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Abstract. We calculate the growth rate of the complexity function for polytopal cut and
project sets. This generalizes work of Julien where the almost canonical condition is
assumed. The analysis of polytopal cut and project sets has often relied on being able
to replace acceptance domains of patterns by so-called cut regions. Our results correct
mistakes in the literature where these two notions are incorrectly identified. One may
only relate acceptance domains and cut regions when additional conditions on the cut
and project set hold. We find a natural condition, called the quasicanonical condition,
guaranteeing this property and demonstrate by counterexample that the almost canonical
condition is not sufficient for this. We also discuss the relevance of this condition for the
current techniques used to study the algebraic topology of polytopal cut and project sets.
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1. Introduction

Periodic patterns of Euclidean space have been central geometric objects of study in
mathematics for millennia. By the eighteenth century it was realized by scientists such
as Kepler, Steno and Haiiy that the polyhedral macroscopic geometry of crystalline
structures was likely a result of their being periodically arranged at the microscopic level.
Based on this assumption, the internal order of such materials could thus be understood
through a classification of the space groups, all 230 of which were found by Fedorov and
Schonflies by 1892. Some mathematical objects, however, while having almost periodic
behaviour, lack perfect periodicity. The field of aperiodic order is the mathematical study
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of such structures [BG13]. For example, codings of dynamical systems may have a highly
structured and repetitive nature without being perfectly periodic. Properties of linear forms
may be understood as properties of quasiperiodic structures. Similarly, materials with
highly ordered internal structure need not be periodic, as discovered by Shechtman in
1982 when he first identified what are now known as quasicrystals [SBGC84].

The richness of the loosely defined class of aperiodically ordered patterns is immense,
although there are still only a few standard ways of generating significant classes of them.
One, via substitution rules, generates aperiodically ordered patterns with hierarchical
structure. The other major technique of constructing aperiodic patterns is via the cut and
project method (the resulting point sets are also known as model sets [M0097]). With
some standard restrictions, the patterns constructed in this way in fact display pure point
diffraction, which makes them an important class to study for their relevance in modelling
quasicrystals [Hof95a, Hof95b].

In this paper we restrict attention to cut and project patterns with convex polytopal
windows. Loosely speaking, such patterns are constructed as follows. Firstly, we have
a Euclidean space E, called the total space, of dimension k. We then choose a d-
dimensional subspace E, < E called the physical space and a complementary subspace
E_; the notation indicates that we often picture projecting ‘downwards’ to the physical
space, and ‘sideways’ to the internal space (see Figure 1). A window W C E_ is chosen
inside the internal space which defines the strip W + E,, C E parallel to the physical space.
From this data one constructs cut and project sets by placing a (possibly translated) lattice
I' <E in the total space, ‘cutting’ those points of it which fall into the strip and then
projecting them to the physical space. Under certain simple restrictions, the resulting point
pattern in the d-dimensional physical space is aperiodic and has a great deal of structural
order.

This paper is the first of two addressing the long-range order of cut and project sets with
polytopal windows. In the forthcoming second part, we characterize linear repetitivity
[LP03] for such patterns, greatly generalizing the cubical case solved in [HKW18].
The current work concerns the complexity of these patterns and builds a framework for
analysing the appearance of their finite patterns, which will also be fundamentally utilized
in the second part.

One desirable property of an aperiodic pattern is for it to have low complexity, which
means that it has a small number of distinct local configurations of a given size, up to
translation equivalence. It was established by Julien [Jul10] that, under a certain restriction
on the cut and project scheme, the number p(r) of patches of radius r (called r-patches)
grows, asymptotically, as r® for aperiodic polytopal cut and project sets, where o € N
with d <o <d(k — d). Moreover, the number « can be determined via the ranks of
certain intersections of the lattice with subspaces associated to the hyperplanes defining
the boundary of the window. Unfortunately, there is an error in the proof of [Jull0,
Proposition 2.1]. One of the purposes of the current work is to explore the severity of
this error and correct it.

The restriction used in [Jul10] is the ‘almost canonical condition’, the purpose of which
is to establish a connection between ‘acceptance domains’ of the window and (what we
call here) cut regions. The acceptance domains are subsets of the internal space which
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dictate the types of patches seen in the pattern: one lifts points of the cut and project
set to the lattice, projects them to the internal space, and then the acceptance domain
this point lands in determines the local patch at that point. However, the geometry of the
acceptance domains is somewhat complicated, and for ease of analysis they are replaced by
‘cut regions’, the convex regions bounded by lattice translates of the hyperplanes defining
the boundary of the window.

As we shall see in Example 5.9, the almost canonical condition is not the correct
one to establish the connection of acceptance domains and cut regions. We introduce
a new condition, which we call the quasicanonical condition, which guarantees the
desired connection. This repairs the error in the main argument of [Jull0] in determining
the growth of the complexity function for a polytopal cut and project set under the
quasicanonical condition. To this end we prove the following result.

INFORMAL VERSION OF COROLLARY 5.3. For a quasicanonical cut and project set, up
to a linear rescaling of r, the acceptance domains </ (r) of r-patches refine cut regions
% (r), and vice versa.

We continue the analysis to the situation where the only assumption is that the window
is polytopal, proving the following statement as Theorem 7.1. In the following, '
(Definition 5.4) is the subgroup of I' preserving a given hyperplane H defining the
boundary of the window; the exact statement requires some extra notation which will be
postponed to §7.

INFORMAL VERSION OF THEOREM 7.1. Consider an aperiodic cut and project pattern
with a convex polytopal window W. Then the complexity grows asymptotically as p(r) <
r® for a € N. The number « can be derived from the ranks of the subgroups T'H of T and
the dimensions of their R-linear spans in E _.

As in [Jull0], it can be shown that « < d(k — d) and that o > d if the cut and project
set is aperiodic. This result means that the quasicanonical condition need not have been
introduced for the question of the complexity of polytopal cut and project sets. However,
the quasicanonical condition guarantees the connection between acceptance domains and
cut regions, a property that seems important in many applications. In fact, there are many
instances in the literature where this connection is needed, and to establish it the almost
canonical condition is assumed. For example, this is the case in the topological study of
these patterns via their associated translational hulls [FHK02]. Our work demonstrates that
in such cases the almost canonical condition should be replaced with the quasicanonical
condition.

1.1.  Outline of the paper. In §2 we give the definition of a Euclidean cut and project
scheme and lay out our notation. In §3 we recall how one constructs the acceptance
domains and how they are associated to patches of cut and project sets. We define
the quasicanonical condition in §4 for polytopal windows. Geometric intuition is given
for what the condition says and also some technical results which will be useful for
establishing that under this condition one may connect acceptance domains to cut regions,
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which is stated precisely and proved in §5. We also contrast the quasicanonical and almost
canonical conditions in this section through some simple examples, and demonstrate that in
particular cases the connection between acceptance domains and cut regions fails to hold
true if only assuming the almost canonical property. We believe that these first sections
could be of independent importance in the study of patterns in cut and project sets.

In §6 we derive, in a similar manner to Julien’s proof in [Jull0], a formula for the
asymptotic rate of growth of the complexity function for a quasicanonical cut and project
set. These techniques are refined in §7, where we obtain a general result on the complexity
function by removing the quasicanonical condition. Finally, in §8, we explain why the
quasicanonical condition is relevant in describing the topology of the translational hull of
a polytopal cut and project set and hence also to calculations for their cohomology.

1.2.  Summary of notation.

e (E Ey,E_, T, W): Euclidean cut and project scheme, with total space E of
dimension k, physical space E,, of dimension d, complementary internal space E_,
lattice I' < E and window W C E_ (compact and equal to the closure of its interior).

e my:[E — E,: the projection from the total space to the physical space with respect to

E.. For x € E we let x\, := 7 (x). Analogous notation for E_ in place of E,,.

yN: fory =m,(y), withy € T, we let y* :=y,i.e. y* € and (y")y = y.

y*: the star map applied to y € Ty, is y* := (y") <.

A: the cut and project set associated to the scheme, A :={y e I', | y* € W}.

A p: the acceptance domain in W associated to (pointed) patch P of A.

&/ (r): the set of acceptance domains of r-patches.

ST the set of half-spaces defining a polytopal window W, with associated collection

of affine hyperplanes 7.

V (H): the vector subspace given by translating an affine hyperplane H over the origin.

e S(r), B(r): the ‘slab’ and ‘box’ of size r in I' (equations (3.1) and (5.1)). For a
polytopal window these define the cut regions ¢’ (r) and %' (r).

e T'H: the stabilizer of H is the subgroup T :={y eI | H=H 4+ n_(y)} of T.

e f K g:fortwo functions f, g: R.o — R.p, we write f < g to mean that there exists
some constant C > 0 for which f(x) < Cg(x) for sufficiently large x. That is, f €
0(g).

e f =< g: for two functions as above, f < g means that f < gand g K f.

2. Euclidean cut and project set schemes
Throughout, vector spaces will be finite-dimensional over R. Let [E be a k-dimensional
vector space, which we refer to as the rotal space. We equip it with a decomposition
E=E, + E_ where dim(Ey) = d and dim(E.) =k — d, with 0 < d < k. The subspaces
E, and E_ are referred to as the physical space and the internal space, respectively. Let
I" be a lattice in E, a discrete subgroup of the total space which is cocompact, that is,
with compact quotient E/ . Therefore, I' = Z¥ and E/ T = (S")*, the k-torus. Finally,
we choose a window W C E_, a compact subset of E. which is equal to the closure of its
interior. In much of what follows we will further restrict to polytopal windows.

Let 7y : E— Ey and 7. : E — E_ denote the projections from the total space to the
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FIGURE 1. The definition of a cut and project set.

physical space and internal space, respectively, where the projections are with respect to
the decomposition E = E,, + E_. We make the standard assumptions that 7y, is injective
onI" and that 7 _(T") is dense in E_.

The data (E, Ey, E_., I', W) is called a k-fo-d Euclidean cut and project scheme.

Notation 2.1. Throughout, given X CE, we let X, :=m,(X) and X_. :=7_(X).
Similarly, for x € [E we write xy := my(x) and x- := 7. (x).

In the literature there are two standard pictures for geometrically representing cut and
project schemes. In some contexts, such as where a special kind of window is given, it is
helpful to consider what happens when E, is being varied; that is, I" is considered fixed,
often with E = R¥ and T" = Z*, and E,, and E_ are ‘skewed’ in E. This is the approach
of [HKW14, HKWS16, HKW18], for example. In other contexts it is preferable to think
of Ey and E_ as fixed with I" varying, taking E := E,, @ E_. This is the case in [MS15].
Of course these viewpoints are ultimately equivalent and since we only specify that E has
the direct sum decomposition E,, + E_, rather than being defined as the direct sum, our
conventions are agnostic as to which is preferred.

Our notation, however, is chosen with the second viewpoint in mind. For a two-to-one
scheme, we imagine ., as the x-axis and E_ as the y-axis of E = R2; see Figure 1. The
notation indicates that [E,, is the subspace to which one projects ‘downwards’, and E_ is
the subspace to which one projects ‘to the left’ (at least, of course, restricting the view
to points in the first quadrant, as in the standard pictures). Similarly, for x € A, the point
xy may be thought of as the projection of the point ‘downwards’ to E,/, and x_ is the
projection of x ‘to the left’.

Since 7, is injective on ', for every y € 'y, there is a unique element, denoted y* € T’
and called the lift of y, for which (y*)y = y. Again, this notation is geometrically inspired
by Figure 1. An important map in analysing the nature of recurrence of patches in cut
and project sets is the star map y — y* mapping I'y, into E_, and defined by y* := (y")-.
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Note that the star map is the composition of the inverse of the isomorphism 7y | : T’ 3 ry
followed by the projection m—, so the star map is a homomorphism (although it is not
continuous in the subspace topology of I'y, C Ey)).

We call a parameter s € E singular if - (I' +5) N 9W # @, otherwise s is non-
singular. The cut and project set associated to the cut and project scheme and non-singular
parameter s is the subset of the physical space defined by

Ag:={wlye@ +s)NnE, + W)} (2.1)

That is, we form the cut and project set by ‘cutting’ out the points of the shifted lattice
I' + s which fall in the ‘strip’ E, + W, and then project them to the physical space; see
Figure 1.

There are also cut and project sets defined by singular parameters, although multiple
ones for each such parameter. In this case, to get permissible cut and project sets one
should make choices, which are consistent in a certain sense, as to which points y,, with
y< € W are included. These choices should be made so that the resulting finite sub-
patches appear in the Ay coming from non-singular parameters, which is to say that these
singular patterns are certain limits of non-singular Aj.

It follows from density of ' in E_ that every Ay for non-singular s has the same
set of ‘finite patches’. As such, the parameter s does not play an important role for
questions concerning complexity. Hence, shifting the window W if necessary, we may
assume without loss of generality that our chosen parameter is s = 0 and is non-singular.
Correspondingly, we denote A := Ao, and observe that equation (2.1) becomes

A={yel,|y* e W) 2.2)

A period of A is some x € E,, with A = A + x. We call A aperiodic if it has no non-zero
periods. It is not hard to show that the set of periods corresponds to the kernel of the star
map, so A is aperiodic if and only if - is injective on I'. We shall not assume aperiodicity
unless otherwise stated.

3. Patches and acceptance domains
Some of the content of this section is very closely related to earlier works; see [Jull0,
BV00, HKWS16].

By identifying E = R* we get an inner product, norm and metric on the total space,
and similarly on the physical and internal space. The particular choice does not affect
our proofs. Denote a closed ball of radius » and centre x by B, (x). Forye A andr > 0
we define P(y, r), the r-patch of y € A, to be A N B,(y), the subset A of points within
distance r of y, together with the specially marked ‘origin’ y € P(y, r). We say that the
r-patches at x and y are translation equivalent if P(x,r) —x = P(y, r) — y, thatis, they
agree up to a translation mapping the marked origin of one to the other.

Cut and project sets, as defined above, have the special property of being repetitive,
that is, for every r > 0 there exists some R, for which every r-patch, up to translation
equivalence, can be found within R, of every point of E,,. Let p(r) denote the number of
translation classes of r-patches in some cut and project set A. This is called the complexity
function of A.
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The translation class of an r-patch at y € A can be determined by which ‘acceptance
domain’ inside the window W the point y* falls into, and hence will play an important role
in analysing the complexity function. We explain here how to construct these acceptance
domains.

LEMMA 3.1. Lety € A. If y + x € A (‘the displacement x occursin A aty’) then x € T\,.
Furthermore, given x € 'y, then y + x € A if and only if y* € W — x*,

Proof. We have that y, y + x € A, so they lift to y*, (y +x)" € I". Hence (y + x)" —
y”™ € T and projects under 7, to x, so x € I'y.

Now assume that y € A and x € 'y are given. By the definition of the cut and project
set (equation (2.2)), y +x € A if and only if (y 4+ x)* € W. Since the star map is a
homomorphism, this in turn is equivalent to y* € W — x*. O

Consider the ‘slab’ of lattice points of width r and E_ coordinate in W — W:
ST ={yelllwl<ry.eW-W} (3.1

Taking B = B,(0) CE, and W — W C E_ as also subsets of E, we may write S(r) =
I'N(B+ (W —W)).Since B and W — W are bounded, and I" is a lattice, S(r) is a finite
set for each r.

Let y € A, so that y* € W. By the above, it is only possible that y + x € A if y* €
W — x*, which implies that x* € W — y* C W — W. In specifying the r-patch at y, one
needs to specify those displacements x € E,, of magnitude at most » which are in the
patch, so that y + x € A, and those displacements which are not in the patch, so that
y + x ¢ A. For each collection one only needs to consider those possible displacements,
sothatx e 'y, ||x|| <r and x* € W — W. So given P = P(y, r), let

Pn:={y eS|y +pr €A} (3.2)
Pow:={y €S(r) |y +r ¢ A} (3.3)
We denote the complement of W in E_ by W€ and its interior by W.

COROLLARY 3.2. Let an r-patch P = P(y, r) be given. With the definitions of Py, and
Pout above, we have that the r-patch at 7 € A agrees with P up to translation if and only
if z* € Ap, where

AP=<ﬂ vf/—y<>m<ﬂ W"—y<>. (3.4)
y€Pp ¥ € Pout
Proof. The r-patches P(y, r) and P(z, r) agree if and only if the sets of displacements
D=y ePy.nN={ -zl eP@n)
agree which, by injectivity of m\, on I" and the discussion above, is if and only if
P(y,r)in=P(z, r)in and P(y, r)ou = P(z, ou

The result then follows from Lemma 3.1, at least after replacing each W — y< with
W — y.. But these sets only differ on their boundaries 0W — y., which are singular
points, so either of y* and z* belong to one if and only if they belong to the other. O
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Definition 3.3. The Ap C W, defined as in the above corollary as certain intersections of
[ translates of W and W€, are called acceptance domains. We let <7 (r) denote the set of
acceptance domains A p of r-patches.

Note that we take the convention here that acceptance domains are open. One could
equally take closed domains, for example by replacing W with W and W€ with (V(l)/)c.
Doing this can result in translates of (Vi/)c intersecting along lower-dimensional subspaces
which one would rather ignore, so we prefer here to take open domains (which is also
marginally more efficient for defining the cut domains later). These distinctions are not
important, since they only differ at points of 9W 4 y. for y € I', which are singular and
thus not relevant in the above corollary.

The window is tiled by the acceptance domains of 27 (r), in the sense that distinct
acceptance domains are disjoint and W = | ., cl(A p), using the fact that the window is
the closure of its interior and denseness of ' in[E_.

4. Quasicanonical cut and project schemes
To n, @ € E- with n # 0 we can associate an affine hyperplane and a half-space:

H:={x+aecE_|xeE_, x-n=0},
Ht:={x+acE_|xeE_, x-n>0}.

In the following, we will usually use the name ‘hyperplane’ for affine hyperplanes, using
the term ‘codimension-1 subspace’ when it is needed that the hyperplane contains the
origin.

The window W is called polytopal if it is compact, has non-empty interior and may be
written as a finite intersection of half-spaces in E . Let 5# " denote the set of half-spaces
defining W. It is uniquely determined by specifying that it is irredundant, that is, omitting
any element results in a strictly larger intersection. Each H' € J#T has an associated
affine hyperplane H, and we denote the set of these by 7. Each element of 7 (as T
is irredundant) intersects W in a (k — d — 1)-dimensional ‘face’; for more details, see §6.

We now introduce a condition on polytopal cut and project schemes which allows for a
simpler analysis of the corresponding acceptance domains, as we shall see later.

Definition 4.1. We call a cut and project scheme quasicanonical if it is polytopal and we
have the following property. For each half-space H* € 2", with opposite half-space
H~ = (H")¢ U H and associated affine hyperplane H € #, and each z € H, there exist
some € > 0 and a finite collection of points xi, ..., x;, € I'< such that one of the following
two equations is satisfied:

HT NB(2) = (U(W_xi)) N Be(2); 4.1
i=1

H™ NB(2)= (U(W - xi)> N Be(2). (4.2)
i=1

Note that even though I'_ is dense, the only translates that are relevant in equations
(4.1) and (4.2) are those that translate a face of W parallel to H into H (see Lemma 4.4).
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FIGURE 2. In this picture, the grey translates of the window are used in satisfying equation (4.1) at appropriate
points of the supporting hyperplane H, given here by a vertical line. The translates marked with an ‘X’ are used
in satisfying equation (4.2) or, equivalently, are those used to exclude points of the opposite half space, as in
Remark 4.2. In the leftmost picture, the quasicanonical condition is satisfied: at all points of the 1D hyperplane,
translates of the square window can be used to locally cover the greyscale half-space. The middle picture also
satisfies the quasicanonical condition, but at some points of the hyperplane one needs to cover this half-space,
and at other points the opposite one (thus using both equations (4.1) and (4.2)). The rightmost picture does not
satisfy the quasicanonical condition: at the ‘corners’, no translates of the window cover the half-space, or its
opposite, in any neighbourhood of that point.

This is because in Definition 4.1 we only allow finite unions. The first formula says that the
half-space H™ corresponding to one face of the window can be exactly covered, in some
neighbourhood of z, by a finite collection of I' translates of the window. The second
formula says the same thing for the opposite half-space. It may be possible that a mixture
of the two possibilities is needed over all points of H; see Figure 2. A set of translates like
those in the rightmost picture of Figure 2 are not sufficient to establish the condition for
that hyperplane.

Notice that the quasicanonical condition, in particular, ensures that the affine
hyperplanes of .77 may be covered by I' . translates of dW (see Lemma 4.4). In §5.2 we
will compare the quasicanonical condition to the almost canonical condition introduced in
[Jul10], and find out that neither is stronger or weaker than the other.

Remark 4.2. Applying complements to equation (4.2) in B¢(z), we have the following
‘dual’ form:

(HT\ H)N B (z) = (ﬂ we — xi) N Be(2). 4.3)
i=1

By Lemma 4.4 below, every point of H is singular. So we see that we have equality,

HY N B(z) = (m we —Xi> N Be(2),

i=1

provided that we restrict the above formula to the non-singular points of the internal space.
This means that, loosely speaking, Definition 4.1 can be rephrased as saying that, for each
H € 5, at each point of z € H, we can either cover the half-space H™ locally with '~
translates of W, or express this half-space by excluding such translates on the opposite
side of the half-space.
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4.1. Boolean schemes. Suppose that for each z € H we may find translates satisfying
the above condition of equation (4.3) (or equivalently equation (4.2), so that we do not
need equation (4.1)). Then the window satisfies the following Boolean condition: we may
find a finite number of elements y; € I so that

¢
WEN (W + (W — W) = (UW—(M) N W+ (W — W)),
i=1
at least after ignoring the singular points of 9 W. The set W + (W — W) here should just be
thought of as a neighbourhood of W: the condition essentially says that we may express
the complement of W, within a certain neighbourhood, using a union of I'. translates
of W.

It follows that we may replace each term W¢ — y_ in equation (3.4) (for y € Poy)
by |JW — (y — vi)<, since points outside of W 4+ (W — W) are not relevant for the
acceptance domains, which necessarily lie in W.

Let ¢ denote the maximum of the norms of the (y;)v, so [[(y — yi)v| <r + c. For
y € A, according to Lemma 3.1, we have that y* € W¢ — y_ if and only if y + y ¢ A,
and that y* € | J(W — (y — y;)<) if and only if one of y + (¥ — yi)v € A. Therefore, in
the Boolean case, to determine if a displacement within radius r is not in A, it is equivalent
to show that at least one of a particular finite set of displacements within radius r + ¢ is
in A.

The Boolean schemes are special cases of quasicanonical ones, but the Boolean
condition is strictly stronger, since it is necessary that if H+ € 7" then a translate of
its opposite half-space is also in 7. For example, one may easily define a triangular
window which is quasicanonical but not Boolean.

Example 4.3. The data (E, E,, E_, T, W) is a canonical cut and project scheme if the
window is given as the projection of (a translate of) a fundamental cell for I', that is,

W = W._ for
k

W= {Z Aibi € E| A €0, 1]},
i=1
where {b; }i.‘zl is a basis for I". For example, when I' = Z* in total space E = R¥ with
standard basis, the window is the projection of the unit hypercube [0, 1]¥ € RF to the
internal space.
As one would hope, a canonical scheme is quasicanonical. In fact, it can be shown that
it has the Boolean condition above.

4.2. Informal discussion: Hoopla. Rather than varying the points y* in W and
considering which r-patches arise depending on where precisely y* € W sits, one may
prefer to imagine a dual picture: translate y* to the origin, and so consider only r-patches
at the origin by moving W instead. We play a game of hoopla, a carnival ring tossing game:
throw d W (carefully: by translation) over the finite set of ‘pegs’ S (r) := 7 (S(r)). You
win a prize if you capture the special peg 0 € S—(r). The prize is an r-patch P, and which
r-patch it is depends only on which pegs land inside the window.
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o

FIGURE 3. On the left: Points inside the translated window belong to the r-patch. On the right: The two translates
correspond to the same r-patch, but external points block a continuous movement of one to the other; some such
points have to be temporarily added during the motion. The acceptance domain is disconnected.

There is a certain amount of room in which to shift 9 W so as to not bump into any pegs
and thus still keep P. The full set of motions in which we may move the window in this
way traces out a connected region which is contained in the acceptance domain A p of the
patch. However, it is vital to note that it is not necessarily the whole of A p, it is just one
of possibly several connected components of A p. The window W is convex, so there is no
issue in moving it between configurations resulting in the same P so long as one removes
pegs outside of the placed window. However, one must also consider these external pegs.
It can happen that they obstruct the motion of the window between two configurations
yielding P, making A p non-convex or even disconnected. See Figure 3.

In the Boolean case of §4.1, this effect is not so important: we can at least manoeuvre
the window between two configurations representing the same r-patch without bumping
into pegs if they correspond to the same (r + c¢)-patch for some fixed ¢ > 0. We shall also
see that in the quasicanonical case the situation is tractable in a similar way.

4.3. Preliminary consequences of the quasicanonical condition. Here we collect some
useful technical results on quasicanonical schemes.

LEMMA 4.4. One may assume that the translates W — x; in equation (4.1) are such that
z€ F —x; € H, where F =W N H is the face in H. Similarly, in equation (4.2), one may
assume that the translates W¢ — x; are such that z € F°P — x; C H, where FP is the face
opposite to F, if it exists, given by FP =W N H°P where H and HP are parallel and
H? e 7.

Proof. Since F C H, clearly if z € F — x; then F — x; € H. We shall show that if z ¢
F — x;, then we may discard the term W — x; in equation (4.1) (perhaps after reducing the
size of €).
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Firstly, note that we may as well assume that z € W — x;. Indeed, otherwise, a
sufficiently small ball about z does not intersect this translate, so we may omit it from
the union.

Giventhatz € W — x;, we have that z € F — x; ifandonly if z € H — x;. If z ¢ H+ —
x; then z ¢ W — x;, so this translate has already been discarded. Suppose, on the other
hand, that z € (H" \ H) — x;, so that x; € (H™ \ H) — z. Since z € H, we equivalently
have —x; e (H~ \ H) —z. Take any f € F. Then f —x; e W —x; and z € W — x;, and
so by convexity the whole line segment between f — x; and z lies in W — x;. On the other
hand, by the above f —x; e (H- \ H)+ (f —z)=H ™ \ H, since f and z € H. So the
line segment between f — x; and z € H lies wholly inside H~ \ H, except for z. We see
that there are arbitrarily nearby points to z which belong to W — x; but not H, so equation
(4.1) cannot hold, a contradiction. So we may assume that z € H — x;, as required.

The case of equation (4.2) is analogous. Note that if there is no face opposite to F' then
equation (4.2) is not used for any z in establishing that the scheme is quasicanonical. O

Notation 4.5. Given an affine hyperplane H, we let V(H) denote its corresponding
parallel vector subspace. Thatis, V(H) :=H — H=H —zforany z € H.

LEMMA 4.6. For a quasicanonical scheme, for each H € 7, we have that T - NV (H)
contains a basis for V(H).

Proof. Let H(A) be the set of z € H for which we may use equation (4.1) in the
quasicanonical definition, and H (B) be the positions where we may use equation (4.2);
so HC H(A)U H(B).

Given z € H(A),choose a(z) € ' sothatz € F — a(z), where F isthe faceof W N H.
By the above lemma, we may assume that each x; of equation (4.1) satisfies this, so there
is such a point. This implies that a(z) € F — z € V(H), and is at most the diameter § of
W in distance from f — z, for some fixed f € F.

Similarly, given z € H(B), choose b(z) € I'< so that z € F°P — b(z), where FP is the
face opposite to F (if this face does not exist then neither does the z € H (B)). Fixing some
20 € H(B), we have that each b(z) — b(z0) € (F —z) — (F —z0) € V(H), and b(z) —
b(zp) is at most 28 from zg — z.

In summary, every point of V (H) is a bounded distance from a point a(z) or b(z) € ',
so ' N V(H) must contain a basis for V (H), as required. 0O

LEMMA 4.7. In the definition of ‘quasicanonical’ one may assume that the same € > 0 is
taken for each z € H.

Proof. By the lemma above there exists a lattice £ < ' N V(H). There is some R > 0
for which H is covered by .Z + Bg(h) for any given i € H. Let €(z) be the € required for z
in equation (4.1) or (4.2). By compactness, there is a finite collection % of balls of the form
Be(7)(z) which covers Bg(h) N H for a now fixed h € H. Therefore, by periodicity and
compactness, the locally finite covering % + £ of balls of the form Be(;)(z) + € for £ €
% has a Lebesgue number, some A > 0 so that every z € H is such that B, (z) is contained
in a ball of # 4 .. The intersections of equations (4.1) and (4.2) for some B (z) also
give a corresponding valid intersection for Be(;)(z + £) for £ € £, by replacing each x;
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with x; — £. We may thus choose our €(z) = A uniformly, since, given z € H, we may
choose some ball of B € & + ¥ which contains By (z), and then use the same x; in either
equation (4.1) or (4.2) for the ball B, (z) as is used for the ball B. O

The following proposition will be helpful in establishing that acceptance domains for
quasicanonical schemes may be identified with regions cut by hyperplanes. Notice that
the sets Z; below are a similar form to the acceptance domains, as defined in equation
(3.4). This should be interpreted as saying that such subsets can be used to precisely cover
H, ignoring points of the boundary H, which are singular by Lemma 4.4. We denote the
interior of H* by Ht = H* \ H.

PROPOSITION 4.8. For a quasicanonical scheme we have the following statement. For

each H € % we may write

o0

Ht = (U Z,~>\H,

i=1

where each Z; is equal to an intersection
Z,-:(ﬂ W—a>m(ﬂ WC—b>,
acA; beB;

for A, B; C ' finite sets for each i € N. Moreover, this collection of sets may be chosen

to be locally finite, in the sense that there is some k € N for which each element of E_ is
contained in at most k sets of the form W —a or W — b fora € Aj and b € B;, i e N.

Proof. According to the previous lemma we may take € > 0 to not depend on z in
equations (4.1) and (4.2). By density of I', we may choose a finite subset Q C I' for
which the intersection

B:= m W —gq

q€Q
has diameter less than € but has non-empty interior, so contains some A-ball.

For z € H, choose v(z) € '« so that B — v(z) contains a A/2-neighbourhood of z.
Choose x; € I'< according to those given by either equation (4.1) or (4.2). In the former
case we denote the set of x; by A(z) and let

Z@)= |J B-v@)nW-a),
acA(z)
and in the latter case we denote the set of x; by B(z) and let

Z(z) = (B —v(2)) m( () we —b>.

beB(z)

In the former case, by equation (4.1), we have that Z(z) € H™, since B — v(z) € B¢ (2),
as z € B — v(z) and this set has diameter less than €. Similarly, Z(z) 2 HT N By /2(2), as
B — v(z) was assumed to contain a A/2-neighbourhood of z and B — v(z) has diameter
less than € so that equation (4.1) applies. In the latter case, we have instead that

(HY\H)N Be(2) = ( M we —b) N Be(2)

beB(z)
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by equation (4.3). By an essentially identical argument to above, we see that Z(z) € (H™ \
H)and Z(z) 2 (H" \ H) N B;2(z). So in either case

(HT\H)NByp() S Z(z) CH .

By Lemma 4.6, ' N V(H) contains a lattice .Z for V (H). By a similar argument to
the proof of the previous lemma, we may choose a finite collection of points z1, z2, ...,
Zn € H so that the balls By, 2(z; + £), for £ € £, cover some §-neighbourhood of H in
E_. For those z; using equation (4.1), we have that

zZe+i= | ((
acA(zi)

and for those z; needing equation (4.2) we have that

Z(Zi)+€=<ﬂ W—q—v(zi)~|—£)ﬁ( ﬂ Wc—b+e>.

qeQ beB(zi)

N W—q—v(Zi)Jrﬁ)ﬂ(W—aJrE)),
q€Q

In either case we have a finite union of intersections of the desired form. They are contained
in H* and give a locally finite covering of H™ restricted to a §-neighbourhood of H, at
least after removing H. By density of I', we can take further translates by I'c of W to
extend this to a locally finite covering of the whole of H \ H. O

5. Cut regions
In this section we discuss a way of analysing the complexity of cut and project sets, not
through acceptance domains, but through cut regions, defined below. In §6 we will prove
complexity bounds that hold under the quasicanonical condition, and in §7 we analyse
acceptance domains directly, without the intermediate step given by Corollary 5.3. The
reason for including the discussion on cut regions under the quasicanonical condition is
twofold. Firstly, there are some instances in the literature where it is mistakenly assumed
that the conclusion of Corollary 5.3 holds, and we wanted to provide full proofs in a very
general setting where this corollary is indeed true. In §5.2 we give examples to show that
Corollary 5.3 does indeed fail under the commonly used almost canonical condition. This
will hopefully help clear some of the misunderstandings surrounding the analysis of cut
and project sets, and gives a reference for the correct proofs. The second reason is that
there are other situations where it is extremely useful to link cut regions to acceptance
domains.
Recall the ‘slab’ of lattice points S(r) from equation (3.1). We similarly define the ‘box’
of lattice points:
B(r):={y €T [lyvl, ly<ll =r}. (5.1

Note that there are constants such that B(c;r) CT"' N B, € B(car), so one might prefer
to imagine instead the ball of lattice points within radius r of the origin; using B(r) will
simply be more convenient for the proofs to follow. As above, we let S (r) := 7 (S(r)),
and similarly B_ (r) := 7 (B(r)).

Consider the translates of the hyperplanes H € J¢ by the elements of 5 (r). Removing
these hyperplanes from W cuts the window into various connected components which we
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call a cut region. We denote the set of them by % (r). We similarly define % (r), removing
instead S— (r) translates. We aim to approximate the acceptance domains .7 (r) using the
cut regions %’ (r). The cut regions %’ (r) will serve as intermediates in establishing this
connection.

Definition 5.1. Given two collections .%| and .%, of subsets of E_, we say that .#| refines
F, and write #| < % if, for all F» € %5, there exists some F; € .%; for which F| C F>.

PROPOSITION 5.2. For a polytopal cut and project scheme we have that:
(1) F(r) <€ (r) for sufficiently large r;

2) €' ()< F)forallr.

Moreover, if the scheme is quasicanonical, then

(3) there exists ¢ > 0 for which </ (r + ¢) < €' (r) for sufficiently large r;
(4) there exist ¢, k > 0 for which €' (kr + ') <€ (r) forall r.

So for a quasicanonical scheme we have that for sufficiently large r,

Exkr+c+)<C«kr+c+)<Akr+c+)<E (kr+) <€ ).

The above proposition shows that for quasicanonical schemes, so long as we do not
mind introducing linear factors, we may replace study of the acceptance domains with the
study of the simpler cut regions. Its main conclusion may be restated as follows.

COROLLARY 5.3. Consider a quasicanonical cut and project scheme. There exist k, ¢ > 0
for which the following holds for sufficiently large r:

Ckr+c) XA (kr+c)<EFr).

That is, for sufficiently large r:

(1)  if the r-patches at x, y € A disagree then x* and y* are separated by a hyperplane
H € 7 translated by an element of B (r);

(2) conversely, if the («kr + c)-patches at x, y € A agree, then these points are not
separated by any such hyperplane.

Before proving Proposition 5.2 we introduce some important notation.

Definition 5.4. For a polytopal cut and project scheme we define the stabilizer of H € 5
as
r'":={(yelr|H=H +y.)}.

Alternatively, r'"=rnwH)+E,) and Ff =n (T is given by ' NV (H)
(recall that V(H) = H — H is the vector subspace parallel to H). As each ' is a
subgroup of ' = ZF, it is free abelian group of some rank rk(H) :=rk(I'"). By Lemma
4.6, Ff spans V (H) for a quasicanonical scheme so tk(H) > k —d — 1. As we shall see
in the next section, we need these ranks to be as large as possible to obtain cut and project
sets of low complexity.

The next statement is the main conclusion of this section. It allows us to bound the
complexity function in terms of the numbers of cut regions, in the quasicanonical case. It
is an immediate corollary of Corollaries 3.2 and 5.3, since each r-patch corresponds to an
acceptance domain of <7 (r).
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COROLLARY 5.5. For a quasicanonical cut and project scheme there exist «, ¢ > 0 for
which, for sufficiently large r,

#6(r) < pkr +¢) <#€(kr +¢).
5.1.  Proof of Proposition 5.2.

5.1.1. Overview. The proofs of (1), that € (r) < €’ (r) for sufficiently large r, and (2),
that €’ (r) < &/ (r) for all r, are trivial.

The proof of (3), that &7 (r + ¢) < € (r) for sufficiently large r, runs as follows. A cut
region of €’ (r) is the intersection of translates of (interiors of) half-spaces from J#T, or
their opposites, from vectors of S— (). Using Proposition 4.8, we replace these half-spaces
with unions of intersections like those defining the acceptance domains. Since vectors of
S<(r) are within a bounded radius of the origin, we only need to consider finitely many
elements of I" . defining these regions, which leads to the value of c.

The proof of (4), that €’ (kr + ¢’) < € (r), uses the fact that each Ff contains a lattice.
So a translated hyperplane defining a cut region of €’ () can be replaced with a translate of
I' . within a bounded distance of the origin. A further argument using the quasicanonical
condition shows that this element can be chosen in W — W.

Proof of (1). For r large enough so that W — W C B,, we have that S(r) C B(r).
Therefore for such r, elements of € (r) are defined by making extra cuts to those from
' (r),s0 € (r) < €' (r). 0

Proof of (2). Let A € .2/(r). Any cut region C € ¢’(r) containing xo € A is wholly
contained in A. Indeed, by equation (3.4), the boundary of A is contained in a union
of B_(r) translates of 9W. We have that 9W C U%p H, so 0A is contained in the union
of cut hyperplanes translated by the elements of S<(r). Any other y € C is connected
to xo € C by a path which avoids dC, and therefore avoids dA, and so y € A too, hence
C C A. O

Proof of (3). For each H € ¢, choose a finite number of sets Z;(H) C H™, for i =

1, ..., n(H), satisfying the following:

(1) each Z;(H) is a finite intersection of I"_ translates of W and W¢;

(2) the union Z(H) = J'" Z;(H) satisties (Z(H) \ H) N (W + (W — W)) = H* N
W+ (W —=W)).

Such a covering exists by Proposition 4.8. Let ¢ be the maximum of the norms of the
elements of '~ needed in constructing all of these sets, once lifted and then projected to
Ey. It easily follows that

HY+)NW=(ZH)\H) +y)NW (5.2)

and
(HDY+ ) NnW=(ZH) \H)+y)NW (5.3)

foranyy e W — W.
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We claim that .« (r + ¢) < %’ (r). So take C € 4’ (r) and let xy € C be a non-singular
point of C. We may write C € W as a finite intersection

C=X+yX)), (5.4)
X

where each X = H* or X = (H+)¢ for some H* € s, and each y(X) € S(r). This
implies that each y(X)~. € W — W. So for each X, there is some H € 5 for which we
may write

X +yX0)NW=(H"+y(X)) = (ZHE)\ H) +y X)) NW,
by equation (5.2) or, by equation (5.3),
X+yX))NW=((HH +yX))=(ZH) \H)+yX))NW.

In the former case, choose some i so that xg € Z; (H) + y (X) . Note that every point
of H 4+ y(X)< is singular by Lemma 4.4, so there is such an i, as the union of the shifts of
the Z; (H) covers the open half-space X + y (X) -~ which contains x(. Replacing each term
W with Vi/ in the intersection defining Z; (H), this is an open subset which is contained in
X 4+ y(X) . So we have found an intersection of translates under I' . of W and W€ which
is contained in the half-space X + y (X)~ and contains xp, where each translation vector
is the sum of y (X) - and one of the finite number of translates defining the Z; (H).

In the latter case, we may write

n(H)
X +yX))NW= (ﬂ (Zi(H)“\ H) + y<X><) nw.
i=1
Since xg belongs to the set on the left it also belongs to each term Z;(H)¢ + y(X)<
appearing on the right, which we may write as

Zi(H)* + y<(X) = (U W —a+ y(X)<> U (U W —b+ y(X><).

So xo belongs to one of the terms in the union above, which we may take as either of
the form W¢ — a + y (X) < or, since xq is non-singular, W—b + y<(X). Making such a
choice for each i and taking the intersection results in a subset containing xo and contained
inX+y(H)-<.

So in either case, for each X in the intersection of equation (5.4) we may replace each
X 4 y(X) < with a smaller set containing x¢ and given as an intersection of I' _ translates
of W or W¢. Each such translate was the sum of an element of norm at most ¢ when lifted
then projected to E,,, and an element y_(X) with y(X) € S(r), so has norm at most r
when projected to E. So the shifts of W and W€ in the intersection are of projections
of lattice elements which project in E,, to elements of norm at most r 4 c. Moreover, we
may assume that their projections to E. belong to W — W, since otherwise they may be
omitted without affecting the intersection with W. So these translation vectors belong to
S~ (r) and so their intersection is contained in an acceptance domain, which in turn is
contained in C, as required. O
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Proof of (4). We must show that every B_ (r) translate of a hyperplane contributing to a
cut region is an S (kr + ¢’) translate of a hyperplane, for some fixed ¢/, ¥ > 0. So let
H € 57 and y € B(r), with H 4 y_ intersecting the window non-trivially.

By Lemma 4.6, T'# spans V (H). So take a basis for V (H) of elements from I'”/ with
fundamental domain of diameter less than ¢ in E_ (which, with c; large enough, we may
take as such a bound for some basis for all choices of H). Hence we may find a Z-linear
sum s € ' of our chosen basis elements for which |[y- —s_|| <c1, so [ls<|| <r + c1.
Now H + (y< — s<) = H + y-; we would like to replace y with y — s in defining the cut
H+y.

In E_, we have seen that ||y~ — s—|| <c;.In E,, itis not hard to see that ||y, — sy || <
kr + ¢, for some constants ¢, k > 0. Indeed, s- was chosen relative to some basis (y1) <,
ooy Vk—d—1) < of V(H) of elements in Ff. Writing s« =Y k; - (vi) <, since ||s<|| <r +
c1, we thus have that Y |k;| < k1 (r + c1), with ] depending on the lengths of the basis
vectors (yi)<. Sos =Y ki - y; with |Is|| < k23 1ki]) < k1k2(r + ¢1), with k; depending
on the lengths of the y; € I'. By assumption y € B(r), so ||yv|| < r and hence

Iy =s)vil=lirvv —=svll =kslly = sl <wsllyll +&3llsll < k3r + kieok3(r 4 c1),

with k3 depending only on the projection . So replacing y with y — s, we may assume
that ||y<|| <c; and that [y || < kr + c2, with k := k3(1 + k142) and 2 1= K1Kk2K3CT.

For each hyperplane H € 57, let Xy € H be a bounded region containing all points
of H within radius c¢; of W. By Lemma 4.4 one may find a finite number of translates
W + (si)<, for s; € I', whose faces parallel to H cover Xy so that either H + (s;)< = H
or HP + (s;) = H, where HP € 7, if it exists, is parallel to H (i.e. with V(H) =
V (H®P)).

We have that H + y- intersects W, and since |y<| <c1, we have that Xy + y<
intersects W by the choice of Xy. Hence there is some translate W + (s;)< + y<
intersecting W, which implies that (s;)< + y~- € W — W, and with H+y.=H +
((5i)< +y<) or H+y.=H® + ((s;)< + y-). In either case, we may replace the cut
defined by H + y- by a cut defined by H' + (s; + y)< with H' € 5#. As established,
(si + ¥)< € W — W, and since the s; were chosen from a finite collection we have that
lGsi)v + il <3+ llvvll < ce3 + (kr + ¢2), where we choose ¢3 so that each ||(s;)v || €
Be,. Setting ¢ :=cp + c3, we thus have that (s; + y)< € Sc(kr 4 ¢), and so the result
follows. a

Remark 5.6. We comment on the size of the constant « in Proposition 5.2.

(a) Inthe codimension-1 case the window is an interval and both the acceptance domains
A(r) and cut regions C'(r) are precisely the intervals in W between the S(r)-
translates of the two endpoints of W. If z € C(r) is such that z +h € W for one
of the endpoints £ (so is actually cutting the window) thenz e W —h C W — W and
thus z € C(r) anyway. Hence, in codimension 1, A(r) = C'(r), and C'(r) = C(r) for
sufficiently large r. In particular, we may take x = 1 in Proposition 5.2.

(b) In codimension larger than 1, we necessarily have that x > 1. We give here a brief
geometric indication of why. Distinct cuts made by a hyperplane H are identified
with the cosets of ' in I'. In particular, a given cut H + z contributes to C’(r)
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when the slab S(r) intersects the coset z + ', and similarly the cut contributes to
C(r) when the box B(r) intersects this coset. If it were the case that T C E_, then
these cuts would be made simultaneously (at least after r is taken sufficiently large
so that W — W C B_(r), where we define B_(r) and B, (r) to be the balls of radius
r in E_ and E,/, respectively). However, we have chosen E_ not to contain lattice
points, that is, with w_ injective on I'. So the cosets of I'# must be ‘slanted’ in a
certain sense with respect to E.. Therefore, the box B\ (r) + B-(r) will intersect
these cosets, visualized as cutting through near the edge or corner of a box, at faster
rate to the slab By (r) + (W — W), where r is given by the distance from the origin
at which the coset passes through a small strip containing the physical space.

The proof of (4) works by replacing a representative of a coset with another, whose E -
coordinate is in (W — W). This exchanges distance in the internal space with that of the
physical space. By rescaling the metric in the internal space direction, the cut and project
set and its geometry remain the same, and one may make « as close to 1 as desired, but
never equal to 1 unless working in a setting which allows 7 to be non-injective on I.

5.2. Troublesome scheming. The result of Corollary 5.3, although stated there
differently, is the tool implicitly utilized in [Jull0] when analysing the complexity
function of a cut and project set. Unfortunately there is an error in the proof of [Jull0,
Proposition 3.1] (discussed in more detail in [HKWS16, pp. 73-74]). We demonstrate
below in Example 5.9 that the almost canonical condition is not strong enough for this
corollary to hold.

Definition 5.7. A polytopal cut and project scheme is almost canonical if for each H € 7
with associated face F € oW, we havethat F +T'. D H.

This first example shows that the quasicanonical condition does not imply the almost
canonical condition.

Example 5.8. Let k =4, d =2 and E_ = {0}> x R?, which we identify with R? in the
obvious way. Let W =[0,1 +a] x[0,1 4+ B8] and fi=(1,14+8), =1, —1—-p),
fai=0+a, 1), fa=(—1—0a,l), where 0 <, < 1. For suitable @ and 8, we may
choose I' so that the projected lattice is given by the Z-span I' . = (f1, f2, f3, fa)z, is of
rank 4 and dense in E .. The quasicanonical condition holds, and corresponds to the middle
diagram of Figure 2. But we may only cover each H € V (J¢°) with I' < translates of W in
an alternating fashion and not using the same face, so the almost canonical condition fails.

The point here is that different faces of the window need to be used to cover H. If
one modifies the almost canonical condition to allow a potentially opposite face to also be
used in covering H, then any quasicanonical scheme must satisfy this modified condition
by Lemma 4.4.

In the next example we illustrate that the quasicanonical condition is also not weaker
than the almost canonical condition and, furthermore, that the almost canonical condition
is not enough for the statement of Corollary 5.3 to hold.

Example 5.9. Consider the case k=3,d =1 and let E. = {0}' x R2. Choose two
linearly independent points x, y € E.. Let W be the triangle with vertices 0, x and y.
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FIGURE 4. The window W of Example 5.9 with three translates, by z, z —x and z — y.

Then V() = {{x)Rr, (¥)r, (¥ — x)r}. We may arrange that the scheme is such that
' =(x,y, z)z for some z € E_ chosen ‘irrationally’ that is, with rk(I"'~) = 3, and with
'~ dense in E_. We may assume that z € W; see Figure 4.

Essentially by construction this scheme is almost canonical: for the hyperplane parallel
to (y)r one can use the translates in Z - y of the face F C H to cover H. But it is not
quasicanonical. The issue is the same as in the rightmost picture in Figure 2.

In more detail, let ¢ > 0 be such that z € I'_(c¢). We claim that &/ (R) < € (c) does not
hold for any R > 0. There are three I" . translates of W, by z, z — x and z — y, as in Figure
4 with a vertex at z. Every other translate either does not contain z or contains it in its
interior. Indeed, we may write y. =n1x + nay + n3z for y € I'. It is easily checked that
if n3 = 1 theneitherz ¢ W + y_ory =z,z — x orz — y. For n3 # 1, the translates of the
hyperplanes defining the boundary of W do not contain z by the irrationality of z relative
to (x, y). In summary, the translated window either contains z in its interior or exterior, or
is one of the three white triangles as in Figure 4.

Consider three vectors «; so that the vectors z + «; belong to the three different shaded
regions in Figure 4. Then for 0 <€ < 1, the three points z + ex; are separated by a
hyperplane of .77 + z, so these three points belong to the different cut regions of €(c).
On the other hand, for any R > 0, for sufficiently small € these three points belong to
the same acceptance domain of o/ (R). Indeed, none of them belong to the three white
triangles of Figure 4, and every other translate of W, as has been established, contains z in
its interior or exterior, so we may choose € small enough so the «; are close enough to z so
that each of the finite number of translates defining .7 (R) contain all three points or none
of them.

We see that in this example, despite the scheme being almost canonical, we may not
replace the analysis of acceptance domains with that of cut regions.

6. Complexity functions for quasicanonical cut and project sets

In this section we calculate the asymptotic growth rate of the complexity function in the
quasicanonical case, adapting ideas from [Jull0]. We shall refine the argument in §7 to
improve the result by removing the quasicanonical requirement. By Corollary 5.5, in the
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quasicanonical case the complexity function can be analysed by counting cut regions. To
this end we need to consider the B_ (r) translates of the hyperplanes of .77 intersecting the
window. There are of order r¥ lattice points in B(r) and so, without further restrictions, one
would generically expect that there are of order 7%~ translates of H € . intersecting W.
However, in higher codimensions the low-complexity cut and project sets are not generic:
they are schemes where different I' - translates of the hyperplanes can coincide, reducing
the number of cuts and so also the complexity.

We shall count cut regions by counting their vertices, which may be estimated by
considering ‘flags’ of the linear subspaces defining the boundary of W.

Definition 6.1. Let X be an n-dimensional vector space, and f ={Vy, ..., V,} be a set
of codimension-1 (i.e. (n — 1)-dimensional) linear subspaces of X. If ("] V; = {0} then we
call f aflag.

We emphasize that there should be precisely n subspaces constituting a flag in an n-
dimensional space and no more. For ease of reference, we state two basic facts related to
flags, whose proofs are a matter of basic linear algebra and are omitted.

LEMMA 6.2. Let V be a codimension-1 subspace of the n-dimensional vector space X,
and V' any subspace of X. Then either V' CV or dim(V N V') =dim(V’) — 1. Hence,
any collection Vi, . .., Vy of codimension-1 subspaces of X with (| V; = {0} contains a
subset which is a flag. Moreover, we can choose such a flag to contain any given V;.

LEMMA 6.3. Let Vi, ..., V,, be codimension-1 subspaces of X, where dim(X) =n. If f =
{Vi, ..., Vayisaflagthen (| V; + ¢; is a singleton set for any cy, ..., ¢y € X. Conversely,
if (\ Vi + ci is a singleton set for some (c;), then f is a flag.

The lemma above allows us to also say that a collection f = {Hi, ..., H,} of affine
hyperplanes of some X = R" is a flag if their intersection is a single point, which is if and
only if the collection V (f) is a flag as defined previously in Definition 6.1.

Let us briefly allow ourselves to consider non-compact versions of polytopes (whose
interiors appear as certain cut regions later).

Definition 6.4. An intersection of a finite number of half-spaces of R with non-empty
interior is called a convex polyhedron. If it is compact then it is called a convex polytope.

We drop the adjective convex from the above definitions, since all polyhedra/polytopes
here will be convex. The finite collection of half-spaces defining a polyhedron will always
be denoted by 77", and the associated hyperplanes by 7.

Definition 6.5. A face of an n-polyhedron P is a subset H N P where H is a hyperplane
for which P is contained in one of the closed half-spaces of H. We call it an n-face if
dim(H N P) = n. We call a O-face a vertex, a 1-face an edge and an (n — 1)-face a facet.
We will regularly identify a vertex {v} with the point v itself.

Here are some well-known properties of the face structure of polyhedra. A good
reference for this is [BG09].
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PROPOSITION 6.6. Let P be an n-dimensional polyhedron with irredundant set 7% of
defining half-spaces (which means that omitting any H € 27 results in an intersection
of half-spaces different to P).

(1) The set 7" is uniquely determined by P.

(2) Every j-face of P is an intersection of (n — j) hyperplanes of 7€, which intersect to
a j-dimensional affine subspace, intersected with P. In particular, every facet is the
intersection H N P for H € 7.

(3) The boundary 9 P is the union of facets of P.

(4) The (j — 1)-faces of P are the facets of the j-faces.

(5) Let FC F1 C---C Fy, =P be a strictly ascending maximal chain of non-empty
faces of P. Then dim(F;4+1) = dim(F;) + 1 for each i. Moreover, dim(Fp) = dim(U)
where U is the intersection of linear subspaces V(H) for H € 5. In particular, P
has vertices if and only if the subspaces V (H) for H € ¢ contain a flag.

Recall the definition of the stabilizer subgroup I'? < T from Definition 5.4. We now
state the main theorem of this section.

THEOREM 6.7. Suppose a quasicanonical k-to-d cut and project scheme is given.
Consider the collection F of flags of . Then p(r) < r%, where

a=maxay for ay:= Z(k—rk(H) —1).
fe7 Hef

6.1. Proof of Theorem 6.7. Lemma 6.8 below estimates the number of cut regions
obtained by removing translates of codimension-1 hyperplanes from E_. This lemma is
similar to [Jull0, Lemma 2.7], but we prove it using a different method, by counting
vertices of connected components.

LEMMA 6.8. Consider a collection V1, Va, ..., Vy of codimension-1 linear subspaces of
E-, with dim(E<) = n, and suppose that (Vi = {0}. Let .7 be the set of flags of the V;.
Take a collection Hil, Hl-z, e Hih(l) of translates of each V; and consider the set € of
connected components of the complement of their union in K. Then there are constants
C1, Ca, determined by only the collection {V;}, for which

n n
<C1 -max [ h(fj)> <#% < <C2 > T1 h(fj))
feF - .
Jj=1 feZ j=1
where each fj € {1, ..., n}is the index of the jth element V¢, € f of the flag.

Proof. The closure C of each connected component of % is an intersection of half-
spaces, bounded by the various translates Hi] . Denote the set of all vertices of connected
components by V.

Since () V; = {0}, by Proposition 6.6 each C € ¥ has at least one vertex, given as an
intersection of some of the hyperplanes defining C. At each vertex v € V there can be at
most a bounded number of C € ¥ containing v, since at most N hyperplanes Hl.j can pass
through v. Since each element of ¥ is incident with at least one vertex of ), there is thus
some constant Cy for which

#6 = Cy - #V.
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On the other hand, each C € ¥ can have at most a bounded number of vertices (since
we have only finitely many V;, and every vertex is the intersection of n of the defining
hyperplanes of C). Hence, there is some constant C, for which

#6 < Cy - #V.
So we are done if we can bound the number of vertices.
By Lemma 6.2 the set .# of flags is non-empty. Given any flag f ={Vy,..., Vg } €
Z#, by Lemma 6.3 any corresponding set of translates {H ;11 ..H }:} intersects at a

single point, that is, at a vertex ). Moreover, different translates produce different
vertices. Indeed, take two different sets of translates which employ dlfferent translates
of Vy,, say with Hy I o Hy. 7' These hyperplanes are parallel, so H/ N H; 7" — ¢ and hence
the intersections of each collectlon result in different vertices. So there are precisely
]_[;;1 h(f;) vertices of VV coming from the flag f, hence

#Y > h(f;).
_;nea;gjljl (f)

We may only claim a maximum here, since some vertices may belong to intersections of
translates of different flags. . . .
On the other hand, suppose that v €V, so that {v} = Hijl1 N HiJ; NN Hl.{n'”. By

Lemmas 6.2 and 6.3 this may be refined to an intersection of a flag of the Hij . It follows

that
N
#w <> [[rh.
feZ j=1
The result now follows from our above comparisons of #% with #). O

The lemma above allows us to calculate the number of connected components of cut
regions from the number of relevant cuts. The lemma below establishes how many relevant
cuts there are in a quasicanonical cut and project scheme. The proof follows from the proof
of Lemmas 7.6 and 7.11 and will be postponed until §7.

LEMMA 6.9. Let H € 7 and B CE. be a bounded subset of the internal space with
non-empty interior. Let N(H, B, r) denote the number of translates under B_(r) of the
hyperplane H which intersect B. Then

N(H, B, r) =< pk—ktH)—1

The above lemma bounds the number of cuts made by the B(r) translates of the
hyperplanes to the window. Lemma 6.8 then allows us to work out the number of cut
regions in the window, which by Corollary 5.5 allows us to bound the complexity function,
proving Theorem 6.7.

Proof of Theorem 6.7. First we show that r* < p(r). By Corollary 5.5 we need to show
that r* <« #% (r). Consider the connected components of E_ with 5. (r) translates of the
hyperplanes removed. Such a connected component either does not intersect W, in which
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case it does not contribute a connected component to % (r), or it intersects W, in which
case it contributes precisely one (by convexity) connected component to % (r). Consider
a small ball B € W (for the purposes of visualization, take it far from the boundary of
W). It is not hard to see, by basic linear algebra and continuity, that B may be taken small
enough so that if C is a cut region bounded by translates Hy, ..., H, which intersect B
non-trivially, then C necessarily intersects W and so contributes a connected component
to € (r) in W. Hence we may obtain a lower bound for #% (r) by considering the number
of connected components in E_ given by removing B (r) translates of the hyperplanes of
A from E_ which intersect B non-trivially. By Lemma 6.9 there are > rk—(f)—1
hyperplanes. It follows from the lower bound of Lemma 6.8 that

such

k—d
k—tk(Hys,)—1 o o
r) > #%'(r) > max r J = max r% > r%.
p(r) > #E (1) ff,ljl max

We now prove the upper bound p(r) < r®. By Corollary 5.5 we have that p(r) <
#% (r). Finding an upper bound for the number of connected components of € (r) is
simpler: any connected component of E_ with B_(r) translates of hyperplanes removed
contributes at most one connected component to € (r) (i.e. if it is contained in W) and
has bounding hyperplanes intersecting W. So by taking B = W in Lemma 6.9 and also
Lemma 6.8,

k—d
pr) <#(r) < Y [T =3 <ot u
feZ j=1 feF

7. Removing the quasicanonical condition

Notice that by Proposition 5.2 we have that €' (r) < &7 (r) for sufficiently large r, whether
the window is quasicanonical or not; that is, the cut regions are smaller than the acceptance
domains. So p(r) < #% (r) for sufficiently large . Hence an upper bound on the number
of cut regions may be found just as above, with the result that p(r) < r® with « as given
in Theorem 6.7. However, if we drop the quasicanonical condition then this estimate is not
necessarily optimal.

For each H € 77, find elements of T’

b= WS n . (7.1)

for which b_ is a basis for E_. and each th e 'l with By as large as possible. Since
one can begin constructing b by taking elements in ' one sees that B is given by the
dimension of the R-linear span of T'#. From this it is clear that the R-span of the vectors
fl.H intersects the R-span of '/ only at 0.

In this section we shall prove that the correct growth rate of the complexity function for
a general polytopal cut and project set is determined by the numbers tk(H) and By.

THEOREM 7.1. Suppose given a polytopal k-to-d cut and project scheme. Consider the
collection F of flags of €. Then p(r) < r® where

o = max oy foraly:= Z (d —1k(H) + Br).
feF Hef
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As one simple consequence, we may bound from above the rate of growth of the
complexity of any polytopal cut and project set, as below. It is also the case that p(r) > r¢
when the polytopal cut and project set is aperiodic, but we postpone the proof to the
forthcoming second part of this article.

COROLLARY 7.2. Any polytopal k-to-d cut and project set is such that p(r) < pdtk—d),

Proof. Since By <rk(H) we have that a/f =d—1k(H)+ By <d— By + By =d.
Since a flag contains (k — d) elements, we see that o’ < d(k — d). O

Suppose that we set the data of E, E,,, E. and W. Then a generic choice of T’
(interpreted, for example, with respect to the Haar measure in the space of lattices) results
in an allowed cut and project scheme (i.e. with 7y injective on I" and I" < dense), and also
with each T'# trivial (since I'*! is non-trivial precisely when there is a non-zero lattice
point in the codimension-1 set V(H) + E,/). So a generic cut and project scheme has
‘maximal complexity’.

COROLLARY 7.3. For a generic lattice as above, the resulting polytopal cut and project
d(k—d)

sets have p(r) <r
Remark 7.4. In both the quasi- and almost canonical cases we have that each By =
k —d — 1, the dimension of V (H). It follows as in [Jul10] that p(r) < r?*=® and that
p(r) > r¢ in the aperiodic case (the relevant arguments can be found in Theorem 4.1, also
see Remark 2.4).

7.1. Proof strategy. Let us give an informal explanation for why the exponent of
Theorem 7.1 is the correct one. Take a face dy of the window, associated to the hyperplane
H. We wish to consider which ‘cuts’ W N (dg + y<) can occur as y is ranged over B(r).

Since the rank of T is k, there are < r* choices for . However, loosely speaking, we
lose rk(H) in the exponent because translates differing by an element of T'? are parallel.
Given a translated face dy + y~, to ensure that it actually intersects the window we are
constrained in k — d of the coordinates, which we use to translate the face back to the
vicinity of the window. Some number of these constrained coordinates, namely, Sy of
them, are already taken into account in the number rk(H) corresponding to parallel cuts.
So we obtain the exponent

k —1k(H) — ((k —d) — pr) =d —1k(H) + Bu

for the relevant number of cuts of the face with the window.

7.2. Proof of upper bound of Theorem 7.1. We now make the above ideas precise.
Given a face dy of W corresponding to H € S, we call dy + y- a face-cut if 0y + y<
intersects W non-trivially. If additionally y € B(r), we write y € Ay (r). We have the
following simple upper bound on the complexity, which we get by extending the face cuts
oy + y< to ‘“full cuts’ H + y-.
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LEMMA 7.5. Consider the set 9 of connected components of W with (A g (r)) < translates
of the hyperplanes H € ¢ removed. That is, we consider the connected components of
W —[Uper H+ (Au()<). Then p(r) < #9.

Proof. By equation (3.4) the boundaries of the acceptance domains A € <7 (r) are
contained in the face-cuts dy + (Agy(r))~. Since each dy C H we have that 0A C
Upew H + Au(r). Hence each connected component of 7 is contained in some unique
acceptance domain, so p(r) = #47/(r) <#%, as desired. ad

To obtain the upper bound of Theorem 7.1 we wish to bound the number of face-cuts
for each face.

LEMMA 7.6. For each H € J there is a bounded set U CE_ for which y € Ag(r)
implies that y- € U.

Proof. Choose some ‘centre’ ¢ € dy and k for which dg € B, (c). If y € Ay (r) (ie. WN
(0g + y<) is non-trivial) then we claim that y. belongs to a x-neighbourhood of W —
c.Indeed,letw e WN @y +y<).Sow—ceW —candw —c€0dy +y< —cC B +
Y, thatis, y. € B (w — ¢). O

LEMMA 7.7. Let H € 7. The number of distinct translates of H by the elements of
(A (r) < is < rn, where o) :=d — tk(H) — .

Proof. Let I'? be the rank-(k — d) subgroup of I' generated by the elements b of equation
(7.1).

Consider the group G = I'/(I'H +I'?). Alternatively, it may be written as I'/(I'* +
r/ ), where I'/ is the rank-((k — d) — By ) free abelian group generated by the vectors
fl.H of equation (7.1). We chose these basis vectors so that '/ N '/ ={0}, so it follows
that ' + I'® has rank rk(H) + ((k — d) — Br). Hence the rank of G is k minus this
quantity, which is o/, .

The group G is isomorphic to 7% + T, where T is some finite torsion group. Let
f1, ..., 1, € T be alist of representatives for 7. We let G’ < T be a free abelian subgroup
projecting isomorphically to the free part of G under the quotient. So every element of
y € I" may be written as

y=v+u+@"+yh
where ¥’ € G, y# e TH and y” € I'’. Moreover, the choice of y’ and #; is uniquely
determined by y.

We claim that for each y’ € G’ and y* € '/, there are most a bounded number of ¢;
and y? € I'? for which y = (y' 4+ t; + y® + y*) € Ay (r). There are only finitely many
t;, so there is no issue there. And since b was chosen so that b_ is a basis for E_, there
are only a bounded number of choices of y? for which (v’ +#; + y ) + y? belongs to
any fixed, bounded set U. Letting U be as in Lemma 7.6, we see that there are < rou
elements (y' + t; + y? + yH) e B(r) N Ay (r) for fixed y#. Adding an element of '/
does not give a new translate of the hyperplane, so the result follows. O
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Proof that p(r) <€ r®. The proof is analogous to the proof that p(r) <r® in the
quasicanonical case. By Lemma 7.5 we just need to bound the number of connected
components coming from extended cuts H + (Ag(r))<. By Lemma 7.7 we can find
the number of cuts in each direction, and using Lemma 6.8, we find that the number of
connected components is < r¥s for each flag. O

7.3. Proof of lower bound of Theorem 7.1. To get a lower bound for p(r) without the

quasicanonical condition we use a slightly more delicate argument to construct ‘enough’

acceptance domains of <7 (r). The strategy will go as follows.

(1) For each flag f € .#, construct a small ‘box” X with sides aligned with those of f,
with X given as an intersection of I' . translates of W or W¢.

(2) For each face of the window corresponding to each hyperplane H of flag, define a
collection AZ(r) C B_(r) giving ‘nice cuts’ of X by the face 9.

(3) Show that the number of ‘nice cuts’ with distinct intersection with X in each direction
is > r% = rd—K(E)+Pr and use these to construct > r< acceptance domains of
27 (r).

First, we realize step 1.

LEMMA 7.8. Take a flag f € F. Then there is a box X C W, of arbitrarily small given
diameter, which is an intersection of I < translates of W and W€ whose sides are aligned
with those of f, that is, it is an intersection of half-spaces whose associated hyperplanes
are parallel to those of f.

Proof. By density of I' , for each H one can find a small element yy € I« which lies on
either side of V (H). In particular, the yy can be chosen so that the intersection W N (W€ +
yg) results in a small ‘slab’ Sy of the form H + I, where [ is an interval orthogonal to
H, at least considering Sy near the centre of the face of W parallel to H. One can repeat
to create such a slab Sy for each H € 7. Again by density of ' we may find lattice
translates of the slabs with non-empty intersection, and thus of the form desired. O

We now define what we mean by a ‘nice cut’ in steps 2 and 3. Henceforth we fix some
flag f and small box X aligned with f as in the above lemma.

Definition 7.9. Let H € f. We say that 0y + z is a nice cut for X if g +2)NX # 0
and (W+2)NX=H"+2)NX. Welet AZ(r) denote the set of y € B(r) for which
oy + y< is a nice cut.

In other words, the translated face fully cuts the box, so without any r-dimensional
facet of dy intersecting the interior of X with r <k —d — 1, and without interference
from other defining hyperplanes of W (see Figure 5). Note that A%(r) C Ag(r).

LEMMA 7.10. Let H € f. If X is sufficiently small then there exists some open set U € E
for which any z € U gives a nice cut oy + z.

Proof. Let c be a ‘centre’ of the face, a point of the interior of dy. Take some «, € >0
with W — ¢ D Byre N (H + —¢); since ¢ belongs to the interior of the face we can find a
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8H+z

LOW + z 8W+Z

FIGURE 5. The translate dy + z is a nice cut for the box X if it cuts all the way through X. The cut on the left is
nice, the cut on the right is not.

sufficiently small ball satisfying this. Let x belong to the interior of X, which we assume
is taken small enough to have diameter less than «. Reduce €, if necessary, to ensure that
Be(x) € X.

We claim that if z € B.(x — ¢) then dy + z is a nice cut. Firstly, we have that (dy +
z) N X # @. Indeed, it contains ¢ + z, since d(x, c+z) =d(x —c,z) <€,s0c + z € X.
Secondly, it cuts fully: suppose that # € H™ and h + z € X. The latter implies that 7 —
ceX—x—(z—(x—c)).Byassumption X —x C Byandz — (x —¢) € Be,soh —c C
Byye. Since h € HT too we have that h € W, as desired. O

So we can obtain a lower bound for the number of nice cuts dy + y~, for y € AIFVI(r),
by restricting to U N B (r) for U some open subset of E_. By further restricting to those
y resulting in distinct intersections X N (H + y<), we complete step 3.

LEMMA 7.11. Let H € f. There are > rou elements y € AZ(r) resulting in distinct
intersections X N (H + y<).

Proof. For a subgroup K of a free abelian group G, let K| denote a group complementary
to K in G, thatis, K N K| = {0} and K + K is finite index in G.
Let U be as in Lemma 7.10. Recall the number 8 := Sy from equation (7.1). Choose

any B elements h = (hy, ..., hg) in 'H which are linearly independent in the internal
space [E_. Call the free group of rank g that they span A. Take A | complementary to A in
I" and pick (k — d — B) elements f = (fg+1, ..., fk—q) from A} so that together with /1 -

the projections f- form a basis for E.. Note that since A + A is rank £, it is finite index
inI', so A- + (A1)< is dense in E.. Therefore we can choose f so that the Z-span of
b=(h, f):=(h1,..., hg, fg+1, ..., fk—a) is as dense in E_ as we wish. In particular,
we may choose f so that for all x e E_, there is £ € 7K1 with x + € - b € U. Here,
-bo=4L1(b1)<+ -+ Lx—q(bxk—q) <. Denote the Z-span of f by B, so that A + B is
rank k — d and has as list of generators b = (h, f) as in equation (7.1).

Take T < T such that T is complementary to I'! 4+ B. Then, since '/ N B = {0},
we have tk(T) =k —tk(H) — (k—d — B) = oz’H, so that #(T N B(r)) > roH . Further,
by the choice of b, for every t € T N B(r) there is £ € 7K suchthatr. + € -b. € U. By
Lemma 7.10 this means that each r + £ - b + dy is a nice cut. Since b_ is a basis for E_,
it is immediate that || 4 £ - b|| KL .
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To finish the proof we only need to check that each element of T corresponds to a
distinct nice cut. Indeed, let 71, ; have ((t])< + €1 - b +0g) N X =((t2)< + €2 - b +
dg) N X for some ¢4, £ € 7%=4 _Since the cuts are nice, it follows that

(t1)< + ¢4 'b<+H=(t2)< +4-bo+H,

that is,
(h—n)+ U —t) -berH,

Since hy, ..., hg € 'H we can ignore them in the above equation. We thus obtain, for
some £, £y € Zk—4-B,
(th—t)+ @ — L) fer?,

Sincet; —tr € T, ({1 — €2) - f € B and T is complementary to 'Y 4+ B, the only way in
which this can be is if both t{ = and £ = £5. O

Proof that p(r) > r®. Take a flag f and construct a small box X according to Lemma
7.8, with X an intersection of B (c) translates W and W¢. By Lemma 7.11 we can find
> r%H nice cuts of X by faces in each direction H. The translates of these cuts can be used
to form cut regions of X, by removing translated hyperplanes from X. By the definition of
a nice cut it is easy to see that such regions may also be expressed via intersections of W
and W€ translated by the same vectors. Indeed, expressing that x € X is above H + z and
below H + 7’ is equivalent to saying that x € W + z and x € W€ + 7’ for a nice cut.

We see that the nice cuts define > r¢’ regions which may be expressed as intersections
of B.(r + c¢) translates of W and W¢. Each acceptance domain of .o (r), by equation (3.4),
is contained in such a region, so there are at least this many patches and p(r) > r? as
desired. O

8. The topology of the transversal and algebra of C-topes

The results above show that neither the quasi- nor almost canonical conditions are strictly
necessary for analysing the complexity of polytopal cut and project sets. However, we shall
show in this section that the typically assumed almost canonical condition is not sufficient
for constructions used in calculating topological invariants of polytopal cut and project
sets, whereas the quasicanonical condition is sufficient.

8.1. Background. We briefly review how one associates topological invariants to
aperiodic patterns, and how the structure of the internal space, projected lattice and window
can in principle be used to determine these invariants for cut and project patterns. See
Sadun’s book [Sad08] for an introduction to the topological study of aperiodic patterns,
and [FHKO02, GHK13] for the specific case of cut and project sets.

Given a tiling or Delone set (a relatively dense and uniformly discrete point set) P,
there is an associated topological space €2, sometimes called the hull of P. It has as points
all patterns locally indistinguishable from P, that is, comprising of the same finite patches
up to translation, at least in the case where P has finite local complexity (FLC), as for
our cut and project sets. It has a topology under which, loosely speaking, two patterns Py
and P, are considered to be close if there are small perturbations (small translations, in
the FLC case) of the two patterns which make them agree on a large ball about the origin.
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We consider the hull €2 of an aperiodic point pattern coming from a cut and project scheme
with polytopal window. It has a (canonical) transversal E C €2, a subspace homeomorphic
to a Cantor set consisting of those point patterns with a point lying over the origin.

There is a ‘cut version” EZ of the internal space. Restricted to a closed set corresponding
to W C E_ it is naturally identified with E. There is a canonical action of I" on ]EE, and
one may show that

Q= (E, xEE)/T, (8.1)

where I' acts with the diagonal action on the product, and in the obvious way on E,
(i.e. by projecting to the physical space and then translating). Moreover, there is a map
EZ — E_, inducing a quotient map Q — (E, x E.)/T =E/T" = T*, which is the map
to the maximal equicontinuous factor. It commutes with the action of translation by E,
and, for 9 W with measure 0, is almost everywhere one-to-one with respect to a uniquely
defined probability measure, which establishes that the dynamical diffraction is pure point;
see [BLMO07, LMS02].

Equation (8.1) is an important first step in the study of topological invariants of 2. Using
the fact that E,, x E€ is homotopy equivalent to EZ and the Serre spectral sequence, one
finds that

H"(Q) = H"(I'; C(EE, Z)).

The left-hand term is the Cech cohomology of € and the right-hand term is the group
cohomology of " with coefficients in the ZI" module of continuous functions from EZ to
Z. Machinery for calculating this group cohomology is set out in [FHK02, GHK13].
In fact, as pointed out in [GHK13, Appendix], the approach essentially constructs a
transversal X for the tiling space and a translation action on it, describing 2 as a suspension

Q= ®R? x x)/79

for a Cantor set X equipped with a Z¢ action. Sadun and Williams [SW03] showed that one
may always write €2 as such a suspension, but this is of little computational help unless one
has a handle on X and the Z¢ action on it. In the case of certain polytopal cut and project
sets, one can effectively describe such a Z¢ action on X by using the I" action on EE.

8.2. The cut internal space.  Consider the set of singular points S in the internal space,
given by those points which lie in a lattice translate of the boundary of the window:
s=Jew -ro.
yell

We let NS denote its complement in E ., the set of non-singular points.

We define a new metric on N S as follows. Given points x, y € NS and y € I, we write
xA,y if W — y_ contains precisely one of x or y; that is, 9W — y. separates x and y.
Then for distinct x, y € NS we let

8(x, y):=sup{l/r|xA,yfory € B(r)}.

Setting §(x, x) =0, it is clear that §(x, y) =0 if and only if x = y, by density of ['_. It
is clearly symmetric. And if x A z then either xA, y or yA, z, since y must belong either
to W — y or its exterior. So the triangle inequality is satisfied: we have the ultrametric
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property §(x, z) < min{d(x, y), §(y, z)}. We then take as our metric on N § the maximum
of the Euclidean metric and §:

d(x, y) :==max{|lx — y[l, 8(x, y)}.

We denote the completion of NS under d by EE. By the definition of the acceptance
domains (see equation (3.4)), two points x, y € W N NS are close if and only if their
corresponding cut and project sets A and Ay (see equation (2.1)) agree to a large radius
about the origin. This agrees with the metric on 2; we see that W N N S corresponds to
the non-singular patterns of the transversal E and its closure in EZ corresponds to the full
canonical transversal E.

The lattice I" acts on NS by y - x = x + y~. Any given y acts uniformly continuously
on N S, so this extends to a continuous group action of I on EE Since |[x — y|| <d(x, y),
the identity map on N S extends to a continuous map from E onto E_.

It is then a fact that Q = (E, x ]EE) /', where I" acts diagonally on the product. We
briefly sketch the reason (for more details, see [FHK02]). To a point x € E€ one may
continuously assign a tiling 7 (x) € 2. For points of NS C IEE this is just the tiling Ay,
otherwise 7'(x) is a limit of non-singular tilings. Every other tiling in € is a translate
of such a tiling, so we have a surjective continuous map f: E, x EE — Q given by
f(, x):=T(x)+ v. It is not hard to see that T (x) and 7 (y) can only be translates of
each other if x and y are in the same I"-orbit, so by aperiodicity 7' (x) + v and T (y) + w
agree if and only if (v, x) = (w, y)mod I'.

8.3. Hyperplane cuts and C-topes. We consider an alternative way of defining EZ
which corresponds to a standard approach in the literature. For x, y e NS, y € I" and
H e 77, we let xlfj y if x and y lie on opposite sides of the translated hyperplane H — y_.
Analogously to above, this defines a metric on N S:

8'(x, y) :=sup{l/r | x|y fory € B(r), H € ).

In other words, x and y are close when separating them by a lattice translate of a
hyperplane defining 0W requires a large lattice element. This defines an ultrametric on
NS, just as before. We then take our metric on N S as

d'(x, y) = max{[|lx — yll, §'(x, y)}.
The completion of (NS, d’) is denoted by E’_.

THEOREM 8.1. Ifthe cut and project scheme is quasicanonical then a sequence is Cauchy
in (NS, d) if and only if it is Cauchy in (NS, d"). Hence, in this case, the identity map
id: (NS, d) — (NS, d’) extends to a homeomorphism ]EE = E_ of the completions.

Proof. This follows from Proposition 4.8 in an analogous way to the proof of Proposition
5.2. It may also be proven from Corollary 5.3, the main conclusion of Proposition 5.2.
Firstly, note that if x A, y then x|)l,{y for some H € 57, so that d(x, y) <d’(x, y). Hence,
a sequence which is Cauchy with respect to d’ must also be Cauchy with respect to d.
Conversely, Corollary 5.3 implies that for sufficiently large r and x, y e W N NS, if x A, y
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does not hold for any y € B(xr + ¢) then x|)1;1,y does not hold for any H € 7 and y’ €
B(r). So, for sufficiently large r, if §(x, y) < (kr +¢)~! then §'(x, y) <r~! forx, y €
W N NS. Hence, a sequence in W N N § which is Cauchy with respect to d is also Cauchy
with respect to d’. Given a generic sequence in N S, not necessarily in W, which is Cauchy
with respect to d, it must converge in E_ (since d(x, y) < ||x — y||). So we may translate
it by an element of y. € I' to a sequence which is eventually contained in W N NS,
by density of I'-. Clearly translating by y. does not change whether or not a sequence
is Cauchy with respect to d or d’, since points are separated by a lattice translate of the
window or a hyperplane if and only if the points shifted by y. are separated by the y-
shift of the window or hyperplane, which only changes the norm of the required translate
by at most a constant, the norm of y. We conclude that a sequence is Cauchy with respect
to d if and only if it is with respect to d’. O

One may view the space [E_ as a version of the internal space which is ‘cut’ by lattice
translates of the hyperplanes of .7#, and the above says that we may use this model to take
the role of E€ in @ = (E, x E€)/T. The topology of the totally disconnected space E_
may be described in terms of the algebra of continuous functions E_. — Z. The compactly
supported such functions correspond precisely to sums of indicator functions of C-topes,
polyhedral regions of E_. whose boundaries are contained in the lattice translates of the
hyperplanes; see [FHKO02, GHK13].

The following example demonstrates that the almost canonical condition does not
guarantee that the space E’_ has the correct topology if we do not also assume the
quasicanonical condition.

Example 8.2. Consider the three-to-one cut and project scheme of Example 5.9 with
triangular window. As noted there, this scheme is almost canonical but not quasicanonical.
Consider the three grey parallelogram regions in Figure 4. These are C-topes. Assigning
different integers to each region describes a continuous function f: E_ — Z. However,
this function does not correspond to a continuous function on the canonical transversal
E C Q. As proven in Example 5.9, for arbitrarily large r each grey region intersects
a common acceptance domain of r-patch. So there are tilings of E which agree to
arbitrarily large radii about the origin but are assigned different values under f, making f
discontinuous on E.
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