ON A RING ISOMORPHISM INDUCED BY
QUASICONFORMAL MAPPINGS
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Introduction

The purpose of this paper is to study the relationship between a certain
isomorphism of some rings of functions on Riemann surfaces and a quasi-
conformal mapping.

It is well known that two compact Hausdorff spaces are topologically
equivalent if and only if their rings of continuous functions are isomorphic.
We shall establish an analougous result concerning a function ring on a Riemann
surface and the quasi-conformal equivalence.

As one of the important properties of quasi-conformal mapping is its
absolute continuity in the sense of Tonelli, it is natural to consider the ring of
functions which are absolutely continuous in the sense of Tonelli. On the other
hand, we can show that this ring, with an additional condition, is coincident
with a normed ring considered by Royden [10], which we shall call Royden’s
ring.

This leads us to study of the correspondence of the ideal boundary defined
by using the above normed ring under a quasi-conformal mapping.

Our main results are, roughly speaking, as follows.

Two Riemann surfaces are quasi-conformally equivalent if and only if thier
Royden’s rings are isomorphic in some sense.

This can be considered as a ring-theoretic characterization of quasi-con-
formality.

A quasi-conformal mapping between two Riemann surfaces can be con-
tinuously extended to their “ideal boundaries” in an appropriate manner.

This includes the invariance of the classes O; and Oup of Riemann surfaces

by a quasi-conformal mapping.
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1. Royden’s ring M(R) and Royden’s compactification R+

1.1. Let R be an open or closed Riemann surface and let BD be the class
of all complex-valued bounded continuous functions on R, each of which has
piecewise continuous? derivatives of the first order and has the finite Dirichlet

integral over R. We introduce the norm lf|l of an element f in BD by
(1.1) 7= A1 + VDS,

where l|f]» denotes the least upper bound of values |f(P)| when P varies over
R and DLf1] is the Dirichlet integral of f over R, i.e.,

o= (1% +

where z=x+ iy is a local parameter.

) dxdy,

By the usual algebraic operations, BD is an algebra over the complex
number field C with an adjoint operation f- f* defined by f*(P) =f(P), where
the bar denotes the complex conjugate number. We denote by M(R) the
abstract completion of BD by the norm-topology defined by (1.1). As /™|l
=|ifll, not only the structure of algebra but also the adjoint operation in BD
can be extended to M(R). Thus M(R) is a commutative Banach algebra over
the complex number field C, or a so-called normed ring with the adjoint
operation.

This ring M(R) was first considered by Royden [10], so we shall call M(R)
“Royden’s ring” of R for brevity.

1.2. Let z=2x+1y be a local parameter in R valid for a domain D in R
and let 4 be a domain contained in D with its closure mapped onto the plane
rectangle 2(4): a<x<b, c<y<d by the local parameter zz= Then we call
(4, 2z) the rectangular domain on R.

A complex-valued function f(P) on R is called absolutely continuous in
the sense of Tonelli (abbreviated as a.c.T.), if, for every rectangular domain
(4, 2), f(x, y) is continuous on the closure z(4): a=x<b, c£y=d and abso-
lutely continuous with respect to x in the usual sense for almost all values of y in

1) The precise meaning of piecewise continuity is as follows. Let R=u4: be a
triangulation of R. We suppose that the boundary of 4; consists of a finite number of
analytic arcs. If a complex-valued function f(P) on R is continuous in each of the
interior of J:;, we say that f(P) is piecewise continuous on R.
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¢ £y £d, and absolutely continueus with respect to ¥ in the usual sense for almost
all values of ¥ in a=x =5, and if further the Dirichlet integral of f, whose
existence can be easily seen, is finite over z(4).

Let M(R) be the totality of complex-valued bounded continuous functions
on R, each of which is a.c.T. on R and has the finite Dirichlet integral over R.

Let the norm and the adjoint operation in M(R) be defined by lf|
= |l/ll. + VD[ /] and f*(P) =f(P) as in BD.

We shall deal with the relationship of M(R) and M(R). First we can
prove the following

Lemma 1.1. M(R) is a normed ring.

Proof. We can easily verify that M(R) satisfies the condition of the normed
ring except its completeness. Hence we have only to prove the completeness
of M(R).

Let {fx) be a Cauchy sequence in M(R). As the uniform norm of an
element in M(R) is smaller than the norm of M(R), {f»} is a Cauchy sequence
with respect to the uniform norm. Hence we have a bounded continuous
function f(P) on R such that

(1.2) lim |fn — fll- = 0.

Denote by I'(R), the totality of differentials 4 of the first order on R

satisfying
” UN*a< + oo,
R

where *u is a dual differential of x4, *7 is a complex-conjugate of *u and A
denotes the exterior product. The I'(R) is a Hilbert space with an inner
product (g, ») defined by

~

(1, v) = SjR,u/\*TJ,

where 1 and v are in I'(R). As we have

V@ = Ay A=) = NDU = I] £ fn =
where df, = aa';’ dax + %—’;’"— dy, {df») is a Cauchy sequence in the sense of strong

convergence in I'(R). Hence we have a = a(z)dx+ b(2)dy in I'(R) such that
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df» converges strongly to a €I'(R).

Let (4, z) be any rectangular domain on R such that z(4) be a rectangle:
a<x<b, ¢<y<d and let (4, 2z) be another rectangular domain on R such that
4, contains the closure of 4 and corresponds to z(4y): @y <x<by, co<y<dp.
Let 6(z) be a function of the class C' with compact carrier contained in 4,
and 0(z) =1 on 4. We put

Ta(2) = 0(2)fa(2), F(2) = 0(2) - f(2),

@) = 0(z) »al2) + 2 0(2) * (2)

and

Folz, ) =§a a(X, y)dXx.

Then we see that % Jfn(2) converges strongly to a(z) in the Hilbert space
L (4)).

For almost all values of y in cy=y =dy, we have

Fulx, y) = é%-ﬁ,(x, »dX (n=1,23, ...).

X
ay
Using this and the Schwarz inequality, we get

= = 2 bo 8 = o = i
]fn(Z) "fo(z)l £ (by — ao) ja laTX-fn(X, y) - “ano(X, y)\ ax,

and hence

2
dXdy.

a—?xfn(x, y) — @(X, y)

[, V7 = Fao) P axdy = (bu - a)jdfb

This implies that 7, converges strongly to 7o in L*(4). Selecting the subse-
quence, if necessary, we may assume that f.(z) converges to fo(z) almost
everywhere in z(4). On the other hand, 7.(z) converges uniformly f(z).
Hence f(z) — 7a(z) = 0 almost everywhere in z(4y). As F(z) — f(2) is continuous

with respect to x, 7(z) — fo(z) =0 for almost all values of y in co<y<d,” ie.,

F(2) =j (X, y)dX

2 As the set {(x, ¥); f(x, y) — fo (x, ¥)>:0) is of 2-dimensional measure zero, we see
that the set {x; f(x, ¥) —fa(x, y)=:0} is of 1-dimensional measure zero for almost every
value of y by Fubini’s theorem. For such y, 7(x, y)sfa(x, y) (e£x<b) by the continuity
in x.
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for almost all values of y in ¢s<v<d,. From this and by the definition of
0(z), we see that f(x, ¥) is absolutely continuous with respect to ¥ in a=x=b

for almost all values of y in ¢ £y =d and further
& -
akf(Z) = alz).

Similarlly, f(x, ») is absolutely continuous with respect to y in c=y<d for

almost all values of ¥ in a=x<b and
o -
éj;f(z) = b(2).

Thus we have df =« and f is a.c.T. As a=df is the strong limit point of
the sequence {df.} in I'(R), it holds that

(1.3) lim YD[/»=/f1 = 0.
From these, we can say that fis in M(R) and f is the limit point of the
sequence {f»} in M(RK). Thus M(R) is complete. q.e.d.

Next we prove

LeMMma 1.2.  Suppose that an element f in C*NM(R)” has compact carrier
car. f in a rectangular domain (4, z) and thal a positive number ¢ is given.
Then we can find an element g in C*" ' NMUR) such that car. g is contained in
dandlf-gl<e

Proof. We may assume without loss of generality that R is the complex
z-plane and 4 is the rectangle a<x<b, c<y<d.

Let the distance between car. f and the boundary of 4 be 3d and choose
a number p satisfying 0<p<d. Denote by M,f(z) the integral

1
M = 5§ s+ 2axay

over p-disc with the center z, where z=x+iy and Z=X+iY. It is well
known that A,/(z) is of class C*"". It is easy to see that car. M,/ is contained

in 4. By the uniform continuity of f(z), we get
(1.4) lim |M,f ~ fll» = 0.
pi0

3 The number # is an integer » 0. Here C° denotes the class of continuous functions.
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Next we have
- fe) _ K]
(1.5) 3% S(2) = M, % f(2).

In fact, since f(x, ») is a.c.T., by Fubini’s theorem

Il

§ 0, 2 ara . qu axay § 2 stz + 2dx

-1
- ”mqﬂz + Z)axXdy

= Mpf(z).

From this and the continuity of M, ;;1 f(2), we have (1.5).

As -aax f(2) is in I? it is well known that M, aax f(z) converges to

ai f(2) strongly in L*(R) as p¢ 0. Hence ai M,f(z) converges strongly to

ai f(2) in L*(R) as p} 0. The similar argument holds for 33’ . Hence we

obtain
(1.6) 1113 VD[M,f-f] = 0.
P

From (1.4) and (1.6), we have only to put g = M,f for a sufficiently small
number p. q.ed.

By the iterated use of Lemma 1.2, we obtain the following

LemmMma 1.3.  Suppose that an element f in M(R) has compact carrier in a
rectangular domain (4, 2) and that a positive number ¢ and an integer n( =0)
are given. Then there exisis an element g in C"NM(R) such that car. g is
contained in 4 and |f — gl € e.

Now we omit the restriction on the carrier of f, namely,

LemMma 1.4.  For any f in M(R), a positive number ¢ and an integer n,

there exists an element g in C"NM(R) such that
lf —gl=e

Proof. Let {4;}7., be a locally finite covering” of R consisting of rec-

tangular domains 4; in R and let {¢:};~: be a resolution of unity satisfying the

49 If R is compact, we consider that 4, are empty except a finite number.
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following : (i) ¢iis in class C", (ii) car. ¢; is contained in a 4; and (iii) {car. ¢;}
is locally finite.

Put f; = f¢i. Then, for any compact set K, there exists a number Nx
such that

Ng
AP) = gf,‘(P)

at any point P in K. As f; satisfies the requirment in Lemma 1.3, we can find
gi in C"NMM(R) such that car. g; is contained in 4; and

(1.6) , i = gill < ,2]?”“

It is easy to see that {car. gi} is locally finite and thus there exists a number
Ni for any compact set K such that

N

2(P) =§gi(l’) = 31g(P)

at any Pin K. Thus g is in class C™
Let {Rx} be an exhaustion of R. For a fixed m, we can find a number
N such that for all Pin R,

f(P) —g(P) = E(f,(P) gi(P)
and

5 1)~ 2 gy = 3(2 satp~ 2 giapn).
From these and (1.6), we get

1 = &l 5 & 5 and VD, (7 =21 < £ -

IIN

Letting m —» o, we have

If — glls £ < and VD[S —g] =

N ™

Thus we see that g is in M(R)NC" and If — gll =

®

q.e.d.
1.3. It is easily seen that

C'NM(R) C BD T M(R).Y

5 cf. foot note 1).
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By Lemmas 1.1, 1.4 and the definition of M(R), it holds M(R) = M(R) and thus

we obtain the following

TueoreM 1. (i) Royden’s ring on a Riemann surface R is the totality of
complex-valued bounded continuous functions on R each of which is absolutely
continuous in the sense of Tonelli on R and has finite Dirichlet integral over R.

(#2) The norm of f in M(R) is given by (1.1).

(#5) The set C" N M(R) is dense in M(R) (n=1,2,3,...).

1.4. Besides the norm-topology defined by (1.1), we use another topologies
in M(R). They are as follows.

(a) B-topology: the sequence {f;} in M(R) converges to 0 in:B-topology
if the sequence {|fill»} is bounded and f;(P) converges to 0 uniformly on every
compact set.

(b) D-topology: the sequence {f;} in M(R) converges to 0 in D-topology
if the sequence {D[f;]} converges to 0. .

(c) Uniform topology: the sequence {f;} in M(R) converges to O in the
uniform topology if the sequence {|fil.} converges to 0.

(d) BD-topology: the sequence {fi} in M(R) converges to O in the BD-
topology if {fi} converges to 0 in B-topology and also in D-topology.

(e) Norm topology: The sequence {fi} in M(R) converges to 0 in the
norm topology if {[7:ll} converges to 0; the relation between these topologies

are stated as follows:

B-topology —» uniform topology\
N norm topology,
D-topology —» BD-topology /

where » means “is weaker than”.
Obviously M(R) is not complete with respect to B- or D- or uniform
topology. But we can prove the following.

Lemma 1.5. M(R) is complete with respect to the BD-topology.

The proof of Lemma 1.1 can be applied nearly verbatim to this case and
so we omit the proof.

1.5. We denote by M,(R) the totality of elements in M(R) with the
compact carrier and by M;(R) the closure of M,(R) in the BD-topology. It is
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easily verified that M,(R) and A (R) are ideals of M( R) and that these are
closed under the adjoint operation.
By Theorem 1 and Royden’s decomposition of BD (see [9]), we get the

following

LemMA 1.6. (Rovden) M(R) = HBD @ M(R), that is, any element f of
M(R) has the unique decomposition

f=u+g lul<if! and (du, dg) = 0 in I'(R),”
where u is in HBD (the class of harmonic functions in BD) and g is in Mi(R).

1.6. A character of M(R) is a functional on M(R) satisfying

(1. 7 HE+g) =720+ 128, Iaf) = aZ(f),
(1. 8) 158 = 1)) 1(g),

(1. 9 1) = 10,

(1.10) Z(1) = 1.

From (1.8) and (1.9), the character is positive, i.e.,
(1.11D) /=0 implies 7(f) =20.
As |lfI% — ff* is non-negative, we get

(1.12) (N1 =ifil =07

by virtue of (1.11).
Thus the character space R" (the totality of characters of M(R)) is a
subspace of the conjugate space M(R)* of M(R) as a Banach space.

The point of R can be considered as a character by defining
P(f) = f(P) (fe MR)).

We call this character P(f) a point character. In this sense R is embedded
in R™

We introduce a topology in R* by the induced topology of the weak
topology o(M(R)*, M(R)) (see Bourbaki [3]) in M(R)*. For the brevity this
is denotod by ¢(R*, M(R)). Then R" is a compact Hausdorff space” and the

6 For I'(R), cf. the proof of Lemma 1.1.

7 By (1.10) and (1.12), R* is in the surface of the unit sphere in M (R)*. Itis clear
that R* is o(M(R)*, M(R))-closed in }M(R-“). Hence, by the well known theorem in the
theory of Banach spaces, R* is compact subset of M(R)*.
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point character space R is an open subset of R* which is dense in R* and is
homeomorphic to the Riemann surface R. In fact, R* — R is closed in R* as
R* — R is the totality of characters which vanish on M(R), and that by the
general theory of normed ring, the semi-simple normed ring with an adjoint
operation is represented as the dense subset of the continuous function space
C(R*) (Loomis [4]).

This R* is first introduced by Royden to investigate the ideal boundary
of R (Royden [10]). So we shall call R* “Royden’s compactification™ of R for
brevity. It is clear that every function in M(R) can be extended continuously
to whole R*™ uniquely.

The set I{ R) = R* — Ris called the ideal boundary of R. As stated already,
the kernel Ny = {f& M(R); 7(f) =0} of the character 7 in I(R) contains
MyR). The totality of /7 such that Ny contains M (R), if exists, will be
denoted by I(R) and the remainder set I(R) — I,(R) will be denoted by L(R).
The set Ii(R) is called the harmonic boundary (Royden [101) and L(R) is

called the non-harmonic boundary.

2. The Normal isomorphism induced by quasiconformal mapping

2.1. Let R and R’ be two open or closed Riemann surfaces and let M(R)
and M(R') be Royden’s rings of R and R' respectively. Suppose that the one-
to-one mapping ¢ of M(R) onto M(R') satisfies the following conditions :
(2.1) ¢ is an isomorphism of the C-algebra® M(R) onto the C-algebra M(R')
preserving the adjoint operation.

(2.2) ¢ is bicontinuous with respect to the B-topology,

and

(2.3) ¢ is bicontinuous with respect to the D-topology.

Then we shall call ¢ the normal isomorphism of M(R) onto M(R').

We denote the totality of functions on R by §(R). For a one-to-one map-
ping T of R onto R/, we can define the one-to-one mapping ¢r of {(R) onto
#F(R') by

¢of (P) = f(T7'P) (Pe R, fe FR)).

Then ¢r is an isomorphism between C-algebras F(R) and F(R'). The ¢r is

8 I.e. an algebra over the complex-number field C.
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called the induced isomorphism by T of §(R) onto F(R').

2.2. A homeomorphism T of R onto R' is called the quasi-conformal
mapping if the ratio of moduli of corresponding quadrilaterals by 7 is bounded.
This definition is due to Pfluger and Ahlfors (see [1]).

The following simple fact seems to have some applications besides its own
interest.

TreoreM 2. If T is a quasi-conformal mapping of R onto R, then the
induced mapping ¢r restricted on M(R) is the normal isomorphism of M(R)
onto M(R').

Proof. Let the maximal dilatation of 7 (and hence of T™') be K. Let
the local equation of 77! be

w=ulx, ), v=uviy),

where w=wu+tv and z = x + iy are local parameters in R and R’ respec;ively.
It is known that 77" is a measurable mapping and further we have

m(T e) = jL](z) dxdy.

Here ¢ is a measurable set in R’ for which the local parameter z is valid and
the local parameter w is valid for T7'¢ in R and m(T 'e) denotes the measure
of the measurable set T7'¢ and finally

o fe)
) u(2) ox v(2)

) 2 B
J(2) = ox u(z) By v(2) 3

almost everywhere in e. The same as above holds also for T (c.f. Bers [2]).

Using this fact and the Schwarz inequality, we obtain
(2.4) K''DLf]l= Dl¢rf1< KDLS])

It is easily seen that ¢, is bicontinuous in the B-topology in F(R).

If fis in C'NM(R), then ¢;f is in M(R'). Theorem 1 implies that, for
any 7 in M(R), we can find a sequence {f»}) in C' N\ M(R) such that f» con-
verges to f in the norm topology (and hence in the BD-topology). As we
have seen that ¢r is continuous in the BD-topology, the sequence {¢rf.} in
M(R') converges to ¢;f in the BD-topology. By Lemma 1.5, M(R) is com-
plete in the BD-topology and hence ¢rf is in M(R'). Therefore, we have that
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¢;M(R) C M(R'). Similarlly, it holds that ¢, M(R') C M(R). Hence we get
M(R) = M(R').
It is seen by the above argument that the conditions (2.1)-(2.3) for ¢r

are satisfied. Hence ¢r is normal. Thus we obtain our theorem.

3. Quasi-conformal mapping induced by normal isomorphism
3.1. First we give the proof of the following.

Lemma 3.1. Let ¢ be a one-to-one mapping of M(R) onto M(R').

(1) If ¢ satisfies (2.1), then ¢ is isometric with respect to the uniform

norm, i.e.,
(3.1) 1eflls = itfla
(ii) If ¢ satisfies (2.1) and (2.3), then there exists a positive constant K
such that
(3.2) K'YDLf] = VDl¢f] < KVDLS]
and
(3.3) K77l < llefll = Kiif.

Hence the normal isomorphism is bicontinuous in the norm topology.

Proof. For the uniform norm, we can prove
(3.4) Ifle = sup{|al; f — 4 has no inverse in M(R)}.

To show this, we denote by a the right side of (3.4). If lfil. <|1l, it is easily
seen that 1/(f(P) — 1) is the function in M(R) and actually the inverse of
f—2. Hence we have a £|/f'.. On the other hand, f — f{ P) is not invertible
in M(R) for fixed P in R Thus we see |fiP)| £aq or |fl.<a So we
have (3.4).

Similarlly we get
(3.5) lefls = sup{|il; ¢f — 2 has no inverse in M(R')}.

As ¢f — 2 =¢(f — 1) is invertible if and only if f — 4 is invertible, the
right sides of (3.4) and (3.5) are coincident, which proves (i).

To prove (38.2), we have only to show that the existence of a positive
constant % such that DL¢f] <k DLf]. If this is false, we can choose a
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sequence {f,} in AM(R) such that D[<¢f,1> nD[f»] as usual. Then gn
= fa/m DLf] satisfies D[ g,1<1/n and D[¢g,]>1, which contradicts (2.3).
From (3.1) and (3.2) follows (3.3). q.ed.

Remark. The following problem seems important and is still open: Can
we conclude that ¢ is normal if ¢ satisfies merely (2.1) and is continuous
(and so bicontinuous by Banach’s theorem) with respect to the norm topology?*

Next we prove the following

Lemma 3.2, If ¢ is a normal isomorphism of M(R) onto M(R'), then
there exists the unique homeomorphism T of R onto R'™* satisfying the follow-
ings:

(1) T*R= R, T'I(R) = L(R') (1=1,2)
and

(ii) ¢ = ¢,
where T is the restriction of T on R.

Proof. For 7 in R* we define a functional 7%7 on M(R') by the formula
T*/(f1) = 2(¢7 ).

Then it is quite easy to verify that T/ satisfies the conditions (1.7)-(1.10).
Thus T* defines a mapping of R into R'*. It is one-to-one and onto. By the
definition of ¢(R*, M(R)) and ¢(R'™, M(R')), we see that T* is bicontinuous.

Now we show that /' = T/ is in R’ if and only if Z is in R. Assume that
7 =Pisin R The image of the kernel N» = {f & M(R); P(f) = f(P) = 0}
of 7 by ¢ is the kernel Ny, of /= T*/. Here we notice that Np is closed in
the B-topology in M R). In fact, if the sequence {f;} in N» converges to f
in M(R) in the B-topology, then f;(P) = 0 implies /(P) = 0. Hence we have
f in Np.

Suppose that 7' = T*Z is not in R'. Then N, contains AL(R"). Hence
we can select a sequence {f;} in N. such that /i converges to 1 in the B-
topology. By (2.2), N, =¢N\, is closed in the B-topology in M(R') along with
Ny. Hence it holds that N, contains 1, which contradicts the condition (1.10).

Hence /' is in R’

9" The converse of Lemma 3.1.
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Similarly we can prove that ¥ is in R if P' = T*/ is in R'.
Next we show that (ii) holds. Let P be in R. Then we have

¢f(P) = ¢f(TT'P) = TT'P'(¢f)
= T*T"'P'(¢f) = T'P'(¢™"¢f)
= T'P(f) = f(T'P")
= ¢rf(P),
which proves ¢ = ¢,
By (ii) and T*R = R, we can see that ¢;f is of compact carrier if and
only if j is of compact carrier, i:e.,

¢(M(R)) = M(R").

As ¢ is bicontinuous in the BD-topology, we have
¢(M(R)) = My(R').
From this and the definition of I;(R), we can conclude that
T*L(R) = L(R").

By (ii), such T* is uniquely determined on R. On the other hand, R and
R' are dense in R* and R'* respectively. Hence by the bicontinuity of T*, T*
is uinquely determined. q.ed.

3.2. By the annulus 2 = (Cy, C,) on R, we mean the subset of R which
is conformally equivalent to the plane domain: 1< |z| < ¢*, where the Jordan
curves Co and C; correspond to |z| = & and |z| = 1 respectively. = We shall
assume that the 2-dimensional measure of Co\JC, is zero.

The uniquely determined number # is called the modulus of 2 and is de-
noted by mod.Q2.

Let the harmonic measure of C; with respect to 2 be w(P, 2), ie., the
harmonic function in 2 which is equal to zero on C, and to 1 on Ci. Then it
holds that

(3.6) 2 =(mod. 2)~! = Delw] = \jg[( %’;)1 (%%—)zjdxdy.

Now we suppose that a homeomorphism T of R onto R’ satisfies the
following condition;
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[8)
—
it

(3.7 for any annulus 2 in R, the inequality
mod. 2 = K mod. T2 = K° mod. 2

holds, where K is a positive constant depending only on T.

If T is a quasi-conformal mapping, then it is known that T satisfies (3.7)
for the maximal dilation K of T (Ahlfors [1], Mori [51). Conversely, if a
homeomorphism 7T satisfies (3.7), it is quasi-conformal (cf. YGjobo [12]). We

state this as follows.

Lemma 3.3. A homeomorphism T of R onto R satisfying (3.7) is a quasi-

conformal mapping.

Proof. As the quasi-conformality of a mapping is a local property, we
may assume without loss of generality that R and R' are unit discs in the
complex plane. Moreover, we may assume T is sense-preserving, for, if it is
sense-reversing, then we may replace T by 7'

From merely (3.7), it holds that

M)/ m(r) < €™,

where M(7) and m(r) are the maximum and the minimum distance of the
image curve of the circle {z| =7 from the image point of the center z = 0 for
a sufficiently small positive number » (A. Mori [5]).

From this, T is totally differentiable almost everywhere in R (A. Mori [5]).
At the point z where T is totally differentiable, we get

oT , 20, OT T(z 4 7e™) — T(z)
0z oz . 7
e 2 = lim .

OT | -0, 9T 70 T(z 4 7¢"™) — T(z)
oz oz Ty -

i [Tz + re'™) — T(2)|
= lim - ) ‘

>0 [ T(z+7e") — T(2) |
= lim M(7)/m(r) = e™",

730

where aaz and aaz are formal complex derivatives. For suitably chosen 4,

and 6,, we get

of , of
0z ' oz ée-:,l\'
or _or T
oz $ 9% !
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or

Then T is a homeomorphic solution of the Bertrami equation

wz = Nz,
oT JoT
oz |/ oz
Ahlfors (Bers [2]).

Using this characterization of quasi-conformality, we get

where u = Thus T is quasi-conformal in the sense of Pfluger-

LemMMma 3.4. T in Lemma 3.2 is a quasi-conformal mapping.

Proof. Let @ = (Co, C1) be an annulus in R and let 2 = (Cy, C1) be the
image of @ by T. We suppose that @ and 2 are contained in rectangular
domains in R and R’ respectively.

Let # be harmonic in @ and be identically equal to 1 inside C; and to 0
outside Co and, further, be continuous on R. We also consider the similar
function # for 2. Then # and # are harmonic measures of 2 and 2 when

they are restricted on & and 2 respectively. From (3.6), we have
(3.8) 2 z(mod. @)7' = D[#%] and 2 z(mod. 2)~' = D[u].

For the function ¢# in M(R'), we can select a sequence {v,} such that
v e C'N M(R") and

(3.9) lim ||v» — ¢#l = 0.

7n->0

This follows from Theorem 1. In particular, from (3.9),

(3.10) lim D[vs] = D[¢al.

N>
Let u, be identical with v, outside £ and with the harmonic function in-

side 2 defined by the boundary value v, on Cy and C;,. Then, by Dirichlet
principle, we get

(3.11) D[un:] = D[?)n]-
By (3.9), it holds that «#(P) = ¢#(P) = lim v,(P) = lim #,(P) on Co,U C.. _
So we have
3 .2 ) @
(3.12) o u(P) = }11_)113 o un( P), 2y u(P) = ,1,1-23 oy un( P)
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inside 2 by Harnack’s theorem. This holds also outside £ almost everywhere
by selecting subsequence, if necessary.
Moreover, we get

(3.13) D[u]l = jim Dlun].
In fact,
) P2 2
Dlu] = ” [ 5 u(z)! + ! 8y u(2) ]dxdy

12
j hm[‘ u,,(z) + "'un(z)!, axdy

R N

<im ([ [12 o)+ 2 o) Jaeay

=lm ply,]

n->x

by (3.12) and by Fatou’s lemma. Noticing Lemma 3.1, we have
(3.14) Dl¢al < K DUad.
Using (3.13), (3.11), (3.10) and (3.14), we see that

Dlu] = 11m Dlu,] < 11m Dlv,]

= Ll_x;]l Dlv,] = D[‘,fz?]
= K Dlal.
From this and (3.8), we have
mod.2 = K mod.Q.
By Lemma 3.3, we can see that T is quasi-conformal. q.e.d.

3.3. By Lemma 3.2 and Lemma 3.4, we obtain the following

TueoreMm 3. If Royden’s rings M(R) and M(R') of Riemann surfaces R
and R' are normally isomorphic by the correspondence ¢, then there exists a
unique homeomorphism T* between the Royden’s compactifications R* and R'*
of R and R' satlisfying

(i) T*R= R, T*'I(R) = L(R") (1=1,2)
and

(ii) T is a quasi-conformal mapping of R onto R' such that

¢=$5Tl
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where ILI(R) and L,(R) are harmonic and non-harmonic ideal boundary of R and

T is the restriction of T* on R and ¢r is the induced isomorphism of T.

By Theorems 2 and 3, we can say that

THEOREM 4. Two Riemann surfaces are quasi-conformally equivalent if

and only if their Royden's rings are normally isomorphic.

4. Correspondence between ideal boundaries
by quasi-conformal mappings

4.1. Let T be a quasi-conformal mapping of R onto R. Then ¢ris a
normal isomorphism of M(R) onto M(R') by Theorem 2. Using Theorem 3,
we can find a unique homeomorphism T™ of R* onto R™ such that T* = T on
R and T* carries I;(R) and I:(R) onto I,(R') and L(R') respectively.

Thus we get the following

THEOREM 5. For a guasi-conformal mapping T of R onto R', there exists
a unique homeomorphism T* of the Royden's compactification R* of R onto the
Royden's compactification R'* of R' such that

1) T =Ton R
and
(ii) T*I(R) = L(R") (i=1,2),

where I(R) and I.(R) (or I(R") and L(R")) are the harmonic and the non-
harmonic ideal boundary of R(or R') respectively.

As a direct consequence of Theorem 5, we get the following

TueoreMm 6. The properties on Riemann surfaces, depending only on

(a) the set theoretical structure™

of the harmonic ideal boundary
or
(b) the topological structure of the harmonic ideal boundary, are preserved

by the quasi-conformal mapping.

As an example, we state a property on Riemann surfaces depending only
on (a) or (b).

10) T.e. the cardinal number.
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4.2. As usual, we denote by O; the class of Riemann surfaces without
Green’s function and by Opp the class of Riemann surfaces on which no non-
constant harmonic function with the finite Dirichlet integral exists.

The Og(or Opyp)-property depends only on the cardinal number of the
harmonic ideal boundary, for we have the following simple lemma (cf. Royden
[10], S. Mori [61).

LemMMmA 4.1. Let R be a Riemann surface.
(i) R belongs to the class Og if and only if I(R) is empty.
(ii) R belongs to the class Oup — Og if and only if L(R) consists of only

one point.

Proof. Royden [8] has given a characterization of the class Og as follows;
using our notation,

R belongs to Og if and only if 1 belongs to M\ R).
The fact 1€ M(R) means that there exists no character vanishing on Mi(R),
or I,(R) is empty, which proves (i),

By Lemma 1.6, R belongs to Oxnp — Op if and only if

M(R) = C® Mi(R).

In this case, M(R)/Mi;(R) = C. This shows that the character vanishing on
M;(R) is only the canonical homeomorphism of M(R) onto M(R)/M,(R). Hence
L(R) is one point, which proves (ii). q.ed.

By Theorem 6 and Lemma 4.1, a quasi-conformal mapping preserves the
class Og and the class Oup— Os, which gives an alternating proof of a
theorem of Pfluger [8] and Royden [11] on the invariance of the classes Oq

and Ogp by the quasi-conformal mappings.

4.3. Next we state a property on Riemann surfaces depending only on
the topological structure of the harmonic ideal boundaries.
Let N be a class of some real-valued functions on an abstract space N.
A non-negative and non-zero function f(P) in N is called minimal in N if for
any g in M satisfying
fIP)2g(P)20 (PeMn)

we can find a non-negative real number ¢, such that

g(P) = ¢gf(P) (PEM).
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We denote by My, the class of Riemann surfaces, on each of which there
exists a minimal function in the class N of some real-valued functions. We
also denote by HBD* the completion of HBD in the uniform-topology. Hence

HBD* is a class of harmonic functions on a Riemann surface R which is

continuous on R*. Here we treat only Mugps. Clearly we have Mugp+
2 Onp = Oe.
LEmMMA 4.2. Let U be a compact Hausdorff space. The continuous

Sunction space C(A) contains a minimal function if and only if W contains an
isolated point.

A minimal function in C(U) is a characteristic function of an isolated
point in Y.

Proof. Suppose P, is an isolated point in 9. Then the function e(P, P))
defined by
lonkP

e(P) P0)={00n QI—P“

is a continuous function and minimal in C(%).

Conversely, suppose that g(P) is minimal in C{Y%). We can find a point
Py in % such that g(P,) =2p>0. Let P(=x P) be a point in Y. We can
find a neighbourhood U of P, such that P, U and g(P) > p in U. Choose a
function f(P) in C(¥Y) such that f(Py) =p, f(P)=0(PEUA—-U) and 0<f(P) <p.
Then 0<f(P)<g(P) (P€Y) and f(P,) =1/2 g(P,). Hence, by the minimality
of g, we have 2f(P) = g(P). In particular, we have g(P,) = 2f(P,) = 0.

Thus g(P) =0 except P = P, or g(P) = e(P, B). Thus P, is an isolated
point in 9. q.ed.

Lemma 4.3. A Riemann surface R belongs to the class Mygp+ if and only
if the harmonic ideal boundary I,(R) of R contains at least one isolated point
with respect to Ii(R).

Proof. Suppose there is given a continuous function g(¥) on L(R). It
is extended continuously to whole R*. We denote it again g(%). Then g(7)
is approximated uniformly by the sequence {g.(/)} in M(R). Then the
harmonic part (cf. Lemma 1.6) #x(7) of g.(X) co'nverges uniformly to a function
u in HBD*. Clearly u(/)=g(7) (/€ I(R)). Such z is determined uniquely
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by the distribution g(Z) on L(R), for functions in HBD takes its minimum
and maximum on I(R) (cf. S. Mori and M. Ota [7]). Thus HBD* is iso-
metrically C-module isomorphic to the continuous function space C(I(R))
preserving the positiveness. Hence HBD* contains minimal function if and
only if C(I;(R)) does so. Thus we get our assertion from Lemma 4.2. q.ed.

By Theorem 6 and Lemma 4.3, @ quasi-conformal mapping preserves the

class Mugp+.

Remark. We state an interesting problem being still open: Can we
conclude that two Riemann surfaces are quasi-conformally equivalent when
their Royden’s compactifications are homeomorphic in such a way as the

harmonic and non-harmonic ideal boundaries correspond each other?
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