if one of the following three cases occurs:
(a) m is even, $u \in(-\infty, 0] \cup(1,2)$; and $v=u^{*}$;
(b) m is odd, $u \in(-\infty, z) \cup(w, 0] \cup(1,2)$, and $v=u^{*}$, for z, w as in § 21;
(c) m is odd and $(u, v) \in \Gamma$, where $\Gamma \subset(-\infty, 0) \times(0,1)$ is the connected real-analytic curve diffeomorphic to \mathbb{R}, described in Proposition 29.1(ii).
Proof. Let $u<v$. Each of (a), (b) and (c) separately implies conditions (I)-(V) of § 1 with Q, I as above. For (a) and (b) this is clear: $1 \notin I$ (cf. (20.2)), which yields (I); $v=u^{*}$, i.e. (17.6.b), implies (V) (Theorem 17.5); Proposition 23.1 and Lemma 20.1 give (III) and (IV). Also, (c) yields (I)-(V) by Proposition 29.3.

Conversely, let Q, I as above satisfy conditions (I)-(V). Theorem 17.5 then gives (17.6.b) or (17.6.c), as Proposition 19.2 excludes (17.6.a). In the case (17.6.b), we must have (a) or (b) (Proposition 23.1 and Lemma 20.1), while (17.6.c) yields (c), cf. the fourth paragraph of § 32. This completes the proof.

Corollary 33.2. If the integer $m \geqslant 2$ is even, or odd, then the two sets ! I or, respectively, three sets $\mathrm{X},!, \mathrm{I}$, defined in $\S 2$, are the connected components of the moduli curve \mathcal{C}.

Conformally-Einstein Kähler manifolds

This is clear from (2.3): the two/three sets are connected, relatively open in \mathcal{C} and, for odd m, the \mathcal{T}-beam $\mathrm{X} \cap \mathcal{T}$ coincides with the set Γ in Proposition 29.1, and so, by Lemma 25.2(b), $\mathrm{X} \cap \mathcal{T}$ intersects the \mathcal{H}-beam $\mathrm{X} \cap \mathcal{H}$ only at $\left(x, x^{*}\right)$, and does not intersect I or !.

Remark 33.3. For odd m, the intersection of the two beams of X at their unique common point $\left(x, x^{*}\right)$ is transverse, by Lemma 25.2(d).
Remark 33.4. Let conditions (I)-(V) in $\S 1$ be satisfied by $I=[u, v]$ and a rational function Q of the form (1.2) with some $A, B, C \in \mathbb{R}$. Then $C \neq 0$, so that, by (1.1), Q is analytic on $\mathbb{R} \backslash\{1\}$ and has a pole at 1 .

In fact, suppose on the contrary that $C=0$. Thus, m is odd and $(u, v) \in \Gamma$, for Γ as in Proposition 29.1(ii) (or else, as our assumption gives $(u, v) \in \mathcal{C} \backslash\{(0,0)\}$, Theorem 33.1 would yield $v=u^{*}$ with $0 \neq u \neq 2$, and hence $C \neq 0$ by (21.3) and (1.1)). Also, conditions (II) and (III) and (1.2) with $C=0$ imply (12.1) with $B \neq 0$. Therefore, since $u \neq 1 \neq v$, Lemma 12.1(i) shows that $E(u)=E(v)=-A / B$ as well as $\dot{Q}(t)=(t-1) B \dot{E}(t)$, with ()$=d / d t$, for both $t=u$ and $t=v$. Now condition (V) yields $(u-1) \dot{E}(u)=(1-v) \dot{E}(v)$. Since $u<0<v<1$ (due to the definition of Γ), (13.2) along with the three lines preceding it (from now on referred to simply as $\S 13)$ give $E(0)<E(v)<0<\dot{E}(v)$, while $u-1<0<1-v$. Thus, by the last equality, $\dot{E}(u)<0$, and $E(0)<E(u)<0$ as $E(u)=E(v)$. From $u<0$ and $\dot{E}(u)<0$ we in turn get $u>\tilde{w}>\tilde{z}$ (see §13), and so $u>\tilde{w}>x$, as $\tilde{z}>z$ (Remark 21.1) and $z>x$ (Lemma 25.2(b)). Similarly, using (20.2.a) for $t=\tilde{w}$ and noting that $x^{*}>t^{*}$ as $t=\tilde{w}>x$ (cf. Lemma 20.1), while $F<0$ on $(-\infty, 0)$ (see §6), we get $E\left(x^{*}\right)>E\left(t^{*}\right)=E(t)-F(t)>E(t)>E(u)=E(v)$ for $t=\tilde{w}$ from (20.1.ii) and the monotonicity properties of E listed in § 13, and so, again from § 13 and Lemma 20.1, $0<v<x^{*}<1$.

The function q given by (27.1) is clearly increasing (or decreasing) as a function of u (or v) alone in the region where $u<0<v<1$. As $x<u<0$ and $0<v<x^{*}$, this implies that the value of q at (u, v) is greater than q_{*}, its value at $\left(x, x^{*}\right)$. Since $(u, v) \in \Gamma$ and $q \leqslant q_{*}$ on Γ (see the last sentence in Proposition 29.1(ii)), we now obtain a contradiction. Therefore, $C \neq 0$.

34. The rational function p

Given an integer $m \geqslant 2$, we let p stand for the rational function of the variables u, v defined by (2.2). For convenience, we modify p by declaring its value at $(0,0)$ to be 0 . Obviously, p is real-analytic everywhere in \mathbb{R}^{2} with a possible exception of points (u, v) for which $u \in\{0,2\}$, or $u=1$, or $v=1$ (since F has a pole at 1), or, finally, $u \neq 1 \neq v$ and $A=0$ at (u, v).

This and the next four sections deal mainly with the restriction of p to the moduli curve \mathcal{C} (cf. § 33). Of the singularities just listed, only $(0,0)$ lies on \mathcal{C} if m is odd, and just two, $(0,0)$ and $\left(z, z^{*}\right)$, lie on \mathcal{C} when m is even, with $z<0$ defined as in $\S 21$ and $z^{*}=z /(z-1)$. The singularity at $\left(z, z^{*}\right)$ arises since $A=0$ there. Also, A is finite and nonzero everywhere on \mathcal{C}, except at $\left(z, z^{*}\right)$ for even m.

In fact, for $(u, v) \in \mathcal{C} \backslash\{(0,0)\}$ we have $u, v \notin\{0,1,2\}$ by Theorem 33.1 and Lemma 20.1. Hence, from (10.3) and (1.1), $A=0$ at such (u, v) if and only if E / F has equal values at u and v. This in turn excludes the possibility that either $1<u<2<v$, or m is odd and $u<0<v<1$ (cf. the last two lines in (6.1)), so that, by Lemma 20.1, the only case still allowed in Theorem 33.1 is (a) with $u \in(-\infty, 0]$ (and so m is even, while $v=u^{*}$). Our claim about $\left(z, z^{*}\right)$ and A now follows from (21.3)-(21.5) (and (1.1)).

Remark 34.1. Let q and q_{*} be as in (27.1) for a fixed odd integer $m \geqslant 3$. The \mathcal{T}-beam of the moduli curve (cf. §2) is the set Γ in Proposition 29.1, while $p=q$ at any point $(u, v) \in \Gamma$ since,

A. Derdzinski and G. Maschler

by Lemma 29.2(ii), λ in (2.2) then may be replaced with μ. Thus (cf. the final clause in Proposition 29.1(ii)), the value of p at $\left(x, x^{*}\right)$ is $q_{*} \in(-1,0)$.

By (2.3), a substantial part of the moduli curve \mathcal{C} is contained in the hyperbola \mathcal{H} given by $v=u^{*}$, where $u^{*}=u /(u-1)$. It is therefore useful to introduce a rational function P of the real variable u which is the restriction of p to \mathcal{H}, that is, the result of substituting u^{*} for v in the rational expression for p in terms of u and v. Then, with Σ, G as in (1.1) and (21.1), we have

$$
\begin{equation*}
u(u-2) P(u)=2(2-1 / m)(u-1)[1+\Sigma(0) / G(u)]-u^{2}, \tag{34.1}
\end{equation*}
$$

in the sense of equality between rational functions of u. In fact, for those u for which $P(u)$ defined by (34.1) makes sense, it equals the value of p provided by the first equality in (2.2) with $\lambda=$ $(2-1 / m)[1+\Sigma(0) / G(u)]$, that is, with λ given by (29.1) with $v=u^{*}$, as one sees evaluating B / A from (21.3).

A trivial argument (see (c) in § 35) shows that the rational function P defined by (34.1) is analytic at 0 and $P(0)=0$. Thus, our convention about p at $(0,0)$ requires no further modification of P.

35. Some properties of P

Let $\dot{P}=d P / d u$ for the rational function P given by (34.1) with a fixed integer $m \geqslant 2$. Then P satisfies the differential equation

$$
\begin{equation*}
u(u-1) \dot{P}=m u P^{2}+(m-1)(u-2) P-u, \tag{35.1}
\end{equation*}
$$

where P, \dot{P} stand for $P(u), \dot{P}(u)$. Also, for z, w as in $\S 21$ and $u^{*}=u /(u-1)$, the following assertions hold.
(a) If m is odd, P is analytic everywhere in \mathbb{R} and $P(w)=P\left(w^{*}\right)=0$.
(b) If m is even, P has just two real poles, at z and z^{*}.
(c) $P(0)=P(2)=0, P(1)=1, \dot{P}(0)=1 /(3-2 m), \dot{P}(1)=2(1-m) / m$.
(d) $P\left(u^{*}\right)=-P(u)$ for all $u \in \mathbb{R} \backslash\{1\}$ at which P is analytic.

In fact, (d) is immediate if one replaces u in (34.1) by u^{*} and then uses (20.2) and (21.2.a). If m is odd, $\dot{G}(w)=0$ by the definition of w, and so (21.2.c) with $t=w$ gives $\Sigma(0) / G(w)=$ $\Lambda(w) /[2(2 m-1)(w-1)]=-1+m w^{2} /[2(2 m-1)(w-1)]$, where we also used (5.1.b). Replacing $\Sigma(0) / G(u)$ in (34.1) by this last expression for $u=w$, we obtain $P(w)=0$ (as $w<0$) and, from (d), $P\left(w^{*}\right)=0$. Next, dividing (34.1) by $u(u-2)$ we find, using l'Hospital's rule and (21.2.d)-(21.2.f), that $P(u) \rightarrow 0$ as $u \rightarrow 0$ or $u \rightarrow 2$. Thus, $P(0)=P(2)=0$. The comment on the zeros of G following (21.5) now gives $P(1)=1$ (by (34.1)), and hence (a) and (b).

With G expressed in terms of the function $\varphi(u)=2(2 m-1)(u-1) \Sigma(0) / G(u)$, Equation (21.2.c) becomes $u(u-1)(u-2) \dot{\varphi}+[\Lambda(u)-\varphi-u(u-2)] \varphi=0$, where $\varphi, \dot{\varphi}$ stand for $\varphi(u), \dot{\varphi}(u)$. Replacing φ by $\Lambda(u)+m u(u-2) P$ (which equals φ in view of (34.1) and (5.1.b)), and then substituting for $\Lambda(u)$ the expression in (5.1.b), we can further rewrite this as an equation imposed on P. That equation is easily verified to be (35.1) with both sides multiplied by $m u(u-2)^{2}$.

Finally, the values of \dot{P} required in (c) are easily obtained by differentiating (35.1) at $u=0$ or $u=1$ and using the relations $P(0)=0$ and $P(1)=1$.

36. Monotonicity intervals for P

The rational function P defined by (34.1) with a fixed integer $m \geqslant 2$ has a nonzero derivative at every $u \in \mathbb{R}$ except z, z^{*} (for even m), or $u_{ \pm}, u_{ \pm}^{*}$ (for odd m), with $u^{*}=u /(u-1$) if $u \neq 1$

Conformally-Einstein Kähler manifolds

(cf. (20.2)), z as in (21.4), and $u_{ \pm}$described below. The values/limits of P at selected points, along with its strict monotonicity types on the intervening intervals, marked by slanted arrows, are listed below, with z, w, x as in (21.4), (21.5) and Lemma 25.2(b). First, for even m, we have the following relations.

value or limit at:	0	z^{*}	1	2	
for $P(m$ even $):$	0	$\searrow-\infty \uparrow+\infty$	\searrow	1	\searrow

If m is odd, P restricted to $[0,2]$ reaches its extrema at unique points $u_{ \pm}$with

$$
\begin{equation*}
0<u_{-}<w^{*}<z^{*}<x^{*}<u_{+}<1 \text { and }-1 / m<P\left(u_{-}\right)<0<1<P\left(u_{+}\right) . \tag{36.2}
\end{equation*}
$$

(See also (vi) in § 45.) Here is the corresponding diagram.

value at:	0	u_{-}		w^{*}		z^{*}		x^{*}		u_{+}		1
of $P(m$ odd $):$	0	\searrow	$P\left(u_{-}\right)$	\nearrow	0	\nearrow	$z /(z-2)$	\nearrow	$-q_{*}$	\nearrow	$P\left(u_{+}\right)$	\searrow

Remark 36.1. In view of (d), (a) and (b) of § 35 and Lemma 20.1, the monotonicity intervals of P on the whole real line can be easily determined using (36.1)-(36.3). Specifically, P always decreases from 0 to -1 on $[2, \infty)$, that is, forms a decreasing diffeomorphism $[2, \infty) \rightarrow(-1,0]$. Similarly, when m is even, P decreases on $(-\infty, z)$ (or on $(z, 0])$ from -1 to $-\infty$ (or, respectively, from ∞ to 0). Finally, if m is odd, P decreases on $\left(-\infty, u_{+}^{*}\right]$ from -1 to $P\left(u_{+}^{*}\right)=-P\left(u_{+}\right)$, increases on $\left[u_{+}^{*}, w\right]$ from $-P\left(u_{+}\right)$to 0 , and then continues increasing on $\left[w, u_{-}^{*}\right]$ from 0 to $P\left(u_{-}^{*}\right)=-P\left(u_{-}\right)$, while on $\left[u_{-}^{*}, 0\right]$ it decreases from $-P\left(u_{-}\right)$to 0 .

37. Proofs of the above claims

For any $u \neq 0$ the right-hand side of (35.1) is a quadratic polynomial in P having real roots $P_{ \pm}(u)$ with $P_{-}(u)<P_{+}(u)$. Clearly, $u \mapsto P_{ \pm}(u)$ are real-analytic functions on $(-\infty, 0) \cup(0, \infty)$. As shown below, for $\dot{P}_{ \pm}=d P_{ \pm} / d u$ and (in (iii) and (iv)) at any $u \in \mathbb{R} \backslash\{0,1\}$ at which $P(u)$ is defined (cf. (a) and (b) in § 35),
(i) $P_{-}<0<P_{+}$,
(ii) $\dot{P}_{ \pm}<0$,
(iii) $(u-1) \dot{P}(u)<0$ if and only if $P_{-}(u)<P(u)<P_{+}(u)$,
(iv) $\dot{P}(u)=0$ if and only if $P(u)=P_{-}(u)$ or $P(u)=P_{+}(u)$,
(v) $P_{\mp}\left(0^{ \pm}\right)=0$ and $\dot{P}_{\mp}\left(0^{ \pm}\right)=[2(1-m)]^{-1}$ (one-sided limits at 0$)$,
(vi) $P_{+}(1)=1$, while $P_{-}(1)=-1 / m$ and $\dot{P}_{+}(1)=-2(m-1) /(m+1)$.

In addition to $(\mathrm{v}), P_{+}$on $(-\infty, 0)$ and P_{-}on $(0, \infty)$ are restrictions of a single analytic function on \mathbb{R} with the value 0 at 0 . The strict-monotonicity intervals (marked by slanted arrows) and some limits of $P_{ \pm}$appear in the next diagram.

value or limit at:	$-\infty$	0	1	$+\infty$			
for $P_{+}($any $m):$	$1 / m$	$\searrow 0 \uparrow+\infty$	\searrow	1	$\searrow 1 / m$		
for $P_{-}($any $m):$	-1	\searrow	$-\infty \uparrow 0$	\searrow	$-1 / m$		-1
:---:							

In fact, (i) is obvious, as $P_{-}(u) P_{+}(u)=-1 / m<0$, while (35.1) gives (iii) and (iv). Next, equating the right-hand side of (35.1) to zero we obtain $(P+1)(m P-1) u=2(m-1) P$. This defines a set in the $u P$-plane, namely, the union of $\{(0,0)\}$ and the graphs of $P_{ \pm}$, which, at the same time, forms the graph of the rational function u of the variable P with $u=2(m-1) P /[(P+1)(m P-1)]$.

A. Derdzinski and G. Maschler

The latter function has a negative derivative except at the two poles $P=-1$ and $P=1 / m$, and tends to 0 as $P \rightarrow \pm \infty$, so that (ii), (v), (vi) and (37.1) follow easily.

Next, $P(0), P(1)$ and $P(2)$ are given by (c) in $\S 35$, and, if m is even, $P(u) \rightarrow \pm \infty$ as $u \rightarrow z^{ \pm}$by (21.4) and (34.1), so that (d) in $\S 35$ gives $P(u) \rightarrow \pm \infty$ as $u-z^{*} \rightarrow 0^{ \pm}$. If m is odd, $1+\Sigma(0) / G(z)=0$ (see (21.5) and (5.6.ii)), and so $P\left(z^{*}\right)=z /(2-z)$ by (34.1). To prove (36.1)-(36.3), we now only need to show that $\dot{P}<0$ on $\left(0, z^{*}\right) \cup\left(z^{*}, 1\right) \cup(1,2]$ for even m, while, for odd m, there exist $u_{ \pm} \in \mathbb{R}$ with (36.2) such that $\dot{P}<0$ on $\left(0, u_{-}\right) \cup\left(u_{+}, 1\right) \cup(1,2]$ and $\dot{P}>0$ on $\left(u_{-}, u_{+}\right)$. (Note that, according to (c) in $\S 35, \dot{P}<0$ at 0 and 1.)

By using (v) and (vi) above, (37.1) and (c) in $\S 35$ to find the value of $\Phi=P-P_{ \pm}$at 1 or its right-sided limit at 0 (and the same for $\dot{\Phi}$, as needed), we see that $P-P_{+}$changes sign at 1 , from + to - , while $P-P_{-}>0$ at 1 and $P-P_{ \pm}<0$ at every $u>0$ close to 0 . Also, $P-P_{+}<0<$ $P-P_{-}$at 2 by (i), since (c) in $\oint 35$ states that $P(2)=0$.

In view of (ii) and (iv) above and (a), (b) in $\S 35$, the assumptions of Remark 18.1 are satisfied by $\Phi=P-P_{ \pm}$on $\mathcal{I}=(0,1)$ (for odd m), as well as on $\mathcal{I}=\left(0, z^{*}\right)$ or $\mathcal{I}=\left(z^{*}, 1\right)$ (for even m), and on $\mathcal{I}=(1,2]$ (for all $m)$. In each case, the inequalities of the last paragraph lead, as shown below, to a unique choice between the two alternatives allowed in the conclusion of Remark 18.1.

First, as $P-P_{+}$(or $P-P_{-}$) restricted to (1,2] is negative (or, respectively, positive) near both endpoints, Remark 18.1 implies that $\operatorname{sgn}\left(P-P_{ \pm}\right)$is constant on $(1,2]$, and hence $P_{-}<P<P_{+}$on $(1,2]$. By (iii), this yields $\dot{P}<0$ on (1, 2].

Secondly, as $P-P_{ \pm}$restricted to $(0,1)$ is negative near the endpoint 0 and positive near the endpoint 1, Remark 18.1 gives rise to two different cases, depending on m. If m is even, the infinite limits of P at z^{*}, already verified to be those required in (36.1), show that $P-P_{ \pm}$on $\mathcal{I}=\left(0, z^{*}\right)\left(\right.$ or $\left.\mathcal{I}=\left(z^{*}, 1\right)\right)$ is negative (or, respectively, positive) near both endpoints, and hence, by Remark 18.1, it is so everywhere in \mathcal{I}. Since this applies to both signs \pm, (iii) and (iv) give $\dot{P}<0$, for even m, both on $\left(0, z^{*}\right)$ and on $\left(z^{*}, 1\right)$. If m is odd, however, $P-P_{ \pm}$is of class C^{1} everywhere in $(0,1)$, and so Remark 18.1 implies the existence of unique points $u_{ \pm} \in(0,1)$ such that $\operatorname{sgn}\left(P-P_{ \pm}\right)$ at any $u \in(0,1)$ equals $\operatorname{sgn}\left(u-u_{ \pm}\right)$. Hence, by (i), $P=P_{+}>P_{-}$at u_{+}, and so $\operatorname{sgn}\left(u_{+}-u_{-}\right)=1$, that is, $u_{-}<u_{+}$. Now, by (iii), (iv) and the last paragraph, $\dot{P}<0$ on $\left(0, u_{-}\right) \cup\left(u_{+}, 2\right]$ and $\dot{P}>0$ on $\left(u_{-}, u_{+}\right)$. Thus, as u increases from 0 to u_{-}, then to u_{+}, then to 1 , and finally to 2 , the value of P decreases from 0 to $P\left(u_{-}\right)$, then increases to $P\left(u_{+}\right)$, then decreases to 1 and after that continues decreasing to 0 . Any point $u \in(0,1)$ with $0 \leqslant P(u) \leqslant 1$ must therefore lie in $\left(u_{-}, u_{+}\right)$. This includes $u=w^{*}$ and $u=x^{*}$, as $P\left(w^{*}\right)=0$ (see (a) in $\S 35$) and $P\left(x^{*}\right)=-q_{*} \in(0,1)$ (by (d) in $\S 35$ and Remark 34.1, as $P(x)$ is the value of p at $\left(x, x^{*}\right)$, cf. $\left.\S 34\right)$. We have thus proved $(36.1),(36.3)$ and the first part of (36.2), since $w^{*}<z^{*}<x^{*}$ by Lemma 20.1 with $x<z<w<0$ (cf. the lines preceding (21.5)). The description just given of the monotonicity intervals of P on $[0,2]$ also shows that P assumes its extrema in $[0,2]$ at u_{-}and u_{+}, while $P\left(u_{-}\right)<0<1<P\left(u_{+}\right)$. Also, $P\left(u_{-}\right)>-1 / m$ for odd m, since the minimum $P\left(u_{-}\right)$equals, by (iv), the value at u_{-}of P_{-}(not of P_{+}, as $P_{-}<P_{+}$ by (i)), and so, by $(37.1), P\left(u_{-}\right)=P_{-}\left(u_{-}\right)>P_{-}(1)=-1 / m$.

38. The values assumed by p on the moduli curve

Let $m \geqslant 2$ be a fixed integer. The restrictions to the connected components of the moduli curve \mathcal{C} (see Corollary 33.2) of the functions δ and p defined in $\S 2$ have the following properties, which, as explained below, are easy consequences of the results of the preceding sections. In the case of δ, (a)-(e) essentially repeat its definition from $\S 2$, to provide a convenient reference.
(a) On the \mathcal{T}-beam $\mathrm{X} \cap \mathcal{T}$ of X , when m is odd: $\delta=1$ and the range of p is $\left(-1, q_{*}\right]$, for $q_{*} \in(-1,0)$ as in (27.1). Every value in $\left(-1, q_{*}\right)$ is assumed by p exactly twice in $X \cap \mathcal{T}$, while q_{*} is assumed
just once, at $\left(x, x^{*}\right)$. Two different points of $\mathrm{X} \cap \mathcal{T}$ have the same value of p if and only if they are each other's images under the involution (28.1).
(b) On the \mathcal{H}-beam $\mathrm{X} \cap \mathcal{H}$, when m is odd: $\delta=1$, the range of p is $\left[P\left(u_{+}^{*}\right), z /(2-z)\right)$, while $P\left(u_{+}^{*}\right)<-1<z /(2-z)<0$ by (36.2) with (d) and (a) in $\S 35$, and as $z<0$, cf. § 21. (See also (iii) in § 45 for a stronger conclusion.) The values in $\left(P\left(u_{+}^{*}\right),-1\right)$ are assumed by p in $\mathrm{X} \cap \mathcal{H}$ twice, those in the union $\left\{P\left(u_{+}^{*}\right)\right\} \cup[-1, z /(2-z))$ just once.
(c) On !, when m is odd: $\delta=-1$ and the range of p is $\left[0, P\left(u_{-}^{*}\right)\right]$, with $0<P\left(u_{-}^{*}\right)<1 / m$. Every value in $\left[0, P\left(u_{-}^{*}\right)\right]$ is assumed by p twice in !, except for 0 and $P\left(u_{-}^{*}\right)$, assumed just once, at $(0,0)$ and $\left(u_{-}^{*}, u_{-}\right)$.
(d) On!, when m is even, $\left(z, z^{*}\right)$ is the only point at which $\delta=0$, while $\delta=1$ (or $\delta=-1$) on the subset of ! formed by all $\left(u, u^{*}\right) \in!$ with $u<z$ (or, respectively, $z<u \leqslant 0$); that subset is mapped by p bijectively onto $(-\infty,-1)$ (or, respectively, $[0, \infty)$).
(e) On I, for every m, we have $\delta=1$ and $p: \mathbf{I} \rightarrow(0,1)$ is bijective.

In fact, (a) is obvious from the last sentence in Proposition 29.1(ii), along with the easily verified invariance of q under (28.1) and Remark 34.1.

Moreover, $v=u^{*}$ for every point (u, v) of the moduli curve that does not lie in the \mathcal{T}-beam $\mathrm{X} \cap \mathcal{T}$ (see §33). Now (b)-(e) are immediate, since p at (u, v) then equals $P(u)$, for the function P defined by (34.1), which has the limits/values and monotonicity intervals described in (36.1) and (36.3). The inequalities in (b) and (c) easily follow from (36.2) and (d) in § 35.

Proof of Theorem 2.4. Assertions (i) and (ii) are obvious from Definition 2.1 and (c) and (d) above; that the set of p-rational points in! is countably infinite for odd m as well follows from (c), as $\left[0, P\left(u_{-}^{*}\right)\right] \cap \mathbb{Q}$ is infinite.
Remark 38.1. Let $(u, v) \in \mathcal{C} \backslash\{(0,0)\}$ be a p-rational point, for a fixed integer $m \geqslant 2$, and let A be the rational function of u, v defined by (10.3).
(i) If m is even and $(u, v)=\left(z, z^{*}\right)$, then A and δ both equal 0 at (u, v).
(ii) If m is odd or $(u, v) \neq\left(z, z^{*}\right)$, both A and δ are nonzero (and well defined) at (u, v). In addition, the value of p at (u, v) then is $\dot{Q}(u) /(m A)$, with $\dot{Q}=d Q / d t$, for a function Q of the form (1.2) satisfying conditions $(\mathrm{I})-(\mathrm{V})$ of $\S 1$ on the interval $I=[u, v]$ and normalized so that the value of A at (u,v) equals the coefficient A in (1.2) (cf. Lemma 10.1).
In fact, the claims about the values of A were established in $\S 34$, and those about δ follow from (a)-(e) above. Finally, $p=\dot{Q}(u) /(m A)$ at (u, v) in (ii) as a consequence of (5.7), the definition of p in $\S 2$, and Lemma 10.1. Note that, by Theorem 33.1 and Lemma 20.1, $u, v \notin\{0,1,2\}$ for $(u, v) \in \mathcal{C} \backslash\{(0,0)\}$.

39. Proof of Theorem 0.3

We will use a result of Kobayashi and Ochiai [KO73], as quoted in § 9.124 of [Bes87]: if N is a compact complex manifold with $\operatorname{dim}_{\mathbb{C}} N=m-1$ such that $c_{1}(N) \in H^{2}(N, \mathbb{Z})$ is positive and divisible by an integer $d \geqslant 1$, then $d \leqslant m$, with equality only if N is biholomorphic to $\mathbb{C P}^{m-1}$.

First, we need the following lemma.
Lemma 39.1. One of the following two assertions is true for any given quadruple (M, g, m, τ) satisfying Condition 0.1 or Condition 0.2.
(i) Up to a τ-preserving biholomorphic isometry, (M, g, m, τ) arises either from the construction in § 4, or from that described in the five paragraphs preceding Remark 3.2 and applied to data consisting of

A. Derdzinski and G. Maschler

(a) m along with real constants a, c, ε, a nontrivial closed interval I with $1 \notin I$, and a function Q of the form (1.2), which together satisfy conditions $(I)-(V)$ in § 1 and (3.1),
(b) the objects (3.2), with A determined by Q through (1.2).
(ii) Conditions (I)-(V) in § 1 hold for some nontrivial closed interval I with $1 \in I$ and some rational function Q of the form (1.2) for our m.

Proof. This is precisely Corollary 19.5 in [DM05].
To prove the first part of Theorem 0.3 , we begin with the existence of input data $N, h, \mathcal{L}, \Omega, c$ for any given p-rational point (u, v), with a fixed integer $m \geqslant 2$. If $(u, v)=(0,0)$, such data are described at the end of $\S 4$. Now let $(u, v) \neq(0,0)$, and let δ be the function defined in $\S 2$. If $\delta=0$ at (u, v), we choose (N, h) to be any compact Ricci-flat Kähler manifold whose Kähler class is a nonzero real multiple of an integral class (for instance, (N, h) can be a suitable flat complex torus), and then select \mathcal{L} for which that integral class equals $c_{1}(\mathcal{L})$, so that (0.1.b) holds, with a specific sign \pm, for the curvature form Ω of some $\mathrm{U}(1)$ connection in \mathcal{L}.

Next, suppose that $|\delta|=1$ at (u, v). According to Definition 2.1 , there exist relatively prime integers n and $d \geqslant 1$ such that $p=n / d$ at (u, v), and, if $\delta=1$, also $d \leqslant m$. The formula $s=m+1-\delta d$ thus defines an integer $s \geqslant 1$. Let N be the Fermat hypersurface of degree s in $\mathbb{C P}^{m}$, given by $z_{0}^{s}+z_{1}^{s}+\cdots+z_{m}^{s}=0$ in homogeneous coordinates z_{0}, \ldots, z_{m}. The adjunction formula [GH94, p. 147] implies that $c_{1}(N)=(m+1-s)[e]$, or, equivalently, $c_{1}(N)=\delta d[e]$ in $H^{2}(N, \mathbb{R})$, where $[e]$ is the restriction to N of the positive generator of $H^{2}\left(\mathbb{C P}{ }^{m}, \mathbb{R}\right)$. Thus, δ and $c_{1}(N)$ have the same sign (positive, negative, or zero), equal to the sign of the Einstein constant κ of a KählerEinstein metric h on N, which exists in view of the Aubin and Yau solution to Calabi's conjecture [Aub78, Yau78] or, respectively, by a more recent result of Tian [Tia97]. Setting $\mathcal{L}=\mathcal{E}^{\otimes \pm \delta n}$, where \mathcal{E} is the restriction to N of the dual tautological bundle over $\mathbb{C} P^{m}$, we now get $c_{1}(\mathcal{L})= \pm p c_{1}(N)$ in $H^{2}(N, \mathbb{R})$, as both sides equal $\pm \delta n[e]$. Now (0.1.a) follows for a $\mathrm{U}(1)$ connection in \mathcal{L} chosen so as to have the curvature form $\Omega= \pm p \rho^{(h)}$. The existence of such a connection is clear: $c_{1}(\mathcal{L})= \pm p c_{1}(N)$ in $H^{2}(N, \mathbb{R})$, and so Ω represents $2 \pi c_{1}(\mathcal{L})$ in $H^{2}(N, \mathbb{R})$, since $\rho^{(h)}$ represents $2 \pi c_{1}(N)$.

Thus, input data exist in each case. The first part of Theorem 0.3 now follows according to the conclusions of $\S \S 3$ and 4.

Conversely, let a quadruple (M, g, m, τ) satisfy Condition 0.1 or Condition 0.2. Lemma 39.1 leads to two possible cases; however, case (ii) cannot occur in view of Proposition 19.2. The remaining case (i) is divided into two subcases.

In one subcase, (M, g, m, τ) is obtained from the construction in $\S 4$, which is one of the possibilities allowed in Theorem 0.3.

In the remaining subcase, (M, g, m, τ) arises as in $\S 3$, except for the data involved: although the data listed under assertion (i) in Lemma 39.1 include m and $N, h, \mathcal{L}, \Omega, c$ along with the pair (u, v) of the endpoints of $I=[u, v]$, we still need to verify p-rationality of (u, v) along with conditions $\delta=\operatorname{sgn} \kappa$ and (0.1).

That (u, v) lies on the moduli curve \mathcal{C} is clear from Definition 1.1, since the data in assertion (i) include Q satisfying conditions (I)-(V) in $\S 1$. Next, let A be determined by Q via (1.2), and let δ and p be the values at (u, v) of the functions δ and p (if defined). When $A=0$, Remark 38.1 and Lemma 10.1 give $\delta=0$, while (3.2) (see (i) in Lemma 39.1) yields $\kappa=0$. Thus, (u, v) then is p-rational, $\delta=\operatorname{sgn} \kappa$, and (0.1.b) holds. Now let $A \neq 0$. For $t \in(u, v)$, setting $\varphi(t)=(t-1) A Q(t)$ and ()$^{\cdot}=d / d t$, we get $\delta=\operatorname{sgn}[(u-1) p]=\operatorname{sgn}[(u-1) A \dot{Q}(u)]=\operatorname{sgn} \dot{\varphi}(u)=\operatorname{sgn} \varphi(t)=\operatorname{sgn}[(t-1) A Q(t)]=$ $\operatorname{sgn}[(t-1) A]=\operatorname{sgn}(\varepsilon c A)=\operatorname{sgn} \kappa$. In fact, the first equality follows from (a)-(e) of §38 and Theorem 33.1: $u<0$ and $p<0$ on both beams of X , while on ! we have $u<0$ and p is represented by P (cf. Remark 36.1), and, finally, $u>1$ and $p>0$ on I . The second equality is immediate from

Conformally-Einstein Kähler manifolds

Remark 38.1(ii) and Lemma 10.1; the third and fifth ones, from the definition of φ, as $Q(u)=0$. The fourth equality follows as $u \neq 1$ (Remark 19.3) and $\varphi(u)=0 \neq \dot{\varphi}(u)$ in view of conditions (I)-(V) in $\S 1$, the sixth since $Q \geqslant 0$ on I, and the last two from (3.1) and (3.2). Thus, again, $\delta=\operatorname{sgn} \kappa$.

Still assuming that $A \neq 0$, we now get $\Omega= \pm p \rho^{(h)}$ from (3.2), (3.1) and Remark 38.1(ii). The ensuing proportionality between $c_{1}(\mathcal{L})$ and $c_{1}(N)$ implies that the value of p at (u, v) is rational. If, in addition, $\delta=1$ (and so $\kappa>0$), the Kobayashi-Ochiai theorem mentioned at the beginning of this section gives $p=n / d$ for some relatively prime integers n, d with $1 \leqslant d \leqslant m$. Hence (u, v) is p-rational, which completes the proof of Theorem 0.3.

40. Comments

For any input data $N, h, \mathcal{L}, \Omega, c$ with (0.1.a), one has $c_{1}(\mathcal{L})= \pm p c_{1}(N)$ in $H^{2}(N, \mathbb{R})$. Since the Chern classes are integral, the value of p at (u, v) must be a rational number and its irreducible denominator divides $c_{1}(N)$ in $H^{2}(N, \mathbb{Z})$. At the same time, the range of values of p occurring in the construction imposes obvious restrictions on the class of line bundles \mathcal{L} that may be used as a part of the input data. Note that once the Kähler-Einstein manifold (N, h) and the value of p in (0.1.a) are selected, the choices of \mathcal{L} become quite limited: up to tensoring by holomorphic line bundles with flat $\mathrm{U}(1)$ connections, $\mathcal{L}=\mathcal{E}^{\otimes \pm p}$ for the anticanonical bundle $\mathcal{E}=[T N]^{\wedge(m-1)}$ of N. (See [DM05, Remark 2.4]; a connection required in (0.1) exists for reasons stated in § 39.)

The importance of the objects $N, h, \mathcal{L}, \Omega$ with (0.1) lies in their role as building blocks for our construction of quadruples (M, g, m, τ) satisfying Condition 0.1 or Condition 0.2 . This raises an obvious question: If we prescribe only m along with the values of p and δ, when do N, h, \mathcal{L} and Ω with (0.1) exist, and in what cases are they essentially unique? (As usual, we require that $\delta=\operatorname{sgn} \kappa$, for the Einstein constant κ of h.)

As for the existence, the answer is: if and only if either $\delta=1$ and $p=n / d$ for some $n \in \mathbb{Z}$ and $d \in\{1, \ldots, m\}$, or $\delta=0$, or, finally, $\delta=-1$ and p is rational. In fact, the 'if' part is realized by the Fermat hypersurfaces (§39), while the 'only if' statement is immediate from the Kobayashi-Ochiai theorem mentioned at the beginning of $\S 39$.

An example of (essential) uniqueness is provided by the case where $\delta=1$ and $p=n / m$ for an integer n relatively prime with m. Namely, (N, h) then must be biholomorphically isometric to $\mathbb{C} P^{m-1}$ with a constant multiple of the Fubini-Study metric, in such a way that \mathcal{L} becomes the $\pm n$th tensor power of the dual tautological bundle. This is due to the equality clause in the Kobayashi-Ochiai theorem (see the beginning of § 39) along with the fact that a holomorphic line bundle \mathcal{L} over $N=\mathbb{C} P^{m-1}$ is uniquely determined by $c_{1}(\mathcal{L}) \in H^{2}(N, \mathbb{R})$, and a Kähler-Einstein metric on $\mathbb{C P}{ }^{m-1}$ is essentially unique (see [GH94, pp. 144-145] and [BM87]).

Finally, given any compact non-Ricci-flat Kähler-Einstein manifold (N, h), if the rational value of p happens to be an integer, \mathcal{L} with the required properties always exists, and may be chosen as at the end of the first paragraph of this section.

41. Bounds on z and x

This and the next two sections present facts that will be used in $\S \S 44-46$ to prove Theorem 2.3. Let $R_{m}(t)=-G_{m}(t) / \Sigma_{m}(0)$, with F_{m}, E_{m}, Σ_{m} and G_{m} standing for F, E, Σ and $G=E-F / 2$, as in (5.2). Also, let $\Sigma_{0}(0)=-1 / 2$ and $R_{0}(t)=1$. Then, for any integer $m \geqslant 1$,
(i) $\Sigma_{m}(0)=(4-6 / m) \Sigma_{m-1}(0), \quad \Sigma_{1}(0)=1$,
(ii) $R_{m}(t)=1-m \sigma R_{m-1}(t) /(4 m-6), \quad R_{1}(t)=1+\sigma / 2$ with $\sigma=t^{2} /(1-t)$,
(iii) $\left(R_{1}(-2), R_{2}(-2), R_{3}(-2), R_{4}(-2)\right)=(5 / 3,-11 / 9,49 / 27,13 / 405)$,
(iv) $\Sigma_{m}(0) R_{m}(t)=\Sigma_{m}(0)-\Sigma_{m-1}(0) \sigma+\cdots+(-1)^{m} \Sigma_{0}(0) \sigma^{m}$,

A. Derdzinski and G. Maschler

whenever $t \in(-\infty, 0)$, where $\sigma=t^{2} /(1-t)$ in (iv) as well. Namely, (5.6.i) gives (i), and (ii) follows since (5.2.ii) clearly remains valid, for $t \neq 1$, even if one replaces E_{m} by $G_{m}=E_{m}-F_{m} / 2$. Finally, (i) and (ii) easily imply (iii) and (iv).

Any given $\sigma>0$ corresponds as in (41.1) to a unique $t<0$. In fact, since $\sigma=-t-1+1 /(1-t)$, we have $d \sigma / d t<0$, and taking the limits of σ we see that

$$
\begin{equation*}
(-\infty, 0) \ni t \mapsto \sigma=t^{2} /(1-t) \in(0, \infty) \quad \text { is a decreasing diffeomorphism. } \tag{41.2}
\end{equation*}
$$

With $\Sigma_{m}(0)$ again denoting the sequence given by (41.1.i) (or (5.6.i)), we now see that
(a) $a_{m}=m^{3 / 2} 4^{1-m} \Sigma_{m}(0)$ is a positive decreasing function of $m \geqslant 1$,
(b) $a_{m} \rightarrow 1 / \sqrt{\pi}$ as $m \rightarrow \infty$,
(c) $\Sigma_{m}(0)=(4-6 / 2)(4-6 / 3) \cdots(4-6 / m)$ for any integer $m \geqslant 2$.

Namely, (41.1.i) yields both (c) and $4\left(a_{m} / a_{m-1}\right)^{2}=m(2 m-3)^{2} /(m-1)^{3}<4$ for $m \geqslant 2$, which gives (a), and Wallis's formula $\lim _{m \rightarrow \infty} 2 m^{1 / 2} \prod_{j=1}^{m-1}[2 j /(2 j+1)]=\sqrt{\pi}$ implies (b) since

$$
\frac{1}{\prod_{j=1}^{m-1}[2 j /(2 j+1)]}=2^{1-m}[(m-1)!]^{-1} \prod_{j=1}^{m-1}(2 j+1)=4^{1-m}[(m-1)!]^{-2}(2 m-1)!,
$$

which, by (5.6.i), equals $4^{1-m}(2 m-1) m \Sigma_{m}(0)=(2 m-1) m^{-1 / 2} a_{m}$.
For a real variable r and for $\Sigma_{m}(0)$ as in (41.1.i) with $\Sigma_{0}(0)=-1 / 2$, let

$$
\begin{equation*}
\Psi_{m}(r)=\Sigma_{0}(0)-\Sigma_{1}(0) r+\cdots+(-1)^{m} \Sigma_{m}(0) r^{m}, \quad \Psi_{\infty}(r)=-\frac{\sqrt{1+4 r}}{2} \tag{41.4}
\end{equation*}
$$

with $r \geqslant-1 / 4$ in $\Psi_{\infty}(r)$. By (41.1.i), Ψ_{m} satisfies the initial value problem

$$
\begin{equation*}
(2 r+1 / 2) d \Psi_{m} / d r=\Psi_{m}(r)+(2 m-1)(-1)^{m} \Sigma_{m}(0) r^{m}, \quad \Psi(0)=-1 / 2 \tag{41.5}
\end{equation*}
$$

while, by (41.1.ii), the power series whose partial sum appears in (41.4) has the convergence radius $1 / 4$. The sum of this series is $\Psi_{\infty}(r)$, as one sees either by noting that the sum satisfies on $(-1 / 4,1 / 4)$ the initial value problem $(1+4 r) d \Psi_{\infty} / d r=2 \Psi_{\infty}(r)$ with $\Psi(0)=-1 / 2$ (which one may derive from (41.5) and (41.1.i), as well as directly from (41.1.i)), or by using (41.1.iv) to verify that $(-1)^{m} \Sigma_{m}(0)$ equals, for every $m \geqslant 0$, the m th Taylor coefficient of $\Psi_{\infty}(r)$ at $r=0$. Also, by (41.1.i),

$$
\begin{equation*}
\Psi_{m} \rightarrow \Psi_{\infty} \quad \text { as } m \rightarrow \infty, \quad \text { uniformly on }[-1 / 4,1 / 4] \tag{41.6}
\end{equation*}
$$

since $4\left|\Sigma_{m}(0) r^{m}\right| \leqslant m^{-3 / 2} a_{m}$ whenever $|r| \leqslant 1 / 4$.
If m is odd and $m \geqslant 3$, since $\Sigma_{2 k-1}(0)=k \Sigma_{2 k}(0) /(4 k-3)$ by (41.1.i), we get

$$
\begin{equation*}
\Psi_{m-1}(r)=-\frac{1}{2}+\sum_{k=1}^{(m-1) / 2} \Xi_{k}(r) \quad \text { where } \Xi_{k}(r)=\Sigma_{2 k}(0) r^{2 k-1}\left[r-\frac{k}{4 k-3}\right] \tag{41.7}
\end{equation*}
$$

by grouping terms in (41.4). Obviously, $\Xi_{k} \leqslant 0$ on the interval $[0, k /(4 k-3)]$ and, since these intervals form a descending sequence, $\Xi_{k} \leqslant 0$ on $[0,(m-1) /(4 m-10)]$ for all $k=1, \ldots,(m-1) / 2$. Thus, by (41.7),

$$
\begin{equation*}
\Psi_{m-1}(r) \leqslant-1 / 2 \quad \text { whenever } m \geqslant 3 \text { is odd and } 0 \leqslant r \leqslant(m-1) /(4 m-10) \tag{41.8}
\end{equation*}
$$

Remark 41.1. Let $R_{m}(t)$ and χ_{m} be defined by (41.1) and $\chi_{m}=x^{2} /(1-x)$, with $x<0$ as in Lemma 25.2(b) for any $t \in(-\infty, 0)$ and an odd integer $m \geqslant 3$. Setting $\sigma=t^{2} /(1-t)$, we have:
(a) if $R_{m}(t) \leqslant 1$, then $\chi_{m}>\sigma$;
(b) $\operatorname{sgn}\left(\chi_{m}-\sigma\right)=\operatorname{sgn}\left[R_{m-1}(t)+K_{m}(\sigma)\right]$, where $K_{m}(\sigma)=2(2 m-3) /[(m-1) \sigma+2(2 m-1)]$.

Conformally-Einstein Kähler manifolds

In fact, $S(t) /[\Sigma(0)(1-t)]=[(m-1) \sigma+2(2 m-1)]\left[1-R_{m}(t)\right]+m \sigma$ as $t^{2}=(1-t) \sigma$, with S as in (24.5.b). Since $m, \sigma, 1-t$ and $\Sigma(0)$ are positive (cf. (1.1)), this, combined with Lemma 25.2(c) and (41.2), gives (a) and, due to (41.1.ii), also (b).

Lemma 41.2. Given an odd integer $m \geqslant 3$, let $\zeta_{m}=z^{2} /(1-z)$ and $\chi_{m}=x^{2} /(1-x)$ for $z, x \in(-\infty, 0)$ defined in (21.5) and Lemma 25.2(b). Then
(i) $0<4-34 /\left(m^{1 / 4}+8\right)<\zeta_{m}<\chi_{m} \leqslant 4-6 /(m-1)<4$, with all inequalities strict if $m \geqslant 5$,
(ii) ζ_{m} and χ_{m} are strictly increasing functions of m,
(iii) $\chi_{m} \rightarrow 4$ and $\zeta_{m} \rightarrow 4$ as $m \rightarrow \infty$.

Proof. Let $m \geqslant 3$ be odd. For $r \in(0, \infty)$ and Ψ_{m-1} as in (41.4),

$$
\begin{align*}
& \text { (a) } \operatorname{sgn}\left(r-1 / \chi_{m}\right)=\operatorname{sgn} \Delta_{m}(r), \quad \text { (b) } \operatorname{sgn}\left(r-1 / \zeta_{m}\right)=\operatorname{sgn} \Psi_{m-1}(r), \tag{41.9}\\
& \quad \text { where } \Delta_{m}(r)=\Psi_{m-1}(r)+m \Sigma_{m}(0) r^{m} /[2(2 m-1) r+m-1] .
\end{align*}
$$

In fact, $\Delta_{m}(r)=\sigma^{1-m} \Sigma_{m-1}(0)\left[R_{m-1}(t)+K_{m}(\sigma)\right]$ for $\sigma=1 / r$, by (41.1.iv) (with $m-1$ rather than m) and (41.1.i), and so (a) is clear from Remark 41.1(b), Lemma 25.2(c) and (41.2). Similarly, (b) follows as $\operatorname{sgn}(t-z)$ for any $t<0$ equals $\operatorname{sgn}\left(\zeta_{m}-\sigma\right)=\operatorname{sgn}\left(r-1 / \zeta_{m}\right)$, where $r=1 / \sigma$ with σ as in (41.2); on the other hand, by (21.5), $\operatorname{sgn}(t-z)$ also coincides with $\operatorname{sgn}[G(t)-E(0)]$, that is, $\operatorname{sgn}\left[G(t)+\Sigma_{m}(0)\right]$ (cf. (5.6.ii)), and hence equals $\operatorname{sgn}\left[\Sigma_{m}(0)-\Sigma_{m}(0) R_{m}(t)\right]$ (see the definition of R_{m}, preceding (41.1)), while $\Sigma_{m}(0)-\Sigma_{m}(0) R_{m}(t)=\sigma^{m} \Psi_{m-1}(1 / \sigma)$ by (41.1.iv) and (41.4).

Next, $\zeta_{m}>0$ as $z<0$, while $\zeta_{m}<\chi_{m}$ since $x<z$ (Lemma 25.2(b)) or, equivalently, by (41.9) for $r=1 / \zeta_{m}$ (as $\left.\Delta_{m}(r)>\Psi_{m-1}(r)\right)$. The lower bound on ζ_{m} in (i) is obtained by finding (as described below) a constant $\alpha>0$ and a positive increasing function Y_{m} of the odd integer $m \geqslant 3$ such that $\alpha \Psi_{m-1}(1 / 4)$ and $\alpha \Psi_{m-1}^{\prime}(1 / 4)$ are both greater than -1 , while $\alpha \Psi_{m-1}^{\prime \prime}(r)>2 Y_{m}$ for every odd $m \geqslant 3$ and every $r \in[1 / 4, \infty)$, with ()$^{\prime}=d / d r$. Then, clearly, $\alpha \Psi_{m-1}(r)>f_{m}(r)$ at every $r \geqslant 1 / 4$, where $f_{m}(r)=Y_{m}(r-1 / 4)^{2}-(r-1 / 4)-1$ is the quadratic function of r whose value, derivative and second derivative at $r=1 / 4$ are $-1,-1$ and $2 Y_{m}$. By (41.9.b), this gives $1 / r<\zeta_{m}$ for any $r \geqslant 1 / 4$ at which $f_{m}(r)>0$. Next, $f_{m}(r)>0$ for $r=(\beta+1) Y_{m}^{-1 / 2}+1 / 4$, where $\beta=Y_{3}^{-1 / 2}$. Namely, $f_{m}(r)=\beta^{2}+2 \beta-(\beta+1) Y_{m}^{-1 / 2} \geqslant \beta$ as $Y_{m} \geqslant Y_{3}$, that is, $Y_{m}^{-1 / 2} \leqslant \beta$. Thus, $\zeta_{m}>1 / r=4-16(\beta+1) /\left[Y_{m}^{1 / 2}+4(\beta+1)\right]$. If, in addition, $Y_{m}=16 \sqrt{m} / \gamma^{2}$ with a constant $\gamma>0$ independent of m, this gives $\zeta_{m}>4-4(\beta+1) \gamma /\left[m^{1 / 4}+(\beta+1) \gamma\right]$.

A choice of α and Y_{m} with the required properties is $\alpha=\sqrt{2}$ and $Y_{m}=\sqrt{2 m / \pi}$, that is, $Y_{m}=$ $16 \sqrt{m} / \gamma^{2}$ with $\gamma=(128 \pi)^{1 / 4}$. In fact, the sequences $\Psi_{m}(1 / 4)$ and $\Psi_{m}^{\prime}(1 / 4)$, with $m=1,2,3, \ldots$, converge to $-1 / \sqrt{2}$, as one sees by setting $r=1 / 4$ in (41.6) and, respectively, (41.5) (where the term involving $\Sigma_{m}(0)$ tends to 0 by (41.3.a)). On the other hand, $\Psi_{m-1}(1 / 4)$ and $\Psi_{m-1}^{\prime}(1 / 4)$ are decreasing functions of the odd integer $m \geqslant 3$, since $\Xi_{k}(r)$ and $\Xi_{k}^{\prime}(r)$ are, by (41.7), negative for $r=1 / 4$ and any $k \geqslant 1$. Also, $\Xi_{k}^{\prime \prime}(r)$ is a nondecreasing function of $r \in[1 / 4, \infty)$, as $\Xi_{k}^{\prime \prime}(r)=$ $2 k(2 k-1) \Sigma_{2 k}(0) r^{2 k-3}[r-(k-1) /(4 k-3)]$. (Note that $r-(k-1) /(4 k-3)$ is a positive increasing function of $r \geqslant 1 / 4$.) By (41.7), the same is true of $\Psi_{m-1}^{\prime \prime}(r)$. Thus, we just need to establish the inequality $\sqrt{2} \Psi_{m-1}^{\prime \prime}(1 / 4)>2 Y_{m}$ for $Y_{m}=\sqrt{2 m / \pi}$. Now (41.3) and the above formula for $\Xi_{k}^{\prime \prime}(r)$ give $\Xi_{k}^{\prime \prime}(1 / 4)=2 a_{2 k-1} / \sqrt{2 k-1}>2 / \sqrt{(2 k-1) \pi}$ for all $k \geqslant 1$, and so, by (41.7), $\Psi_{m-1}^{\prime \prime}(1 / 4)>\sqrt{4 m / \pi}$, as required. (In fact, easy induction gives $1^{-1 / 2}+3^{-1 / 2}+5^{-1 / 2}+\cdots+(m-2)^{-1 / 2} \geqslant \sqrt{m}$ for any odd integer $m \geqslant 3$, as $\left(m^{1 / 2}+m^{-1 / 2}\right)^{2}>m+2$.) Now $(\beta+1) \gamma=(8 \pi / \sqrt{3})^{1 / 2}+(128 \pi)^{1 / 4} \approx 8.29$, for $\beta=Y_{3}^{-1 / 2}$, so that $(\beta+1) \gamma>8$ and $4(\beta+1) \gamma<34$. The inequality concluding the last paragraph thus gives the lower bound for ζ_{m} appearing in (i).

To prove the remainder of (i) we may assume that $m \geqslant 5$, since Example 27.4 gives $x=$ $-(\sqrt{5}+1) / 2$ for $m=3$ and hence $\chi_{3}=1=4-6 / 2$. The inequality $\chi_{m}<4-6 /(m-1)$ will be

A. Derdzinski and G. Maschler

obvious from (41.9.a) once we show that

$$
\begin{equation*}
m \Sigma_{m}(0) r^{m} /(m-1)<1 \quad \text { for } \quad m \geqslant 5 \text { and } r=(m-1) /(4 m-10) \text {, } \tag{41.10}
\end{equation*}
$$

since the definition of Δ_{m} in (41.9) combined with (41.8) then will give $\Delta_{m}(r)<0$. Note that $1 /[2(2 m-1) r+m-1]<1 /[2(m-1)]$.

We derive (41.10) from the fact that $(4 r)^{m-5 / 2}=(1+1 / \nu)^{3 \nu / 2}<e^{3 / 2}<5$, for m, r as in (41.10), with $\nu=(2 m-5) / 3$. (That $\nu \log (1+1 / \nu)$, and hence also $(1+1 / \nu)^{\nu}$, is an increasing function of $\nu>1$ is clear, as $\mu^{-1} \log (1+\mu)$ is a decreasing function of $\mu=1 / \nu \in(0,1)$, which follows since $(1+\mu) \mu^{2}$ times its derivative decreases on [0, 1] from 0 to $\log (e / 4)$.) Thus, $(4 r)^{m}<5(4 r)^{5 / 2}<20$, as $r \leqslant 2 / 5$. Also, (41.3) for $m \geqslant 5$ gives $a_{m}<a_{2}=\sqrt{2} / 8<1 / 4$ and $\Sigma_{m}(0)<m^{-3 / 2} 4^{m-1}$, so that $m \Sigma_{m}(0) r^{m} /(m-1)<m^{-1 / 2}(4 r)^{m} /[4(m-1)]$, which is less than $5 m^{-1 / 2} /(m-1)<1$. This yields (i) and, consequently, (iii).

To prove (ii) for ζ_{m}, let us fix $m \geqslant 5$ and set $r=1 / \zeta_{m}$. By (41.7) and (41.9.b), $-\Psi_{m-3}(r)=$ $\Psi_{m-1}(r)-\Psi_{m-3}(r)=\Sigma_{m-1}(0) r^{m-2}[r-(m-1) /(4 m-10)]$, and so $\Psi_{m-3}(r)<0$ since (i) gives $\zeta_{m}<4-6 /(m-1)$, that is, $r>(m-1) /(4 m-10)$. Now (41.9.b), for $m-2$ rather than m, gives $\zeta_{m}=1 / r>\zeta_{m-2}$.

Finally, to obtain (ii) for χ_{m}, note that, for any $r>0$ and $m \geqslant 5$,

$$
\begin{equation*}
\frac{\Delta_{m}(r)-\Delta_{m-2}(r)}{(2 m-5)(m-1) \Sigma_{m-1}(0)}=\frac{r^{m-2}(1+4 r)^{2}[r-(m-1) /(4 m-10)]}{[(4 m-2) r+m-1][(4 m-10) r+m-3]}, \tag{41.11}
\end{equation*}
$$

since (41.7) leads to a massive cancellation of terms in $\Delta_{m}(r)-\Delta_{m-2}(r)$ and, by (41.1.i), $\Sigma_{m-2}(0)=$ $(m-1) \Sigma_{m-1}(0) /(4 m-10), \Sigma_{m}(0)=(4-6 / m) \Sigma_{m-1}(0)$. Applied to $r=1 / \chi_{m}$, this gives, by (41.9.a), $-\Delta_{m-2}(r)=\Delta_{m}(r)-\Delta_{m-2}(r)>0$, as the inequality $\chi_{m}<4-6 /(m-1)$ in (i) amounts to $r>(m-1) /(4 m-10)$. Thus, $\Delta_{m-2}(r)<0$ and (41.9.a) with m replaced by $m-2$ yields $r<1 / \chi_{m-2}$, that is, $\chi_{m}>\chi_{m-2}$, completing the proof.

Remark 41.3. Let $x_{\infty}=-2(1+\sqrt{2}) \approx-4.83$. Combined with (41.2), Lemma 41.2 immediately implies that both z and x are strictly decreasing functions of the odd integer $m \geqslant 3$, such that $z>x>x_{\infty}$, while $x \rightarrow x_{\infty}$ and $z \rightarrow x_{\infty}$ as $m \rightarrow \infty$.

42. Further inequalities

Let $q_{*} \in(-1,0)$ depend on an odd integer $m \geqslant 3$ as in (27.1), and let $\ell_{\infty}=9+6 \sqrt{2}$. Then, with $\ell_{m} \in(1, \infty)$ such that $q_{*}=-1+1 / \ell_{m}$, we have the following relations:
(a) $\ell_{m}<18$ for every odd $m \geqslant 3$, more precisely, $\ell_{m}<\ell_{\infty} \approx 17.485$;
(b) $\ell_{m}<m$ whenever m is odd and $m \geqslant 9$;
(c) $\ell_{m}>m$ if $m \in\{3,5,7\}$, while $8<\ell_{9}<9<\ell_{11}<10$;
(d) $\ell_{3}=(9+3 \sqrt{5}) / 4 \approx 3.927$;
(e) ℓ_{m} is a strictly increasing function of m, and $\ell_{m} \rightarrow \ell_{\infty}$ as $m \rightarrow \infty$.

In fact, by (27.1), $\ell_{m}=\xi\left(\xi+\sqrt{\xi^{2}-1}\right)$ for $\xi=\xi_{m}$ given by $\xi=1+\chi / 2$ with $\chi=\chi_{m}$ as in Lemma 41.2. Thus, if $m=3$, Example 27.4 gives $x=-(\sqrt{5}+1) / 2$, so that $\chi_{3}=1$ and $\xi_{3}=3 / 2$, which yields (d), and hence (c) for $m=3$.

Obviously, ℓ_{m} is an increasing function of $\xi_{m}>1$, and hence of $\chi_{m}>0$. This has several consequences. First of all, (e) and (a) are obvious from Lemma 41.2, and (a) gives (b) for $m \geqslant 19$. Next, $R_{4}(-2)>0$ in (41.1.iii), and so $R_{5}(-2)<1$ by (41.1.ii); hence $\chi_{5}>4 / 3$, from Remark 41.1(a) for $t=-2$, so that $\xi_{5}>5 / 3$, and (c) for $m=5$ follows. Finally, (b) and (c) for $m=7,9, \ldots, 17$ are, similarly, numerical consequences of the bounds on χ_{m} provided by formula (B.1) in Appendix B.

Conformally-Einstein Kähler manifolds

Remark 42.1. Lemma 41.2(i) clearly implies some explicit, though complicated, bounds for ℓ_{m}. Replacing them with weaker but simpler estimates, we get $1-17 /\left(m^{1 / 4}+8\right)<\ell_{m} / \ell_{\infty}<1-1 / m$. (The lower bound is of interest only when it is positive, that is, for very large m.) Namely, as $0<\chi<4-6 / m$ for $\chi=\chi_{m}$, setting $\xi=1+\chi / 2$ we get $\xi<3-3 / m$, and so $\sqrt{\xi^{2}-1}<2 \sqrt{2} \xi / 3$ as $1<\xi<3$. Thus, $\ell_{m}<\ell_{\infty} \xi^{2} / 9<\ell_{\infty} \xi / 3<(1-1 / m) \ell_{\infty}$, since $\ell_{m}=\xi\left(\xi+\sqrt{\xi^{2}-1}\right)$ (see above). Similarly, for $L(\eta)=\eta\left(\eta+\sqrt{\eta^{2}-1}\right)-\ell_{\infty}(\eta-2)$, with $\eta \in(1, \infty)$, we have $L(3)=0$ and $d L / d \eta<0$ at $\eta=3$, while $d^{2} L / d \eta^{2}>0$ whenever $\eta>2 / \sqrt{3}$, as $d^{2} L / d \eta^{2}=(2-\phi)(1+\phi)^{2}$ with $\phi=\eta / \sqrt{\eta^{2}-1}$, so that $d \phi / d \eta<0$ and the condition $\eta>2 / \sqrt{3}$ is equivalent to $\phi<2$. Therefore, $d L / d \eta<0$, and hence $L(\eta)>0$ for all $\eta \in[2 / \sqrt{3}, 3)$, and, with $\eta=3-17 /\left(m^{1 / 4}+8\right)$, Lemma 41.2(i) now leads to our lower bound.

43. Some simple facts from number theory

The following lemma is a variation on the $s=2$ case of the following well-known fact, immediate from Euler's product formula: for any integer $s \geqslant 2$, the probability that s randomly chosen positive integers have a common divisor other than 1 equals $1 / \zeta(s)$, where ζ is the Riemann zeta function.

We allow ℓ_{m} and ℓ_{∞} to be much more general here than in $\S 42$ or $\S 46$.
Lemma 43.1. Given a real constant $\ell \geqslant 1$ and an integer $m \geqslant 1$, let $\mathcal{P}(\ell, m)$ be the set of all pairs (k, d) of relatively prime integers with $1 \leqslant k \ell<d \leqslant m$. Then
(a) $\pi^{2}|\mathcal{P}(\ell, m)| / m^{2} \rightarrow 3 / \ell$ as $m \rightarrow \infty$, with $\|$ denoting cardinality;
(b) $\pi^{2}\left|\mathcal{P}\left(\ell_{m}, m\right)\right| / m^{2} \rightarrow 3 / \ell_{\infty}$ as $m \rightarrow \infty$, whenever $\ell_{\infty} \in \mathbb{R}$ is the limit, as $m \rightarrow \infty$, of a function $m \mapsto \ell_{m} \in[1, \infty)$ defined on an infinite set of positive integers m.

In fact, one obtains (a) by modifying a standard proof (see [Cha68]) of Mertens's theorem. For the reader's convenience, we provide details in Appendix A.

Next, $\mathcal{P}\left(\ell^{\prime}, m\right) \subset \mathcal{P}(\ell, m)$ if $\ell^{\prime} \geqslant \ell \geqslant 1$, and so, if $\ell^{\prime} \geqslant \ell_{m} \geqslant \ell \geqslant 1$ for ℓ_{m} as in (b), then $\left|\mathcal{P}\left(\ell^{\prime}, m\right)\right| / m^{2} \leqslant\left|\mathcal{P}\left(\ell_{m}, m\right)\right| / m^{2} \leqslant|\mathcal{P}(\ell, m)| / m^{2}$. This obviously is the case for any fixed ℓ, ℓ^{\prime} with either $\ell^{\prime}>\ell_{\infty}>\ell \geqslant 1$ (when $\ell_{\infty}>1$), or $\ell^{\prime}>\ell_{\infty}=\ell=1$, and sufficiently large m for which ℓ_{m} is defined. Taking the upper/lower limits, we now get (b) from (a) for ℓ, ℓ^{\prime} arbitrarily close to ℓ_{∞}.

Remark 43.2. For $\mathcal{P}(\ell, m)$ as above, $(k, d) \mapsto k / d$ is a bijective correspondence between $\mathcal{P}(\ell, m)$ and the set of all those rational numbers in $(0,1 / \ell)$ which can be written as fractions with a denominator in $\{1, \ldots, m\}$. When $\ell=1$, the elements of the latter set along with the numbers 0 and 1 , listed in increasing order, form what is called the Farey sequence of order m (cf. [Cha68]).

It is clear that the Farey sequence of order m has $2+\varphi(2)+\cdots+\varphi(m)$ elements, where φ is the Euler function, assigning to a positive integer k the number of integers j such that $0<j<k$ and j, k are relatively prime.

44. Bérard Bergery's and Page's examples

Given an integer $m \geqslant 2$, let \mathcal{S}_{m}^{\prime} be the set of all p-rational points in the I component of the moduli curve (cf. Definition 2.1 and the lines following (2.3)). By applying the construction of $\S 2$ to all points $(u, v) \in \mathcal{S}_{m}^{1}$ and appropriate additional data, we obtain the second family of quadruples (M, g, m, τ) satisfying Condition 0.1 or Condition 0.2 . Since u, v then are both positive, so is the function $t=\tau / c$ on M (cf. Remark 3.3); thus, all compact Kähler manifolds (M, g) obtained here are globally conformally Einstein.

A. Derdzinski and G. Maschler

The second family has been known for over two decades: the (essentially unique) quadruple that satisfies Condition 0.2 was found by Page [Pag78], and those satisfying Condition 0.1 by Bérard Bergery [Bér82]. More precisely, they both described the corresponding conformally related Einstein manifolds. (See also [DM03, §26].)

Proof of Theorem 2.3, parts (a) and (d). Assertion (d), which also implies finiteness of \mathcal{S}_{m}^{1}, is obvious from (e) in § 38 and Definition 2.1, while (a) in Theorem 2.3 follows from (d), Lemma 43.1(a) for $\ell=1$, and Remark 43.2.

Of particular interest is the case where $m=2$, with (M, g) conformal to the Page manifold. By Theorem 2.3(d), \mathcal{S}_{2}^{1} has a single element (u, v) with $v=u /(u-1)$. Explicitly, u then is given by $u=\left[(3-\alpha+2 \beta)^{1 / 2}+(3+\alpha)^{1 / 2}\right](\alpha+\beta) / 6$, where $\alpha=(13+\sqrt{142})^{1 / 3}+(13-\sqrt{142})^{1 / 3}-1$ and $\beta=\left(6+\alpha^{2}\right)^{1 / 2}$, so that α is the unique real root of the equation $\alpha^{3}+3 \alpha^{2}-6 \alpha=34$. (In fact, relation $P(u)=1 / 2$, with P as in (34.1) for $m=3$, amounts to $(u-2)\left(3 u^{4}-8 u^{3}+6 u^{2}-2\right)$ $=0$.) Approximately, $u \approx 1.560$ and $v \approx 2.786$.

45. A third family of examples

The third family of quadruples (M, g, m, τ) satisfying Condition 0.1 or Condition 0.2 is obtained by applying the construction preceding Theorem 0.3 to p-rational points of the moduli curve \mathcal{C} that lie, for even m, in ! $\backslash\{(0,0)\}$, or, for odd m, in the union of ! $\backslash\{(0,0)\}$ and the \mathcal{H}-beam $\mathbf{X} \cap \mathcal{H}$ of \mathbf{X} (see the lines following (2.3)). The second and third families may be thought of as related to each other by a form of analytic continuation, since they both use p-rational points (u, v) lying on the hyperbola \mathcal{H} given by $u v=u+v$ (cf. Appendix C).

In the complex dimension $m=2$, quadruples of the third family were first found by Hwang and Simanca [HS97] and Tønnesen-Friedman [Tøn02].

Just as we did for the second family in § 44, we will now obtain a rough idea about the 'size' of the third family by estimating the number of p-rational points involved. In $\S 44$ that amounted to proving (a) and (d) in Theorem 2.3. Here, the corresponding results consist of Theorem 2.4, already established in $\S 38$, and assertions (b) and (e) in Theorem 2.3, proved at the end of this section. (The other parts of Theorem 2.3 pertaining to the third family then are immediate from (b) in $\S 38: \mathcal{S}_{m}^{\mathcal{H}}$ is finite since a bounded interval contains only finitely many rational numbers that can be written as fractions with a denominator in $\{1, \ldots, m\}$, while p maps $\mathcal{S}_{m}^{\mathcal{H}}$ into $(-2,0)$ since $P\left(u_{+}^{*}\right)>-2$, as shown in (iii) below.)

Let P, u_{+}, x, x_{∞} and z depend on an odd integer $m \geqslant 3$ as in (34.1), (36.2), Lemma 25.2(b), Remark 41.3 and $\S 21$, and let $t^{*}=t /(t-1)$ if $t \in \mathbb{R} \backslash\{1\}$. Then
(i) $x_{\infty}<u_{+}^{*}<x$,
(ii) $u_{+}^{*} \rightarrow x_{\infty}$ as $m \rightarrow \infty$,
(iii) $P\left(u_{+}^{*}\right)>-2$,
(iv) $P\left(u_{+}^{*}\right) \rightarrow-\sqrt{2}$ as $m \rightarrow \infty$,
(v) $z /(2-z)$ is a decreasing function of the odd integer $m \geqslant 3$, such that $z /(2-z)>-1+1 / m$ and $z /(2-z) \rightarrow-1 / \sqrt{2}$ as $m \rightarrow \infty$,
(vi) $x^{*}<u_{+}<x_{\infty}^{*}<1$ and $P\left(u_{+}\right)<2$, which improves on (36.2),
(vii) $3 / 2<P_{+}(2 / 3)<2$, with $P_{ \pm}$as in $\S 37$,
(viii) $\left(x_{\infty}-2\right) / x_{\infty}=\sqrt{2}$.

In fact, (v) follows from Remark 41.3: $z /(2-z)=-1+2 /(2-z)>-1+1 / m$ since $z>2(1-m)$, which for $m \geqslant 5$ is clear as $z>x>x_{\infty}$ and so $z>x_{\infty}>2(1-m)$, and for $m=3$ is obvious as $z \approx-1.3$ (see the end of $\S 21$).

Let us now set $u=x_{\infty}$. We obviously have $(u-2) / u=\sqrt{2}$, that is, (viii), and $u-1=-u^{2} / 4$. Dividing (34.1) by $-u^{2}$ and using the definition of R_{m} preceding (41.1), we now get $-\sqrt{2} P(u)=$ $[1-1 /(2 m)]\left[1-1 / R_{m}(u)\right]+1$, for any fixed odd integer $m \geqslant 3$. Relation $R_{m}(u) \geqslant 3 m$ for any odd $m \geqslant 1$, easily obtained from (41.1.ii) with $t=u=x_{\infty}$ and $\sigma=4$ using induction on $m=1,3,5, \ldots$, now yields $P(u) \leqslant P_{*}<0$ for P_{*} given by $-6 \sqrt{2} m^{2} P_{*}=12 m^{2}-5 m+1$. On the other hand, dividing (35.1) by u and using (viii) we obtain $(u-1) \dot{P}=m P^{2}+\sqrt{2}(m-1) P-1$, the right-hand side of which is easily verified to be positive when P (that is, $P(u)$) is replaced by P_{*} and $m \geqslant 3$. As $-1<0$, that right-hand side is a quadratic function of P with roots of opposite signs; thus, it is strictly decreasing on the subset of the negative P axis on which it is positive. Therefore it is positive at $P(u)$ as well, and so $(u-1) \dot{P}>0$, at $u=x_{\infty}$, that is, $\dot{P}(u)<0$. Since we also have $P(u)<0$, Remark 36.1 now gives $u<u_{+}^{*}$ for $u=x_{\infty}$, and, as $x^{*}<u_{+}$(see (36.2)), we obtain (i) and (ii) from Remark 41.3.

Next, let $P_{ \pm}$be as in $\S 37$, so that $P_{ \pm}$depend here on an odd integer $m \geqslant 3$, and let a sequence $u_{m}<0, m=3,5,7, \ldots$, converge to a limit $u_{\infty}<0$ as $m \rightarrow \infty$. The expression for $P_{-}(u)$ with any $u<0$, provided by the quadratic formula, shows that $P_{-}\left(u_{m}\right)$ then has the limit $-\left(u_{\infty}-2\right) / u_{\infty}$, equal to $-\sqrt{2}$ if $u_{\infty}=x_{\infty}$ (see (viii)). Using the sequence $u_{m}=u_{+}^{*}$ and (ii), we now get (iv).

For an odd integer $m \geqslant 3$, let $\mathcal{F}(P)=m P^{2}-2(m-1) P-1$, which is $3 / 2$ times the right-hand side of (35.1) with $u=2 / 3$. As $\mathcal{F}(3 / 2)<0<\mathcal{F}(2)$, (vii) follows, $P=P_{+}(2 / 3)$ being the positive root of \mathcal{F}. Next, for any odd $m \geqslant 5$ (or $m=3$), $1+\Sigma(0) / G(u)$ in (34.1) with $u=-2$ is negative (or, respectively, equal to $22 / 49$). This is clear from the definition of R_{m}, since $R_{3}(-2)=49 / 27$ by (41.1.iii), from which, using (41.1.ii) and induction on k, we obtain $0<R_{k}(-2)<1$ for every integer $k \geqslant 4$. Hence, if $m \geqslant 5$ (or $m=3$), (34.1) gives $P(-2)>-1 / 2$ (or $P(-2)=-52 / 49$), so that (d) in § 35 with $u=-2$ yields $P(2 / 3)<1 / 2$ (or, respectively, $P(2 / 3)=52 / 49$). When $m>3$ this clearly yields $u_{+}>2 / 3$, since $2 / 3 \notin\left[u_{+}, 1\right]$, as $P \geqslant 1$ on $\left[u_{+}, 1\right]$ by (36.3); if, however, $m=3$, relations $P_{+}(2 / 3) \in(3 / 2,2)$ (see (vii)) and $0<P(2 / 3)=52 / 49<3 / 2$ give, by (i) in § 37, $P_{-}(u)<P(u)<P_{+}(u)$ with $u=2 / 3$, so that $\dot{P}(2 / 3)>0$ (see (iii) in §37), and hence $u_{+}>2 / 3$, as $\dot{P} \leqslant 0$ on $\left[u_{+}, 1\right]$ by (36.3). Thus, $P\left(u_{+}\right)<2$, which we verify in three steps. First, $P\left(u_{+}\right)=P_{+}\left(u_{+}\right)$ by (iv) and (i) in $\S 37$, since $P\left(u_{+}\right)$is the maximum of P on $(0,1)$. Secondly, $P_{+}\left(u_{+}\right)<P_{+}(2 / 3)$, since we just showed that $u_{+}>2 / 3$, and P_{+}is decreasing on (0,1), cf. (37.1). Thirdly, $P_{+}(2 / 3)<2$ by (vii). Now (iii) follows from (d) in § 35, while (d) and (a) in § 35 along with (iii) and (i) give (vi).

Proof of Theorem 2.3, parts (b) and (e). Assertion (e) is immediate from (b) in § 38, since (iii) and (v) above give $-2<P\left(u_{+}^{*}\right)<-1$ and $z /(2-z)>-1+1 / m$. To prove (b), recall (§ 2) that the \mathcal{H}-beam of X is the graph of the function $v=u^{*}$ on the interval $(-\infty, z)$ of the variable u. Dividing $(-\infty, z)$ into the three subintervals $\left(-\infty, u_{+}^{*}\right],\left[u_{+}^{*}, u^{\prime}\right]$ and $\left[u^{\prime}, z\right]$, for the unique $u^{\prime}<0$ with $P\left(u^{\prime}\right)=-1$ (cf. Remark 36.1), we also divide the \mathcal{H}-beam into three segments (subbeams). Since P is the restriction of the function p to the hyperbola $v=u^{*}$ (see §34), Remark 36.1 shows that p maps the set of all p-rational points in the first (or second or third) subbeam bijectively onto the set of all rational numbers that have positive denominators not exceeding m and lie in an interval with the endpoints $P\left(u_{+}^{*}\right)$ and -1 (or, again, $P\left(u_{+}^{*}\right)$ and -1 , or, respectively, -1 and $z /(2-z)$). Using, instead of p, the function $1+1 / p$ for the first two subbeams, and $1+p$ for the third, we obtain an analogous property for new intervals, with the lower endpoint 0 and the upper endpoint $1+1 / P\left(u_{+}^{*}\right)$ for the first two, or $1+z /(2-z)$ for the third subbeam. Now (b) in Theorem 2.3 is immediate from Lemma 43.1(b) (cf. Remark 43.2), where, for each subbeam, $\ell_{\infty}=1-1 / \sqrt{2}$. (See (iv) and (v) above.) This completes the proof.

A. Derdzinski and G. Maschler

Remark 45.1. According to the preceding three lines, asymptotically, the three subbeams contribute the same number of p-rational points: the share of each subbeam, divided by m^{2}, has the limit $3 \sqrt{2}(\sqrt{2}+1) / \pi^{2} \approx 1.038$ as $m \rightarrow \infty$.

Remark 45.2. If $m \geqslant 2$ is even, every compact Kähler-Einstein manifold (N, h) of the odd complex dimension $m-1$ appears as an ingredient of the construction of some quadruple (M, g, m, τ) of the third family, except for one restriction: if h is Ricci-flat, its Kähler cohomology class must be a real multiple of an integral class. This is immediate if one combines Theorem 2.4(ii) with the definition of δ in $\S 2$ (second paragraph after (2.3)), relations (0.1.b) and $\delta=\operatorname{sgn} \kappa$ in $\S 2$, and the last paragraph of $\S 40$.

46. The fourth family: examples of a new type

Given an odd integer $m \geqslant 3$, let $\mathcal{S}_{m}^{\mathcal{T}}$ be the set of those p-rational points in the \mathcal{T}-beam $\mathrm{X} \cap \mathcal{T}$ of the X component of the moduli curve (§2) which do not lie in the \mathcal{H}-beam $\mathrm{X} \cap \mathcal{H}$. Our fourth family of quadruples (M, g, m, τ) satisfying Condition 0.1 or Condition 0.2 is obtained from the construction of § 2 applied to points $(u, v) \in \mathcal{S}_{m}^{\mathcal{T}}$. (See also Remark 46.1.)

The fourth family exists only in the odd complex dimensions $m \geqslant 9$, since, according to Theorem 2.3(f) (proved below), $\mathcal{S}_{m}^{\mathcal{T}}$ is empty for $m=3,5,7$. Also, for ℓ_{m} and $\mathcal{P}\left(\ell_{m}, m\right)$ as in § 42 and Lemma 43.1, and with $\|$ denoting cardinality,

$$
\begin{equation*}
\left|\mathcal{S}_{m}^{\mathcal{T}}\right|=2\left|\mathcal{P}_{m}\right|, \quad \text { where } \quad \mathcal{P}_{m}=\mathcal{P}\left(\ell_{m}, m\right) . \tag{46.1}
\end{equation*}
$$

(As $\ell_{m}>1$, we thus have $\left|\mathcal{S}_{m}^{\mathcal{T}}\right| \leqslant m(m-1)$.) In fact, we can define a two-to-one surjective mapping $\mathcal{S}_{m}^{\mathcal{T}} \ni(u, v) \mapsto(k, d) \in \mathcal{P}_{m}$ by assigning to (u, v) the pair (k, d) of relatively prime positive integers such that $(k-d) / d$ is the value at (u, v) of the function p described in $\S 34$. (This, including the fact that $(k, d) \in \mathcal{P}\left(\ell_{m}, m\right)$, is clear from (a) in § 38 and Definition 2.1.)

Proof of Theorem 2.3, parts (c) and (f). First, (46.1), (e) in § 42 and Lemma 43.1(b) give (c).
Next, let us recall that \mathcal{P}_{m} in (46.1) is the set of all relatively prime integer pairs (k, d) with $1 \leqslant k \ell_{m}<d \leqslant m$. Since that gives $\ell_{m} \leqslant k \ell_{m}<m$, no such pair exists if $\ell_{m}>m$. Thus, (c) in $\S 42$ and (46.1) show that $\mathcal{S}_{m}^{\mathcal{T}}=\emptyset$ for $m=3,5,7$. However, if $\ell_{m}<m$, the set \mathcal{P}_{m} is nonempty, as $(1, m) \in \mathcal{P}_{m}$. Therefore, $\left|\mathcal{S}_{m}^{\mathcal{T}}\right|=2\left|\mathcal{P}_{m}\right| \geqslant 2$ for any odd $m \geqslant 9$, in view of (46.1) and (b) in $\S 42$. If m is odd and $m \geqslant 19$, we have $\ell_{m}<18$ (see (a) in $\S 42$), so that \mathcal{P}_{m} contains the ($m-17$)-element subset of all (k, d) with $k=1$ and $18 \leqslant d \leqslant m$, which yields $\left|\mathcal{S}_{m}^{\mathcal{T}}\right| \geqslant 2(m-17)$ by (46.1).

Finally, $8<\ell_{9}<9$ by (c) in $\S 42$. Thus, $(k, d)=(1,9)$ is the only integer pair for which $1 \leqslant k \ell_{9}<d \leqslant 9$, with $m=9$ (since that gives $8 k<k \ell_{9}<9$, and so $k=1$). From (46.1) we now get $\left|\mathcal{S}_{9}^{\mathcal{T}}\right|=2\left|\mathcal{P}_{9}\right|=2$, completing the proof.

Note that, as $9<\ell_{11}<10$ (cf. (c) in § 42), the same argument as in the last three lines gives $\left|\mathcal{S}_{11}^{\mathcal{T}}\right|=4$, since \mathcal{P}_{11} has just two elements: $(1,10)$ and $(1,11)$.

Remark 46.1. By Lemma 25.2(b), $(\mathrm{X} \cap \mathcal{T}) \cap(\mathrm{X} \cap \mathcal{H})=\left\{\left(x, x^{*}\right)\right\}$, so that $\mathcal{S}_{m}^{\mathcal{T}}$, defined at the beginning of this section, is also the set of all p-rational points in $\mathbf{X} \cap \mathcal{T}$ other than $\left(x, x^{*}\right)$.

For some odd integers $m \geqslant 3$ the phrase 'other than $\left(x, x^{*}\right)$ ' used here is redundant, since (x, x^{*}) is not p-rational. Actually, we do not know if (x, x^{*}) can be p-rational for any odd $m \geqslant 3$.

However, if $m \geqslant 3$ is odd and $2 \ell_{m}>m$, then p-rationality of $\left(x, x^{*}\right)$ implies that ℓ_{m} is an integer and $\ell_{m} \leqslant m$. In fact, by (a) in $\S 38, q_{*}=-1+1 / \ell_{m}$ is the value of p at $\left(x, x^{*}\right)$, and, as $q_{*} \in(-1,0)$ (Remark 27.2), the number q_{*}, now assumed rational, must have the form $(k-d) / d$ for some $k, d \in \mathbb{Z}$ with $1 \leqslant k<d \leqslant m$ (cf. Definition 2.1 and (a) in §38); hence $0<k \ell_{m}=d \leqslant m$, so that $k=1\left(\right.$ as $\left.k \ell_{m} \leqslant m<2 \ell_{m}\right)$ and $\ell_{m}=d \in \mathbb{Z}$.

Conformally-Einstein Kähler manifolds

For instance, $\left(x, x^{*}\right)$ is not p-rational for any $m \in\{3,5,7,9,11\}$. Namely, (c) in $\S 42$ then gives $2 \ell_{m}>m$ (also for $m=13,15,17$, as $2 \ell_{m}>2 \ell_{11}>18>m$ by (e) in $\S 42$). However, again by (c) in § 42 , one of the two conditions just named, necessary for p-rationality of $\left(x, x^{*}\right)$, fails: $\ell_{m}>m$ if $m \in\{3,5,7\}$, and $\ell_{9}, \ell_{11} \notin \mathbb{Z}$. (One can extend this argument and conclusion to $m \in\{13,15, \ldots, 23\}$, since a numerical approximation of ℓ_{m} then gives $2 \ell_{m}>m$ and $\ell_{m} \notin \mathbb{Z}$.)

Appendix A. A version of Mertens's theorem

Assertion (a) in Lemma 43.1 will now be derived using a slightly modified version of a standard proof of Mertens's theorem (cf. [Cha68, p. 59]). Here $m \geqslant 1$ is treated as a real variable, even though in Lemma 43.1(a) it stands for an odd integer with $m \geqslant 3$.

Given a real number $\ell \geqslant 1$, we define $W_{\ell}(m)$ to be the set of all pairs (k, d) of integers with $1 \leqslant k \ell<d \leqslant m$. If, in addition, n is an integer with $1 \leqslant n \leqslant m$, let $W_{\ell}(m, n) \subset W_{\ell}(m)$ consist of those $(k, d) \in W_{\ell}(m)$ in which both k and d are divisible by n. Obviously, for positive integers n_{1}, \ldots, n_{s} that are pairwise relatively prime, and with || denoting cardinality,

$$
\begin{equation*}
\text { (a) } W_{\ell}\left(m, \prod_{j=1}^{s} n_{j}\right)=\bigcap_{j=1}^{s} W_{\ell}\left(m, n_{j}\right), \quad \text { (b) }\left|W_{\ell}(m, n)\right|=\left|W_{\ell}(m / n)\right| \tag{A.1}
\end{equation*}
$$

where (b) is due to the bijection $W_{\ell}(m, n) \rightarrow W_{\ell}(m / n)$ given by $(k, d) \mapsto(k / n, d / n)$. Next, given $\ell, m \in[1, \infty)$, we let $\mathcal{P}(\ell, m)$ denote, as in Lemma 43.1 , the subset of $W_{\ell}(m)$ formed by those integer pairs (k, d) which, in addition to having $1 \leqslant k \ell<d \leqslant m$, are also relatively prime.

For any finite family \mathcal{A} of finite sets, induction on its cardinality $|\mathcal{A}|$ easily implies that $|\cup \mathcal{A}|=$ $\sum_{\mathcal{B}}(-1)^{|\mathcal{B}|-1}|\bigcap \mathcal{B}|$, with summation over all nonempty subfamilies \mathcal{B} of \mathcal{A}. If \mathcal{A} consists of all sets $W_{\ell}(m, p)$, where $m \in[1, \infty)$ is fixed and p runs through all primes with $p \leqslant m$, then $\cup \mathcal{A}$ clearly coincides with $W_{\ell}(m) \backslash \mathcal{P}(\ell, m)$, so that (A.1) and our formula for $|\cup \mathcal{A}|$ give

$$
\begin{equation*}
|\mathcal{P}(\ell, m)|=\sum_{1 \leqslant j \leqslant m} \mu_{j}\left|W_{\ell}(m / j)\right| . \tag{A.2}
\end{equation*}
$$

Here μ is the Möbius function [Cha68], assigning to every integer $j \geqslant 1$ the value μ_{j} with $\mu_{j}=0$ if j is divisible by the square of a prime and $\mu_{j}=(-1)^{k}$ when j is the product of k distinct primes, for $k \geqslant 0$. (Thus, $\mu_{1}=1$.) The summation index j, here and below, is an integer.

Setting $f(m)=2 \ell\left|W_{\ell}(m)\right|-m^{2}$, we have $|f(m)| \leqslant \alpha m$ for every $m \in[1, \infty)$, with the constant $\alpha=2 \ell+2$. In fact, given $m \in[1, \infty$), let n (or r) be the largest integer not exceeding m (or m / ℓ) and, for any $k \in\{1, \ldots, r\}$, let s_{k} be the largest integer with $s_{k} \leqslant k \ell$. Thus, $W_{\ell}(m)$ contains exactly $n-s_{k}$ points with the first coordinate k, namely, (k, d) with $s_{k}<d \leqslant n$. Consequently, $\left|W_{\ell}(m)\right|=\sum_{k=1}^{r}\left(n-s_{k}\right)$, and so the inequalities $k \ell-1<s_{k} \leqslant k \ell$, that is, $n-k \ell \leqslant n-s_{k}<n+1-k \ell$, yield $[2 n-(r+1) \ell] r \leqslant 2\left|W_{\ell}(m)\right| \leqslant[2(n+1)-(r+1) \ell] r$. Hence $-(2 \ell+2) m \leqslant f(m) \leqslant 2 m$. Namely, $-m-\ell \leqslant-(r+1) \ell \leqslant-m$ and $m-1 \leqslant n \leqslant m$ due to our choice of m and r, so that $2 n-(r+1) \ell \geqslant m-\ell-2$ and $2(n+1)-(r+1) \ell \leqslant m+2$, while $-1+m / \ell \leqslant r \leqslant m / \ell$. Thus, $-\alpha m \leqslant f(m) \leqslant \alpha m$.

Given a bounded sequence μ_{1}, μ_{2}, \ldots of real numbers and a function f of the real variable $m \geqslant 1$ such that $|f(m)| \leqslant \alpha m$ for all m and some constant $\alpha \geqslant 0$, we have $m^{-2} \sum_{1 \leqslant j \leqslant m} \mu_{j} f(m / j) \rightarrow 0$ as $m \rightarrow \infty$, which is obvious since $\sum_{1 \leqslant j \leqslant m} j^{-1} \leqslant 1+\log m$ due to a standard area-under-thegraph estimate. For f and α as in the last paragraph, with the Möbius function μ, this shows that, by (A.2), if $\sum_{1 \leqslant j \leqslant m}\left(\mu_{j} / j^{2}\right)$ has a limit as $m \rightarrow \infty$, then so does $2 \ell|\mathcal{P}(\ell, m)| / m^{2}$, and the limits coincide. However, $\sum_{1 \leqslant j \leqslant m}\left(\mu_{j} / j^{2}\right)$ clearly does converge, as $m \rightarrow \infty$, to the product $\prod_{p}\left(1-1 / p^{2}\right)$, where p runs over all primes; now (a) in Lemma 43.1 follows since the inverse of the product equals $\sum_{n=1}^{\infty} n^{-2}=\pi^{2} / 6$, due to Euler's product formula. (See [Cha68, pp. 61 and 76].)

A. Derdzinski and G. Maschler

Appendix B. Decimal approximations

We show here that, for χ_{m} defined in Lemma 41.2,

$$
\begin{equation*}
\chi_{7}>1.9, \quad 2.2<\chi_{9}<2.3<2.4<\chi_{11}<2.5, \quad \chi_{13}<2.6, \quad \chi_{15}<2.7, \quad \chi_{17}<2.8 . \tag{B.1}
\end{equation*}
$$

This is verified using the following algorithm, designed for calculations that can even be done by hand, and produce upper/lower bounds on χ_{m} having the form $\chi_{m}<\sigma_{m}$ or $\chi_{m}>\sigma_{m}$ for a fixed odd integer $m \geqslant 3$ and a rational number $\sigma_{m}>0$ with a simple decimal expansion.

The values of $\Sigma_{j}(0)$ for $j=1, \ldots, m-1$ can easily be found from (41.1.i); when $m=17$, they are $1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845$. In formula (41.1.iv), with m replaced by $m-1$, we now estimate each term $(-1)^{j} \Sigma_{m-j-1}(0) \sigma^{j}$ for $\sigma=\sigma_{m}$ from above/below by the nearest integer. When these estimates are added up, (41.1.iv) yields an upper/lower bound on $\Sigma_{m-1}(0) R_{m-1}\left(t_{m}\right)$, for t_{m} related to σ_{m} as in (41.2).

Whenever this last bound happens to ensure negativity/positivity of $R_{m-1}\left(t_{m}\right)+K_{m}\left(\sigma_{m}\right)$, Remark 41.1(b) will imply negativity/positivity of $\chi_{m}-\sigma_{m}$, as required.

Specifically, let $m \in\{7,9,11\}$. If $\sigma_{7}=1.9, \sigma_{9}=2.2, \sigma_{11}=2.4$, these steps give $42 R_{6}\left(t_{7}\right)>$ $42-27+18-14+13-25-24=-17, \quad 429 R_{8}\left(t_{9}\right)>429-291+203-150+117-104+113-250-275=$ $-208, \quad 4862 R_{10}\left(t_{11}\right)>4862-3432+2471-1825+1393-1115+955-918+1100-2642-3171=$ -2322 , so that $R_{m-1}\left(t_{m}\right)>-1 / 2$ for $m=7,9,11$, while $K_{7}\left(\sigma_{7}\right)>11 / 19>1 / 2$ as $\sigma_{7}<2$, $K_{9}\left(\sigma_{9}\right)>5 / 9>1 / 2$ as $\sigma_{9}<2.5$, and $K_{11}\left(\sigma_{11}\right)=19 / 33>1 / 2$. Hence $R_{m-1}\left(t_{m}\right)+K_{m}\left(\sigma_{m}\right)>0$ and Remark 41.1(b) yields the lower bounds on χ_{7}, χ_{9} and χ_{11} in (B.1).

Next, for $m=9,11,13,15,17$, let us set, this time, $\sigma_{9}=2.3, \sigma_{11}=2.5, \sigma_{13}=2.6, \sigma_{15}=2.7$, $\sigma_{17}=2.8$. Our algorithm now yields $429 R_{8}\left(t_{9}\right)<429-303+223-170+140-128+149-340-391=$ $-391, \quad 4862 R_{10}\left(t_{11}\right)<4862-3575+2682-2062+1641-1367+1221-1220+1526-3814-4768=$ $-4874, \quad 58786 R_{12}\left(t_{13}\right)<58786-43669+32868-25133+19605-15683+12975-11244+$ $10442-10859+14117-36703-47714=-42212, \quad 742900 R_{14}\left(t_{15}\right)<742900-561632+428550-$ $330595+258387-205189+166204-138076+118621-106758+102946-111181+150095-$ $405255-547094=-438077, \quad 9694845 R_{16}\left(t_{17}\right)<9694845-7488432+5824336-4566279+$ $3613317-2890653+2342951-1929488+1620771-1396356+1244027-1161091+1161092-$ $1300422+1820592-5097655-7136717=-5645162$, so that $R_{8}\left(t_{9}\right)<-0.9, R_{10}\left(t_{11}\right)<-1$ and $R_{m-1}\left(t_{m}\right)<-0.58$ for $m=13,15,17$, while $K_{9}\left(\sigma_{9}\right)<3 / 5=0.6$ as $\sigma_{9}>2, K_{11}\left(\sigma_{11}\right)=38 / 67<1$, and $K_{m}\left(\sigma_{m}\right)<0.57$ for $m=13,15,17$. Thus, $R_{m-1}\left(t_{m}\right)+K_{m}\left(\sigma_{m}\right)<0$ for $m=9,11,13,15,17$, and Remark 41.1(b) gives the upper bounds on χ_{m} required in (B.1).

Appendix C. Vertical compactness

The following discussion provides a differential-geometric background for the moduli curve, and is not used to derive any results of this paper. To save space, our presentation is brief.

Let a quadruple (M, g, m, τ) have all the properties listed in Condition 0.1 or Condition 0.2 except for compactness of M. The set $M^{\prime} \subset M$ on which $d \tau \neq 0$ then is open and dense in M (cf. [DM03, Remark 5.4], while the complex vector subbundle of $T M^{\prime}$ spanned by the g-gradient $\nabla \tau$ is an integrable real 2-dimensional distribution on M^{\prime} with totally geodesic leaves [DM03, end of $\S 7$]. We will say that the quadruple (M, g, m, τ) satisfies the vertically compact version of Condition 0.1 or Condition 0.2 if every such leaf is contained in a compact submanifold of real dimension 2 in M.

The constructions of $\S \S 3$ and 4 applied to data satisfying all the assumptions stated there except for compactness of N always lead to (M, g, m, τ) satisfying the vertically compact version of Condition 0.1 or Condition 0.2 . (In fact, the compactness assumption is never used in either

Conformally-Einstein Kähler manifolds

construction.) Similarly, the vertically compact version of Condition 0.1 or Condition 0.2 holds for (M, g, m, τ) obtained as in $\S 3$ from (u, v) and additional data having all the properties listed in the Introduction except that (u, v) is assumed merely to lie in the moduli curve \mathcal{C} (and is not required to be p-rational), while N is not necessarily compact.

Conversely, every quadruple (M, g, m, τ) satisfying the vertically compact version of Condition 0.1 or Condition 0.2 is obtained in this way from some $(u, v) \in \mathcal{C}$ and additional data mentioned above. In fact, Theorems 17.4, 18.1 and 19.3 in [DM05], as well as our Lemma 39.1, all remain valid, with essentially the same proofs, also in the vertically compact case, and so our claim follows as in § 39 .

Acknowledgement

We wish to thank David Farber and Joshua Lansky for comments and information concerning Lemma 43.1 and Appendix A.

References

ACG05 V. Apostolov, D. M. J. Calderbank and P. Gauduchon, Hamiltonian 2-forms in Kähler geometry, I, J. Differential Geom., to appear.

Aub78 T. Aubin, Équations du type Monge-Ampère sur les variétés kähleriennes compactes, Bull. Sci. Math. (2) 102 (1978), 63-95.
Bér82 L. Bérard Bergery, Sur de nouvelles variétés riemanniennes d'Einstein, Publ. Inst. É. Cartan (Nancy) 6 (1982), 1-60.
Bes87 A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. (3), vol. 10 (Springer, Berlin, 1987).
BM87 S. Bando and T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic geometry, Sendai, 1985, Advanced Studies in Pure Mathematics, vol. 10 (North-Holland, Amsterdam, 1987), 11-40.
Cal82 E. Calabi, Extremal Kähler metrics, in Seminar on differential geometry, ed. S. T. Yau, Annals of Mathematics Studies, vol. 102 (Princeton University Press, Princeton, NJ, 1982), 259-290.
Cal85 E. Calabi, Extremal Kähler metrics, II, in Differential geometry and complex analysis (Springer, Berlin, 1985), 95-114.
Cha68 K. Chandrasekharan, Introduction to analytic number theory, Grundlehren Math. Wiss., vol. 148 (Springer, Berlin, 1968).
CV96 T. Chave and G. Valent, Compact extremal versus compact Einstein metrics, Classical Quantum Gravity 13 (1996), 2097-2108.
DM03 A. Derdzinski and G. Maschler, Local classification of conformally-Einstein Kähler metrics in higher dimensions, Proc. London Math. Soc. (3) 87 (2003), 779-819.
DM05 A. Derdzinski and G. Maschler, Special Kähler-Ricci potentials on compact Kähler manifolds, J. reine angew. Math., to appear.

GH94 P. Griffiths and J. Harris, Principles of algebraic geometry, Reprint of the 1978 original, Wiley Classics Library (John Wiley \& Sons, New York, 1994).
Gud90 S. Gudmundsson, On the geometry of harmonic morphisms, Math. Proc. Cambridge Philos. Soc. 108 (1990), 461-466.
HS97 A. D. Hwang and S. R. Simanca, Extremal Kähler metrics on Hirzebruch surfaces which are locally conformally equivalent to Einstein metrics, Math. Ann. 309 (1997), 97-106.
KO73 S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31-47.

Pag78 D. Page, A compact rotating gravitational instanton, Phys. Lett. 79B (1978), 235-238.
Tia97 G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 30 (1997), 1-37.

Conformally-Einstein KÄhler manifolds

Tøn02 C. Tønnesen-Friedman, Extremal Kähler metrics and Hamiltonian functions II, Glasgow Math. J. 44 (2002), 241-253.
Yau78 S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), 339-411.

Andrzej Derdzinski andrzej@math.ohio-state.edu Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

Gideon Maschler maschler@math.toronto.edu
Department of Mathematics, University of Toronto, Toronto, Canada M5S 3G3
Current address: Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

[^0]: Received 10 September 2003, accepted in final form 31 January 2005, published online 21 June 2005.
 2000 Mathematics Subject Classification 53C55, 53C21 (primary), 53C25 (secondary).
 Keywords: Kähler metric, conformally-Einstein metric.
 The work of the second author was carried out in part at the Max Planck Institute in Bonn, and he was also partially supported by an NSERC Canada individual research grant.
 This journal is (c) Foundation Compositio Mathematica 2005.

