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We study the properties of energy flux in wave turbulence via the Majda–McLaughlin–
Tabak (MMT) equation with a quadratic dispersion relation. One of our purposes is to
resolve the inter-scale energy flux P in the stationary state to elucidate its distribution and
scaling with spectral level. More importantly, we perform a quartet-level decomposition
of P = ∑

Ω PΩ , with each component PΩ representing the contribution from quartet
interactions with frequency mismatch Ω , in order to explain the properties of P as well
as to study the wave turbulence closure model. Our results show that the time series of
P closely follows a Gaussian distribution, with its standard deviation several times its
mean value P̄. This large standard deviation is shown to result mainly from the fluctuation
of the quasi-resonances, i.e. PΩ /= 0. The scaling of spectral level with P̄ exhibits P̄1/3

and P̄1/2 at high and low nonlinearity, consistent with the kinetic and dynamic scalings,
respectively. The different scaling laws in the two regimes are explained through the
dominance of quasi-resonances (PΩ /= 0) and exact-resonances (PΩ=0) in the former and
latter regimes. Finally, we investigate the wave turbulence closure model, which connects
fourth-order correlators to products of pair correlators through a broadening function
f (Ω). Our numerical data show that consistent behaviour of f (Ω) can be observed only
upon averaging over a large number of quartets, but with such f (Ω) showing a somewhat
different form from the theory.

Key words: turbulence theory

1. Introduction

Wave turbulence theory (WTT) is a framework for describing the long-time statistical
behaviour of fields of many weakly interacting waves. In such a system, over scales far
from those of forcing and dissipation, self-similar wave–wave interactions drive an energy
cascade between scales and lead to the development of a power-law spectrum. While wave
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turbulence shares much phenomenology with hydrodynamic turbulence, WTT enables an
analytic treatment of the governing wave equation through which the evolution equation
of the wave spectrum can be derived, yielding as a stationary solution the full functional
form of the power-law spectrum. Due to the ubiquity of nonlinear waves in nature, WTT
has found use in a diverse array of fields, including magnetohydrodynamics (Galtier et al.
2000; Galtier 2014), physical oceanography (Zakharov & Filonenko 1967; Zakharov 1968),
acoustics (L’vov et al. 1997), astrophysics (Galtier & Nazarenko 2017, 2021), and others.

One of the primary results of WTT is the derivation of the wave kinetic equation
(WKE) directly from the governing dynamical equations. Formulated under assumptions
on high-order field statistics in the kinetic limit (of a large domain and small nonlinearity),
the WKE expresses the time evolution of wave action spectral density as an integral
over wave–wave interactions. The WKE also has an inertial-range stationary solution
of wave action n(k) ∼ Pθkγ , where k is the wavenumber, P is the energy flux of the
forward cascade, and θ and γ are scaling exponents. Over the decades, many efforts have
been made to study numerically and experimentally the scaling exponent γ for a wide
variety of physical systems (e.g. Nazarenko & Onorato 2006; Denissenko, Lukaschuk &
Nazarenko 2007; Miquel, Alexakis & Mordant 2014; Düring, Josserand & Rica 2017;
Hassaini & Mordant 2018; Monsalve et al. 2020). The exponent θ , and in general the
properties of P, are, however, much less studied, despite the fact that they are more
relevant to the formulation of the WKE. A small number of existing works on the scaling
of P (e.g. Falcon, Laroche & Fauve 2007; Deike, Berhanu & Falcon 2014a; Pan &
Yue 2014) sometimes produce inconsistent conclusions, partly because of their indirect
measurements of P based on the energy input/dissipation rate. Given a non-stationary
spectrum (say in the free-decay case) or broad-scale dissipation of the wave field (which
results in significant dissipation in the inertial range), it is not guaranteed that these
measurements of P based on the input/dissipation rate reflect the true dynamics of
inter-scale energy cascade (see detailed analysis in Deike et al. 2014a; Pan & Yue 2015).

A more direct approach for the exact evaluation of P can be formulated through
the nonlinear terms in the governing equation that are responsible for the wave–wave
interactions leading to the energy cascade (e.g. Hrabski & Pan 2020). This approach allows
the resolution of the probability distribution of P at arbitrary scales that is not obtainable
by previous input/dissipation-based methods. Moreover, this formulation enables a
decomposition of the energy flux into contributions from exact- and quasi-resonances.
In particular, we can perform a quartet-level decomposition of P = ∑

Ω PΩ , with PΩ
representing contributions from a set of quartets with frequency mismatch Ω . This
decomposition technique will allow us to elucidate many mechanisms underlying the
scaling and distribution of P, and provide a direct measure of nonlinear broadening
by evaluating the contribution of quasi-resonances to the energy cascade. This new
measure of nonlinear broadening can be more direct and physically intuitive than previous
approaches based on the coherence function (e.g. Aubourg & Mordant 2015; Pan & Yue
2017; Zhang & Pan 2021) or the broadened dispersion relation (e.g. Mordant 2010; Deike
et al. 2014b).

Another study enabled by this decomposition technique is one on the WTT closure
model, which relates the high-order correlators (of frequency mismatch Ω) to the product
of pair correlators. This relation is usually argued in conjunction with a broadening
function f (Ω) that approaches the delta function δ(Ω) at the kinetic limit (Nazarenko
2011; Zakharov, L’vov & Falkovich 2012; Buckmaster et al. 2021; Deng & Hani
2021a,b). We are particularly interested in the form of f (Ω) in a finite domain, which
is more relevant to the situations in many numerical simulations and experiments.
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Interesting attempts in this direction include the development of a generalized kinetic
equation (by implementing a numerical solution to the closure) (Annenkov & Shrira 2006),
which, however, does not focus on the functional form f (Ω) in the stationary state of
wave turbulence. A lack of understanding of the closure problem is a major obstacle to
advancement in the theory of wave turbulence; for example, the obvious contradiction
between the Majda–McLaughlin–Tabak (MMT) closure and WTT closure (as well as the
elusive numerical observations) raised more than 20 years ago is still not understood fully
today (Majda, McLaughlin & Tabak 1997; Cai et al. 1999; Zakharov et al. 2001).

The purpose of this paper, in general, is to establish a methodology such that
all aforementioned analysis (including various properties of energy flux and the
closely-related closure problem) can be studied directly using numerical data from
simulations of the governing equations. We demonstrate our methodology in the context
of a two-dimensional (2-D) variant of the MMT equation with the Schrödinger-like
dispersion relation ω(k) = k2. This system is chosen in part to continue the work of the
authors Hrabski & Pan (2020), but also to aid in the development of a methodology useful
to many fluid systems. The use of such a toy model removes some of the complexities
associated with real fluid systems (e.g. the non-resonant quadratic nonlinearity of surface
gravity waves), while retaining the essential nonlinear interactions of wave turbulence that
are common to all wave systems in fluids.

We now summarize the main results of the paper. In a stationary state of MMT
turbulence, our analysis shows that the energy flux P, as a time series, closely follows
a Gaussian distribution, with a standard deviation several times its mean value P̄. The
large standard deviation of P is found to be dominated by fluctuations in time of
the quasi-resonant components PΩ /= 0. The scaling between the spectral level and P̄
shows a P̄1/3 dependence at high nonlinearity levels, and transits to P̄1/2 dependence
at low nonlinearity levels. The P̄1/3 scaling is consistent with the kinetic scaling and
is established when P̄ is dominated by the quasi-resonant contributions. This is, in
fact, consistent with the physical picture that the WKE represents a state dominated by
quasi-resonances at the kinetic limit. The P̄1/2 scaling is consistent with the dynamic
scaling derived from the MMT equation, established as a result of the dominance of exact
resonances in P̄. Finally, the WTT closure model on the fourth-order correlator, when
evaluated in a time window of O(500) fundamental periods, is found to be not valid on
the individual quartet level. When we increase the number of quartets to the level at which
P is formulated (O(109) number of quartets for each Ω), the average behaviour of the
fourth-order correlator lies much closer to WTT closure, but with f (Ω) ∼ 1/Ωβ (with β
between 1.3 and 1.6) observed instead of the previously argued functions from WTT.

2. Formulation of energy flux for the MMT model

We consider a 2-D MMT model (Majda et al. 1997) that has been used widely to study
wave turbulence problems (Cai et al. 1999; Zakharov et al. 2001; Chibbaro, De Lillo &
Onorato 2017; Sheffield & Rumpf 2017). The model describes the evolution of a complex
scalar ψ(x, t):

i
∂ψ

∂t
= |∂x|αψ + |∂x|(||∂x|ψ |2|∂x|ψ), (2.1)

where x gives the 2-D spatial coordinates and t is time, and the operator |∂x|αψ
corresponds to the multiplication of each Fourier component ψ̂k by kα , with k being
the magnitude of wavenumber vector k. We choose α = 2, yielding a dispersion relation
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ωk = k2 that is the same as the nonlinear Schrödinger equation (NLSE). In fact, our
model differs from the 2-D NLSE by the addition of derivatives to the nonlinear term,
which provide accelerated evolution to the stationary state (Falkovich & Shafarenko 1991).
The system conserves the Hamiltonian H = Hl + Hnl, with the linear and nonlinear parts
defined as

Hl =
∫ ∣∣|∂x|ψ

∣∣2 dx,

Hnl = 1
2

∫ ∣∣|∂x|ψ
∣∣4 dx,

⎫⎪⎪⎬
⎪⎪⎭ (2.2)

and the total action ‖ψ‖2 = ∫ |ψ |2 dx.

2.1. Exact formulations of instantaneous energy flux P(t)
In this section, we provide the exact formulation of P(t), defined as the flux of spectral
energy (i.e. ωkψ̂kψ̂

∗
k without the high-order component) across arbitrary wavenumber kb.

We consider (2.1) on a torus of size 2π × 2π, such that k is composed of only integers.
We then make an energy conservation argument over a control volume k < kb in spectral
space:

P(t) = −
∑

k∈{k|k<kb}
ωk
∂(ψ̂kψ̂

∗
k)

∂t
(t) = −

∑
k∈{k|k<kb}

ωk

(
∂ψ̂k

∂t
ψ̂∗

k + ∂ψ̂∗
k

∂t
ψ̂k

)
(t). (2.3)

By substituting the Fourier domain representation of (2.1) into (2.3), we see that the linear
term in (2.1) does not contribute to P(t), and a simple manipulation of the nonlinear term
yields

P(t) = −
∑

k∈{k|k<kb}
ωk

∑
(k1,k2,k3)∈Sk

2k1k2k3k Im(ψ̂1ψ̂2ψ̂
∗
3 ψ̂

∗
k)(t), (2.4)

where Sk is the set of all (k1,k2,k3) with k1 + k2 − k3 − k = 0. We note that (2.4) is
exact even if forcing and dissipation are added to (2.1) (which may affect (2.3) but not
(2.4)), because only the nonlinear term in (2.1) is responsible for the inter-scale energy
flux. Taking the wave action n(k) ∼ |ψ̂k|2, (2.4) implies a dynamic scaling of n ∼ P1/2

via a heuristic argument. This is a result of using directly the dynamic equation (2.1) to
formulate the energy flux.

With (2.4) available, we can further perform a decomposition P(t) = ∑
Ω PΩ(t) by

partitioning the set Sk according to the frequency mismatch of each quartet interaction.
Specifically, defining SΩ,k ≡ {(k1,k2,k3) ∈ Sk | |ω1 + ω2 − ω3 − ωk| = Ω}, we have⋃
Ω SΩ,k = Sk with all sets SΩ,k disjoint. Therefore, PΩ(t) can be formulated naturally

as

PΩ(t) = −
∑

k∈{k|k<kb}
ωk

∑
(k1,k2,k3)∈SΩ,k

2k1k2k3k Im(ψ̂1ψ̂2ψ̂
∗
3 ψ̂

∗
k)(t). (2.5)

The computation using (2.5) allows us to measure the contribution to P from resonances
with differentΩ , as well as to separate the quasi-resonant and exact-resonant contributions
by PΩ>0 and PΩ=0, respectively.
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2.2. Formulations of energy flux under the WTT closure
The WTT closure for (2.1) relates the fourth-order correlator to pair correlators by

Im(ψ̂1ψ̂2ψ̂
∗
3 ψ̂

∗
k)Ω = 2kk1k2k3(n1n2n3 + n1n2nk − n1nkn3 − nkn2n3) f (Ω), (2.6)

where an overbar denotes the ensemble average (or time average in numerical analysis),

and nk = ψ̂kψ̂
∗
k is wave action. We also use a subscriptΩ for Im(ψ̂1ψ̂2ψ̂

∗
3 ψ̂

∗
k)Ω to denote

the frequency mismatch of the corresponding four wave modes. The closure (2.6) has been
derived in various (heuristic) ways in the traditional WTT literature (Hasselmann 1962;
Janssen 2003; Zakharov et al. 2012; Pan 2017) by assuming quasi-Gaussian statistics and
that the nonlinear time scale is much longer than the linear time scale. In more recent
works, however, it has been shown that the quasi-Gaussian assumption can be dropped,
and the WKE can be derived instead assuming random phases and amplitudes (Choi,
Lvov & Nazarenko 2005a; Choi et al. 2005b; Eyink & Shi 2012; Chibbaro, Dematteis
& Rondoni 2018). Depending on different methods of the derivation, f (Ω) takes the form
of ε/(Ω2 + ε2) (Zakharov et al. 2012) or a sinc-like function (particularly sin(Ωt)/Ω as
in Janssen (2003) and sin2(Ωt)/Ω2 as in Nazarenko (2011)). We note here that in all these
derivations, the function f depends only onΩ , and not on the wavenumbers of the quartet.
The WKE is then derived in the limit of the parameters ε → 0 and t → ∞ for the first and
second cases, respectively, with both leading to f (Ω) → π δ(Ω).

We are interested in the performance of the closure (2.6) in computing the energy flux
PΩ . For this purpose, we substitute (2.6) into the average of (2.5) to obtain

P̄Ω = −
∑

k∈{k|k<kb}
ωk

×
∑

(k1,k2,k3)∈SΩ,k

4k2
1k2

2k2
3k2(n1n2n3 + n1n2nk − n1nkn3 − nkn2n3) f (Ω). (2.7)

The question in (2.6) and (2.7) is whether there exists a form of f (Ω) consistent with WTT
such that the equality holds in the two equations. To investigate this, we will evaluate in
§ 4 the functional form f (Ω) in both (2.6) and (2.7) using our numerical data to compute
all the other terms in the two equations (e.g. P̄Ω in (2.7) can be computed through the
time average of (2.5)). The difference between the two evaluations of f (Ω) is that the
latter involves the sum of an enormous number of interactions while the former is for an
individual quartet. Through comparison of the numerically resolved f (Ω) with their WTT
counterparts, the validity of the WTT closure can be assessed.

3. Set-up of numerical experiments

We compute the solution to (2.1) via a pseudospectral method on a periodic domain of
size 2π × 2π containing 512 × 512 modes. In our previous work (Hrabski & Pan 2020),
we have shown that an increase to 1024 × 1024 modes does not change the inertial
range spectrum. The linear term of (2.1) is integrated analytically to reduce the system
stiffness, while the nonlinear term is integrated via an explicit fourth-order Runge–Kutta
scheme. Our purpose is to generate a long stationary state so that the distributions of P
(and other quantities discussed in § 2) are sufficiently resolved. Therefore, we force the
system at large scales (in conjunction with small-scale dissipation) instead of considering
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free-decay turbulence. Specifically, we add a forcing term

F =
{

Fr + iFi, 7 ≤ k ≤ 9,
0, otherwise, (3.1)

to the right-hand side of (2.1), with Fr and Fi taken from a zero-mean Gaussian
distribution, which results in a standard white-noise forcing in time with amplitude
variance proportional to the size of the time step. Dissipation is accounted for by adding
two terms

D1 =
{
−iν1ψ̂k, k ≥ 100,
0, otherwise,

D2 =
{
−iν2ψ̂k, k ≤ 7,
0, otherwise,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

at small and large scales, respectively, with the latter included to prevent energy
accumulation at large scales due to the inverse cascade. The parameters in (3.2) are chosen
to be ν1 = 6 × 10−12(k − 100)8 and ν2 = 30k−4 throughout all the simulations. Forcing
and dissipation of this type have been demonstrated to produce results compatible with the
WTT predictions in the one-dimensional MMT model (Cai et al. 1999).

In addition, to accelerate convergence to the stationary state, we start the simulations
from initial conditions ψ̂k = a0 e−0.1|k−10|+iφk , with φk the uniformly-distributed,
decorrelated random phases, and a0 a real constant chosen to provide an energy close
to that of the expected stationary state. To obtain the scaling θ over a range of P̄, we run a
collection of 19 simulations, differing only in forcing strength σ 2

F and initial spectral level
a0. These simulations cover a range of P̄ spanning several orders of magnitude, with data
collected in the stationary state for each case.

4. Results

Before presenting the results on energy flux, we first check the spectra at stationary
states in simulations with different forcing magnitudes. Several typical one-dimensional
angle-averaged spectra n(k) at different levels are shown in figure 1(a), where we observe
power-law ranges close to one decade for all spectra. Figure 1(b) shows the power-law
exponent γ evaluated in all 19 simulations via a least-squares fit in k ∈ [13, 60], as a
function of the spectral level computed by an integral measure of the (conservatively taken)
power-law range

N =
∑

k∈{k|13<k<60}
nk. (4.1)

We note that N, as a measure of nonlinearity level, is monotonically related to the measure
ε ≡ Hnl/Hl (see details in the Appendix) in the range of N in figure 1(b), corresponding
to ε ∈ [0.002, 0.03] (a range where the linear part Hl dominates the total Hamiltonian).

We see in figure 1(b) that γ increases (i.e. the spectrum becomes shallower) with
the decrease of N, reaching the WTT prediction γ0 = −4.67 for low spectral levels
(in particular, γ0 = −2s/3 − d with d = 2 the dimension and s = 4 the degree of
homogeneity of the interaction kernel, as in Nazarenko 2011). This behaviour of γ is
consistent with our previous study of the free-decay MMT turbulence (except that use
of different dissipation schemes may have some slight effect). As analysed by the authors
Hrabski & Pan (2020), the fact that γ → γ0 for small N is (partly) a result of the dispersion
relation ωk = k2, which leads to a continuous resonant system (to be discussed in § 4.2)
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101 102
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100
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−4.8

−4.6

γ

(b)

Figure 1. (a) A representative collection of fully-developed, angle-averaged wave action spectra n(k). (b)
Spectral slope γ as a function of N, with WTT value γ0 = −4.67 (dashed line).

at low nonlinearity (Faou, Germain & Hani 2016). The deviation of γ from γ0 at high
nonlinearity may result from coherent structures, as suggested by Zakharov et al. (2001)
and Chibbaro et al. (2017) in the one-dimensional context, or some features of the 2-D
MMT model that are yet to be fully understood. For waves in different physical contexts,
e.g. surface gravity waves (Denissenko et al. 2007; Zhang & Pan 2021) and capillary
waves (Pushkarev & Zakharov 2000; Pan & Yue 2014), the behaviours of γ are remarkably
different.

We next present our full study of energy flux, with results organized into
three subsections. Subsection 4.1 discusses the distributions of P and its associated
decomposition PΩ . Subsection 4.2 focuses on the scaling of spectral level with P, with the
results explained by the contributions of quasi/exact-resonances to P. The study related to
the closure model is then presented in § 4.3.

4.1. Flux distributions and decomposition
A typical distribution of energy flux P(t), computed with kb = 30 from 216 data points
over a time window of Tw = 256T0, is shown in figure 2(a) (with T0 = 2π the fundamental
period corresponding to the longest wave in the domain). We find that P follows closely
a Gaussian distribution, with standard deviation σ(P) = 621.8, several times larger than
the mean value P̄ = 77.02. The very large standard deviation is consistent with previous
studies in wave turbulence (Falcon et al. 2008) and hydrodynamic turbulence (Bandi
et al. 2006). However, the nearly perfect Gaussian form of the distribution has not been
observed in these previous works, possibly because of differing turbulent systems and
their different way of evaluating P. In addition, our method allows us to study the
fully-resolved distribution of P at any scale (i.e. with arbitrary kb). In figures 2(b) and
2(c), we plot the values of P̄ and σ(P) for kb varying in the inertial range from 20 to 90.
The mean flux P̄ remains almost constant for all kb, which is consistent with the WTT
constant flux argument in the inertial range (this is possible only by avoiding broad-scale
dissipation in simulations). The standard deviation σ(P) increases with kb, because more
quartet interactions are included (as k becomes denser), resulting in more fluctuations
in P(t). We also include in figures 2(a) and 2(b) the energy flux P̄ computed from the
high-wave-number dissipation rate,

P̄d =
∑

k∈{k|k>100}
ν1ωkψ̂kψ̂

∗
k , (4.2)
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Figure 2. (a) Histogram of stationary time series P(t) evaluated over 256T0, fitted with a Gaussian distribution
of the same mean and standard deviation (solid line) for reference. Inset: tail of the distribution in logarithmic
scale. (b) Mean P̄ and (c) standard deviation σ(P), evaluated for different kb. The dissipation-based estimate of
Pd is indicated in both (a) and (b) by a dashed line.

which agrees well with the majority of values of P̄, especially for larger kb (to a relative
difference within O(1 %)). Because of this, we will use P̄d to represent the values of P̄
for all 19 simulations in the subsequent analysis, since Pd yields a faster calculation due
to an easier formulation and much smaller fluctuations (requiring fewer data points for
averaging).

We next examine the relation between σ(P) and nonlinearity level measured by P̄,
with σ(P) as a function of P̄ plotted in figure 3. The result shows a power-law relation
over two decades given by σ(P) ∼ P̄0.8±0.05. Furthermore, we include in figure 3 the
standard deviation of the exact-resonant contributions to energy flux, σ(PΩ=0), with PΩ=0
calculated by the decomposition method presented in § 2. We observe a similar power-law
relation between σ(PΩ=0) and σ(P), but with the value of σ(PΩ=0) O(10) times smaller
than σ(P) consistently for each nonlinearity level. This indicates that the large fluctuations
in P(t) are generated mainly due to quasi-resonant interactions.

A more detailed study about the contributions of exact- and quasi-resonances to P̄ and
σ(P) can be conducted by looking into the components of PΩ for varying values of Ω .
In figures 4(a) and 4(b), we plot P̄Ω and σ(PΩ) for Ω ∈ [0, 30] at four different levels
of nonlinearity. We note thatΩ can take only even integer values for the dispersion relation
ωk = k2 on a periodic domain of 2π × 2π. The general trends in figures 4(a) and 4(b)
show that P̄Ω decreases, but σ(PΩ) increases with the increase of Ω . This corresponds to
a physical picture that as the interactions become more ‘quasi’ (i.e. frequency mismatch
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Figure 3. Dependence of σ(P) (blue circles) and σ(PΩ=0) (red squares) on P̄, with the best fits indicated by

dashed lines.

Ω becomes larger), they contribute less to the mean flux but may contribute more to the
fluctuations of the flux. We also emphasize here that while we always have

∑
Ω P̄Ω = P̄,

the quantity
∑
Ω σ

2(PΩ) is in general not equal to σ 2(P) because the PΩ(t) with different
Ω are not independent. Nevertheless, figure 4(b) in conjunction with figure 3 is sufficient
to support the dominance of quasi-resonances in generating the large fluctuations in P(t).

We conclude this section by summarizing two additional important results regarding
PΩ . First, the decomposition in terms of Ω enables a direct measure of nonlinear
broadening by considering quantitatively the contribution of quasi-resonances to the
total energy flux. To demonstrate this, we define a measure of nonlinear broadening
Γ ≡ min{Ω|P̄Ω < αP̄Ω=0}, which is plotted in figure 4(c) for α = 0.1. While this choice
of α can be varied, Γ clearly quantifies the nonlinear broadening by measuring the width
of P̄Ω in Ω , showing that nonlinear broadening increases with P̄. Second, the fluctuations
seen in figures 4(a) and 4(b) can be removed by considering the normalized flux QΩ(t) =
PΩ(t)/NΩ . With NΩ (figure 4d) counting the number of elements in

∑
k∈{k|k<kb} SΩ,k,

QΩ(t) calculates the quartet-averaged flux (over quartets with frequency mismatch Ω),
with both QΩ and σ(QΩ) behaving smoothly for the range of Ω as shown in figures 4(e)
and 4( f ).

4.2. Scaling of spectral level with flux
To understand the scaling of spectral level with energy flux, we plot in figure 5 the spectral
level N (see (4.1)) as a function of both P̄ and P̄Ω=0, representing total and exact-resonant
flux, respectively. Two salient scalings are observed over the three decades of energy flux.
At high nonlinearity level with P̄ ∈ [30, 100], we find a scaling approaching N ∼ P̄1/3 (i.e.
θ = 1/3 with θ the scaling exponent defined in § 2), consistent with the kinetic scaling of
WTT. At low nonlinearity level with P̄ ∈ [0.3, 3], the scaling behaves as N ∼ P̄1/2 (i.e.
θ = 1/2), consistent with the dynamic scaling from (2.4). We next discuss the mechanisms
underlying these two scalings.

For high nonlinearity, we see in figure 5 that we have P̄ � P̄Ω=0, consistent with
observations in figure 4(a), indicating that quasi-resonances dominate the dynamics in
this regime. This suggests that the kinetic scaling, developed from the WKE in the kinetic
limit (infinite domain and small nonlinearity), is realized at relatively high nonlinearity
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Figure 4. Panel (a) shows P̄Ω , and (b) shows σ(PΩ), as functions of Ω , for four levels of nonlinearity with
P̄ = 81.9 (blue circles), P̄ = 61.0 (red squares), P̄ = 42.8 (green triangles) and P̄ = 20.0 (purple triangles). (c)
Nonlinear broadening Γ as a function of P̄; (d) number of quartet interactions NΩ for different Ω . Panels (e)
and ( f ) are similar to (a) and (b), but plotted for normalized flux Qn. The computations to generate these results
are conducted for kb = 23 to reduce the computational cost associated with the number of involved quartets.

in a finite domain as quasi-resonances overcome the discreteness. This physical picture
is consistent with the results of Annenkov & Shrira (2006), L’vov & Nazarenko (2010),
Nazarenko (2011) and Pistone, Onorato & Chibbaro (2018), which all suggest a kinetic
wave turbulence regime dominated by quasi-resonance in a finite domain. In addition,
recent mathematical justifications of the WKE (Buckmaster et al. 2021; Deng & Hani
2021a,b) show that the kinetic limit should be taken according to particular scaling laws
between the domain size and nonlinearity level, i.e. retaining the quasi-resonances as the
large box limit is taken. More specifically, the quasi-resonances are the ones responsible
for the emergence of the kinetic equation in the large box limit (Deng & Hani 2021a).
However, it should be noted that these mathematical works describe the initial evolution
only up to the kinetic time scale, and are not necessarily relevant to the stationary state that
we study here. In addition, the mathematical works are developed for the NLSE (which
is slightly different from (2.1)) and sometimes require a dimension d ≥ 3 (Deng & Hani
2021a).
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P̄, P̄Ω = 0

100N

θ = 1/3

θ = 1/2

Figure 5. The scaling of inertial-range wave action N with P̄ (blue circles) and P̄Ω=0 (red triangles). The
dynamic scaling θ = 1/2 and kinetic scaling θ = 1/3 are indicated by dashed lines.

For low nonlinearity, P̄ ≈ P̄Ω=0 (as shown in figure 5) due to the elimination of
quasi-resonant contributions to P̄, which has been observed previously in Hrabski &
Pan (2020). This is because the nonlinear broadening is not sufficient to overcome the
discreteness of wavenumber in a finite domain. In this regime, kinetic wave turbulence is
not supported (due to the lack of quasi-resonances), and the remaining exact-resonances
(on a discrete manifold) lead to a dynamic scaling that can be derived from (2.4). In
addition, the dispersion relation ωk = k2 is important for the realization of dynamic
scaling because otherwise a frozen turbulence (Pushkarev & Zakharov 2000) behaviour
may be expected at low nonlinearity. For ωk = k2, it has been proven (in the context
of the NLSE) that for N → 0, the dynamics at high wavenumbers is described by a
continuous resonant equation (Faou et al. 2016), i.e. the system behaves like a system
of continuous wavenumber so that an energy cascade can be expected. In other words, the
exact resonances on the discrete manifold determined by ωk = k2 are sufficient to support
an energy cascade.

In retrospect to figure 1(b), we note finally that the kinetic scaling regime at high
nonlinearity is associated with a spectral slope γ that is steeper than the WTT solution γ0.
This behaviour is also observed in simulations of the MMT equation (in one dimension
with a different dispersion relation) by Chibbaro et al. (2017). Further investigations on this
problem (as well as the result of γ = γ0 in the dynamic scaling range) are warranted. Here,
we remark simply that in order for γ = γ0 at high nonlinearity, one requires the solution
of the kinetic equation (i.e. the Kolmogorov–Zakharov spectrum) to be valid, which is a
much stronger requirement than the kinetic scaling.

4.3. Investigation on the closure model
In this subsection, we use our numerical data to study the WTT closure model, in particular
the magnitude and functional form of f (Ω). We perform this study for the nonlinearity
levels associated with the kinetic scaling of P̄, i.e. in the kinetic wave turbulence regime.
The function f (Ω) in the WTT closure model (as summarized in § 2) is developed for this
regime under a discrete setting before the large box limit is taken, and it is this form that
we will study with our numerical data. Theoretically, one expects f (Ω) to take the form
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Figure 6. The function fQ(Ω) evaluated for O(50) selected quartets (with three quartets for each Ω) with
Tw = 256T0, for the highest nonlinearity level with P̄ = 81.9.

of either a sinc-like function (Janssen 2003; Nazarenko 2011) or ε/(Ω2 + ε2) (Zakharov
et al. 2012), with

∫
Ω

f (Ω) dΩ ∼ O(1) since both forms are generalized delta functions.
The numerical evaluation of f (Ω)will be performed at: (i) an individual quartet level using
(2.6); (ii) a family of quartets level using (2.6) in an average manner that will be introduced
shortly; and (iii) an inter-scale energy flux level using (2.7). The general procedure is to
compute f (Ω) from (2.6) and (2.7), with all other terms determined from the numerical
data. To distinguish these computations, we denote the numerically obtained f (Ω) from
the three levels respectively as fQ(Ω), fF(Ω) and fP(Ω).

Figure 6 shows fQ(Ω) evaluated for O(50) quartets with Ω ∈ [0, 30], and with average
quantities in (2.6) evaluated over a time window Tw = 256T0. It is clear that no obvious
functional pattern can be found for fQ(Ω) (i.e. with different values of fQ(Ω) obtained for
the same Ω). This indicates that the WTT closure for fourth-order correlators cannot be
used to describe the behaviour of a single quartet (regardless of its associated frequency
mismatch Ω) in the chosen finite time interval Tw. In other words, within Tw (which is
long enough to resolve low-order statistics), the contributions of individual quartets to
the energy cascade are not described by the WTT closure model. On the other hand, it
is not clear from the current results whether there exists a sufficiently long time interval
such that we can observe convergent behaviour of fourth-order correlators, and whether
the convergent behaviour is described by WTT. To find a definite answer to this question,
longer simulations are needed, which will be a topic of future work.

To consider the average behaviour of a family of quartets, we use a technique similar
to that of Annenkov & Shrira (2006) to create a cluster of modes around each of the
four modes of an exact-resonant quartet. Specifically, for an exact quartet (ke

0, ke
1, ke

2,
ke

3), we construct a family of quartets (l0, l1, l2, l3) at its vicinity by choosing all li with
|li − ke

i | ≤ 4 for i = 0, 1, 2, 3. We then evaluate fF(Ω) from (2.6) by summing over those
quartets (l0, l1, l2, l3) with frequency mismatchΩ on both sides of the equation. Under this
evaluation, fF(Ω) reflects the closure behaviour averaged over O(103) quartets. Figure 7
shows fF(Ω) computed from three representative families of quartets, defined via exact
quartets (ke

0, ke
1, ke

2, ke
3). We see that fF(Ω) is somewhat inversely proportional to Ω

superposed with many fluctuations. While the general trend of fF(Ω) seems consistent for
different families, the details (e.g. the value of fF(0) as well as the fluctuation patterns)
vary considerably across different families.

936 A47-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.106


On the properties of energy flux in wave turbulence

0 10 20 30
Ω

0

0.1

0.2

0.3

0.4

0.5

0.6

fF (Ω)

Figure 7. The function fF(Ω) for three representative families of quartets defined by ke
0 = (−2, 8), ke

1 =
(−10, 0), ke

2 = (14 + 4j,−8 − 4j) and ke
3 = (6 + 4j,−16 − 4j), for j = 0 (blue circles), j = 1 (red squares)

and j = 2 (green triangles). The evaluation is for the highest nonlinearity case of P̄ = 81.9 with Tw = 256T0.

Finally, we examine the closure behaviour considering the average over an enormous
number of quartets, chosen as all quartets contributing to the energy flux across kb = 23.
Under such a consideration, both sides of (2.7) are subject to summation over O(109)
elements in

∑
k∈{k|k<kb} SΩ,k for each Ω (see figure 4d). The numerically resolved fP(Ω)

is plotted in figure 8 at several different nonlinearity levels. We remark that these results are
convergent in the sense that they are not sensitive to the length of the time window Tw (we
have checked that using Tw/4 as the time window leads to the same result). It is clear that
under this level of average,

∫
Ω

f (Ω) dΩ ∼ O(1) consistent with WTT (we do not expect∫
Ω

f (Ω) dΩ to be exactly 1 unless we can reach the kinetic limit numerically). To quantify
the profile of fP(Ω), we use a least-squares method to fit the data to a general functional
form of fP(Ω) = C/(ρ +Ωβ), where ρ is needed as a desingularization factor for fP(0).
These fittings, as shown in figure 8, agree with all data points remarkably well, with
C = [1.06, 0.982, 0.875], ρ = [6.176, 3.44, 2.26] and β = [1.35, 1.47, 1.52] from high
to low nonlinearity level. Instead of a sinc-like function (which involves either negative
values or oscillatory behaviour, with neither observed), the functional form of fP(Ω) is
somewhat closer to the WTT form of ε/(Ω2 + ε2), but with different exponents β. This is
probably why Pan & Yue (2017) find that the kinetic equation employing this WTT form of
generalized delta function produces physically reasonable results in terms of the spectral
slope and energy flux for capillary waves.

5. Conclusion and discussions

In this paper, we study numerically the properties of inter-scale energy flux P for wave
turbulence in the context of the 2-D MMT equation. Unlike previous evaluations of
P based on energy input or dissipation rate, our formulation of P computes the exact
instantaneous energy flux across arbitrary scale kb directly from the nonlinear terms in
the MMT equation, and allows a quartet-level decomposition of P into PΩ according
to the frequency mismatch Ω of the quartets. Our results show that the energy flux P
across any scale in the inertial range closely follows a Gaussian distribution, with the mean
value P̄ almost a constant for any kb, and standard deviation σ(P) increasing with kb. In
addition, values of σ(P) are generally several orders of magnitude larger than P̄, mainly
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Figure 8. The function fP(Ω) evaluated by (2.7) with kb = 23 and Tw = 256T0, for different nonlinearity
levels, with P̄ = 81.9 (blue circles), P̄ = 42.8 (red squares) and P̄ = 28.0 (green triangles). Fits to the data of
the form f (Ω) = C/(ρ +Ωβ) are indicated by the dashed lines.

due to the contributions to σ(P) from quasi-resonances, i.e. PΩ>0. The decomposition of
P into PΩ also allows an alternative but more direct measure of nonlinear broadening by
quantitatively considering the contribution of quasi-resonances to the mean energy flux.
We further study the scaling of spectral level N with the energy flux and find that N ∼ P̄1/3

(consistent with the kinetic scaling) at high nonlinearity, and N ∼ P̄1/2 (dynamic scaling)
at low nonlinearity. The former and latter are due to the dominance of the quasi-resonant
and exact-resonant contributions to P̄, respectively. Finally, our numerical study on the
wave turbulence closure model shows that the fourth-order correlator evaluated over a
finite time window is in disagreement with the description by the theoretical closure on
a single quartet level. When considering the average over all quartets contributing to the
inter-scale energy flux (over O(109) quartets for each Ω), a behaviour more consistent
with the theoretical closure is observed, but with the broadening function exhibiting 1/Ωβ

(with β between 1.3 and 1.6), different from the forms derived in WTT.
While this work sheds new light on the physics of wave turbulence, more unanswered

questions about wave turbulence, especially regarding the closure model, are raised.
The closure model is a subject that has received insufficient attention from a numerical
perspective, especially in terms of analysis utilizing data generated directly from the
primitive dynamic equation. The few exceptions to this (e.g. Majda et al. 1997; Annenkov
& Shrira 2006; Sheffield & Rumpf 2017) have not considered the detailed functional
form and magnitude of f (Ω), as studied in this work. Therefore, the authors consider
the primary importance of this work as to provide a methodology such that many open
questions in wave turbulence can be studied directly using vast numerical data. Within the
presented results, for example, the function fQ(Ω) in figure 6 is still sensitive to the time
window Tw used for averaging quantities in (2.6) for an individual quartet. It is not clear
whether a convergent behaviour (close to the quartet-averaged result fP(Ω)) can be found
if a time average over an extremely long time window is performed. In addition, will the
smooth behaviour associated with function QΩ in figures 4(e) and 4( f ) be preserved in
different domain geometries (e.g. an irrational torus as in Hrabski et al. 2021) where the
normalization factor NΩ varies substantially? Last but not least, are we able to explore the
kinetic limit in numerical simulations by varying both domain size and nonlinearity level?
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Figure 9. The relationships of (a) ε with N, and (b) ε with P̄.

If this is possible, will we find more consistent behaviour for fF(Ω) for families centred
on different quartets, and will all these functions eventually converge to a delta function?

These questions can be explored in greater detail with increasing computational
resources, and it is certainly not unreasonable to think about studying wave turbulence
with ‘exascale computing’, an area under development for hydrodynamic turbulence (e.g.
Yeung & Ravikumar 2020). For wave turbulence, these resources may be better utilized
in conjunction with an understanding of WTT, rather than simply boosting the resolution
of simulations. It might also be beneficial to revisit the one-dimensional MMT equation,
where some of these questions can be investigated with a reduced computational cost but
with the new techniques developed here. In doing this, we may also hope to settle the
dispute between the WTT and MMT closure models that has been haunting the field for
more than 20 years.
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Appendix

In figure 9, we provide the relationships between nonlinearity ε and wave action measure
N, and between ε and mean flux P̄. We observe monotonic scaling relationships in both
cases.
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