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Abstract

Matsumoto [ 10] remarked that some locally projectively flat Finsler spaces of non-zero constant curvature
may be Riemannian spaces of non-zero constant curvature. The Riemannian connection, however, must
be metric compatible, and this requirement places restrictions on the geodesic coefficients for the Finsler
space in the form of a system of partial differential equations. In this paper, we derive this system of
equations for the case where the geodesic coefficients are quadratic in the tangent space variables y', and
determine the solutions. We recover two standard Riemannian metrics of non-zero constant curvature
from this class of solutions.

2000 Mathematics subject classification: primary 53B40; secondary 58J60.

1. Introduction

This paper is concerned with conditions under which a locally projectively flat Finsler
space of non-zero constant curvature is also a Riemannian space of non-zero constant
curvature. The requirement that the Riemannian connection be metric compatible
leads to a system of partial differential equations. We present this result in Section 2
along with a proof. In Section 3 we derive the solutions to the system of partial
differential equations, and use them to obtain some Riemannian metrics for spaces of
non-zero constant curvature. The remainder of this section is devoted to a review of
certain basic definitions and results in Finsler geometry relevant to the study.

Let F be a Finsler metric on an n-dimensional manifold M. The corresponding
Finsler space is denoted by F". Let x = (x1) denote the coordinates of p e M,
y = ( / ) e TPM, and
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The inverse of (g,;) is denoted by (g'j), that is, using the Einstein summation conven-
tion, gikgu = Sk, where

gt = J0 i f * / , \
' { 1 if k = i

is the Kronecker delta. The metric F is called Riemannian if the gjk depend only on
x e M; it is called locally Minkowskian if the gjk depend only on y e TPM. For a
non-zero vector y e TPM, and any vectors u = u'd/dx', v — v'd/dx' e TPM, the
inner product on Tp Mis given by gy{u, v) = gu(x, y)w'V. The definition of a Finsler
metric implies that gy(y, v) = F2. Let Z, = 3F/3y' and hu(x, y) = gu - /,/;. The
angular form hy on TPM associated with the non-zero vector v is denned by

hy(u,v) = hu(x,y)u'vJ.

Let h) = gJkhij. The definitions of gjk and hu give /i* = Sk - /,/*, where /' = y'/F.
The geodesies of F die characterized locally by the condition

where

The G' are positively homogeneous functions of degree two in v and are called the
geodesic coefficients of F. Let

3G .
G', = — r and G' =dyj Jk dyk

The G'jk are called the coefficients of the Berwald connection, which was introduced
by Berwald in 1926 ([2, 3]). If G)k = G'jk(x), then F is called a Berwald metric.
Riemannian metrics are thus a special class of Berwald metrics. The classification of
Berwald metrics was conducted by Szabo in 1981 (see [14]).

If F is a Riemannian metric, then g,; = gtj (x) so that

G> = 2T'jky}yk a n d G)k = r)k-

Here, the r'jk denote the Christoffel symbols of the Riemannian connection

jk 2Sjk 2S \dxk dxJ dxr

https://doi.org/10.1017/S1446788700016062 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016062


[3] A system of PDEs for Riemannian spaces 251

The Riemannian connection must be compatible with the metric, that is,

Let
. 3G' ,. 32G' . 32G' 8G

D' _ 2 y1 I- 2G
* d" d ' d k dJd" 8J

2 y I- 2G
* dx" dx'dyk dyJdy" 8yJ dyk '

The Riemann curvature Ry is a family of linear maps on tangent spaces defined by

Ry = Rk dxk — : TnM - • TnM.p

p

For a tangent plane FI = span{;y, u) C TPM, let

gy(Ry(u),u)
K(U,y) =

- gy(y,

The quantity A"(I~I, y) is called the flag curvature of {I~I, y}. If F is a Riemannian
metric, then K is independent of y € n and corresponds to the sectional curvature of
tangent planes n € TPM. The flag curvature in Finsler geometry is thus an extension
of the sectional curvature in Riemannian geometry (see [3] and [4] for more details).

If, for every fixed point y e TPM, the flag curvature is independent of the tangent
plane n = span{y, u] C TPM, then F is said to be of scalar curvature at the point p.
If F has scalar curvature at all points in M, then F" is called a Finsler space of
scalar curvature. In this case, K is independent of the plane, but it depends on the
point, where the flagpole starts; thus, K = K(x, y), and the scalar curvature of F
is R'k = KF2h'k.

We summarize some well-known formulae for a Finsler space F". The proofs of
these formulae along with further comments can be found in [10]. We consider first
the case when n > 2. It can be shown that

(1.3) *;, = Kjh'k - Kkh) = ̂  - 0 - G\jG'k + G[kG],

where

F2dK
K' = TJ7 + Ky'-

Note that R)ky
j = R[ and yt = gijy

j. Let H[jk = dRr
jk/3y, Hu = H[jr, and

(1-4) Hi =
n - 1
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The following relations can be established:

(1.5) K,y' = KF\

Hu = (« - 2 ) ^ + ^ - + K(htJ - 21,1 j ) ,
ay t

(1.6) Hi =.(n + l)Kh

We now consider the case when n = 2. It is known that every two-dimensional
Finsler space is of scalar curvature. The scalar curvature of F2 can be expressed
succinctly in terms of the orthonormal Berwald frame (/', m'), namely,

(1.7) R)k = FKm* (ljmk -,mjlk) ,

where m, = gijmJ. In this case K is called the Gauss curvature.
A Finsler space is said to be of constant flag curvature if there is a constant k such

that K(U, y) = k for all ye U c TPM, peM.
Let F and F be Finsler metrics on the n-dimensional manifold M, and let F" =

(M, F) and F" = (M, F) be the corresponding Finsler spaces. A projective change
is a difffeomorphism from F" to F" that maps geodesies of F" to geodesies of F". If
any geodesic of F" is a geodesic of F" and the converse is also true, then the change
F —* F of the metric is called a projective change, and F" is said to be projective to F".
A Finsler metric F is said to be locally projectively flat if there exists a projective
change F -*• F such that F" is a locally Minkowski space.

THEOREM 1.1 ([11]). The change F -> F of the metric is projective if and only if

(1.8) Fv - YTyk = 0,

where F\k denotes the horizontal covariant derivative of F on F", that is,

- _ dF dGr dF
'* ~ dxk dyk dyr'

Here, the Gr denote the geodesic coefficients of F. We say that F" is projective to F"
with the projective factor given by P = F\ky

k J2F.

THEOREM 1.2 ([1]). A Finsler space F" = (M, F) is a projectively flat Berwald
space if and only if it belongs to one of the following classes:
(a) locally Minkowski spaces;
(b) Riemannian spaces of constant curvature;
(c) spaces F2 with a metric of the form F = /S2/y, where p and y are one-forms.
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LEMMA 1.3 ([14]). Let M be a two-dimensional manifold and F be a positive
definite Berwald metric on M. Then F is either locally Minkowskian or Riemannian.

THEOREM 1.4 ([9]). A Finsler space of scalar curvature is a space of constant
curvature if and only if one of the following conditions hold:

(i) Hij = Hji;
(ii) Hjiy* = Ht]yi;

(iii) Hj is proportional to yt.

2. Properties of projectively flat Finsler spaces

This section is devoted to a proof of the following result.

THEOREM 2.1. Let F" = (M, F) be a Finsler space that has geodesic coefficients
of the form Gk = pry'' yk with ptpj — ptj non-degenerate, where p is a smooth scalar
function on M and pr = dp/dxr. Then

(a) F" is locally projectively flat;
(b) F" is of constant curvature;
(c) F" is a Riemannian space of non-zero constant sectional curvature given by

(2.1) K = ji(pipj-pij)y'yJ;

(d) p satisfies the the system of partial differential equations

(2.2) pijk - 2 (ptjPk + pjkpi + pikpj) + 4piPjpk = 0,

where Pij = dpi/dxi and pijk = dptj/dxk.

PROOF, (a) We use Theorem 1.1 to show that F" is locally projectively flat. Let
F" = (M, F) be a locally Minkowski space. It is thus required to show that equation
(1.8) is satisfied. Since F does not depend on x, Fv = -GkdF/dyk, and equation
(1.8) can be written

<2-3> G'fk
 + Tryk = °-

dk d'
Now, Gk = pry

ryk, and differentiating with respect to y' gives

(2.4) Gk = piy
k + Pry

r8k;
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hence,

LdF dF - dF

dyk dy' dy'

where we have used the homogeneity property of F. Differentiating this equation
with respect to y' and contracting with yk yields

3F|, k dF k dF k r 3F k

-ryy = -Pk-r-y - A-7-7 / - A- / a ,a ky ,
dy' dy' dyk dy'dyk

and the homogeneity of F gives

Equations (2.4) and (2.6) imply that equation (2.3) is satisfied and hence, by Theo-
rem 1.1, F" is locally projectively flat.
(b) We show here that F" is of constant curvature for the case n > 2. The case
n = 2 is discussed in the proof of part (c). It is known that locally projectively flat
Finsler metrics are of scalar curvature (see [6] and [5]). Part (a) thus shows that F" is
of scalar curvature. To establish that F" is of constant curvature it is thus sufficient to
show that Hij = Hji.

Now, H[jk = dRr
jk/dy', where Rr

jk is given by (1.3), and equation (2.4) can be used
to calculate Gr

jm. Differentiation of equation (2.4) with respect to ym and change of
indices leads to

(2-7). G'jm=pi¥m + pm&'r

Consequently (1.3) becomes

(2.8) R'.k = (pik8
rj - PijS

r
k) y + (pj&'k - ptf) A / ,

where we have used pi ; = /O,,. Differentiating equation (2.8) with respect to y' gives

H[jk

which, using k = r and noting that Sr
r — n and Hu = H[jr, yields

(2.9) Hu = (n - DipiPj - PiJ) = Hj,.

Theorem (1.4) thus shows that F" is of constant curvature.

A,
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(c) To establish equation (2.1) we consider two cases.
Case (i) n > 2. Equations (1.4) and (2.9) imply //, = (n + l )(p,p ; - Pij)yj,
and equation (1.6) thus shows that Kt = (piPj — Pij)yj- Contracting the above
expression with y' and using equation (1.5) gives equation (2.1). Since p,p ; — p,7 is
non-degenerate, K ^ 0, and

F2 = jipiPj - Pu)yiyi = gijMy'y-,

hence, the metric tensor is given by

(2.10) gu = —(PiPj - Pa)

Since the metric tensor depends only on x, F is Riemannian and hence F" is a
Riemannian space of non-zero sectional curvature given by equation (2.1).
Case (ii) n = 2. It is known that any two-dimensional Finsler space is of scalar
curvature. Contracting equation (1.7) with w,, / ; and mk gives KF = R'jkmiVmk,
and equation (2.8) yields

KF = {(Prk8'j - prjSi) / + (pjSl - PkS'j) pry
r}mil

Jmk = -PrjV? + PjVPry
r.

Now, /' = y/F and hence K = {ptpj - pij)y'yJ/F2, where i, j = 1, 2.
We show now that F2 is a Riemannian space of non-zero constant sectional cur-

vature. Since F is a Berwald metric, Lemma 1.3 shows that F is either locally
Minkowskian or Riemannian. Recall that if F is locally Minkowskian then G' — 0,
which contradicts a hypothesis of the theorem; hence, F is Riemannian. Part (a)
shows that F is a locally projectively flat Berwald metric. Theorem 1.2 thus indicates
that F is a Riemannian metric of non-zero constant sectional curvature.
(d) Since F" is a Riemannian space, the metric must be compatible with the Rie-
mannian connection. In other words, the metric must satisfy equation (1.2) and the
coefficients of the Berwald connection coincide with the Christoffel symbols of the
Riemannian connection. Equation (2.7) thus implies r'jk = G'jk = pkS'j + PjS'k.
Equation (1.2) can thus be written

(2.11) j ^ = grj (PiSk + pk8.) + gir (pkS
rj + pjSr

k) = 2gijpk + gkjpi + gikpj.

Equation (2.10) can be used to write the above equation in terms of the derivatives
of p. In particular, K is constant and therefore differentiating equation (2.10) with
respect to xk gives

1
( PikPi ~

moreover, equation (2.10) can be used directly to eliminate the metric tensor compo-
nents from equation (2.11). This elimination leads to equation (2.2). •
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A partial converse to the above theorem is available in the following form.

THEOREM 2.2. Let F" = (M, F) be a Riemannian space defined on an underlying
manifold of dimension n, and let

(2.12) F2 = li(piPj-pu)y
iyJ

with PiPj — Pij non-degenerate, where (i is a non-zero constant, and p, = Pi(x) is a
scalar field defined on M that satisfies equation (2.2). Then

(2.13) G' = Pr/y',

and the curvature ofF" is \/(i.

PROOF. Differentiating equation (2.12) and substituting into (1.1) leads to

Gi = -iiglk(2pkPjr-prkJ)y
iyr.

The functions prkj can be eliminated from this expression using equation (2.2). Thus,

(2.14) G' = (igik (prPkpj - pjkPr) yjyr.

We know from the second derivative of (2.12) that the metric tensor of F" is

gkr = HiPkPr ~ Pkr)-

Contracting this expression with g'k and substituting in (2.14) gives G' = p,yry'. The
conditions of Theorem 2.1 are now satisfied, and from equations (2.1) and (2.12) we
have K = l/(i. D

3. Solutions to the system of partial differential equations

Equation (2.2) forms an overdetermined system of partial differential equations for
the function p. Typically, if such systems have solutions, then these solutions depend
on arbitrary constants rather than arbitrary functions (see [13]). In this section we
present a general family of solutions to system (2.2) and then specialize to radially
symmetric solutions.

For the special choice i = k = j , the partial differential equation is

(3.1) p< 1 1-6p,,p,+4p,3 = 0.
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For fixed values of xm, m ^ /, the above equation can be regarded as an ordinary
differential equation. This observation leads to the study of the second order nonlinear
ordinary differential equation

(3.2) M"($) - 6K ' ($ ) I I (£ ) + 4«3(£) = 0.

A solution u = w(£, C\, c2) to equation (3.2) depends on two integration constants,
say C\ and c2. A solution to the partial differential equation (3.1) can then be obtained
by integration, namely,

(3.3) p(x) = f «(
Here, k is a constant, and the c, can be regarded as functions that depend on xm, m ^ i.
The functional dependence of the c, on the xm is constrained by the other equations
in system (2.2).

Let £0> "o and u'o be given real numbers. We can exploit the theory of ordinary
differential equations to glean qualitative information about the initial-value problem,
which consists of finding solutions to equation (3.2) such that

(3.4) w(£o) = «o, and w'(£0) = u'o.

Specifically, the Picard-Lindelof Theorem (see [8]) can be invoked to show that there
is a local solution to the initial-value problem and that the solution is unique among
functions that are twice continuously differentiable. In fact, the solution can be found
explicitly.

LEMMA 3.1. For any choice of initial values £o> «o and u'o there exists a local
solution to equation (3.2) that satisfies equations (3.4). This solution is unique among
functions that have continuous second derivatives in a neighbourhood ofl-Q.

(a) / / 2u\ - u'o^ 0, then

(3-5) «(£) = - , . * + J ' . ,
where c, = -(uo/(2u2

o - u'o) + £0) and c2 — {u2
0 - u'0)/(2ul - u'o)

2.
(b) lflu\ -u'0 = 0 and u0 ^ 0, then

(3.6)

where c\ = —(l/(2«0) + •
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(c) If 1u\ — u'o = 0 and u0 = 0, then the local solution is the trivial solution

= 0.

PROOF. The uniqueness of the solution to the initial-value problem follows from
the Picard-Lindelof Theorem for ordinary differential equations. In particular, the
differential equation (3.2) can be recast as the system with y^ = u,

4y?(£) = /2(£, yu y2).

The fk are analytic for all values of £, yt and y2', a fortiori, these functions satisfy the
requisite Lipschitz condition in a suitably small neighbourhood of the initial values
for any choice of £0» "o and u'o.

It can be verified by direct calculation that the functions defined by equations (3.5)
and (3.6), along with the trivial solution, satisfy equation (3.2). It is straightforward
algebra to show that the integration constants satisfy the initial conditions (3.4). The
solution defined by equation (3.6) contains only a single integration constant owing
to the condition 2u\ -u'0 = 0. •

THEOREM 3.2. Let Q, c R" be a region and p : Q, -*• K be a function with
continuous third-order derivatives. The function p is a real solution to system (2.2) if
and only if there exists a quadratic polynomial Q : R" -> D& such that, for all x e £2,
Q(x) > 0, and

(3.7) p(*) = - - l n G ( x ) .

PROOF. Suppose that p is a function of the form defined by equation (3.7) and let
Q, = dQ/dx', Qu = dQi/dxJ a n d QiJk = dQtJ/dxk. T h e n , for i , j , k e { l , . . . , n ) ,

Pi~ 2 Q ' Pii ~ 2 1 Q Qi J '

These expressions for the derivatives of p show that

(3.8) pijk — 2 {pijpk + pikpj + PjicPi) + 4/3
20

However, Q is a quadratic polynomial and therefore Qijk = 0 for all i, j,k G
{! , . . . , «} . Equation (2.2) is thus satisfied for all i, j , k e {1, . . . , «}.
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Suppose that p is a solution to system (2.2). Then p must satisfy equation (3.1) for
i = 1 , . . . , n. If i = 1, then p can be expressed in the form (3.3), where cx and c2 are
functions of x2,..., x". The uniqueness of the solutions to equation (3.2) shows that
u must be one of the solutions given in Lemma 3.1. Integrating any of the solution
forms of Lemma 3.1 gives a solution of the form

(3.9) p{x) = ~\nV{x),

The calculation leading to equation (3.8) is still valid with Q replaced by V, and
since p is a solution to system (2.2) we have that Vijk = 0 for all i, j , k e { 1 , . . . , n}.
Therefore, V must be of the form V(x) — Ajkx'xk + Bjxj + C, where Ajk, Bj and C
are constants, that is, V must be a quadratic polynomial. •

Theorem 3.2 shows that any quadratic function Q that is positive in a neighbourhood
of a point x0 e R" leads to a real solution p of the system (2.2). Not all such Q,
however, generate a Riemannian metric and specifically a matrix (gjk) that is positive
definite. We now consider the types of quadratic functions that lead to Riemannian
metrics.

LEMMA 3.3. Suppose that Q is a polynomial of degree d < 2 such that Q(x0) > 0
and the matrix (gjk) is positive definite in some neighbourhood N(x0) of x0. Then
there exists an affine transformation in R", x -> w, such that Q(x) = Q{w) can be
reduced to one of the following forms:

(3.10) Q(w) = C + (w1)1 + ••• + (w»)2 - (wp+l)2 (wn)\

(3.11) Q(w) = C + wl + ( w 2 ) 2 + ••• + ( w p + 1 ) 2 - ( w p + 2 ) 2 (u/1)2,

where C is a constant. Here, p denotes the number of quadratic terms with positive
coefficients: p = 0 corresponds to no quadratic terms with positive coefficients; p = n
corresponds to all quadratic terms having positive coefficients in (3.10); p = n — 1
corresponds to all quadratic terms having positive coefficients in (3.11).

PROOF. The above result follows from a standard result about the canonical forms
for quadratic functions (see [7], Chapter 11) once it is verified that Q must depend on
all the wk and that d — 2.

Since the matrix (gjk) is positive definite, the transformed matrix (gjk) generated
by Q is also positive definite. Equation (2.10) implies that
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Evidently, if Q is independent of wj, then gjk = 0 for all k = 1, . . . n; consequently,
the corresponding matrix (gjk) has a row of zeros and cannot be positive definite. We
thus conclude that Q must depend on all of the wj.

The Sylvester criteria for positive definiteness requires that

and

0,4)

(along with similar conditions for the other principal minors). Inequality (3.14) shows
that Q cannot be a linear function. Hence, Q must contain some quadratic terms, so
that d = 2. •

We now assume that Q has been reduced to one of the forms given in Lemma 3.3
and that Q(0) = C > 0. The circumflexes for the transformed quantities will be
dropped and we use the variables xk. The condition that the (gjk) matrix generated
by Q be positive definite further limits the possible forms for Q.

THEOREM 3.4. Suppose that the quadratic function Q generates a Riemannian
metric in a neighbourhood of 0 € R" by use of equations (3.7) and (2.10).

(a) IfK< 0, then Q is either of the form

(3.15) Q(x) = C-\x\2 or

(3.16) G ( J C ) = C + x l - ((x2)2 + ••• + (x")2) .

( b ) IfK>0, then Q is of the form

(3.17) 2

PROOF, (a) Let K < 0. The quadratic function Q is either of the form (3.10)
or (3.11). It suffices to show that in either case p = 0.

Suppose Q is of the form (3.10) with p > 0. Since the corresponding matrix (gjk)
must be positive definite, (3.13) implies that gn = (Q - (xl)2)/(KQ2) > 0; hence,
Q - (x1)2 < 0. However, Q(0) = c> 0, so that Q - (x1)2 > 0 for all xl sufficiently
small. We thus conclude that p = 0 and that Q is of the form (3.15).

Suppose now that Q is ofthe form (3.11) with p > 0. Thengn = -l/(4KQ2) > 0,
so that inequality (3.13) is satisfied; however,

? 0
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so that inequality (3.14) is not satisfied. We thus have the contradiction that (gjk) is
not positive definite; consequently, p = 0 and Q is of the form (3.16).
(b) Let K > 0. If Q is of the form (3.11) then gu = -1/(4KQ2) < 0, and hence
(gjk) is not positive definite. Therefore, Q must be of the form (3.10). Suppose that
p < n. Without loss of generality we can relabel variables so that

Q(x) = C-(xl)2+q,

where q represents the remaining quadratic terms. Now, for x' sufficiently small,
gn = ~(Q + (xl)2)/(KQ2) < 0, so that (gJk) is not positive definite. We thus have
that p = n and that Q is of the form (3.17). D

If Q is of the form (3.15) or (3.17), then we recover known Riemannian metrics of
constant curvature (see [12]). Now,

If Q is of the form (3.15), then

1 / (x v)2

rr2 l I I . . I 2 i \ A ' •>'

For the case K = — 1, C = 1, the above expression is

r i \y\2 ( * y ) 2

i-\x\2 ,

which corresponds to the Klein metric on the unit ball. If Q is of the form (3.16), then
we discover a new Riemannian metric of the form

KQ V Q

(
KQ V Q 4Q

If Q is of the form (3.17), then F2 = (|y|2 - {x, y)2/Q)/{KQ), which is a Riemannian
metric given in [12].
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