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Abstract

We study defaultable bond prices in the Black–Cox model with jumps in the asset value.
The jump-size distribution is arbitrary, and following Longstaff and Schwartz (1995) and
Zhou (2001) we assume that, if default occurs, the recovery at maturity depends on the
‘severity of default’. Under this general setting, the vehicle for our analysis is an integral
equation. With the aid of this, we prove some properties of the bond price which are
consistent numerically and empirically with earlier works. In particular, the limiting
credit spread as time to maturity tends to 0 is nonzero. As a byproduct, we show that the
integral equation implies an infinite-series expansion for the bond price.
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1. Introduction

Our goal is to study the price of a defaultable bond issued by a given firm. For simplicity, we
assume that the bond is a zero-coupon bond with one dollar face value and time to maturity T .
First we consider an extension of the Merton model due to Black and Cox [3]. The asset value
process V of the firm, under the risk-neutral measure, follows the dynamic

dVt = (r − a)Vt dt + σVt dWt.

Here, a is the payout rate of the firm, r > 0 is the risk-free interest rate, the square of σ > 0
is the instantaneous volatility of the return on the firm’s asset, and W is a standard Brownian
motion. To allow the possibility that default may occur at any time before maturity, Black and
Cox assumed the existence of a default boundary:

Kt = K0eκt , 0 ≤ t ≤ T , (1.1)

where κ ∈ R. (We note that Longstaff and Schwartz [8] considered a constant boundary.) The
default time is then defined by

τ(T ) = inf{0 ≤ t ≤ T ;Vt ≤ Kt } (1.2)
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with the convention that inf ∅ = +∞. The recovery at maturity is min(VT , 1) if there is no
default up to time T . However, if there is default, that is, the boundary is hit before or at the
maturity, bond holders take over the firm and own the remaining value of the firm, that is,Kτ(T ).
The bond price under this setting can be easily calculated because of the analytic tractability of
Brownian motions. For details, see [6, Section 2.6].

To take into account empirical phenomena such as the asymmetric leptokurtic feature of the
distribution of asset returns, we assume throughout this paper that, under a given risk-neutral
measure P, the value V of the firm follows the dynamic

dVt = Vt−
[
r dt + σ dWt + d

( Nt∑
i=1

Ui − λνt

)]
, (1.3)

where N = (Nt ) is a Poisson process with intensity λ and {Ui} is a sequence of independent
random variables with distribution supported on (−1, 0)∪ (0,∞)which has mean ν. The three
elements W , N , and {Ui} are independent. If there is default, as in [8] and [11], we assume
that the payoff is offset by a function of the ‘severity of default’. Furthermore, for simplicity,
we assume, as in [11], that the payment is always made at the time to maturity. In other words,
the payoff of the zero-coupon bond at time T is given by

1(τ (T ) > T )+
[

1 − ψ

(
log

(
Vτ(T )

Kτ(T )

))]
1(τ (T ) ≤ T ). (1.4)

(We can think of ψ(log x) as the sume of bankruptcy costs and others.) Set Xt = log(Vt/Kt ).
Then it follows from (1.4) that the no-arbitrage price of the bond is given by

D(V0, T ) = e−rT − e−rT Ex[ψ(Xτ(T )) 1(τ (T ) ≤ T )] = e−rT − e−rT �(x, T ), (1.5)

where x = log(V0/K0), τ(t) = inf{0 ≤ s ≤ t;Xs ≤ 0}, and

�(y, t) = Ey[ψ(Xτ(t)) 1(τ (t) ≤ t)]. (1.6)

Here, Ey denotes the expectation conditioned onX0 = y under the risk-neutral measure P. The
notation Py is similarly defined. To study the bond price in (1.5), we will focus on the function
� from now on.

In the literature, 1 − ψ is termed as the recovery rate. It is worth noting that in empirical
studies, even for the same class of bond issues, the realized recovery rate differs significantly
over different time periods and different firms. See [1] and [4]. By taking ψ to be a function
of the form a− bey , Zhou [11] provided a Monte Carlo simulation scheme to compute several
characteristics of the bond price. Zhou [11] found within the results that, by manipulating the
parameters, various shapes of credit spreads, default probabilities, and other properties formerly
observed in empirical studies can be recovered. Among the significant results is the possibility
to exhibit nonzero spread for small time to maturity. (Diffusion models for risky bond pricing
have been criticized for years because of the failure to capture this phenomenon.) Besides the
framework of the Black–Cox model, Hilberink and Rogers [5] considered the Leland model,
which is a generalization of the Black–Cox model. See [7]. In this case, in addition to a
recovery structure which is slightly different from the aforementioned one, there are coupons
paid continuously up to the default time. In [5] the authors generalized the Leland model by
assuming that the logarithm of the firm’s asset value is an independent sum of a Brownian motion
with drift and a downward-jump compound Poisson process. Although there is no closed-form
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solution for the bond price, they obtained its Fourier transform. They also observed in their
numerical results that the limiting credit spread, as the time to maturity tends to 0, is positive
and gave a proof of this result.

In this paper, instead of seeking the closed-form solution for the bond price, we study several
aspects of the bond with the help of an integral equation satisfied by the function� in (1.6). The
elements of the integral equation have forms which allows further analysis. (See Theorem 2.2,
below.) Using these elements, we study some analytic properties of the bond price. In particular,
under mild conditions on the jump distribution and the function ψ , we show in Theorem 3.1
that the credit spread has a strictly positive lower bound as the time to maturity tends to 0. It
is interesting to compare our results with those obtained in [5] and [11], where in both articles
only some specific jump distributions and recoveries were considered. As another application
of the integral equation, we give an infinite-series expansion for the bond price. (Note that in
Merton [9] where 1 + Uj is lognormal, the price of the risky zero-coupon bond is an infinite
series for which each summand takes the form of a Black–Scholes European option price. See
Theorem 9.3.1 of [2].)

The paper is organized as follows. In Section 2 we derive an integral equation from a
decomposition of the event that default occurs. Based on the results in Section 2, in Section 3
we study some analytic properties of the bond price and investigate the asymptotic behavior of
its credit spread as the time to maturity tends to 0. In Appendix A we give an infinite-series
expansion for the bond price.

2. An integral equation for �

We begin with the unique (up to indistinguishability) solution to (1.3), which is given by

Vt = V0 exp

{(
r − 1

2
σ 2 − λν

)
t + σWt

} Nt∏
j=1

(1 + Uj).

Recall that X = log(V/K). For the diffusion part of X, we set µ = r − 1
2σ

2 − λν − κ and
Xct = µt + σWt for all t ∈ R+. For the jump part of X, we set Yn = − log(1 + Un) and
Zt = ∑Nt

n=1 Yn. Then

Xt = X0 +Xct − Zt for all t ∈ R+, (2.1)

where X0 = log(V0/K0).
For any x ∈ R, write x̂ = x/σ . Let Jk denote the kth epoch time of the compound Poisson

process Z with interarrival time Sk , that is, Jk = ∑k
j=1 Sj . Furthermore, if G1, . . . ,Gn are

random variables on R, we write FG1,...,Gn for their joint distribution. We preserve F for the
distribution of Y1.

Now, write

[τ(T ) ≤ T ] = A ∪ B ∪ C ∪D, (2.2)

where

A = [τ(T ) ≤ T < J1] (no jump up to maturity and default is caused by diffusion),

B = [τ(T ) < J1 ≤ T ] ( jump occurs up to maturity and default occurs before J1),

C = [τ(T ) = J1 ≤ T ] ( jump occurs up to maturity and default occurs at J1),

D = [J1 < τ(T ) ≤ T ] ( jump occurs up to maturity and default occurs after J1).
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Note that {A,B,C,D} is a partition of [τ(T ) ≤ T ]. With these events defined, we set
GA(x, T ) = Ex[ψ(Xτ(T ));A], and similarly for GB , GC , and GD . Before stating our results,
we recall some facts about the joint distribution of the Brownian motion with drift and its maxi-
mum process for the convenience of readers. For details and proofs, see [10, pp. 113–115].

Theorem 2.1. Let α ∈ R and T > 0, let W(t;α) = αt + W(t), and let M(T ;α) =
max0≤t≤T W(t;α). Then the joint density of M(T ;α) and W(T ;α) is given by

fM(T ;α),W(T ;α)(m,w)

=
⎧⎨
⎩

2(2m− w)

T
√

2πT
exp

{
αw − 1

2
α2T − 1

2T
(2m− w)2

}
, w ≤ m,m ≥ 0,

0, otherwise.
(2.3)

Therefore, the density of M(T ;α) is given by

fM(T ;α)(m) =
⎧⎨
⎩

2√
2πT

exp

{
− 1

2T
(m− αT )2

}
− 2αe2αmN

(−m− αT√
T

)
, m ≥ 0,

0, otherwise,
(2.4)

and

P[M(T ;α) ≤ m] =
⎧⎨
⎩

N

(
m− αT√

T

)
− e2αmN

(−m− αT√
T

)
, m ≥ 0,

0, m < 0.
(2.5)

Here N (·) is the cumulative distribution function of the standard normal distribution.

Proposition 2.1. We have the following representations of GA, GB , and GC:

GA(x, T ) = ψ(0)e−λT
(

N

(−x̂ − µ̂T√
T

)
+ e−2µ̂x̂N

(−x̂ + µ̂T√
T

))
, (2.6)

GB(x, T ) = ψ(0)

(∫ T

0
N

(−x̂ − µ̂t√
t

)
dFJ1(t)+

∫ T

0
e−2µ̂x̂N

(−x̂ + µ̂t√
t

)
dFJ1(t)

)
,

(2.7)

GC(x, T ) =
∫ T

0
dFJ1(t)

∫ ∞

0
dF(y)

∫ y

0
dwψ(w − y)H(x,w, t), (2.8)

where

H(x,w, t) = g(x − w + µt; tσ 2)− e−2µ̂x̂g(x + w − µt; tσ 2) (2.9)

and

g(y; 
2) = 1√
2π


exp

{
− y2

2
2

}
.

Proof. Note that ψ(Xτ(T )) = ψ(0) on A and B. By the independence of {Wt ; t ∈ R+} and
J1, we obtain

GA(x, T ) = P[T < J1]ψ(0)P
[
min
s≤T x + µs + σWs ≤ 0

]

= P[T < J1]ψ(0)P
[
max
s≤T −x − µs − σWs ≥ 0

]

= P[T < J1]ψ(0)P
[
max
s≤T −µ̂s +Ws ≥ x̂

]
,
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where the last equality follows from the symmetry of standard Brownian motion. By (2.5), we
have

P
[
max
s≤T −µ̂s +Ws ≥ x̂

]
= 1 − P

[
max
s≤T −µ̂s +Ws ≤ x̂

]

= 1 −
(

N

(
x̂ + µ̂T√

T

)
− e−2µ̂x̂N

(−x̂ + µ̂T√
T

))

= N

(−x̂ − µ̂T√
T

)
+ e−2µ̂x̂N

(−x̂ + µ̂T√
T

)
. (2.10)

This completes the proof of (2.6).

We now turn to the proof of (2.7). Again by the independence of {Wt ; t ∈ R+} and J1 and
the symmetry of standard Brownian motion, we obtain

GB(x, T ) = ψ(0)P
[

min
s≤J1

x + µs + σWs ≤ 0, J1 ≤ T
]

= ψ(0)
∫ T

0
P
[
min
s≤t x + µs + σWs ≤ 0

]
dFJ1(t)

= ψ(0)
∫ T

0
P
[
max
s≤t −µ̂s +Ws ≥ x̂

]
dFJ1(t).

Replacing T by t in (2.10), we obtain (2.7).

Finally, from the independence of {Wt ; t ∈ R+}, Y1, and J1,

GC(x, T ) =
∫ T

0
dFJ1(t)E

[
ψ(x +Xct − Y1) 1

(
min
s≤t x +Xcs > 0, x +Xct − Y1 < 0

)]

=
∫ T

0
dFJ1(t)

×
∫ ∞

0
dF(y)E

[
ψ(x +Xct − y) 1

(
min

0≤s≤t x +Xcs > 0, x +Xct − y < 0
)]
,

(2.11)

where in the last line we used the fact that P[mins≤t x + Xcs > 0, x + Xct − y < 0] = 0 for
y < 0. Also, observe that, using the symmetry of standard Brownian motion,

E
[
ψ(x +Xct − y) 1

(
min

0≤s≤t x +Xcs > 0, x +Xct − y < 0
)]

= E
[
ψ(x − σ(−µ̂t +Wt)− y) 1

(
max
s≤t −µ̂s +Ws ≤ x̂, x̂ − (−µ̂t +Wt)− ŷ ≤ 0

)]
.

Now, applying the formula of the joint distribution of W(α; t) and M(α; t) with α = −µ̂, we
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obtain, for all t, y > 0,

E
[
ψ(x − σ(−µ̂t +Wt)− y) 1

(
max
s≤t −µ̂s +Ws ≤ x̂, x̂ − (−µ̂t +Wt)− ŷ ≤ 0

)]

=
∫

dw
∫ ∞

w+
dmψ(x − σw − y) 1(m ≤ x̂, x̂ − w − ŷ ≤ 0)

× 2(2m− w)

t
√

2πt
exp

{
−µ̂w − 1

2
µ̂2t − 1

2t
(2m− w)2

}

=
∫ x̂

x̂−ŷ
dwψ(x − σw − y) exp

{
−µ̂w − 1

2
µ̂2t

}

×
∫ x̂

w+
dm

2(2m− w)

t
√

2πt
exp

{
− 1

2t
(2m− w)2

}

=
∫ x̂

x̂−ŷ
dwψ(x − σw − y) exp

{
−µ̂w − 1

2
µ̂2t

}

×
∫ 2x̂−w

|w|
dm

m

t
√

2πt
exp

{
− 1

2t
m2

}

=
∫ x̂

x̂−ŷ
dwψ(x − σw − y) exp

{
−µ̂w − 1

2
µ̂2t

}

× 1√
2πt

(
exp

{
−w

2

2t

}
− exp

{
− (2x̂ − w)2

2t

})
.

Note that (2x̂ − w)2 + 2tµ̂w + µ̂2t2 = (2x̂ − µ̂t − w)2 + 4x̂µ̂t . Therefore,∫ x̂

x̂−ŷ
dwψ(x − σw − y) exp

{
−µ̂w − 1

2
µ̂2t

}

× 1√
2πt

(
exp

{
−w

2

2t

}
− exp

{
− (2x̂ − w)2

2t

})

=
∫ x̂

x̂−ŷ
dwψ(x − σw − y)

× 1√
2πt

(
exp

{
− (w + µ̂t)2

2t

}
− e−2x̂µ̂ exp

{
− (2x̂ − µ̂t − w)2

2t

})

=
∫ y

0
dwψ(w − y)

× 1

σ
√

2πt

(
exp

{
− (x − w + µt)2

2tσ 2

}
− e−2x̂µ̂ exp

{
− (x + w − µt)2

2tσ 2

})

=
∫ y

0
ψ(w − y)[g(x − w + µt; tσ 2)− e−2x̂µ̂g(x + w − µt; tσ 2)] dw.

This gives (2.8).

To calculate GD , we use the strong Markov property of the process X.

Proposition 2.2. We have

GD(x, T ) = Ex[1D̃ �(XJ1 , T − J1)] = L�(x, T ).
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Here, D̃ = [J1 ≤ T , infs≤J1 Xs > 0], the integral operator L is defined by

Lf (x, t) =
∫ t

0
dFJ1(s)

∫
dF(y)

∫ ∞

y+
dwf (w − y, t − s)H(x,w, s) (2.12)

for any nonnegative Borel measurable function f on R
2+, and H is defined in (2.9).

Proof. Note that D̃ ∈ FJ1 . Therefore, by the strong Markov property we have

GD(x, T ) = Ex[Ex[1D̃ ψ(Xτ(T )) 1(τ (T ) ≤ T ) | FJ1 ]] = Ex[1D̃ �(XJ1 , T − J1)].
Recall that Y1 = − log(1 + U1). Therefore, by the independence of J1, Y1, and {Wt ; t ≥ 0},
we obtain

GD(x, T ) = E
[
1
(
J1 ≤ T , min

s≤J1
x +Xcs > 0, x +XcJ1

− Y1 > 0
)

×�(x +XcJ1
− Y1, T − J1)

]

=
∫ T

0
dFJ1(t)

∫
dF(y)E

[
1
(

min
s≤t x +Xcs > 0, x +Xct − y > 0

)

×�(x +Xct − y, T − t)
]
.

Let us calculate the integrand. Using the symmetry of Brownian motions, we obtain

E
[
1
(

min
s≤t x +Xcs > 0, x +Xct − y > 0

)
�(x +Xct − y, T − t)

]

= E
[
1
(

max
s≤t −x − µs + σWs < 0, −x − µt + σWt + y < 0

)

×�(x + µt − σWt − y, T − t)
]

= E
[
1
(

max
s≤t −x̂ − µ̂s +Ws < 0, −x̂ − µ̂t +Wt + y < 0

)

×�(x − σ(−µ̂t +Wt)− y, T − t)
]
.

Using Theorem 2.1 with α = −µ̂, we obtain

E
[
1
(

max
s≤t −x̂ − µ̂s +Ws < 0, −x̂ − µ̂t +Wt + y < 0

)

×�(x − σ(−µ̂t +Wt)− y, T − t)
]

=
∫ (x̂−ŷ)∧x̂

−∞
dw

∫ x̂

w+
dv�(x − σw − y, T − t)

× 2(2v − w)

t
√

2πt
exp

{
−µ̂w − 1

2
µ̂2t − 1

2t
(2v − z)2

}

=
∫ (x̂−ŷ)∧x̂

−∞
dw�(x − σw − y, T − t) exp

{
−µ̂w − 1

2
µ̂2t

}

×
∫ x̂

w+
2(2v − w)

t
√

2πt
exp

{
− (2v − z)2

2t

}
dv.
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Similar to the calculation of GC , we have

∫ (x̂−ŷ)∧x̂

−∞
dw�(x − σw − y, T − t) exp

{
−µ̂w − 1

2
µ̂2t

}

×
∫ x̂

w+
2(2v − w)

t
√

2πt
exp

{
− (2v − z)2

2t

}
dv

=
∫ (x̂−ŷ)∧x̂

−∞
�(x − σw − y, T − t)[g(w + µ̂t; t)− g(w + tµ̂− 2x̂; t)e−2µ̂x̂] dw

=
∫ ∞

y+
�(w − y, T − t)[g(w − x − µt; tσ 2)− g(w + x − µt; tσ 2)e−2µ̂x̂] dw,

where we used the change of variable x − σw 	→ w in the last equation. This completes the
proof.

Theorem 2.2. For every bounded measurable ψ , the function � defined in (1.6) satisfies the
integral equation

�(x, T ) = G(x, T )+ L�(x, T ). (2.13)

Here, the integral operator L is defined by (2.12), G = GA + GB + GC , and GA, GB , and
GC are given as in (2.6), (2.7), and (2.8), respectively.

Remark. The decomposition of � into GA, GB , GC , and GD is actually quite intuitive.
Assume that the interest rate is 0. Consider a financial security with time to maturity T which
pays ψ(Xτ(T )) at time τ(T ) ≤ T . Assume that Ex is the ‘right’ measure under which we can
calculate prices. Then the time-0 price of such security is �. We now decompose this security
into four securities by classifying the possible causes of the payment ψ(Xτ(T )).

We track the sample path ofX up to time T and see whether a jump has occurred. If there is
no jump, namely, T ≤ J1, then the cause of the payment must be diffusion. Namely,Xτ(T ) = 0.
The time-0 price of this type of payment is given byGA. Suppose the contrary, that is, J1 ≤ T .
We further classify the possible causes of the payment. If τ(T ) < J1 then the cause must be
diffusion again. The time-0 price of this type of payment is given by GB . If τ(T ) = J1 then
the cause of the payment is a jump and the time-0 price of this type of payment is GC . Now,
the remaining possibility is J1 < τ(T ) ≤ T . At time J1, from the renewal property of X, the
security can be seen as a ‘new’ security almost the same as the old one except that the time to
maturity is T − J1. The time-0 price of this ‘new’ security is GD .

In Appendix A we will further extend the above classification of causes of the payment
ψ(Xτ(T )) to obtain an infinite-series expansion of the bond price.

3. Analytic properties of bond prices

To fix ideas, we adopt, from [6, Section 2.2.1] and [9], the following definition of yield
spreads and credit spreads.

Definition 3.1. For the bond price defined in (1.5), the promised yield for maturity T is given by
y(V0, T ) = (1/T ) log(1/D(V0, T )) and the credit spread for maturity T is given by s(V0, T ) =
y(V0, T )− r .

Note that, in Definition 3.1, 1 is the face value of the bond, and it follows immediately from
the definition that D(V0, T ) exp{y(V0, T )T } = 1.
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Lemma 3.1. For all x > 0 and y > 0, the function

t 	→ E
[
ψ(x +Xct − y) 1

(
min
s≤t x +Xcs > 0, x +Xct − y < 0

)]
(3.1)

is continuous on (0,∞).

Proof. Recall that in the proof of Proposition 2.1 we have

E
[
ψ(x +Xct − y) 1

(
min
s≤t x +Xcs > 0, x +Xct − y < 0

)]

=
∫ y

0
ψ(w − y)H(x,w, t) dw,

where H is given by (2.9). From this, it follows easily that the function in (3.1) is continuous.
This completes the proof.

Lemma 3.2. Assume that x > 0. Then

lim
T→0+

∂

∂T
P
[
min
s≤T x + µs + σWs < 0

]
= 0. (3.2)

Also, for all n ∈ N, we have

P
[
min
t≤T x + µt + σWs < 0

]
= o(T n) as T → 0 + . (3.3)

Proof. Firstly, we prove (3.2). By the symmetry of standard Brownian motion we have

P
[
min
s≤T x + µs + σWs ≤ 0

]
= P

[
max
s≤T −µs + σWs ≥ x

]
= P

[
max
s≤T −µ̂s +Ws ≥ x̂

]
.

Note that x > 0. Therefore, by (2.5) we have

P
[
max
s≤T −µ̂s +Ws ≥ x̂

]
= N

(
− x̂ + µ̂T√

T

)
+ e−2µ̂x̂N

(−x̂ + µ̂T√
T

)
,

which converges to 0 as T → 0+. Recall that g(x; σ 2) = 1/(
√

2πσ 2) exp{−x2/2σ 2}. We
have

∂

∂T

(
N

(
− x̂ + µ̂T√

T

)
+ e−2µ̂x̂N

(−x̂ + µ̂T√
T

))

= −g
(−(x̂ + µ̂T )√

T
; 1

)√
T µ̂− (x̂ + µ̂T )T −1/2/2

T

+ e−2µ̂x̂g

(−x̂ + µ̂T√
T

; 1

)√
T µ̂− (−x̂ + µ̂T )T −1/2/2

T

= 1

2

(
−g

(−(x̂ + µ̂T )√
T

; 1

)
µ̂T − x̂

T 3/2 + g

(
x̂ + µ̂T√

T
; 1

)
µ̂T + x̂

T 3/2

)

= g

(
x̂ + µ̂T√

T
; 1

)
x̂

T 3/2

= 1√
2π

x̂ exp

{
−1

2

(
x̂√
T

+ µ̂
√
T

)2} 1

T 3/2 .
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Observe that, for all T > 0,

0 ≤ 1√
2π

x̂ exp

{
−1

2

(
x̂√
T

+ µ̂
√
T

)2} 1

T 3/2 ≤ C exp

{
− x̂2

2T

}
1

T 3/2

for some constant C > 0 independent of T > 0. This implies that (3.2) holds.
We prove (3.3). Let n ∈ N. Then, by l’Hôpital’s rule,

lim
T→0+

P[mins≤T x + µs + σWs < 0]
T n

≤ lim
T→0+

(∂/∂T )P[mins≤T x + µs + σWs < 0]
nT n−1

≤ lim
T→0+C exp

{
− x̂2

2T

}
1

nT (n−1)+3/2

= 0.

This completes the proof.

Recall that D(V0, T ) is the bond price defined in (1.5) and that we set x = log(V0/K0).

Proposition 3.1. We have the following analytic properties of bond prices.

(a) For each T > 0, limV0→∞D(V0, T ) = e−rT .

(b) For each V0 ∈ (K0,∞), limT→0+ Px[τ(T ) ≤ T ] = 0.

Proof. We prove (a) first. Since the function ψ is bounded, by (1.5) and (1.6), it suffices to
show that limx→∞ Px[τ(T ) ≤ T ] = 0. Now since X = (Xt ) is càdlàg (right continuous with
left limits), it is clear that, for fixed T , τ(T , x) = inf{0 ≤ t ≤ T ; x +Xct − Zt ≤ 0} → ∞ as
x ↑ ∞. This implies that limx→∞ Px[τ(T ) ≤ T ] = 0.

Next, consider (b). Write

Px[τ(T ) ≤ T ] = Px[A] + Px[B ∪ C ∪D], (3.4)

where {A,B,C,D} is the partition of [τ(T ) ≤ T ] in (2.2). For the second term on the right-
hand side of (3.4), we have

Px[B ∪ C ∪D] = Px[τ(T ) ≤ T , J1 ≤ T ] ≤ P[J1 ≤ T ] = 1 − e−λT → 0, T → 0 + .

On the other hand, note that

Px[A] = Px[τ(T ) ≤ T < J1] = P[T < J1] P
[
min
s≤T x + cs + σWs ≤ 0

]
.

By (3.3) we obtain

lim
T→0+ Px[A] ≤ lim

T→0+ P
[
min
s≤T x + cs + σWs ≤ 0

]
= 0.

Combining these results with (3.4), we have (b). The proof is then complete.
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Theorem 3.1. Assume thatψ is continuous and that 0 ≤ ψ ≤ 1. Then, for eachV0 ∈ (K0,∞),

λ

∫
y>x

ψ(x − y) dF(y) ≤ lim inf
T→0+ s(V0, T ) ≤ lim sup

T→0+
s(V0, T ) ≤ λ

∫
y≥x

ψ(x − y) dF(y).

(3.5)

In particular,

(a) if ψ > 0 and P[Y1 > x] > 0, we have a strictly positive credit spread for zero maturity;

(b) if ψ(0) = 0 or F is continuous at x, then we have the following asymptotic behavior of
the credit spread:

lim
T→0+ s(V0, T ) = λ

∫
y>x

ψ(x − y) dF(y).

Proof. First, we prove the lower bound in (3.5). Since 0 ≤ ψ ≤ 1, we have 1 ≥ �(x, T ) ≥
GC(x, T ). Note that �(x, T ) → 0 as T → 0+ by Proposition 3.1(b). Therefore,

lim inf
T→0+ s(V0, T ) = lim inf

T→0+

[
1

T
log

(
erT

1 −�(x, T )

)
− r

]

= lim inf
T→0+

1

T
log

(
1

1 −�(x, T )

)

≥ lim inf
T→0+

1

T
log

(
1

1 −GC(x, T )

)
.

Note that, by Proposition 3.1(b),�(x, T ) → 0 asT → 0+. Hence, we obtain 0 ≤ GC(x, T ) ≤
�(x, T ) → 0 as T → 0+. By the mean value theorem we obtain

lim inf
T→0+

1

T
log

(
1

1 −GC(x, T )

)
≥ lim inf

T→0+
∂GC(x, T )/∂T

1 −GC(x, T )
= lim inf

T→0+
∂GC

∂T
(x, T ). (3.6)

By (2.8), Lemma 3.1, and the fundamental theorem of calculus, we obtain

∂GC

∂T
(x, T ) = λe−λT

×
∫ ∞

0
dF(y)E

[
ψ(x +XcT − y) 1

(
min
s≤T x +Xcs > 0, x +XcT − y < 0

)]
.

(3.7)

Since ψ is continuous and 0 ≤ ψ ≤ 1, we obtain

lim inf
T→0+ s(V0, T ) ≥ lim inf

T→0+
∂GC

∂T
(x, T ) ≥ λ

∫
y>x

ψ(x − y) dF(y).

This proves the lower bound in (3.5).
Next, we show the upper bound in (3.5). By the definition of the function G, there exists a

function I of t such that t 	→ I (t) is continuous on (0, 1], limt→0+ I (t) = 0, and

sup
y∈[x/2,3x/2]

G(y, t) ≤ I (t).
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(See also (2.6), (2.7), and (2.11).) By Proposition 2.2,

LG(x, T ) ≤
∫ T

0
I (t)λe−λ(T−t) dt +

∫ T

0
Px

[
inf

0≤s≤t Xs ∈ (0,∞) \
[
x

2
,

3x

2

]]
λe−λt dt.

(3.8)

By Lemma A.1,

L2�(x, T ) ≤ 1 − e−λT − λT e−λT . (3.9)

An iteration of (2.13) gives

�(x, T ) = G(x, T )+ LG(x, T )+ L2�(x, T )

≤ G(x, T )+
∫ T

0
I (t)λe−λ(T−t) dt

+
∫ T

0
Px

[
inf

0≤s≤t Xs ∈ (0,∞) \
[
x

2
,

3x

2

]]
λe−λt dt + 1 − e−λT − λT e−λT ,

(3.10)

where the last inequality follows from (3.8) and (3.9). Observe that among the terms in (3.10),

∂

∂T

∫ T

0
I (t)λe−λ(T−t) dt = I (T )λ− λ

∫ T

0
I (t)λe−λ(T−t) dt → 0, T → 0+,

and
∂

∂T

∫ T

0
Px

[
inf

0≤s≤t Xs ∈ (0,∞) \
[
x

2
,

3x

2

]]
λe−λt dt

= Px

[
inf

0≤s≤T Xs ∈ (0,∞) \
[
x

2
,

3x

2

]]
λe−λT → 0, T → 0 + . (3.11)

In (3.11) we used the fact that t 	→ inf0≤s≤t Xs is almost surely continuous at each T > 0 by
the quasi-left continuity of X. In addition, as T → 0, ∂GA(x, T )/∂T → 0 by Lemma 3.2 and
∂GB(x, T )/∂T → 0. With an argument similar to (3.6), we deduce, from (3.10) and the above
estimates for the derivatives, that

lim sup
T→0+

s(V0, T ) ≤ lim sup
T→0+

∂GC

∂T
(x, T ) ≤ λ

∫
y≥x

ψ(x − y) dF(y),

where the last equality follows from (3.7). We have obtained the upper bound in (3.5). This
completes the proof.

Remark. It is worth noting that Hilberink and Rogers [5] proved a similar result for the credit
spread in the Leland model. Instead of considering the case where X has two-sided jumps,
only downward jumps were allowed in the definition of X.

Appendix A. An infinite-series expansion for the bond price

Recall the definition of the operator L in Proposition 2.2. Theorem 2.2 states that we can
write � as

�(x, t) = G(x, t)+ L�(x, t) for all (x, t) ∈ R
2+. (A.1)
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After n-fold iteration of (A.1), we have

�(x, t) =
n∑
k=0

LkG(x, t)+ Ln+1�(x, t), (A.2)

where L0f = f and Lk+1f = L(Lkf ). On the other hand, by the definition of L,

Lf (x, t) = Ex
[
f (XJ1 , t − J1) 1

(
J1 ≤ t, inf

0≤s≤J1
Xs > 0

)]
.

(See Proposition 2.2.) The probabilistic interpretation of Lnf, n > 2, is given by the following
lemma.

Lemma A.1. Let f be a nonnegative measurable function defined on R
2+. Then, for any n ∈ N,

Lnf (x, t) = Ex
[
f (XJn, t − Jn) 1

(
Jn ≤ t, inf

0≤s≤Jn
Xs > 0

)]
. (A.3)

Moreover, for any T ∈ (0,∞) and any n ≥ 1,

sup
(x,t)∈R+×[0,T ]

Lnf (x, t) ≤ ‖f ‖∞
∑
m≥n

e−λT (λT )m

m! .

Proof. The proof proceeds by induction. We already have the case in which n = 1 by the
definition ofL. Assume that, for n = k, the conclusion of the lemma holds. Then, for n = k+1,

Lk+1f (x, t) = Ex
[
Lkf (XJ1 , t − J1) 1

(
J1 ≤ t, inf

0≤s≤J1
Xs > 0

)]

= Ex
[
EXJ1

[
f (XJk , v − Jk) 1

(
Jk ≤ v, inf

0≤s≤Jk
Xs > 0

)]∣∣∣
v=t−J1

× 1
(
J1 ≤ t, inf

0≤s≤J1
Xs > 0

)]
,

where we have applied the case of (A.3) for n = k in the last line. On the other hand, by the
strong Markov property of X we have

Ex
[
f (XJk+1 , t − Jk+1) 1

(
Jk+1 ≤ t, inf

0≤s≤Jk+1
Xs > 0

)]

= Ex
[
Ex

[
f (XJk+1 , t − Jk+1) 1

(
Jk+1 ≤ t, inf

J1≤s≤Jk+1
Xs > 0

) ∣∣∣ FJ1

]

× 1
(
J1 ≤ t, inf

0≤s≤J1
Xs > 0

)]

= Ex
[
EXJ1

[
f (XJk , v − Jk) 1

(
Jk ≤ v, inf

0≤s≤Jk
Xs > 0

)]∣∣∣
v=t−J1

× 1
(
J1 ≤ t, inf

0≤s≤J1
Xs > 0

)]
.

Hence, we have proved that (A.3) holds for n = k + 1. By the induction hypothesis we have
proved the first part of the lemma.

The second part of the lemma now follows immediately from the nonnegativity of f and the
fact that Jn is a sum of n independent exponential random variables with mean 1/λ. The proof
is now complete.
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From this, we obtain from (A.2) that, for every bounded ψ ,

�(x, T ) = lim
n→∞

( n∑
k=0

LkG(x, T )+ Ln+1�(x, T )

)
=

∞∑
k=0

LkG(x, T ). (A.4)

Write x = log(V0/K0). By (1.5) we obtain the following infinite-series expansion for the bond
price.

Theorem A.1. For any bounded functionψ , the bond priceD(V0, T ) in (1.5) has the following
expansion:

D(V0, T ) = e−rT − e−rT
∞∑
m=0

LmG

(
log

(
V0

K0

)
, T

)
, (A.5)

where G = GA + GB + GC , and GA, GB , and GC are given as in (2.6), (2.7), and (2.8),
respectively. Moreover, the series converges uniformly in (log(V0/K0), T ) ∈ R+ × [0, T ∗] for
any T ∗ ∈ (0,∞).
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