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In this paper, we construct an accurate linear model describing the propagation of both
acoustic and gravity waves in water. This original model is obtained by the linearization of
the compressible Euler equations, written in Lagrangian coordinates. The system is studied
in the isentropic case, with a free surface, an arbitrary bathymetry, and vertical variations
of the background temperature and density. We show that our model is an extension of
some models from the literature to the case of a non-barotropic fluid with a variable
sound speed. Other models from the literature are recovered from our model through two
asymptotic analyses, one for the incompressible regime and one for the acoustic regime.
We also propose a method to write the model in Eulerian coordinates. Our model includes
many physical properties, such as the existence of internal gravity waves or the variation
of the sound speed with depth.
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1. Introduction

Several authors have proposed to use the propagation of acoustic waves in the ocean to
detect tsunamis, as sound travels in water at approximately 1500 m s−1 and the velocity
of a tsunami wave is approximately 300 m s−1 (Constantin 2009). The existence of
hydro-acoustic signals generated by tsunami sources such as earthquakes or landslides was
shown by Tolstoy (1950). This motivates the mathematical modelling of the propagation
of both surface waves – the tsunami – and underwater acoustic waves, also called
hydroacoustic waves, in a compressible formulation.

The idea of using acoustic-gravity waves for tsunami early-warning systems dates back
to 1950 (Ewing, Tolstoy & Press 1950). A more recent study (Stiassnie 2010) indicates that
the pressure variations induced by the tsunami are significant enough to be used for the
improvement of the tsunami early-warning systems.

For the description of the propagation of sound in water, the most common model is
a linear wave equation for the fluid potential, i.e. for an irrotational fluid (Jensen et al.
2011). When both surface and acoustic waves are considered, different types of models are
available. In his work, Stiassnie (2010) studies the acoustic equation for the fluid potential
coupled with a free-boundary condition. The three-dimensional acoustic equation is
analysed by Nosov & Kolesov (2007) and a depth-integrated version is proposed by
Sammarco et al. (2013) to reduce the computational costs. This approach was further
developed in a series of papers (Cecioni et al. 2014; Abdolali, Kirby & Bellotti 2015;
Gomez & Kadri 2021).

Another approach was proposed by Longuet-Higgins (1950) where the equation is still
on the fluid potential, but includes a gravity term. This equation, including second-order
terms, made it possible for the first time to explain the seismic noise generated worldwide
by wave interactions in the ocean (Stutzmann et al. 2012). This model was also the starting
point of an extensive work to describe the nonlinear interactions between acoustic and
gravity waves (Kadri & Stiassnie 2013). In other works, such as those of Smith (2015)
and Auclair et al. (2021), the flow is not assumed irrotational, so that the equations are
written for the fluid velocity. They include gravity terms and a vertical stratification for
the background density, temperature and salinity. This generalization allows to study the
internal waves caused by the stratification of the fluid, and dispersion relations for the three
types of waves (acoustic, internal, surface) are obtained.

The above cited works share one or several of the following assumptions: irrotational
flow, homogeneous background density or barotropic fluid, and a constant speed of sound.
These modelling choices have a strong influence on the structure of the equations, resulting
in a variety of tools for their analysis and their numerical approximation. For example, the
irrotationality assumption allows to reduce the number of unknowns, but the validity of
this assumption in the compressible case is not clear. Furthermore, in the models that do
not assume irrotational flow, the bed is assumed to be flat, even though bed variations
are a key element impacting tsunami and acoustic wave propagation (Caplan-Auerbach
et al. 2014). In the ocean, the choice of a constant sound speed may be not appropriate
since the variation of the sound speed creates the SOFAR channel, a horizontal strip
in which the acoustic waves propagate with very little energy loss. Quantifying the
impact of these approximations requires the use of simulations based on a more complete
model. Finally, the free-surface equation induces a strong nonlinearity in the system.
Indeed, the domain on which the equations are written depends on the solution to the
equations. The common approach for the linearization of the system consists in writing
the linear equations on the unperturbed domain. However, by doing so, an approximation
on the domain is made, in addition to the approximation made on the solution.
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Acoustic and gravity waves in the ocean

It is not clear how to quantify the magnitude of the error made by the two combined
approximations.

The aim of this work is to address these modelling choices by deriving an accurate
linear model as rigorously as possible with only very few assumptions for hydro-acoustic,
internal and surface waves propagating in a fluid over an arbitrary bathymetry. Salinity,
thermal dissipation and viscosity are neglected, and to linearize the equations, we assume
that the ocean is at equilibrium and at rest before the earthquake or landslide occurs, and
that the tsunami source induces a small displacement of the water. In this model, the speed
of sound results from the imposed background temperature profile, so that the effects of
the SOFAR channel on the propagation of the hydroacoustic waves are naturally present.
The obtained model is comparable to the model of Auclair et al. (2021); however, our
model includes a bathymetry and a variable sound speed. Moreover, our approach differs
on several aspects as follows.

(i) The problem is formulated as a second-order equation, which allows the use
of numerical solver dedicated to wave propagation problem such as Specfem
(Komatitsch & Tromp 1999). Specfem uses spectral finite elements to compute
acoustic and/or elastic wave propagations, and is widely used in the seismology
community, for example, to simulate seismic waves generated by landslides
(Kuehnert et al. 2020). In addition to the acoustic waves already modelled in
Specfem, the model proposed in the present paper includes the linear water waves.

(ii) The method used to write the linearization of a free-surface flow is generic and can
be applied to extend the model. A possible extension would include second-order
terms (a similar work was done by Longuet-Higgins (1950) in the barotropic
case). Another possibility is to take into account the interaction with the Earth. In
particular, one can consider the elastic deformations of the ocean bottom that are
shown to impact the travel time of tsunami waves (Abdolali, Kadri & Kirby 2019).

Another advantage of having a model with few assumptions is that a cascade of
simplified systems can be obtained from it. We indeed show that with some simplifying
assumptions, our model reduces to the models proposed in the literature. The analysis of
these simplifications helps to understand the mathematical and physical choices made in
these models. For example, the most common model for the propagation of hydro-acoustic
waves (Nosov & Kolesov 2007; Stiassnie 2010; Sammarco et al. 2013) is recovered from
the proposed model by assuming a barotropic fluid and a constant background density.

We also show that our model and the simplified models are energy-preserving. Our
model is a linear version of the Euler equations, and the equation accounting for the energy
conservation may be modified by the linearization. To ensure that the obtained model is
physically relevant, we check that an equation for the energy conservation holds in the
linear case. Beyond this aspect, the energy preservation allows to write stable numerical
schemes (Allaire 2015). Indeed, the properties of a numerical scheme are often related to
the preservation of a discrete energy. For these reasons, the energy preservation is a key
feature, both in the continuous and in the discrete level.

The paper is organized as follows. In § 2, the compressible Euler equations for a
free-surface flow are written, then the system is transformed in Lagrangian coordinates
to keep an exact description of the free surface. After linearization, a wave-like equation
for the fluid velocity is obtained and we show that the energy of the system is preserved. In
§ 3, we show that with additional assumptions, the model reduces to other linear models
from the literature. The barotropic case is studied, then the incompressible limit and the
acoustic limit of the wave equation are written. In § 4, we present a method allowing to
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Figure 1. The domain Ω(t): (a) for time t = 0; (b) for time t > 0. In panel (a), typical profiles for the
temperature and the density at rest are drawn.

write the model in Eulerian coordinates. The obtained system can be linearized at the cost
of an additional approximation, namely that the equations have to be restricted to a fixed
domain, and we show how to obtain a linear free-surface condition. Finally, in § 5, we
obtain a dispersion relation which includes all of the physical effects mentioned above. In
particular, it is a generalization of the dispersion relation studied in the work of Auclair
et al. (2021) to the case of a varying sound speed.

2. Linearization of compressible Euler equations in Lagrangian coordinates

We derive here a linear model around a state at rest for the isentropic compressible Euler
equation with a free surface and an arbitrary bathymetry, valid for a generic equation
of state and a generic vertical temperature profile. We aim at deriving a model which is
physically relevant in the sense that it preserves or dissipates energy. For this reason, we
will analyse the energy equation associated with this system and show that preservation
or dissipation of energy requires a condition on the fluid stratification that is related to the
internal waves.

We consider a portion of the ocean away from the coast and at equilibrium: there is no
mean current and the temperature varies only vertically. In this work, we do not take the
presence of salinity into account; hence, the ocean is assimilated to pure water. The bottom
and the surface of the domain are assumed to be parametrized as graphs, respectively the
topography zb(x, y) ≥ 0 and the free-surface elevation η(x, y, t). The reference level z = 0
is situated inside the earth at an arbitrary level. The ground displacement induced by an
earthquake or landslide source is assumed to take place away from the coast, so that the
domain is considered infinite in the (x, y) plane, see figure 1. The domain is assumed to
have the following description, for all time t,

Ω(t) = {(x, y, z) ∈ R
3 | zb(x, y) < z < η(x, y, t)}. (2.1)

The boundaries of the domain are then defined by

Γs(t) = {(x, y, z) ∈ R
3 | z = η(x, y, t)}, (2.2)

and
Γb(t) = {(x, y, z) ∈ R

3 | z = zb(x, y)− b(x, y, t)}. (2.3)

The function b is the source term, namely the normal displacement of the seabed. It can
represent, for example, an earthquake or a landslide. It is assumed that this displacement
starts at a time t0 > 0, so that b(x, y, 0) = 0.
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Acoustic and gravity waves in the ocean

2.1. Euler equation in Eulerian coordinate

2.1.1. Equations in the volume
The unknowns are the fluid velocity U , its density ρ, its pressure p, its temperature T , its
internal energy e and its entropy s.

For future reference, the equations are written for a viscous fluid with thermal
dissipation. The stress tensor of a Newtonian fluid T has the form

T = (−p + λ∇ · U)I + 2μD(U), (2.4)

where D(U) is defined by D(U) = (1
2 (∂iU j + ∂jU i))i,j=x,y,z and I is the identity matrix in

R
3. The heat flux is denoted by q and is a function of ρ and T .
The conservation of mass, momentum and energy of a Newtonian fluid read, in the

domain Ω(t),
∂ρ

∂t
+ ∇ · (ρU) = 0, (2.5)

∂

∂t
(ρU)+ ∇ · (ρU ⊗ U)+ ∇p = ρg + ∇(λ∇ · U)+ ∇ · (2μD(U)), (2.6)

∂

∂t

(
ρ

|U |2
2

+ ρe
)

+ ∇ ·
((
ρ

|U |2
2

+ ρe + p
)

U
)

= ρg · U + ∇ · (λU∇ · U)+ ∇ · (2μD(U) · U)− ∇ · q. (2.7)

The acceleration of gravity is g = −ge3 with g > 0 and e3 is the unit vector in the vertical
direction, oriented upwards.

To describe the acoustic waves, we derive an equation for the pressure. Among
(ρ, e, T, p, s), only two variables are independent because of the Gibbs law and of the
equation of state (Gill 1982). When considering ρ and s as independent, it is natural to
introduce the scalar functions fe, fp and fT satisfying

e = fe(ρ, s), p = fp(ρ, s), T = fT(ρ, s). (2.8a–c)

With the Gibbs law (∂fe/∂ρ = fp/ρ2 and ∂fe/∂s = fT ), one has

∂e
∂t

+ U · ∇e = fp
ρ2

(
∂ρ

∂t
+ U · ∇ρ

)
+ fT

(
∂s
∂t

+ U · ∇s
)
. (2.9)

Using (2.7) −U · (2.6) and (2.9), one obtains as an intermediate step the evolution equation
of the entropy,

ρT
(
∂s
∂t

+ U · ∇s
)

= λ(∇ · U)2 + 2μD(U) : D(U)− ∇ · q. (2.10)

Now, since p = fp(ρ, s), we have

∂p
∂t

+ U · ∇p = ∂fp
∂ρ

(
∂ρ

∂t
+ U · ∇ρ

)
+ 1

Tρ
∂fp
∂s

(
∂s
∂t

+ U · ∇s
)
, (2.11)

hence using (2.5) and (2.10), one obtains

∂p
∂t

+ U · ∇p = −∂fp
∂ρ
(ρ∇ · U)+ 1

Tρ
∂fp
∂s
(λ(∇ · U)2 + 2μD(U) : D(U)− ∇ · q).

(2.12)

At this point, we use the common assumption that the viscous term and the thermal
dissipation can be neglected compared with the advection term (see Lannes 2013, Chap. 1).
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With (2.10), we see that this is equivalent to assuming that the flow is isentropic. Moreover,
from physical considerations, the function fp must satisfy ∂ρ fp(ρ, s) ≥ 0, hence we can
introduce the speed of sound c defined by

c2 = ∂fp
∂ρ
(ρ, s). (2.13)

Equation (2.12) then reads

∂p
∂t

+ U · ∇p + ρc2∇ · U = 0. (2.14)

Equation (2.14) is used for the study of a compressible fluid in the isentropic case, see Gill
(1982, Chap. 4). Note that the speed of sound c can also be viewed as a function of p and
T , and in that case, we have

c2( p, T) = ∂fp
∂ρ
(fρ( p, T), fs( p, T)). (2.15)

In practice, we choose to work directly with the expression c = c( p, T) tabulated by
International Association for the Properties of Water and Steam (2009). Note that here,
the temperature intervenes as a side variable, because it is necessary to compute the speed
of sound. However, we will see later that only the temperature profile of the state at rest is
needed to close the system.

2.1.2. Boundary conditions
The following boundary conditions hold:

U · nb = ub = ∂tb on Γb, (2.16)

p = pa on Γs. (2.17)

The bottom boundary condition (2.16) is a non-penetration condition with a source term.
It models the tsunami source as a displacement of the ocean bottom with velocity ub. We
denote by nb the unit vector normal to the bottom and oriented outwards. The second
condition (2.17) is a dynamic condition, where we assume that the surface pressure is at
equilibrium with a constant atmospheric pressure pa. Note that the elevation η is a solution
of the following kinematic equation:

∂η

∂t
+ U ·

⎛⎝∂xη
∂yη
−1

⎞⎠ = 0 on Γs(t). (2.18)

2.1.3. Initial conditions and equilibrium state
It is assumed that the initial state corresponds to the rest state, meaning that η(x, y, 0) = H
with the elevation at rest H being independent of space and H > zb(x, y); therefore,

Ω(0) = {(x, y, z) ∈ R
3 | zb(x, y) < z < H}. (2.19)

We choose the following initial conditions for the velocity, the temperature, the density
and the pressure:

U(x, y, z, 0) = 0, (2.20)

T(x, y, z, 0) = T0(z), ρ(x, y, z, 0) = ρ0(z), p(x, y, z, 0) = p0(z), (2.21a–c)
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Acoustic and gravity waves in the ocean

where T0, ρ0, p0 are functions defined on (0,H) but because of the topography zb(x, y),
the functions T, ρ, p need not to be defined from z = 0 for all (x, y).

When the source term ub vanishes, we have an equilibrium state around U ≡ 0 if the
functions T0, ρ0, p0 satisfy

∇p0 = ρ0g, ρ0 = fρ( p0, T0), p0(H) = pa. (2.22a–c)

Hence, if T0(z) is given, the system

dp0

dz
= −gfρ( p0, T0), z ∈ (0,H), (2.23)

p0 = pa, z = H (2.24)

can be solved to compute p0, and then ρ0 is computed with ρ0 = fρ( p0, T0). Note that, in
the forthcoming sections, the system (2.5), (2.6), (2.14) with boundary conditions (2.16),
(2.17) and initial conditions (2.20), (2.21) will be linearized around the previously defined
equilibrium state.

2.2. Lagrangian description
Although most of the works on free-surface flows are done in Eulerian coordinates, the
Lagrangian formalism is sometimes preferred, see for example the paper by Nouguier,
Chapron & Guérin (2015) and the references therein, or the work of Godlewski, Olazabal
& Raviart (1999) for a precise derivation of linear models. Here we choose the Lagrangian
description to avoid any approximation on the shape of the domain when we linearize
the equations. The usual approximation made on the surface for the linear models in
Eulerian coordinates consists in evaluating the surface condition on pressure at a fixed
height, rather than at the actual, time-dependant free surface. The kinematic boundary
condition is also replaced by its linear approximation. For the derivation and justification
of the approximation, see Lighthill (1978, Chap. 3).

Let Ω̂ be the domain of the ocean at a reference time, with its surface boundary Γ̂s and
bottom boundary Γ̂b. The reference time is chosen before the tsunami generation, so that
the surface of the domain is horizontal. In fact, the following natural choice is made:

Ω̂ = Ω(0), Γ̂s = Γs(0), Γ̂b = Γb(0). (2.25a–c)

The position at the reference time of a fluid particle is denoted

ξ = (ξ1, ξ2, ξ3) ∈ Ω̂. (2.26)

At time t, the fluid has moved, the domain is Ω(t) and the new position of a fluid particle
is x = (x(ξ , t), y(ξ , t), z(ξ , t)) ∈ Ω(t). We denote by φ the transformation from Ω̂ toΩ(t)
that maps each particle from its reference position ξ to its position x at time t (see figure 2):

φ :

{
Ω̂ → Ω(t)
ξ �→ x(ξ , t)

. (2.27)

Hence, one has x = φ(ξ , t). The transformation is assumed invertible, in particular, we
do not consider the case of wave breaking. We also define the displacement of the fluid.
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Ω̂

H

Γ̂b

(ξ1, ξ2)

ξ3

Φt
Ω(t)

Γb

ΓsΓ̂s

(x, y)

z

Figure 2. The mapping φt between the reference domain Ω̂ = Ω(0) and the domain Ω(t).

For each fluid particle with initial position ξ , its displacement is defined by

d(ξ , t) = φ(ξ , t)− ξ . (2.28)

The gradient of φ with respect to ξ is denoted F ,

F = ∇ξφ, (2.29)

and its determinant is denoted J. Both F and J can be expressed as functions of the
displacement,

F = I + ∇ξd, J = det F , (2.30a,b)

where ∇ξ is the gradient with respect to the coordinate system ξ . For a function X(x, t)
defined on the domain Ω(t), we introduce X̂(ξ , t) defined on Ω̂ by

X̂(ξ , t) = X(φ(ξ , t), t). (2.31)

Finally, note that the velocity Û(ξ , t) = U(φ(ξ , t), t) is the time derivative of the
displacement d,

Û = ∂d
∂t
. (2.32)

With this change of coordinates, the system (2.5), (2.6), (2.14) is now defined in the
time-independent reference domain Ω̂ and it reads

∂ρ̂

∂t
+ ρ̂

|J|∇ξ · (|J|F−1Û) = 0, (2.33)

ρ̂
∂Û
∂t

+ F−T∇ξ p̂ = ρ̂g, (2.34)

∂ p̂
∂t

+ ρ̂ĉ2

|J| ∇ξ · (|J|F−1Û) = 0. (2.35)

The boundary conditions become

Û · n̂b = ûb on Γ̂b, (2.36)

p̂ = pa on Γ̂s, (2.37)

where n̂b is a unit vector normal to Γ̂b and pointing towards the exterior of the domain.
The variables ρ̂, p̂, T̂ satisfy the same equation of state,

p̂ = fp(ρ̂, T̂), (2.38)

and the speed of sound is a function of the new variables, ĉ = c(ρ̂, ŝ).
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2.3. Linearization and wave equation
We assume that the source of the tsunami is a displacement of magnitude a at the seafloor
occurring in an ocean at rest as described in § 2.1.3. In particular, for this rest state, there
is no mean current and the temperature, pressure and density vary only vertically. The
magnitude of the displacement is assumed small compared to the water height H. The
ratio of the bottom displacement amplitude to the water height is denoted ε = a/H 	 1,
and the source term can be expressed as

ûb = εûb,1 + O(ε2). (2.39)

The linearization of (2.33)–(2.35) around the rest state corresponds to the following
asymptotic expansion:

d(ξ , t) = εd1(ξ , t)+ O(ε2), (2.40)

ρ̂(ξ , t) = ρ̂0(ξ)+ ερ̂1(ξ , t)+ O(ε2), (2.41)

p̂(ξ , t) = p̂0(ξ)+ εp̂1(ξ , t)+ O(ε2). (2.42)

Note that the displacement has no zero order term, because the reference configuration
used to define the Lagrangian description is the state given by the initial conditions. It
holds then that d0 = 0, Û0 = 0 and Ω̂ = Ω(0).

Remark. In comparison with the linearization done by Auclair et al. (2021), where
the expansion of the density and the pressure is justified with the decomposition into
hydrostatic and non-hydrostatic components, the asymptotic expansion (2.41)–(2.42) is
obtained in a more straightforward way. Indeed, it only requires the assumption of a small
perturbation.

From the expansion, one deduces the following Taylor expansions for the other
functions:

Û = εÛ1 + O(ε2), (2.43)

F = I + ε∇ξd1 + O(ε2), (2.44)

(F )−1 = I − ε∇ξd1 + O(ε2), (2.45)

J = 1 + ε∇ξ · d1 + O(ε2). (2.46)

Injecting these expressions in (2.33)–(2.35) yields the system

∂

∂t
(ρ̂0 + ερ̂1)+ ερ̂0∇ξ · Û1 = O(ε2), (2.47)

ερ̂0
∂Û1

∂t
+ (I − ε∇ξd1)

T∇ξ p̂0 + ε∇ξ p̂1 = (ρ̂0 + ερ̂1)g + O(ε2), (2.48)

∂

∂t
(p̂0 + εp̂1)+ ερ̂0c2(p̂0, T̂0)∇ξ · Û1 = O(ε2). (2.49)

By separating the powers of ε, we obtain two systems: a limit system when ε → 0 and
a system for the first-order corrections. Since the limit system corresponds to the initial
conditions described in § 2.1.3, the model reduces to the first-order system.
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2.3.1. First-order system: a wave-like equation for the velocity
The system for the correction terms reads in Ω̂ ,

ρ̂0
∂Û1

∂t
+ ∇ξ p̂1 − (∇ξd1)

T∇ξ p̂0 = ρ̂1g, (2.50)

∂ρ̂1

∂t
+ ρ̂0∇ξ · Û1 = 0, (2.51)

∂ p̂1

∂t
+ ρ̂0ĉ2

0 ∇ξ · Û1 = 0, (2.52)

with the boundary conditions

Û1 · n̂b = ûb,1 onΓ̂b, (2.53)

p̂1 = 0 on Γ̂s. (2.54)

In this system, the speed of sound is evaluated at the limit – or background – pressure and
temperature, ĉ0 = c(p̂0, T̂0). In particular, ĉ0 can be written as a function of depth. With
an adapted temperature profile, it is then possible to recover the typical speed of sound
profile creating the SOFAR channel.

The pressure p̂1 and density ρ̂1 can be eliminated in (2.50) thanks to the other equations:
differentiating in time (2.50) and replacing ρ̂1 and p̂1 with (2.51), (2.52), we obtain a
second-order equation for Û1,

ρ̂0
∂2Û1

∂t2
− ∇ξ (ρ̂0ĉ2

0∇ξ · Û1)− (∇ξ Û1)
Tρ̂0g + ρ̂0∇ξ · Û1 g = 0 in Ω̂. (2.55)

Using (2.52), the surface boundary condition (2.54) is formulated for Û1, hence the two
boundary conditions for the wave-like equation (2.55) are

Û1 · n̂b = ûb,1 on Γ̂b, (2.56)

∇ξ · Û1 = 0 on Γ̂s. (2.57)

The wave-like equation (2.55) is completed with vanishing initial condition for Û1(0) and
∂tÛ1(0). The system (2.55) includes both gravity and acoustic terms. This equation, which
describes the velocity of a compressible, non-viscous fluid, in Lagrangian description, is
called the Galbrun equation. It is used in helioseismology and in aeroacoustics (Legendre
2003; Maeder, Gabard & Marburg 2020; Hägg & Berggren 2021). However, to our
knowledge, this equation has never been used to describe the propagation of hydro-acoustic
waves.

We show now that the system (2.55), (2.56), (2.57) is energy preserving. A model
describing a physical system should either preserve or dissipate energy, and this property
makes it also possible to write a stable numerical scheme. Here the energy equation is
obtained by taking the scalar product of (2.55) with ∂tÛ1 and integrating over the domain.
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After some computations (see Appendix A), we have
d
dt
E =

∫
Γ̂b

ρ̂0(c2
0∇ξ · Û1 − ρ̂0gÛ1 · e3)

∂ ûb,1

∂t
dσ, (2.58)

with the energy being the quadratic functional given by

E =
∫
�̂

ρ0
1
2

∣∣∣∣∣∂Û1

∂t

∣∣∣∣∣
2

dξ + 1
2

∫
�̂

ρ̂0

(
ĉ0∇ξ · Û1 − g

ĉ0
Û1 · e3

)2

dξ

+ 1
2

∫
�̂

ρ̂0Nb(Û1 · e3)
2 dξ + 1

2

∫
Γ̂s

ρ̂0g(Û1 · e3)
2 dσ. (2.59)

The scalar Nb is the squared Brunt–Väsisälä frequency, defined by

Nb(ξ
3) = −

(
g2

ĉ0(ξ3)2
+ g

ρ̂′
0(ξ

3)

ρ̂0(ξ3)

)
. (2.60)

The Brunt–Väisälä frequency, or buoyancy frequency, is closely related to the internal
waves that appear in a stratified medium (Gill 1982, Chap. 6). In the ocean, the usual
values of Nb are approximately 10−8 rad2 s−2 (King et al. 2012).

The physical interpretation for the different terms in the energy is clearer when one
writes the wave-like equation (2.55) in terms of the displacement d1 instead of the
velocity Û1. Using ∂td1 = Û1 and integrating (2.55) once in time with the vanishing
initial conditions for the displacement, one obtains

ρ̂0
∂2d1

∂t2
− ∇ξ (ρ̂0ĉ2

0∇ξ · d1)− (∇ξd1)
Tρ̂0g + ρ̂0∇ξ · d1g = 0 in Ω̂. (2.61)

The exact same steps of Appendix A, with d1 instead of Û1, yield the energy equation
d
dt
Ed =

∫
Γ̂b

ρ̂0(c2
0∇ξ · d1 − ρ̂0gd1 · e3)ûb,1 dσ, (2.62)

with the energy

Ed =
∫
�̂

ρ̂0
1
2
|Û1|2 dξ + 1

2

∫
�̂

ρ̂0

(
ĉ0∇ξ · d1 − g

ĉ0
d1 · e3

)2

dξ

+ 1
2

∫
�̂

ρ̂0Nb(d1 · e3)
2 dξ + 1

2

∫
Γ̂s

ρ̂0g(d1 · e3)
2 dσ. (2.63)

The first term in (2.63) is the kinetic energy. We show that the second term of (2.63)
corresponds to the acoustic energy. First, using (2.52) with the vanishing initial conditions
yields ρ̂0ĉ2

0 · ∇ξd1 = −p̂1. We define then the acoustic pressure

pa = p̂1 − ∇p̂0 · d1. (2.64)

Indeed, in Lagrangian coordinates, the pressure perturbation p̂1 has two contributions: the
small variations in acoustic pressure and the background pressure being evaluated at a new
position. With the definition of pa and (2.24), it holds that for the second term of (2.63),

1
2

∫
�̂

ρ̂0

(
ĉ0∇ξ · d1 − g

ĉ0
d1 · e3

)2

dξ = 1
2

∫
�̂

p2
a

ρ̂0ĉ2
0

dξ , (2.65)

which is the usual expression for the acoustic energy (Lighthill 1978). The last term of
(2.63) is the potential energy associated with the surface waves. Finally, the third term of
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(2.63) is the potential energy associated with the internal gravity waves (Lighthill 1978),
under the condition

Nb > 0. (2.66)

When Nb is positive, it is denoted Nb = N2, where N is the buoyancy frequency. The sign
of Nb depends on the choice of the state at equilibrium: ρ̂′

0 = dρ̂0/dz has to be negative
and satisfy

|ρ̂′
0|
ρ̂0

>
g

ĉ2
0
. (2.67)

With the term in g2/ĉ2
0, we see that the compressibility tends to take the fluid away from

its equilibrium. The stratification of the fluid must be strong enough to counter this effect
and keep the system stable (see the discussion in Gill 1982, Chap. 3). As a consequence, if
one wants the model to preserve the energy of the system, the background density should
not be assumed homogeneous. In the following, we assume that the fluid has a stable
stratification, namely that the function Nb is assumed always positive. We will use the
notation N2 in the rest of this paper.

Remark. According to the equation of state (when the salinity is neglected) ρ = fρ( p, T),
the background density varies because of the variations in temperature and in pressure. The
temperature profile can be chosen homogeneous, but the effect of gravity – see (2.24) –
prevents the pressure to be independent of depth. Hence in a model with gravity, the fluid
is always stratified with the density increasing with depth.

Remark. One can notice that the condition (2.67) is not explicit in (2.55). We obtain this
condition when imposing that the energy Ed is positive.

3. Derivation of simplified models

To compare with existing models, we present several simplifications of our model. We first
show that in the barotropic case, the system (2.55)–(2.57) is equivalent to the first-order
scalar equation of Longuet-Higgins (1950). Our model also reduces to well-known models
in the acoustic and incompressible asymptotic regimes, as demonstrated below. Further
numerical implementations of our model will make it possible to quantify the impact of
assumptions made in more simple models, in particular in the case of acoustic-gravity
wave generation by earthquakes or landslides in the ocean.

3.1. The barotropic case
We consider the barotropic case, which is a very common assumption for the study
of hydro-acoustic waves (see for example Longuet-Higgins 1950, Stiassnie 2010). For a
barotropic fluid, the pressure is a function of the density only,

fp(ρ, s) = fp(ρ) = p. (3.1)

Then, using (2.22) and the definition of the speed of sound,

p̂′
0 = ρ̂′

0
dfp
dρ
(ρ̂0) ⇒ −ρ̂0g = ρ̂′

0ĉ2
0, (3.2)

meaning that the Brunt–Väisälä frequency vanishes, N2 = 0. This corresponds to the case
where the density is stratified because of the variation of pressure only. To use this equality,
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we divide (2.55) by ρ̂0,

∂2Û1

∂t2
− ∇ξ (ĉ2

0∇ξ · Û1)−
(
ρ̂′

0
ρ0

ĉ2
0 + g

)
∇ξ · Û1e3 + ∇ξ (Û1 · e3)g = 0, (3.3)

and when (3.2) holds, the (3.3) can be simplified and reads

∂2Û1

∂t2
− ∇ξ (ĉ2

0∇ξ · Û1)+ ∇ξ (Û1 · e3)g = 0. (3.4)

Taking the curl of (3.4) yields

∂2∇ξ × Û1

∂t2
= 0 in Ω̂. (3.5)

With the vanishing initial conditions, we obtain that the velocity of a barotropic fluid is
irrotational. This is a well-known result, since the fluid is also inviscid and subject to a
potential force only (Guyon 2001, Chap. 7). By the Helmholtz decomposition theorem
(Girault & Raviart 1986), the fluid velocity is written as the gradient of a potential ψ
defined up to a constant. The expression Û1 = ∇ξψ is used in (3.4) to obtain

∇ξ
(
∂2ψ

∂t2
− ĉ2

0ξψ + g
∂ψ

∂ξ3

)
= 0. (3.6)

The potential ψ being defined up to a constant, it can always be sought as the solution of

∂2ψ

∂t2
− ĉ2

0ξψ + g
∂ψ

∂ξ3 = 0. (3.7)

Equation (3.7) is multiplied by ρ̂0/ĉ2
0, and we use g/ĉ2

0 = −ρ̂′
0/ρ̂0,

ρ̂0

ĉ2
0

∂2ψ

∂t2
− ρ̂0ξψ − ρ̂′

0
∂ψ

∂ξ3 = 0. (3.8)

Additionally, since ρ̂0 depends only on ξ3, the two last terms can be rewritten,

ρ̂0

ĉ2
0

∂2ψ

∂t2
− ∇ξ · (ρ̂0∇ξψ) = 0. (3.9)

Hence,ψ satisfies a wave equation. The boundary conditions are then deduced from (2.56)
and (2.57),

∇ξψ · n̂b = ûb,1 on Γ̂b, (3.10)

ĉ2
0ξψ = ∂2ψ

∂t2
+ g

∂ψ

∂ξ3 = 0 on Γ̂s. (3.11)

The system (3.7), (3.10), (3.11) is the first-order system obtained by Longuet-Higgins
(1950). In Longuet-Higgins (1950), the derivation is quite different since the irrotationality
assumption is made independently from the fact that the fluid is barotropic, and the
boundary conditions are obtained from a linearized surface condition. The linearization
made by Longuet-Higgins (1950) gives exactly the same result as the linearization strategy
we have presented.
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We show that the system (3.9)–(3.11) is energy preserving. Equation (3.9) is multiplied
by ∂tψ and integrated by parts,∫

�̂

ρ̂0

ĉ2
0

∂ψ

∂t
∂2ψ

∂t2
dξ +

∫
�̂

ρ̂0∇
(
∂ψ

∂t

)
· ∇ψ dξ

−
∫
Γ̂s

ρ̂0
∂ψ

∂t
∇ψ · e3 dσ +

∫
Γ̂b

ρ̂0
∂ψ

∂t
∇ψ · nb dσ = 0. (3.12)

With the boundary conditions (3.10)–(3.11) and after simplifications,

d
dt
Ebar = −

∫
Γ̂b

ρ̂0
∂ψ

∂t
ûb,1 dσ, (3.13)

where the energy Ebar is defined by

Ebar = 1
2

∫
�̂

ρ̂0

ĉ2
0

(
∂ψ

∂t

)2

dξ + 1
2

∫
�̂

ρ̂0|∇ψ |2 dξ + 1
2

∫
Γ̂s

ρ̂0

g

(
∂ψ

∂t

)2

dξ . (3.14)

The first term of (3.14) is the acoustic energy. Indeed, with (2.14) and (3.2), one can show
that the acoustic pressure pa and the potential ψ satisfy the usual relation pa = −ρ̂0∂tψ
(Lighthill 1978, Chap.3). The second term of (3.14) is the kinetic energy. Finally, with
(3.11), one sees that the third term of (3.14) is the potential energy of the surface waves.
To obtain the energy equation for the barotropic system (3.9), it is necessary to use the
background density ρ̂0 even if it does not appear in (3.9). The correct manipulation for
writing the energy equation was found by comparison with the general case described by
(2.55).

Finally, note that when assuming a homogeneous density in the (3.9), the system
(3.9)–(3.11) reduce to

∂2ψ

∂t2
− ĉ2

0ψ = 0 in Ω̂, (3.15)

∇ξψ · n̂b = ûb,1 on Γ̂b, (3.16)

∂2ψ

∂t2
+ g

∂ψ

∂ξ3 = 0 on Γ̂s, (3.17)

and the energy (3.14) is not modified by this assumption. However, assuming a
homogeneous density is not compatible with the derivation of the system (3.9)–(3.11),
which relies on the equality g/ĉ2

0 = −ρ̂′
0/ρ̂0. The model (3.15)–(3.17) can be understood

as a barotropic model with the additional assumption that both −ρ̂′
0/ρ̂0 and g/ĉ2

0 are
neglected inside the domain.

3.2. Two asymptotic regimes of the system
In this section, we write the limit models for two asymptotic regimes of the system
(2.55)–(2.57). We consider the incompressible regime, where the acoustic waves are
neglected, and the acoustic regime, where the effect of gravity is neglected. The wave
equation (2.55) is written in non-dimensional form, and we show that it depends on a small
non-dimensional parameter. A simplified model is then obtained by passing formally to the
limit when the small parameter vanishes. By making the appropriate choice for the time
scale, we obtain first an incompressible approximation, then an acoustic approximation.
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3.2.1. Non-dimensional equation
We introduce the following characteristic scales for the system: a time τ , a horizontal
scale L, a vertical scale H, a density ρ̄ and a fluid velocity U. Since the speed of sound
is not assumed constant, we denote by C its characteristic magnitude. Finally, the surface
waves velocity is of the order of

√
gH (Constantin 2009). We focus on a non-shallow water

formulation, hence we take L = H. For a shallow water version of the equation, one would
choose H 	 L.

Two dimensionless numbers are introduced: the Froude number and the Mach number,
respectively defined by

Fr = U√
gH
, Ma = U

C
. (3.18a,b)

To fix the idea, we choose the following numerical values respectively for the speed of
sound, the fluid velocity and the surface waves velocity: C ∼ 1480 m s−1, U ∼ 1 m s−1

and
√

gH ∼ 100 m s−1. The dimensionless numbers are then

Fr = 0.01, Ma = 6.10−4. (3.19a,b)

The characteristic scale for time will be fixed later, as it will depend on the regime we want
to study. The variables are put in non-dimensional form and the dimensionless variables
are denoted with a ·̃, except for the space and time variable for the sake of conciseness.
The adimensionned domain is denoted by Ω̃ and its surface and bottom boundary are
respectively Γ̃s and Γ̃b. The non-dimensional system reads, after simplification by the
factor ρ̄U,

ρ̃0

τ 2
∂2Ũ1

∂t2
− C2

L2 ∇ξ (ρ̃0c̃2
0∇ξ · Ũ1)+ g

L
ρ̃0(∇ξ (Ũ1 · e3)− ∇ξ · Ũ1e3) = 0, (3.20)

with the boundary conditions

Ũ1 · ñb = ũb,1 on Γ̃b, (3.21)

∇ξ · Ũ1 = 0 on Γ̃s, (3.22)

where ũb,1 is a dimensionless source term.

3.2.2. Incompressible limit
We show that in the incompressible regime, our model is an extension of the classical
free-surface Poisson equation to the case of a variable background density.

To study the incompressible limit, the characteristic time τ is chosen to follow the
surface waves, which are much slower than the acoustic waves. We take L/τ = √

gH.
Equation (3.20) becomes

ρ̃0
∂2Ũ1

∂t2
− Fr

Ma
∇ξ (ρ̃0c̃2

0∇ξ · Ũ1)+ ρ̃0(∇ξ (Ũ1 · e3)− ∇ξ · Ũ1e3) = 0. (3.23)

The small parameter δ = Ma/Fr ∼ 6.10−2 is introduced in the equation,

ρ̃0
∂2Ũ1

∂t2
− 1
δ2 ∇ξ (ρ̃0c̃2

0∇ξ · Ũ1)+ ρ̃0(∇ξ (Ũ1 · e3)− ∇ξ · Ũ1e3) = 0, (3.24)
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and the goal is now to calculate the limit of (3.24) when δ goes to zero. We make the
following ansatz for Ũ1:

Ũ1 = Ũ1,0 + δ2Ũ1,2 + O(δ3), (3.25)

where Ũ1,0, Ũ1,1 and Ũ1,2 are independent of δ. Since (3.24) has only even powers of δ,
the term Ũ1,1 is equal to zero. Replacing Ũ1 by its ansatz in the wave equation (3.24) and
separating the powers of δ yields an equation for each term of the asymptotic development
of Ũ1.

The equation obtained with the terms in δ−2 reads

∇ξ (ρ̃0c̃2
0∇ξ · Ũ1,0) = 0, (3.26)

and the equation obtained with the terms in δ0 reads

ρ̃0
∂2Ũ1,0

∂t2
− ∇ξ (ρ̃0c̃2

0∇ξ · Ũ1,2)+ ρ̃0(∇ξ (Ũ1,0 · e3)− ∇ξ · Ũ1,0 e3) = 0. (3.27)

With the terms in δ0 of the boundary conditions, we have

∇ξ · Ũ1,0 = 0 on Γ̃s, (3.28)

Ũ1,0 · ñb = ũb,1 on Γ̃b. (3.29)

Additionally, the terms in δ2 of the boundary conditions read

∇ξ · Ũ1,2 = 0 on Γ̃s, (3.30)

Ũ1,2 · ñb = 0 on Γ̃b. (3.31)

We show now that the limit model represents an incompressible flow. The Helmoltz
decomposition of Ũ1,0 reads

Ũ1,0 = ∇ξϕ1,0 + ∇ξ × ψ1,0, (3.32)

where ϕ1,0 vanishes on Γ̃s and Γ̃b. Injecting the decomposition of Ũ1,0 in (3.26) yields

∇ξ (ρ̃0c̃2
0 ξϕ1,0) = 0, (3.33)

hence the term inside the gradient is constant in space. Since the velocity Ũ1,0 is equal to
zero at infinity, we obtain that ξϕ1,0 = 0 in Ω̃ (the quantity ρ̃0c̃0 being always strictly
positive). With the vanishing boundary conditions for ϕ1,0, we obtain that ϕ1,0 is equal to
zero everywhere in Ω̃ . Then, taking the divergence of Ũ1,0 yields

∇ξ · Ũ1,0 = ∇ξ · (∇ξ × ψ1,0) = 0, (3.34)

hence Ũ1,0 is divergence-free.
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Now, using the property ∇ · Ũ1,0 in (3.27) and rearranging some terms, we obtain

ρ̃0
∂2Ũ1,0

∂t2
− ∇ξ (ρ̃0c̃2

0∇ξ · Ũ1,2)+ ∇ξ (ρ̃0Ũ1,0 · e3)− ρ̃′
0(Ũ1,0 · e3)e3 = 0. (3.35)

Taking the curl of this equation yields

∇ξ ×
(
ρ̃0
∂2Ũ1,0

∂t2
− ρ̃′

0(Ũ1,0 · e3)e3

)
= 0. (3.36)

This means that these terms can be expressed as the gradient of a potential function defined
up to a constant and denoted −ϕ̃0,

ρ̃0
∂2Ũ1,0

∂t2
− ρ̃′

0(Ũ1,0 · e3)e3 = −∇ξ ϕ̃0. (3.37)

The new function ϕ̃0 can be understood as the Lagrange multiplier for the
incompressibility constraint. However, one must be cautious that ϕ̃0 is not similar to a
pressure in this case, and rather plays the role of a velocity potential, as we will see later in
the case of homogeneous density. The function ϕ̃0 can be expressed differently. By using
the definition (3.37) in (3.35), we have

∇ξ (−ϕ̃0 − ρ̃0c̃2
0∇ξ · Ũ1,2 + ρ̃0Ũ1,0 · e3) = 0, (3.38)

and since the potential ϕ̃0 is defined up to a constant, it can be chosen such that, in Ω̂ , we
have

ϕ̃0 = −ρ̃0c̃2
0∇ξ · Ũ1,2 + ρ̃0Ũ1,0 · e3. (3.39)

We deduce from this equality and (3.30) the boundary condition

ϕ̃0 = ρ̃0Ũ1,0 · e3 on Γ̃s. (3.40)

To recover a dimensional system, the terms are multiplied by their corresponding
characteristic scales, and ϕ̂0 = ρ̄Uϕ̃0 is defined. The limit solution Û1,0 = UŨ1,0 satisfies

ρ̂0
∂2Û1,0

∂t2
− gρ̂′

0(Û1,0 · e3)e3 + g∇ξ ϕ̂0 = 0 in �̂, (3.41)

∇ξ · Û1,0 = 0 in �̂, (3.42)

with the boundary conditions

Û1,0 · n̂b = ûb,1 on Γ̂b, (3.43)

∇ξ · Û1,0 = 0 on Γ̂s, (3.44)

ϕ̂0 = ρ̂0Û1,0 · e3 on Γ̂s. (3.45)

We show that the model (3.41)–(3.45) preserves an energy. Taking the scalar product of
(3.41) with ∂tŨ1,0 and integrating over Ω̂ yields

1
2

d
dt

∫
�̂

ρ̂0

∣∣∣∣∣∂Û1,0

∂t

∣∣∣∣∣
2

dξ −
∫
�̂

gρ̂′
0(Û1,0 · e3)e3 · ∂Û1,0

∂t
dξ +

∫
�̂

g
∂Û1,0

∂t
· ∇ξ ϕ̂0 dξ = 0.

(3.46)
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The last term of (3.46) is integrated by parts. With the vanishing divergence of Û1,0 and
the bottom condition (3.43), it holds that∫

�̂

g
∂Û1,0

∂t
· ∇ξ ϕ̂0 dξ =

∫
Γ̂s

gϕ̂0
∂Û1,0

∂t
· e3 dσ −

∫
Γ̂b

gϕ̂0
∂ ûb,1

∂t
dσ, (3.47)

then ϕ̂0 is replaced in the surface integral using (3.45),

1
2

d
dt

∫
�̂

ρ̂0

∣∣∣∣∣∂Û1,0

∂t

∣∣∣∣∣
2

dξ −
∫
�̂

gρ̂′
0(Û1,0 · e3)e3 · ∂Û1,0

∂t
dξ

+
∫
Γ̂s

gρ̂0Û1,0 · e3
∂Û1,0

∂t
· e3 dσ =

∫
Γ̂b

gϕ̂0
∂ ûb,1

∂t
dσ. (3.48)

By defining the energy

Eincomp = 1
2

∫
�̂

ρ̂0

∣∣∣∣∣∂Û1,0

∂t

∣∣∣∣∣
2

dξ − 1
2

∫
�̂

gρ̂′
0|Û1,0 · e3|2 dξ

+ 1
2

∫
Γ̂s

gρ̂0|Û1,0 · e3|2 dσ, (3.49)

(3.46) can be formulated in the following way:

d
dt
Eincomp =

∫
Γ̂b

gϕ0
∂ ûb,1

∂t
. (3.50)

Each term of Eincomp has the same interpretation as in E . Note that the acoustic term of
E is not present in Eincomp. The potential energy associated with the internal waves is
also written differently, as in the formal limit ĉ0 → ∞, the buoyancy frequency reads
N2 = −gρ̂′

0/ρ̂0.

Remark. The condition |ρ̂′
0|/ρ̂0 > g/ĉ2

0 is no longer required because the destabilizing
effects in the energy equation (2.58) come from the compressibility, and here it is
neglected. This can be seen by formally assuming that the sound speed is infinite, then
the squared buoyancy frequency reads N2 = −gρ̂′

0/ρ̂0. Density must still decrease with
depth, but can be homogeneous.

The system (3.42)–(3.41) represents an incompressible fluid. However, this system
is different from the classical Poisson equation found in the literature (Lighthill 1978)
because of the assumption of a non-homogeneous background density. For the sake of
comparison with other models, assume now that the ocean at rest has a homogeneous
density, ρ̂′

0 = 0. Taking the divergence of (3.41) yields

ξ ϕ̂0 = 0. (3.51)

The boundary conditions are written differently to ease the comparison. The bottom
boundary condition is obtained by taking the scalar product of (3.41) with n̂b, and
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replacing the first term with (3.43) differentiated twice in time,

− ρ̂0
∂2ûb,1

∂t2
− gρ̂′

0(Û1,0 · e3)e3 · n̂b + g∇ξ ϕ̂0 · n̂b = 0. (3.52)

For the surface condition, (3.45) is differentiated twice in time and the term in ∂2
ttÛ1,0 is

replaced with (3.41),

∂2ϕ̂0

∂t2
− gρ̂′

0(Û1,0 · e3)+ g
∂ϕ̂0

∂ξ3 = 0 on Γ̃s. (3.53)

With the assumption of a homogeneous density, the boundary conditions (3.52), (3.53)
read then

∇ξ ϕ̂0 · n̂b = −ρ̂0gûb,1 on Γ̂b, (3.54)

∂2ϕ̂0

∂t2
+ g

∂ϕ̂0

∂ξ3 = 0 on Γ̂s. (3.55)

The Poisson equation (3.51) with boundary conditions (3.54)–(3.55) is the system satisfied
by the velocity flow of an incompressible homogeneous free-surface fluid (Lighthill 1978,
Chap. 3.1). Note that it was required that ρ̃′

0 /= 0 in the system (2.55) to obtain an a priori
positive energy. Here this assumption is dropped, however, a rather simple expression for
the preserved energy can be derived: multiplying (3.51) by ∂tϕ̂0, integrating by parts and
using (3.54)–(3.55), we obtain∫

�̂

ξ ϕ̂0
∂ϕ̂0

∂t
dξ = −

∫
�̂

∇ξϕ · ∇ξ
(
∂ϕ̂0

∂t

)
dξ

−
∫
Γ̂s

1
g
∂ϕ̂0

∂t
∂2ϕ̂0

∂t2
dσ +

∫
Γ̂b

ρ̂0g
∂ϕ̂0

∂t
ûb,1 dσ. (3.56)

We define the energy

EPoisson = 1
2

(∫
�̂

|∇ξ ϕ̂|2 dξ +
∫
Γ̂s

1
g

(
∂ϕ̂0

∂t

)2

dσ

)
. (3.57)

Then it holds that

d
dt
EPoisson = −

∫
Γ̂b

ρ̂0g
∂ϕ̂0

∂t
ûb,1 dσ. (3.58)

By comparison with the energy of the barotropic system (3.14), we see that the first term of
(3.57) is the kinetic energy and the second term of (3.57) is the potential energy associated
with the surface waves.

3.2.3. Acoustic limit
Another possible simplification of the system (2.55)–(2.57) is to keep only the acoustic
terms. This choice is justified for short time scale, because the propagation speed of the
acoustic waves and the gravity waves have different orders of magnitude (Longuet-Higgins
1950). Here we show that in the acoustic limit, the model reduces to a classical acoustic
equation.
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With the time scale L/τ = C, corresponding to the acoustic wave, and with the same
small parameter δ = Ma/Fr as before, the system (3.20) becomes

ρ̃0
∂2Ũ1

∂t2
− ∇ξ (ρ̃0c̃2

0∇ξ · Ũ1)+ δ2ρ̃0(∇ξ (Ũ1 · e3)− ∇ξ · Ũ1 e3) = 0 in Ω̃, (3.59)

with the boundary conditions

Ũ1 · ñb = ũb,1 on Γ̃b, (3.60)

∇ξ · Ũ1 = 0 on Γ̃s. (3.61)

As before, we make the following ansatz for Ũ1:

Ũ1 = Ũ1,0 + δ2Ũ1,2 + O(δ3). (3.62)

One can see that the limit term δ → 0 for the volumic equation (3.59) is

ρ̃0
∂2Ũ1,0

∂t2
− ∇ξ (ρ̃0c̃2

0∇ξ · Ũ1,0) = 0. (3.63)

Taking the curl of this equation yields

∂2

∂t2
(∇ξ × (ρ̃0Ũ1,0)) = 0, (3.64)

hence the curl of ρ̃0Ũ1,0 is affine in time. Moreover, it is equal to zero due to the
vanishing initial conditions. By the Helmoltz decomposition theorem, the term ρ̃0Ũ1,0
can be expressed as the gradient of some function ψ̃0 defined up to a constant,

ρ̃0Ũ1,0 = ∇ξ ψ̃0. (3.65)

By substituting in (3.63), we have

∇ξ
(
∂2ψ̃0

∂t2
− ρ̃0c̃2

0∇ξ · (ρ̃−1
0 ∇ξ ψ̃0)

)
= 0, (3.66)

then it holds that

∂2ψ̃0

∂t2
− ρ̃0c̃2

0∇ξ · (ρ̃−1
0 ∇ξ ψ̃0) = 0, (3.67)

since ψ̃0 is defined up to a constant. We need the boundary conditions to conclude.
Evaluating (3.63) at the surface yields

ρ̃0
∂2Ũ1,0

∂t2
− ∂

∂ξ3 (ρ̃0c̃2
0∇ξ · Ũ1,0)e3 = 0 on Γ̃s. (3.68)

Using the surface condition (3.61) in (3.68) yields

ρ̃0
∂2Ũ1,0

∂t2
= 0 on Γ̃s. (3.69)

With the definition of the potential ψ̃0, it holds that

∂2∇ψ̃0

∂t2
= 0 on Γ̃s, (3.70)
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hence one has

∂2ψ̃0

∂t2
= C(t) on Γ̃s, (3.71)

where C does not depend on space. Moreover, since ψ̃0 vanishes at infinity, the constant C
is equal to zero, hence ∂2

ttψ̃0 = 0 on Γ̃s. With the vanishing initial conditions, this implies
that ψ̃0 = 0 on Γ̃s. To recover a dimensional system, the terms are multiplied by their
corresponding characteristic scales, and ψ̂0 = ρ̄ULψ̃0 is defined. The system reads then

∂2ψ̂0

∂t2
− ρ̂0ĉ2

0∇ξ · (ρ̂−1
0 ∇ξ ψ̂0) = 0 in Ω̂, (3.72)

with the boundary conditions

∇ξ ψ̂0 · n̂b = ûb,1 on Γ̂b, (3.73)

ψ̂0 = 0 on Γ̂s. (3.74)

The system (3.72)–(3.74) is the classical wave equation for the potential ψ̂0, with a
propagation speed ĉ2

0 and a non-homogeneous density.
An energy equation can be obtained by multiplying (3.72) by ∂tψ/(ρ0ĉ2

0) and integrating
over the domain. The result reads after an integration by parts

d
dt
Eacoustic = −

∫
Γ̂b

1
ρ̂0

∂ψ̂0

∂t
ûb,1 dσ, (3.75)

where the acoustic energy is

Eacoustic = 1
2

∫
�̂

1
ρ̂0ĉ2

0

(
∂ψ̂0

∂t

)2

dξ + 1
2

∫
�̂

1
ρ̂0

|∇ψ̂0|2 dξ . (3.76)

With the same analysis as in the previous cases, one can show that the first term of (3.76)
is the acoustic energy, and the second term is the kinetic energy.

Remark. In §§ 3.2.2 and 3.2.3, (3.51)–(3.55) and (3.72)–(3.74) use the Lagrangian
description whereas the equations from the literature use the Eulerian description. In the
general case, the use of different coordinate systems would cause two problems. First,
when doing the change of coordinates, new terms should appear from the space or time
differentiation. Second, the description of the domain is different, and this implies that
the boundary conditions are not evaluated at the same location. In the next section,
we will show that the first problem does not exist in our case due to the lack of a
background velocity. As for the second problem, the linear Eulerian models are obtained
by evaluating the boundary conditions at a fixed water height. In this regard, they use the
same boundary as if they were in a Lagrangian description of the domain, so that the
comparison remains valid.

The equations with their boundary conditions and the associated energy, for the general
model and its different simplifications, are summarized in table 1.
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·Û

1
=

0,
Γ̂

s

E
=

1 2

∫ �̂

ρ̂
0

⎛ ⎝∣ ∣ ∣ ∣ ∣∂
Û
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4. The model in Eulerian coordinates

The equations we have been working on are defined on the reference domain Ω̂ . However,
the linear equations for the acoustic-gravity waves are generally written in Eulerian
coordinates. To compare our model with those from the literature, the equations must
be formulated on the moving domain Ω(t). In this section, we present a method to write
the system in Eulerian coordinate.

4.1. General method
The aim is to write the equation on a moving domain Ω(t), hence a transformation
φ : Ω̂ → Ω(t) is needed. We start by using a first-order approximation of the real
transformation φ. The transformation φ is developed for small displacements,

φ(ξ , t) = ξ + εφ1(ξ , t)+ O(ε2). (4.1)

Let φε(ξ , t) = ξ + εφ1(ξ , t) be its first-order approximation. Here, φε is used to define
the equivalent domain and its boundary,

Ωε(t) = φε(Ω̂), Γs,eq = (φε(Γ̂s)), Γb,eq = (φε(Γ̂b)). (4.2a–c)

The coordinates on the equivalent domain are written x = (x, y, z). For any generic
function X̂(ξ , t) defined in Ω̂ , a function X(x, t) is defined in Ωε by the following change
of variables:

X(x, t) = X̂(φ−1
ε (x, t), t), (4.3)

which is equivalent to

X̂(ξ , t) = X(φε(ξ , t), t), (4.4)

as long as φε is invertible. Then, if the function X̂ has a first-order approximation X̂ =
X̂0 + εX̂1 + O(ε2), then the function X also has a first-order approximation X = X0 +
εX1 + O(ε2) and it holds that (see Appendix B)

∇ξ X̂0 = ∇X0, (4.5)

∂X̂0

∂t
= ∂X0

∂t
, (4.6)

∇ξ X̂1 = (∇ξd1)
T∇X0 + ∇X1, (4.7)

∂X̂1

∂t
= ∂X1

∂t
+ U1 · ∇X0. (4.8)

In the following, when writing the equations satisfied by the free surface of Ωε , we will
also use

∂φε

∂t
= εÛ1. (4.9)
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4.2. The model in Eulerian coordinates
Using the change of variable (4.4) in the system (2.50)–(2.52) and with the equalities
(4.5)–(4.8), we obtain the following system for U1, p1, ρ1 defined in Ωε:

ρ0
∂U1

∂t
+ ∇p1 = ρ1g, (4.10)

∂ρ1

∂t
+ ∇ · (ρ0U1) = 0, (4.11)

∂p1

∂t
+ ∇p0 · U1 + ρ0c2

0∇ · U1 = 0. (4.12)

And p0, ρ0 satisfy the limit equations

∂ρ0

∂t
= 0, (4.13)

∇p0 = ρ0g. (4.14)

To close the system (4.10)–(4.14), boundary conditions should be prescribed. To get a
linear problem, one wants to prescribe this condition on the fixed domain Ω̂ . To do so we
assume in the following that (4.10)–(4.14) are defined in Ω̂ . It would be true if Ω̂ ⊂ Ωε,
but the inclusion is in general not verified. Because of this approximation, errors of order
O(ε) may be introduced. For this reason, the system in Lagrangian coordinates should be
preferred, at least for future extension of this work.

4.2.1. Boundary conditions and free surface description
Following the approach of Nouguier et al. (2015), we show that a description for the free
surface can be obtained. In the following, the components of the fluid velocity are denoted
U1 = (U1

1,U2
1,U3

1)
T. The surface is defined by Γs,eq = φε(Γ̂s), and we assume that at

each time t, it can be parametrized as the graph ηε. The elevation ηε is a function of x, y
and t and can be decomposed in the following way:

ηε(x, y, t) = H + εη1(x, y, t). (4.15)

From the correspondence between the free surface and the particle displacement, it holds
that

φ3
ε (ξ

1, ξ2,H, t) = ηε(x(ξ1, ξ2,H, t), y(ξ1, ξ2,H, t), t). (4.16)

Differentiating (4.16) in time and using the (4.9) yields

εÛ3
1(ξ

1, ξ2,H, t) = ∂ηε

∂t
+ εÛ1

1(ξ
1, ξ2,H, t)

∂ηε

∂x
+ εÛ2

1(ξ
1, ξ2,H, t)

∂ηε

∂y
. (4.17)

We use the change of variables φε(ξ , t) = ξ + εφ1(ξ , t),

εU3
1(φε(ξ

1, ξ2,H, t), t) = ∂ηε

∂t
+ εU1

1(φε(ξ
1, ξ2,H, t), t)

∂ηε

∂x

+ εU2
1(φε(ξ

1, ξ2,H, t), t)
∂ηε

∂y
. (4.18)
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After a Taylor development and keeping only the terms in ε, it holds that

U3
1(x, y,H, t) = ∂η1

∂t
, (4.19)

which is the linearized equation for the free surface. Then the dynamic boundary
conditions are linearized. With the change of variables, the boundary conditions (2.24),
(2.53) and (2.54) become

U1 · nb = ub,1 on Γb,eq, (4.20)

p0 = pa on Γs,eq, (4.21)

p1 = 0 on Γs,eq. (4.22)

If we linearize (4.22) only, we would miss the first-order term coming from (4.21). From
(4.21) and (4.22), we deduce the boundary condition for the pressure

p0 + εp1 = pa on Γs,eq. (4.23)

A Taylor development of p0 and p1 around z = H on Γs,eq yields

p0(H)+ ε( p1(x, y,H, t)+ p′
0(H)η1)+ O(ε2) = pa. (4.24)

After an identification of the powers of ε, it holds that

p0(H) = pa, p1(x, y,H, t) = ρ0(x, y,H, t)gη1(x, y, t). (4.25a,b)

In a similar way, the linearization of (4.20) reads

U3
1(x, y, zb)− U1

1(x, y, zb)∂xzb − U2
1(x, y, zb)∂yzb = ub,1(x, y, t). (4.26)

Hence the equations for U1, ρ1, p1 can be fully defined on the domain Ω̂ , with an error
in O(ε2). Finally, note that the system (4.10)–(4.12) with the boundary conditions (4.25),
(4.26) and the kinematic condition (4.19) is shown to be energy preserving, locally as well
as over a whole water column (Lighthill 1978; Lotto & Dunham 2015).

In this section, we have derived the linear equation in Eulerian coordinates, even though
an approximation on the domain in which the equations are defined was necessary. The
computations of § 4.1 also justify that in the absence of mean flow and with the evaluation
of the boundary conditions at a fixed height, the linear system in Eulerian coordinates
is similar to that in Lagrangian coordinates, up to terms in O(ε2). At the same time, the
linearization in the Lagrangian coordinates is better defined. For this reason, the system in
Lagrangian coordinates is preferred for the rest of this work. We conclude this paper with
the study of the dispersion relation obtained from (2.55).

5. Dispersion relation

A key aspect of wave models is the related dispersion relation, which we derive here from
(2.55) and solve numerically. First note that if one defines the equivalent pressure pε, the
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equivalent density ρε and the equivalent velocity Uε by

pε = p0 + εp1, ρε = ρ0 + ερ1, Uε = εU1, (5.1a–c)

then a combination of (4.10)–(4.14) yields the following system for pε, ρε and Uε:

ρ0
∂Uε

∂t
+ ∇pε = ρεg + O(ε2), (5.2)

∂ρε

∂t
+ ∇ · (ρ0Uε) = O(ε2), (5.3)

∂pε
∂t

+ ∇p0 · Uε + ρ0c2
0∇ · Uε = O(ε2). (5.4)

This system is comparable – up to the terms in O(ε2) – to the system studied in the paper
by Auclair et al. (2021). Auclair et al. (2021) thoroughly analyse the dispersion relation for
the model of a stratified compressible fluid with a constant sound speed.

To make the computations clearer, the problem is restricted to a 2-dimensional
configuration in ξ1 and ξ3. We also assume that the bottom is flat. Following the approach
of Auclair et al. (2021), the wave angular frequency ω and the horizontal wavenumber
frequency kx are defined, and we seek a solution of the form

ρ̂0Û1(ξ
1, ξ3, t) =

(
Ũ1(ξ3)

Ũ3(ξ3)

)
ei(kxξ

1−ωt). (5.5)

First, (2.55) is written differently to make the unknown ρ̂0Û1 appear,

∂2ρ̂0Û1

∂t2
− ∇ξ (ĉ2

0∇ξ · (ρ̂0Û1))− ∇ξ
(

ĉ2
0N2

0
g
ρ0Û1 · e3

)
− g∇ξ · (ρ̂0Û1)e3 = 0. (5.6)

Injecting the ansatz (5.5) in (5.6) yields

ω2Ũ1 + ikx

(
ĉ2

0(ikxŨ1 + (Ũ3)′)+ ĉ2
0N2

g
Ũ3

)
= 0, (5.7)

ω2Ũ3 + ∂3(ĉ2
0(ikxŨ1 + (Ũ3)′)+ ∂3

(
ĉ2

0N2

g
Ũ3

)
+ g(ikxŨ1 + (Ũ3)′) = 0. (5.8)

Using (5.7), the horizontal component Ũ1 is expressed as a function of the vertical
component,

Ũ1 = −ikx
ĉ2

0D(Ũ3)′ + (ĉ2
0 − gD)Ũ3

D(ω2 − ĉ2
0k2

x)
, (5.9)

where D is a depth scale, defined by

1
D

= N2

g
+ g

ĉ2
0

= ρ̂′
0
ρ̂0
. (5.10)

We also define the quantity

S = 2
ĉ′

0
ĉ0
. (5.11)
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Replacing Ũ1 in (5.8) yields, after some computations,

(Ũ3)′′ +
(

1
D

+ ω2S2
)
(Ũ3)′

+
(
ω2

ĉ2
0

+ k2
x

N2 − ω2

ω2 − D′

D2 + S

(
g

ĉ2
0

+ N2

g
ω2

ω2 − ĉ2
0k2

x

))
Ũ3 = 0. (5.12)

To write an harmonic equation, the following change of variable is made:

Ũ3(z) = Ũ3(H)F(z) exp
(∫ H

z

α

2
dz′
)
, α = 1

D
+ ω2S. (5.13)

Then, F(0) = 0, F(H) = 1 and F satisfies the equation

F′′ + k2
z F = 0, (5.14)

where the vertical wavenumber kz is defined by

k2
z + k2

x
N2 − ω2

ω2 + ω2

ĉ2
0

− 1 + 2D′

4D2 − 1
2
ω2S′

+ S

(
g

ĉ2
0

+ N2

g
ω2

ω2 − ĉ2
0k2

x
− ω2

2D
− 1

4
ω4S

)
= 0. (5.15)

Equation (5.15) is the dispersion relation for the two wavenumbers kx, kz and the frequency
ω. It is a generalization of the inner dispersion relation by Auclair et al. (2021) to the case
of a non-constant sound speed. Indeed, with a constant sound speed, one has S = 0, and
(5.15) is exactly the inner dispersion relation of Auclair et al. (2021).

Remark. In the most general case, the scalars N,D and S depend on the depth z, hence
kz also depends on z. It is then not clear whether the solution to (5.14) and the profile Ũ3

can be written explicitly. When kz does not depend on z, as in the study by Auclair et al.
(2021), the expression of the profile Ũ3 is used with the boundary conditions to obtain a
boundary dispersion relation. In our case, kz is not a constant, and the boundary dispersion
relation is not easily deduced.

5.1. Numerical approximation of the dispersion relation
An evaluation of (5.15) is possible once the limit state for the pressure and the density is
computed. The differential equation for the pressure (2.22) is numerically solved for the
temperature profile shown in figure 3(a).

Then the density and the speed of sound are computed from the tabulations given by
International Association for the Properties of Water and Steam (2009). Figure 3(b,c)
shows the obtained density and speed of sound. With these profiles, the dispersion relation
(5.15) is computed. Figure 4 shows the contours of the vertical wavenumber as a function
of the horizontal wavenumber and the angular frequency, at different depths. For the sake
of comparison, the plotted variables are the adimensionned variables δx = kxH, δz = kzH
and log10(δω), where δω = ω

√
H/g.

Although figure 4 is close to the one in the paper by Auclair et al. (2021), one can notice
the influence of the ocean depth on the contours. This first result suggests that the variation
of the parameters ĉ0,N,D with depth plays a non-negligible role in the waves dispersion.
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Figure 3. Temperature, density and sound speed profiles used for the computation of the dispersion relation
where ξ3 = 0 is the seafloor and ξ3 = 4000 m is the ocean surface: (a) temperature profile; (b) density profile
and (c) sound speed profile.

6. Conclusion and future work

In this work, we have presented a system describing the propagation of acoustic-gravity
waves in a free-surface fluid over an varying bed (bathymetry) and with a variable sound
speed, applicable to describe in particular hydro-acoustic and tsunami waves generated
by earthquakes or landslides in the ocean. Through a rigorous linearization of the
compressible Euler equation, we have obtained a model able to represent many physical
phenomena, such as the SOFAR channel or the propagation of internal waves. The variety
of these phenomena is well represented in the dispersion relation.

In the derivation, only a few assumptions are made and some common simplifying
hypotheses were avoided. In particular, the fluid is not necessarily assumed barotropic and
it is not assumed irrotational. Thanks to this approach, many terms representing different
physical phenomena are kept in the wave-like equation. With a numerical approximation,
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Figure 4. Contour of the vertical wavenumber as a function of the horizontal wavenumber δx and the angular
frequency δω, at different depths ξ3: (a) ξ3 = 2000 m; (b) ξ3 = 3600 m; (c) ξ3 = 4000 m.

one could then compute their respective magnitude and justify which terms can be
neglected. Note also that in the present work, the source term is a displacement of the
seabed, but this is not restrictive and other source terms could be used (a change in the
surface pressure for example).

With additional assumptions compatible with the derivation of the system, such as
considering a barotropic fluid, or restricting the model to the incompressible regime or to
the acoustic regime, we are able to recover simpler models widely studied in the literature.
The mathematical study of the more complete model can help gain insight on the other
ones. For example, we could clearly identify the assumptions made in the hydro-acoustic
waves model used by Stiassnie (2010), Sammarco et al. (2013) and others. Namely,
in those models, the fluid is assumed barotropic, and the effects of stratification and
gravity are neglected inside the domain. The study of the more complete model also
helped to write the conservation of energy in each simplified case. The linear model
in Lagrangian coordinates can also be used to recover the linearized Euler equations
in Eulerian coordinates. This brings a clear understanding of the usual – nevertheless
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non-satisfactory – assumption that is used to derive the aforementioned models in Eulerian
coordinates.

The wave-like formulation of the model makes it a good candidate for a numerical
approximation by the finite-element method. The fact that it preserves an energy suggests
that the problem is well posed, which motivates a more thorough study of the mathematical
problem. Numerical implementation of this model will make it possible to simulate
acoustic-gravity waves generated by earthquakes and landslide sources accounting for
the complex bathymetry, thus contributing to improve early-warning systems. It will also
help quantifying the errors made in more simple models, such as the hypothesis of an
irrotational flow. These two aspects will be investigated in a future work.
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Appendix A

In this section, an energy equation for the system (2.55) is obtained. Recall that the system
(2.55) reads in Ω̂ ,

ρ̂0
∂2Û1

∂t2
− ∇ξ (ρ̂0ĉ2

0∇ξ · Û1)− (∇ξ Û1)
Tρ̂0g + ρ̂0∇ξ · Û1g = 0, (A1)

with the boundary conditions

Û1 · nb = ûb,1 on Γ̂b, (A2)

∇ξ · Û1 = 0 on Γ̂s. (A3)

By taking the scalar product of (2.55) with ∂tÛ1 and integrating over the domain, we have∫
�̂

∂Û1

∂t
·
(
ρ̂0
∂2Û1

∂t2

)
dξ −

∫
�̂

∂Û1

∂t
· (∇ξ (ρ̂0ĉ2

0∇ξ · Û1)) dξ

+
∫
�̂

∂Û1

∂t
· (∇ξ (Û1 · e3)ρ̂0g) dξ −

∫
�̂

∂Û1

∂t
· (ρ̂0∇ξ · Û1ge3) dξ = 0. (A4)

For the first integral of (A4), it holds that

∫
�̂

∂Û1

∂t
·
(
ρ̂0
∂2Û1

∂t2

)
dξ = d

dt

∫
�̂

ρ0
1
2

∣∣∣∣∣∂Û1

∂t

∣∣∣∣∣
2

dξ . (A5)
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The second term of (A4) is integrated by parts, using ∇ξ · Û1 = 0 on the surface and
Û1 · n̂b = ûb,1 at the bottom (hence ∂t(Û1 · n̂b) = ∂tûb,1),

−
∫
�̂

∂Û1

∂t
· ∇ξ (ρ0c2

0∇ξ · Û1) dξ = 1
2

d
dt

∫
�̂

ρ̂0ĉ2
0|∇ξ · Û1|2 dξ

−
∫
Γ̂b

ρ0c2
0∇ξ · Û1

∂ ûb,1

∂t
dσ. (A6)

For the computation of the two last integral of (A4), we define

(I) =
∫
�̂

∂Û1

∂t
· (∇ξ (Û1 · e3)ρ̂0g) dξ −

∫
�̂

∂Û1

∂t
· (ρ̂0∇ξ · Û1ge3) dξ , (A7)

an we denote by n̂b the vector normal to the boundary ∂Ω . Here, (I) is integrated by parts
and reads

(I) =
∫
∂Ω

ρ̂0gÛ1 · e3
∂Û1

∂t
· n̂b dσ −

∫
�̂

gÛ1 · e3∇ξ ·
(
ρ̂0
∂Û1

∂t

)
dξ

−
∫
�̂

ρ̂0g
∂Û1

∂t
· e3∇ξ · Û1 dξ . (A8)

The boundary term is simplified using ∂t(Û1 · n̂b) = ∂tûb,1 at the bottom. On the boundary
Γ̂s, the surface is horizontal, hence the normal vector is the unit vector e3, so it holds that

(I) =
∫
Γ̂b

ρ̂0gÛ1 · e3
∂ ûb,1

∂t
dσ +

∫
Γ̂s

ρ̂0gÛ1 · e3
∂Û1

∂t
· e3 dσ

−
∫
�̂

gÛ1 · e3∇ξ ·
(
ρ̂0
∂Û1

∂t

)
dξ −

∫
�̂

ρ̂0g
∂Û1

∂t
· e3∇ξ · Û1 dξ . (A9)

Next we develop the gradient in the third integral of (A9). Note that ρ̂0 depends only on
the vertical coordinate, then we have

−
∫
�̂

gÛ1 · e3
∂Û1

∂t
· ∇ξ ρ̂0 = −

∫
�̂

gÛ1 · e3
∂Û1 · e3

∂t
dρ̂0

dξ3

= −1
2

d
dt

∫
�̂

ρ̂′
0g|Û1 · e3|2, (A10)

hence we obtain

(I) =
∫
Γ̂b

ρ̂0gÛ1 · e3
∂ ûb,1

∂t
dσ + 1

2
d
dt

∫
Γ̂s

ρ̂0g|Û1 · e3|2 dσ

− 1
2

d
dt

∫
�̂

gρ̂′
0|Û1 · e3|2 dξ −

∫
�̂

ρ̂0gÛ1 · e3
∂

∂t
(∇ξ · Û1) dξ

−
∫
�̂

ρ̂0g
∂Û1

∂t
· e3∇ξ · Û1 dξ . (A11)
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The two last terms of (A11) are put together,

(I) =
∫
Γ̂b

ρ̂0gÛ1 · e3
∂ ûb,1

∂t
dσ + 1

2
d
dt

∫
Γ̂s

ρ̂0g|Û1 · e3|2 dσ

− 1
2

d
dt

∫
�̂

gρ̂′
0|Û1 · e3|2 dξ − d

dt

∫
�̂

ρ̂0gÛ1 · e3∇ξ · Û1 dξ . (A12)

Summing the terms (A5), (A6) and (A12) yields

d
dt

∫
�̂

ρ0
1
2

∣∣∣∣∣∂Û1

∂t

∣∣∣∣∣
2

dξ + 1
2

d
dt

∫
�̂

ρ̂0

(
ĉ0∇ξ · Û1 − g

ĉ0
Û1 · e3

)2

dξ

− 1
2

d
dt

∫
�̂

ρ̂0(Û1 · e3)
2

(
g2

ĉ2
0

+ gρ̂′
0

ρ̂0

)
dξ + 1

2
d
dt

∫
Γ̂s

ρ̂0g(Û1 · e3)
2 dσ

=
∫
Γ̂b

ρ0(c2
0∇ξ · Û1 − ρ̂0gÛ1 · e3)

∂ ûb,1

∂t
dσ, (A13)

and by defining

Nb = −
(

g2

ĉ2
0

+ gρ̂′
0

ρ̂0

)
, (A14)

we obtain the energy equation (2.58).

Appendix B

In this section, we derive the relations between the zero- and first-order approximation
in Eulerian and in Lagrangian coordinates, when differentiating with respect to time or
space. First note that φ0 and φ1 can be expressed in terms of the displacement d. From the
assumption of small displacements, it holds that d = εd1 + O(ε2), then identifying the
powers of ε and summing, yields

φε(ξ , t) = ξ + εd1(ξ , t). (B1)

From the change of coordinate, we have

∇ξ X̂ = (∇ξφε)T∇X = (Id + ε∇ξd1)
T∇X, (B2)

and using this identity for X̂ = X̂0 + εX̂1, yields

∇ξ (X̂0 + εX̂1) = ∇X0 + ε((∇ξd1)
T∇X0 + ∇X1)+ O(ε2). (B3)

By identifying the powers of ε, it holds that

∇ξ X̂0 = ∇X0, ∇ξ X̂1 = (∇ξd1)
T∇X0 + ∇X1. (B4a,b)

The same method is used for the time derivative. Starting with

∂X̂
∂t
(ξ , t) = ∂X

∂t
(φε(ξ), t)+ ∂φε

∂t
(ξ) · ∇X(φε(ξ), t), (B5)
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we obtain after replacing X and X̂ by their first-order approximation,

∂X̂0

∂t
+ ε

∂X̂1

∂t
= ∂X0

∂t
+ ε

(
∂X1

∂t
+ ∂d1

∂t
· ∇X0

)
+ O(ε2). (B6)

With ∂td1(ξ , t) = Û1(ξ , t) = U1(x, t), it holds that

∂X0

∂t
+ ε

(
∂X1

∂t
+ U1 · ∇X0

)
+ O(ε2). (B7)

We identify the powers of ε,

∂X̂0

∂t
= ∂X0

∂t
,

∂X̂1

∂t
= ∂X1

∂t
+ U1 · ∇X0. (B8a,b)
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