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For certain singularly perturbed two-component reaction–diffusion systems, the bifurcation

diagram of steady-state spike solutions is characterized by a saddle-node behaviour in terms

of some parameter in the system. For some such systems, such as the Gray–Scott model, a

spike self-replication behaviour is observed as the parameter varies across the saddle-node

point. We demonstrate and analyse a qualitatively new type of transition as a parameter is

slowly decreased below the saddle node value, which is characterized by a finite-time blow-up

of the spike solution. More specifically, we use a blend of asymptotic analysis, linear stability

theory, and full numerical computations to analyse a wide variety of dynamical instabilities,

and ultimately finite-time blow-up behaviour, for localized spike solutions that occur as a

parameter β is slowly ramped in time below various linear stability and existence thresholds

associated with steady-state spike solutions. The transition or route to an ultimate finite-

time blow-up can include spike nucleation, spike annihilation, or spike amplitude oscillation,

depending on the specific parameter regime. Our detailed analysis of the existence and

linear stability of multi-spike patterns, through the analysis of an explicitly solvable non-

local eigenvalue problem, provides a theoretical guide for predicting which transition will be

realized. Finally, we analyse the blow-up profile for a shadow limit of the reaction–diffusion

system. For the resulting non-local scalar parabolic problem, we derive an explicit expression

for the blow-up rate near the parameter range where blow-up is predicted. This blow-up rate

is confirmed with full numerical simulations of the full PDE. Moreover, we analyse the linear

stability of this solution that blows up in finite time.

Key words: Nonlocal eigenvalue problem, delayed bifurcation, saddle node, Hopf bifurcation,

finite-time blow-up.

1 Introduction

In the singularly perturbed limit of small diffusivity, certain two-component reaction–

diffusion (RD) systems in a one-dimensional spatial domain can support the existence

of localized spike-type solutions, whereby one of the two components becomes localized

around certain points in the domain. A prototypical system admitting spike patterns is the
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Gierer–Meinhardt (GM) model (cf. [14]). Nowadays, there exists a rather well-developed

theory for the existence, linear stability, and dynamics of localized spike patterns for many

two-component RD systems in one dimension (see [5–7, 15, 16, 35] for some of the earlier

studies). A much more extensive bibliography is given in [25].

For some of the RD systems, the bifurcation diagram of steady-state spike solutions is

characterized by a saddle-node behaviour in terms of some parameter in the system. In

particular, for the well-known Gray–Scott RD system transitions in a feed-rate parameter

past some critical saddle-node bifurcation point are known to lead to spike self-replication

behaviour, whereby a spike dynamically splits into two. Further transitions in the feed-

rate parameter across other saddle-node points of multi-spike equilibria lead to the

subsequent generation of additional spikes through a dynamical splitting phenomenon

(cf. [5, 8, 18, 19, 27]).

The goal of this paper is to analyse spike solutions for a RD model that exhibits

a qualitatively new type of transition as a bifurcation parameter crosses a saddle-node

value. More specifically, we will analyse the linear stability and transition to finite-time

blow-up behaviour of localized spike solutions to the RD system:

vt = ε2vxx + v − vu+ v3 , |x| � 1 , t > 0 ; vx(±1, t) = 0 , (1.1a)

τut = Duxx − u+ 2ε−1βv3 , |x| � 1 , t > 0 ; ux(±1, t) = 0 . (1.1b)

In (1.1), 0 < ε � 1, D > 0, β > 0, and τ � 0, are constants, with D = O(1) as ε → 0.

A very similar system, where βv3 is replaced by βv2 in (1.1b), was considered briefly in

Section 5 of [19] where blow-up behaviour of localized spike solutions was conjectured.

In [7], a related system, representing a variant of the GM model, was also conjectured,

based on numerical evidence, to lead to a finite-time blow-up of the spike amplitude.

In the shadow limit where D � 1 and τ = O(1), (1.1) reduces to the following PDE–

ODE model for v(x, t) and u(t):

vt = ε2vxx − (u− 1)v + v3 , |x| � 1 , t > 0 ; vx(±1, t) = 0 , (1.2a)

τ
du

dt
= −u+ ε−1β

∫ 1

−1

v3 dx . (1.2b)

In addition, if we assume that τ = 0, then (1.2) reduces to the non-local Ginzburg–Landau

(GL) model:

vt = ε2vxx −
(
βε−1

∫ 1

−1

v3 dx− 1

)
v + v3 , |x| � 1 , t > 0 ; vx(±1, t) = 0 . (1.3)

A minor variant of (1.3), in which the non-local term has v2 rather than v3 in its

integrand, arises in asymptotic theories of certain convection processes (cf. [23], [28]), and

was studied in the context of localized steady-state spike solutions in [26]. The extension

of the analysis of [26] to a non-local quintic GL model is given in [36].

For (1.1)–(1.3), we will use a combination of asymptotic analysis, linear stability theory,

and full numerical computations to investigate a wide variety of dynamical instabilities,

and ultimately finite-time blow-up behaviour, for localized spike solutions that occur as β
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is slowly ramped in time below various linear stability and existence thresholds associated

with steady-state spike solutions. Through full numerical simulations of system (1.1), we

will show that when β is slowly decreased, a dynamically intricate route, or transition,

of either spike nucleation, spike annihilation, or spike amplitude oscillation appears that

occurs before a spike ultimately undergoes a finite-time blow-up of its amplitude (see

Experiments 1–4 in Section 4.3). The precise transition to blow-up that is observed

depends on the parameter regime of D and τ. Our detailed analysis of the existence and

linear stability of multi-spike patterns will provide a theoretical guide for predicting which

transition will be realized.

One common challenge in the analysis of the linear stability of multi-spike patterns

for RD systems is that one must derive precise stability thresholds from the analysis of

a non-local eigenvalue problem (NLEP). One key feature of our model (1.1) is that the

underlying NLEP problem is “explicitly solvable” in the sense of [25], in that the problem

of detecting any unstable eigenvalues of the NLEP is reduced to the highly tractable

analytical problem of determining the roots to some explicit transcendental equations

in the eigenvalue parameter. A related key feature of (1.1) is that we are also able to

provide a detailed analysis of delayed bifurcation behaviour that occurs as β is slowly

ramped below linear stability thresholds obtained from the NLEP analysis. Our analysis

theoretically predicts the delayed value of β for which either a competition instability in

the spike amplitude occurs for (1.1) or an oscillatory instability in the spike amplitude

occurs for a one-spike solution of (1.2).

Delayed bifurcation phenomena have been analysed rather extensively in the context

of ODEs. For some early studies of this type, see [1, 9] and [22], and for a more recent

overview, see [21]. However, in the context of PDEs, there have been relatively few detailed

analytical studies of delayed bifurcation. One such study is [33] where a related explicitly

solvable NLEP was key to analysing delayed bifurcation behaviour of spike solutions to

a specific form of the GM model and a generalization of the Gray–Scott model.

The outline of this paper is as follows.

In Section 2, the method of matched asymptotic expansions is used to construct k-spike

steady-state solutions to (1.1) in the limit ε→ 0. This analysis shows that there are critical

existence thresholds βk , with βk+1 < βk , for which there exists a k-spike steady-state for

β > βk and when β < βk it does not. This critical value of β corresponds to a saddle-node

bifurcation point of spike equilibria.

In Section 3, we perform a linear stability analysis of these spike solutions. A novel

feature in this analysis, in comparison with similar studies for other models (cf. [5], [35]),

is that we must consider both the stability of the background state, defined away from

the spikes, as well as the stability of the spike profile. In Section 3, we show that the

background state is linearly stable only if D > Db, where Db depends on β and the

number of spikes. To analyse the linear stability of the spike profile, we first derive an

NLEP in Section 3 that characterizes any instabilities of the amplitudes of the spikes

on an O(1) time-scale. We find that the NLEP is explicitly solvable, and hence, can be

readily analysed. This is a consequence of the choice of the non-linearity, namely cubic, in

equation (1.1b), compared to the system studied in Section 5 of [19]. For 0 � τ < τHk and

for k � 2, we show that a k-spike equilibrium is linearly stable only when β > βck > βk
for some thresholds βck and τHk .
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The threshold βck , referred to as the competition stability threshold, occurs as a result

of a zero-eigenvalue crossing and leads to a sign-fluctuating instability in the spike

amplitudes. Moreover, the k-spike equilibrium with k � 2 is unstable for all τ > 0 in the

range βk < β < βck . For k = 1, we have βc1 = β1, and for β > β1, a one-spike steady-state

is linearly stable only in the range 0 � τ < τH and undergoes a Hopf bifurcation at

τ = τH , which depends on β and D. Asymptotic approximations for τH in the limit D � 1

and for D � 1 are derived.

Next, we study in Section 4 two specific scenarios in which β is slowly decreased. We

provide a detailed analysis of the delayed bifurcation that occurs in these two cases. In

Section 4.1, we study delayed bifurcation behaviour for a two-spike steady-state of (1.1)

with τ = 0 when β is slowly and linearly ramped in time below the competition threshold

βc2. The analysis predicts the existence of a critical value of β, satisfying β2 < β < βc2,

at which the delayed competition instability is fully realized. For a fixed τ > 0, we

analyse in Section 4.2 the delayed Hopf bifurcation that occurs for a one-spike solution

to the PDE–ODE model (1.2) when β is slowly ramped below the Hopf bifurcation

threshold associated with the NLEP. We show that the delayed oscillatory instability

is fully realized before β reaches the existence threshold β1. In Section 4.3, we perform

several numerical experiments on the RD system (1.1) using FlexPDE6 [12] to confirm the

theoretical predictions of delayed instabilities, and to exhibit several distinct dynamical

routes, or transitions, that can occur leading to an ultimate finite-time blow-up of a spike

amplitude.

In Section 5, we analyse the numerically observed finite-time blow-up behaviour for

a solution to the non-local GL model (1.3) whenever β is below the saddle node point

β1 = 1/(
√

2π) associated to the existence of a one-spike steady-state. In the analysis, we

use a dynamical rescaling approach, based on a near-similarity group transformation, to

construct a solution to (1.3) that has finite-time blow-up at x = x0. Our analysis is related

to the centre-manifold approach developed in [11] (see also [10] for a related study of

quenching) for the scalar model vt = Δv + vp for p > 1 and to the more recent studies

of [29] and [4] for finite-time blow-up in a complex GL equation and to [2] for a range

of different models. In contrast to the study of [11] of blow-up in the local model, our

analysis of the non-local model (1.3) requires the numerical computation of a simple BVP

characterizing the blow-up profile. We will show for (1.3) that the blow-up profile exists

whenever β < β1. In the limit β → β−
1 , we construct the blow-up profile using asymptotic

analysis to predict a precise blow-up rate. We also examine the linear stability of the

blow-up profile by following the general methodology of [2].

Our analysis of a single-point blow-up for (1.3), similar to that for scalar quasilinear

heat equations, differs from that of existing literature for non-local equations. Problems

that have been studied are of the form

ut = Δu+ f(u) −
∫
Ω

f(u) dx,

with ∂nu = 0 and a function f(u) that is usually taken to be a power of u. For f(u) = up,

it was shown in [3] in one dimension that u blows up at each point in Ω, but with a

non-uniform blow-up rate depending on the point x ∈ Ω. Moreover, in [34], an estimate

for the blow-up rate of non-global solutions for f(u) = u2 was established.

https://doi.org/10.1017/S0956792517000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000043


Transition to finite-time blow-up in a reaction–diffusion model 1019

The case when f(u) = u|u|p−1 was studied by [13] and the problem where f(u) = |u|p
was considered in [17, 30]. In both cases, it was shown that for any p > 1, the solution

must blow-up if the initial data satisfies a certain energy condition. Similar global blow-up

behaviour was shown for the more general model:

ut = Δu− f1(u,∇u) + um
(∫

Ω

uk
) p

k

dx,

on Ω with Dirichlet boundary conditions and under certain conditions on the function f1

(for more details, see [31, 32]). However, due to the different signs in front of the integral

term in comparison to our problem, the theory developed in these articles is not applicable

here.

The paper concludes with a brief discussion in Section 6.

2 Asymptotic construction of steady-state spike solutions

In this section, we use the method of matched asymptotic expansions for ε � 0 to

construct a k-spike steady-state solution to (1.1), with k � 1 evenly spaced interior spikes,

on the interval |x| � 1. To do so, we need only construct an even one-spike solution

centred at x = 0 on the interval |x| � l and then set l = 1/k. By translation invariance

and through reflection of this canonical one-spike solution, defined on |x| � l = 1/k, a

k-spike steady-state solution to (1.1) on |x| � 1 is readily obtained.

We consider (1.1) on |x| � l, and construct a stationary spike solution centred at x = 0.

In the inner region near x = 0, we introduce the new variables y, V (y) and U(y), by

y = x/ε , V (y) = v(εy) , U(y) = u(εy) .

Upon introducing these variables into the steady-state problem for (1.1), we obtain to

leading order that U ∼ U0 + o(1), for some constant U0, and that V (y) is a homoclinic

solution to V ′′− (U0 − 1)V +V 3 = 0 where the prime denotes differentiation with respect

to y. For a spike-solution to exist on |x| � l, we require that U0 > 1, and on this range

of U0, we get

V (y) = (U0 − 1)1/2 w
[√

U0 − 1 y
]
, (2.1)

where w(z) =
√

2sechz is the unique homoclinic solution to

w′′−w+w3 = 0 , −∞ < z <∞ ; w → 0 as |z| → ∞ ; w′(0) = 0 , w(0) > 0 .

(2.2)

Next, since v is localized near x = 0, we can use (2.1) to determine, in the sense of

distributions, that

2βε−1v3 → 2β

(∫ ∞

−∞
V 3 dy

)
δ(x) = 2β (U0 − 1)3/2

×
(∫ ∞

−∞

(
w

[√
U0 − 1y

])3

dy

)
δ(x) = 2

√
2βπ (U0 − 1) δ(x) . (2.3)
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Here, we have used
∫ ∞
−∞ [w(z)]3 dz =

√
2π. In this way, it follows from (1.1b) and (2.3),

that the steady-state outer solution for u on |x| � l is

Duxx − u = −2
√

2βπ (U0 − 1) δ(x), |x| < l ; ux(±l) = 0 , (2.4)

together with the matching condition that u(0) = U0.

We represent the solution to (2.4) in terms of the Green’s function G(x), satisfying

Gxx −
1

D
G = −δ(x) , |x| � l ; Gx(±l) = 0 , (2.5a)

which is given explicitly by

G(x) =
cosh

[
ω0(l − |x|)

]
2ω0 sinh (ω0l)

, ω0 ≡ 1/
√
D . (2.5b)

In terms of G(x), the solution to (2.4) is

u(x) = 2
√

2βπω2
0 (U0 − 1)G(x) . (2.6)

Upon setting u(0) = U0 in (2.6) and letting l = 1/k, we obtain for a k-spike steady-state

solution on |x| � 1 that

β = βk

[
1 +

1

U0 − 1

]
, βk ≡

1√
2πω0

tanh
(ω0

k

)
, (2.7)

which determines β in terms of U0. Since we require U0 > 1, we conclude that a k-interior-

spike steady-state solution exists only when β > βk , where βk is the existence threshold

for the k-spike solution. Moreover, as U0 → 1, we see that β → βk . Also, βk+1 < βk and

βk limits to zero as k increases. The limiting asymptotics of βk for both large and small

diffusivity is

βk ∼
1√
2πk

, D � 1 ; βk ∼
1

π

√
D

2
, D � 1 . (2.8)

In Figure 1, we plot for D = 1, the solution branches consisting of |v|∞ ≡ w(0)
√
U0 − 1,

where w(0) =
√

2, versus β, as obtained from (2.7), for k-spike steady-state solutions to

(1.1) for k = 1, . . . , 4. In this figure, we also illustrate the stability results obtained in

Section 3 from the NLEP associated with the spike profile.

3 The linear stability analysis

In this section, we analyse the linear stability of the steady-state spike solutions constructed

in Section 2. To do so, we let ve and ue denote the steady-state solution, and we introduce

the perturbation

v = ve + eλtφ , u = ue + eλtη . (3.1)
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|v|∞

β

Figure 1. The bifurcation diagram of |v|∞ =
√

2(U0 − 1) versus β when D = 1 for k-spike steady-

state solutions of (1.1) for k = 1, . . . , 4. The heavy solid portions of the curves are where the NLEP

associated with the k-spike solution has stable eigenvalues when 0 � τ < τHk , where τHk is a Hopf

bifurcation threshold depending on β and D. The dashed portions indicate where the NLEP has an

unstable eigenvalue for any τ � 0 due to a competition instability. The curves from top to bottom

correspond to increasing values of k.

Upon substituting (3.1) into (1.1) and linearizing, we obtain that φ and η satisfy

ε2φxx − (ue − 1)φ+ 3v2eφ− veη = λφ , (3.2a)

Dηxx − (1 + τλ)η = −6ε−1βv2eφ . (3.2b)

For a one-spike solution, we will analyse (3.2) directly subject to φx(±1) = ψx(±1) = 0.

For the multi-spike case, (3.2) will be analysed using a Floquet-based approach, using

Floquet boundary conditions on the canonical domain |x| � l (see Section 3.2 below).

In our linear stability analysis, we must, in addition to deriving an NLEP associated

with localized eigenfunctions near the spike locations, also consider the stability of the

background outer solution ve = 0. This is in contrast to similar stability analyses of

k-spike steady-state solutions for the GM and related models (see [35] and the references

therein).

More specifically, from (3.2a), we conclude for ε � 1 that the outer solution ve = 0 is

linearly stable for a k-spike pattern only when ue − 1 > 0 on O(ε) < |x| � l, with l = 1/k.

The outer solution ue is given by expression (2.6) together with u(0) = U0 and can hence

be expressed as

ue(x) = U0G(x)/G(0) ,

where G(x) is given in (2.5b).

Thus, ue decreases monotone on 0 < x < l, and therefore, it follows that ue(x) > 1 on

0 < x < l only when ue(l) > 1. By evaluating the outer solution ue(x) at x = l = 1/k, we

conclude that the background state is linearly stable if and only if U0sech
(
ω0/k

)
> 1.

Upon setting U0sech
(
ω0/k

)
= 1, we obtain a curve in the D versus β parameter plane,
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Figure 2. The stability threshold Db versus β, obtained from (3.3), characterizing the linear stability

of the background state ve = 0 for patterns with k = 1, . . . , 4 steady-state spikes. The curves from

top to bottom correspond to increasing values of k. For each k, the background state is linearly

stable when D > Db, otherwise it is unstable.

parameterized by U0 > 1, defined by

D ≡ 1

k2

(
log

[
U0 +

√
U2

0 − 1

])2
, β =

√
D√
2π

tanh

(
1

k
√
D

) (
1 +

1

U0 − 1

)
.

From solving U0sech
(
ω0/k

)
= 1, we also obtain the second solution k

√
D =

1

log
[
U0−

√
U2

0−1
] , however, since the argument of the logarithm of this expression is smaller

than 1, this does not lead to a solution.

Upon eliminating U0, we conclude that if D > Db, where Db is the unique root of the

transcendental equation

βb =
1

π

√
D

2
coth

(
1

2k
√
D

)
, (3.3)

then the background state ve = 0 is linearly stable. Otherwise, the background state is

unstable. A plot of the stability boundary Db versus β is shown in Figure 2 for k = 1, . . . , 4.

Qualitatively, this result shows that only if D is sufficiently large, so that the inhibitor

concentration does not become too small at the midpoint between adjacent spikes, will

the background state ve = 0 for the activator be linearly stable.

In Section 3.1, we derive the NLEP associated with a one-spike solution, and we

determine parameter ranges for which this NLEP has no unstable eigenvalues. The

corresponding problem for multi-spike solutions is examined in Section 3.2.

3.1 The NLEP problem for a one-spike solution

In this section, we derive the NLEP associated with the stability of a one-spike solution

centred at x = 0. As such, we consider (3.2) on |x| � 1 with Neumann conditions

ηx(±1) = φx(±1) = 0.
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In the inner region near x = 0, we have that ue ∼ U0 and ve(x) ∼
√
U0 − 1w

(√
U0 − 1 x

ε

)
from (2.1) and w is the pulse solution w(z) ≡

√
2sech(z). Therefore, since ve is localized,

φ will be localized near x = 0, while η = η0 + o(1) for some η0 to be determined

and for |x| � O(ε). More specifically, we look for a localized eigenfunction for φ of

the form:

φ(x) = Φ(z) , where z ≡
√
U0 − 1

(x
ε

)
. (3.4)

Upon substituting (3.4) into (3.2a), we obtain to leading-order that Φ(z) satisfies

L0Φ− w(z)√
U0 − 1

η0 =
λ

U0 − 1
Φ , −∞ < z <∞ ; Φ→ 0 , as |z| → ∞ . (3.5a)

Here, L0 is the local operator, defined in terms of the pulse solution given above, by

L0Φ ≡ Φzz − Φ+ 3w2Φ . (3.5b)

To determine η0 in (3.5a), we must first determine the limiting problem for the outer

eigenfunction η(x) from (3.2b). Since ve is localized near x = 0, we calculate in the sense

of distributions that

6ε−1βv2eφ→ 6β
√
U0 − 1

(∫ ∞

−∞
w2Φdz

)
δ(x) . (3.6)

In this way, we obtain that the outer approximation for η satisfies

ηxx − θ2
λη = −6βω2

0

√
U0 − 1

(∫ ∞

−∞
w2Φdz

)
δ(x) , |x| � 1 ; ηx(±1) = 0 , (3.7)

subject to the matching condition that η(0) = η0. In (3.7), we defined

θλ ≡
√

(1 + τλ)/D, (3.8)

where we have specified the principal value of the square root to ensure that η(0) is

analytic in Re(λ) � 0.

We represent the solution to (3.7) in terms of the λ-dependent Green’s function Gλ(x)

satisfying

Gλ,xx − θ2
λGλ = −δ(x) , |x| � 1 ; Gλ,x(±1) = 0 , (3.9a)

which has the explicit solution

Gλ(x) =
cosh

[
θλ(1 − |x|)

]
2θλ sinh (θλ)

. (3.9b)

In terms of Gλ(x), the solution to (3.7) is

η(x) = 6βω2
0

√
U0 − 1

(∫ ∞

−∞
w2Φdz

)
Gλ(x) . (3.10)
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We then set x = 0 in (3.10) and solve for η(0) ≡ η0. Finally, upon substituting the resulting

expression for η0 into (3.5a) and using that
∫ ∞
−∞ w3dz =

√
2π, we obtain the following

NLEP for Φ(z):

Principal Result 3.1 For 0 < ε� 1, the NLEP associated with the stability of a one-spike

steady-state solution for (1.1) is

L0Φ− χ0w

(∫ ∞
−∞ w2Φdz∫ ∞
−∞ w3 dz

)
=

λ

U0 − 1
Φ , −∞ < z <∞ ; Φ→ 0 , as |z| → ∞ .

(3.11a)

Here L0 is defined in (3.5b), and the multiplier χ0 = χ0(τλ) of the nonlocal term is

χ0(τλ) ≡
3ω0 tanhω0

θλ tanh(θλ)

(
1 +

1

U0 − 1

)
, (3.11b)

where ω0 ≡ 1/
√
D and θλ is defined in (3.8). Here U0 is defined in terms of β and D by

(2.7) with k = 1.

We now show that the problem of determining unstable discrete eigenvalues of (3.11)

in Re(λ) > 0 can be reduced to the simpler problem of determining the roots to a simple

explicit transcendental equation in the eigenvalue parameter.

Lemma 3.1 Any unstable eigenvalue of (3.11) in Re(λ) > 0 must be a root of F0(λ) = 0,

where

F0(λ) ≡ χ0(τλ) +
λ

U0 − 1
− 3 . (3.12)

Proof To prove this, we consider only the region Re(λ) > −(U0 − 1), where we can

guarantee that |Φ| → 0 exponentially as |z| → ∞ since there the background solution

is stable. From this analysis of the stability of the background state, in Section 3,

we also know that the continuous spectrum for (3.11) is λ < −(U0 − 1) < 0, with

λ real. To establish (3.12), we use Green’s identity on w2 and Φ, which is written as∫ ∞
−∞

(
w2L0Φ− ΦL0w

2
)
dy = 0. Upon using (3.11a), together with the key identity that

L0w
2 = 3w2 (see Lemma 2.3 of [25]), the expression above from Green’s identity reduces

to ∫ ∞

−∞
w2Φdz

(
χ0 +

λ

U0 − 1
− 3

)
= 0 .

Therefore, for eigenfunctions for which
∫ ∞
−∞ w2Φdz �= 0, (3.12) readily follows. In con-

trast, for eigenfunctions for which
∫ ∞
−∞ w2Φdz = 0, equation (3.11) reduces to the local

eigenvalue problem L0Φ = νΦ, where ν ≡ λ/(U0 − 1). It was proved in Proposition 5.6

of [6] that the point spectrum of this local eigenvalue problem consists only of ν0 = 3,

together with translation mode ν1 = 0, associated with the odd eigenfunction Φ1 = w′.

For ν0 = 3, the eigenfunction satisfies Φ0 > 0 and consequently
∫ ∞
−∞ w2Φdz �= 0. As such,

any unstable eigenvalue of the NLEP (3.11) must be a root of F0(λ) = 0. �
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Remark 3.1 Our modification of the non-linearity in (1.1b) to 2ε−1βv3 rather than 2ε−1βv2,

as considered previously in [19], has resulted in an NLEP for which the problem of determ-

ining the unstable spectrum is reduced to the simpler problem of determining the roots to an

explicit transcendental equation. Further examples of non-linear kinetics that lead to such

“explicitly solvable” NLEP problems are discussed in [24] and [25].

We now analyse the roots of F0(λ) = 0 in Re(λ) � 0. Upon substituting (3.11b) for χ0

into (3.12), we conclude that any unstable eigenvalue of the NLEP (3.11) is a root of

2
√

1 + τλ

(
tanh θλ
tanhω0

)
= − d1

b− λ
≡ G(λ) , (3.13a)

where ω0 = 1/
√
D. Here, d1 and b are defined by

d1 ≡ −6U0 , b ≡ 3(U0 − 1) . (3.13b)

Viewing τ as the bifurcation parameter, we claim that (3.13) can have no zero eigenvalue

crossings as τ � 0 is increased and that there is no positive real eigenvalue when τ = 0.

On the positive real λ axis, this follows since the left-hand side of (3.13) is 2 at λ = 0 for

all τ � 0, that G(0) > 2 (as a result of U0 > 1), and that G(λ) has a vertical asymptote

at λ = 3(U0 − 1) > 0, and is monotonically increasing and convex on 0 < λ < 3(U0 − 1).

Alternatively, on λ > 3(U0 − 1), we have G(λ) < 0. Therefore, for τ = 0, there is no

positive real eigenvalue, and no zero eigenvalue crossings can occur for any τ � 0.

However, for τ � 1, it is readily seen that there are exactly two positive roots to (3.13)

on 0 < λ < 3(U0 − 1). By continuity of the eigenvalue paths with respect to τ, this

suggests that there should be a Hopf bifurcation as τ is increased. This discussion can be

made rigorous by using a winding number approach, very similar to that done in [25],

establishing that (3.13) has a Hopf bifurcation at some critical value of τ, depending on

β and D.

For β > β1, in Figure 3, we show for D = 0.2, 1, 10 numerical results for the unique

value τ = τH > 0 for which (3.13) admits a purely complex conjugate pair of eigenvalues

λ = ±iλH , with λH > 0. We have Re(λ) > 0 when τ > τH , and Re(λ) < 0 when 0 < τ < τH .

In the limit D � 1 or D � 1, we now show that the Hopf bifurcation value τH can be

calculated analytically.

For D � 1, for which ω0 � 1, (3.13) reduces to

2(1 + τλ) = − d1

b− λ
≡ G(λ) . (3.14)

Again, this problem was studied in [25]. Since d1 < 0 and G(0) > 2 for any U0 > 1,

Principal Result 2.5 of [25] applies and we obtain for D � 1 and β > β1 that

τH ∼ 1

3

(
β

β1
− 1

)
, λH ∼ 3

(
β

β1
− 1

)−1/2

, where β1 ≡
1√
2π

. (3.15)
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Figure 3. Hopf bifurcation threshold τH versus β for a one-spike solution. Left panel: τH for D = 1

(top solid curve) and for D = 10 (bottom solid curve), as computed from (3.13). The dashed curve

is the approximation (3.15) for D large. Right panel: τH for D = 0.2 (solid curve), computed from

(3.13), compared with the approximation (3.17) for D small (dashed curve).

Alternatively, for D � 1, for which ω0 � 1, (3.13) reduces to the following problem:

2
√

1 + τλ = − d1

b− λ
≡ G(λ) , (3.16)

which was also studied in [25]. From Principal Result 3.8 of [25], we conclude for D � 1

and β > β1 ∼ π−1
√
D/2 that

τH ∼ 1

3

(
β

β1
− 1

) [
1 +

β2

4β2
1

+
β√
2β1

√
1 +

β2

8β2
1

]
,

λH ∼ 3

(
β

β1
− 1

)−1
√

1 − 2

3τH

(
β

β1
− 1

)
. (3.17)

The limiting expressions for τH in (3.17) for small D and for large D in (3.15) are shown

in Figure 3 to be rather accurate when D = 10 and D = 0.2, respectively, when compared

with the Hopf threshold computed from (3.13).

In Figure 4, we re-parametrize the Hopf bifurcation curve by plotting the Hopf bifurc-

ation threshold value βH , versus D for various values of τ > 0. Here, βH is the threshold

for which the stationary 1-spike solution is linearly stable (unstable) for βH < β (for

βH > β). This plot shows that βH > β1 for τ > 0, where β1 is the threshold below which

the stationary 1-spikes do not exist. Therefore, as β is adiabatically decreased starting

from a value above βH , a Hopf bifurcation of the spike solution will occur before we

reach the steady-state spike-existence threshold β1.

3.2 Linear stability of multi-spike solutions

To analyse the linear stability of the multi-spike steady-state solution ve and ue, we will

use a Floquet approach in the same spirit as done in [20]. On the interval |x| � l, we
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Figure 4. Hopf bifurcation thresholds βH versus D for various τ. The one-spike steady-state is

linearly stable (unstable) when β < βH (β > βH ). The values of τ are as follows: heavy dashed

(τ = 0.1), dashed-dotted (τ = 1), dotted (τ = 2), hence, τ increases when going from the lower

dashed to the upper curve. The solid curve is the existence threshold β1 = β1(D), while the light

dashed line indicates the limiting value β1 → 1/(
√

2π) as D → ∞. For any τ > 0, the Hopf threshold

always occurs before the existence threshold as β is decreased.

begin by introducing the perturbation (3.1) into (1.1), to obtain the linearized problem

ε2φxx − (ue − 1)φ+ 3v2eφ− veη = λφ , |x| � l , (3.18a)

Dηxx − (1 + τλ)η = −6ε−1βv2eφ , |x| � l , (3.18b)

where, in terms of a complex parameter ξ, we impose the Floquet-type boundary condi-

tions

φ(l) = ξφ(−l) , φx(l) = ξφx(−l) , η(l) = ξη(−l) , ηx(l) = ξηx(−l) . (3.18c)

After deriving the NLEP associated with solving (3.18) for arbitrary ξ, we must

determine ξ so that our NLEP problem applies to a K-spike pattern on the domain

[−l, (2K−1)l] with periodic boundary conditions. This is done by translating φ and ψ from

[−l, l] to the extended interval [−l, (2K−1)l] in such a way that the extended φ and ψ have

continuous derivatives at x = l, 3l, . . . , (2K−3)l. Therefore, since φ [(2K − 1)l] = ξKφ(−l),
it follows that to obtain periodic boundary conditions on an interval of length 2Kl, we

require that ξK = 1, so that

ξj = e2πij/K , j = 0, . . . , K − 1 . (3.19)

Upon using these values of ξj in the NLEP associated with (3.18), we obtain the stability

threshold of a K-spike steady-state solution on a domain of length 2Kl subject to periodic

boundary conditions. The last step in the analysis is to extract the stability thresholds for

the corresponding Neumann problem from the thresholds for the periodic problem, and
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to choose l appropriately so that the Neumann problem is posed on [−1, 1]. This is done

following (3.26) below.

We now derive the NLEP associated with (3.18). In the inner region near x = 0, we

look as before for a localized inner eigenfunction for (3.18a) of the form

φ ∼ Φ (z) , η ∼ η0 , where z = ε−1
√
U0 − 1 x ,

and where η0 is a constant that is to be determined. Upon using that to leading order

v2e ∼ (U0 − 1)w2, we obtain that Φ(z) satisfies to leading order

L0Φ− w√
U0 − 1

η0 =
λ

U0 − 1
Φ , −∞ < z <∞ , (3.20)

where L0 is defined in (3.5b).

To determine the outer approximation for η from equation (3.18b), we use (3.6) to

obtain, similar to (3.7), that the outer approximation for η satisfies

ηxx − θ2
λη = −6βω2

0

√
U0 − 1

(∫ ∞

−∞
w2Φdz

)
δ(x) , |x| � l ; η(l) = ξη(−l) ,

ηx(l) = ξηx(−l) , (3.21)

where θλ is defined in (3.8). Again this equation is subject to the matching condition

η(0) = η0. We represent the solution to (3.21) in terms of the quasi-periodic Green’s

function Gq(x) satisfying

Gq,xx − θ2
λGq = −δ(x) , |x| � l ; Gq(l) = ξGq(−l) , Gq,x(l) = ξGq,x(−l) , (3.22a)

to obtain that

η(x) = 6βω2
0

√
U0 − 1

(∫ ∞

−∞
w2Φdz

)
Gq(x) . (3.22b)

We then evaluate (3.22b) at x = 0 to determine η0 ≡ η(0), which is used in (3.20).

To obtain η0, we must determine Gq(0). To do so, we solve (3.22a) on −l < x < 0 and

on 0 < x < l, and impose the Floquet boundary conditions to obtain

Gq(x) =

{
A cosh (θλ(x+ l)) + B sinh (θλ(x+ l)) , −l < x < 0

ξA cosh (θλ(x− l)) + ξB sinh (θλ(x− l)) , 0 < x < l .
(3.23)

Upon imposing Gq(0
+) = Gq(0

−) and the standard jump condition Gqx(0
+) − Gqx(0

−) =

−1, as obtained by integrating the ODE in (3.22a) from x = 0− to x = 0+, we obtain the

linear system for A and B given by(
(1 − ξ) cosh(θλl), (1 + ξ) sinh(θλl)

θλ(1 + ξ) sinh(θλl), θλ(1 − ξ) cosh(θλl)

) (
A

B

)
=

(
0

1

)
. (3.24)

We then solve for A and B from (3.24), to calculate Gq(0) as

Gq(0) = A cosh(θλl) + B sinh(θλl) =
1

θλ

[
cosh(θλl) sinh(θλl)

cosh2(θλl) + sinh2(θλl) − 1
2
(ξ + ξ−1)

]
. (3.25)
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Next, we set ξ = ξj = e2πij/K in (3.25), and upon re-arranging the resulting expression, we

obtain that

Gq(0) =
1

2θλ

[
tanh(θλl) +

(
1 − cos

(
2πj/K

))
sinh (2θλl)

]−1

. (3.26)

Finally, this expression can be used to obtain η0 from (3.22b). Substituting that into (3.20)

results in the NLEP corresponding to a K-spike steady-state solution on a domain of

length 2Kl subject to periodic boundary conditions.

The final step in the stability analysis is to extract the NLEP for the Neumann problem

from this NLEP for the periodic problem. More specifically, the stability thresholds for a

k-spike solution with Neumann boundary conditions can be obtained from the thresholds

for a 2k-spike solution with periodic boundary conditions on a domain of twice the length.

To see this, suppose that φ is a Neumann eigenfunction on the interval [0, a]. If we extend

it by an even reflection about the origin to the interval [−a, a], then such an extension

satisfies periodic boundary conditions on [−a, a]. Alternatively, if φ(x) is an eigenfunction

with periodic boundary conditions at the edge of the interval [−a, a], then if we define

φ̂(x) = φ(x) + φ(−x), it follows that φ̂ is an eigenfunction for the Neumann problem on

[0, a].

Therefore, to obtain the NLEP governing the stability of a steady-state k-spike pattern

on an interval of length 2 subject to Neumann boundary conditions, we simply replace

2K by k, and hence, cos(2πj/K) with cos(πj/k) in (3.26) and then set l = 1/k. In this

way, we formulate our NLEP for the linear stability of a k-spike steady-state solution as

follows:

Principal Result 3.2 Consider a k-spike steady-state solution to (1.1) on an interval of

length 2 subject to Neumann boundary conditions. Then, the NLEP characterizing O(1)

time-scale instabilities of the pattern is

L0Φ− χjw

(∫ ∞
−∞ w2Φdz∫ ∞
−∞ w3 dz

)
=

λ

U0 − 1
, −∞ < z <∞ ; Φ→ 0 , as |z| → ∞ ,

(3.27a)

where L0 is defined in (3.5b), and the multipliers χj = χqj(τλ) of the non-local term are

defined by

χj ≡ 6
√

2βπω2
0Gq(0) , Gq(0) =

1

2θλ

[
tanh

(
θλ/k

)
+

(
1 − cos

(
πj/k

))
sinh

(
2θλ/k

)
]−1

,

for j = 0, . . . , k − 1 . (3.27b)

Here, θλ is defined in (3.8), and w(z) =
√

2sechz is the homoclinic solution satisfying (2.2).

Moreover, any unstable discrete eigenvalue in Re(λ) > 0 of the NLEP must be a root of

one of the k-transcendental equations Fj(λ) = 0, defined by

Fj(λ) ≡ χj(τλ) +
λ

U0 − 1
− 3 , j = 0, . . . , k − 1 . (3.28)
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We remark that the result (3.28) for the NLEP (3.27) is analogous to that in Lemma

3.1. By re-arranging (3.28), we obtain that λ must be a root of

Cj(τλ) = R(λ) , R(λ) ≡ 3(U0 − 1)

3(U0 − 1) − λ
, j = 0, . . . , k − 1 , (3.29a)

where Cj(τλ) is defined by

Cj(τλ) ≡
3

χj(τλ)
=

Dθλ√
2πβ

[
tanh

(
θλ/k

)
+

(
1 − cos

(
πj/k

))
sinh

(
2θλ/k

)
]
, j = 0, . . . , k − 1 .

(3.29b)

As derived in Proposition 5.1 of [35] for the related GM model, it is readily shown for

λ real that Cj(τλ) is a monotone increasing and concave function of λ on λ > 0, with

Cj(0) > 0 and |C′
j(τλ)| = O(τ1/2) → +∞ for any λ > 0 as τ → ∞. Moreover, the function

R(λ) defined in (3.29a) satisfies R(0) = 1, R(λ) > 0, R′(λ) > 0, and R′′(λ) > 0, on

0 < λ < 3(U0 − 1), since U0 > 1. In addition, R(λ) < 0 on λ > 3(U0 − 1). As such, we

conclude that there is a unique root λ� to (3.29a), satisfying 0 < λ� < 3(U0 − 1), whenever

Cj(0) > 1 for some given j.

With this criterion, and since Cj(0) in (3.29b) takes its maximal value over j = 0, . . . , k−1

when j = k − 1, we set Ck−1(0) > 1, so that with (3.29), the NLEP (3.27) has at least

one unstable eigenvalue in Re(λ) > 0. The assumption Ck−1(0) > 1 can be rewritten to a

condition on β leading to an unstable eigenvalue whenever β < βck , where

βck ≡ βk +
1√

2πω0

(
1 + cos(π/k)

)
sinh

(
2ω0/k

) . (3.30)

Here, ω0 = 1/
√
D and βk is the existence threshold for the k-spike steady-state solution

defined in (2.7). Following the terminology in [35], we refer to βck as the competition

instability threshold for the spike amplitudes, which arises from the zero-eigenvalue

crossing.

Remark that on the range β > βk , we can proceed as in the proof of Proposition 5.3

of [35] to show that there exists a positive minimal value of τ, labelled by τHk , at which the

NLEP (3.29a) has a purely complex conjugate pair of eigenvalues λ = ±iλHk , with λHk > 0.

This represents the onset of a Hopf bifurcation for the amplitudes of the spikes. In fact,

whenever Cj(0) < 1, the qualitative properties of Cj(τλ) listed above ensure, for the given

j, that there are exactly two real eigenvalues on the interval 0 < λ < 3(U0 − 1) whenever

τ is sufficiently large. On the range β > βck , for which there are no zero-eigenvalue

crossings, the k-spike steady-state is linearly stable for 0 � τ < τHk and undergoes a Hopf

bifurcation as τ increases beyond τHK . This stability information was encoded previously

in Figure 1.

4 Slow transition across stability thresholds: Triggering a finite-time blow-up

In this section, we examine two scenarios involving slow passage through an instability

threshold, which can ultimately trigger a finite-time blow-up behaviour of the spike

pattern. Both transitions involve slowly decreasing β in time with β = β(0) − σt, where
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σ � 1 and we choose β(0) later. We assume that O(ε2) � σ � O(1) so that the transition

is slow with respect to either the O(1) time-scale of the destabilization of the background

state or of the spike amplitudes, as characterized by the NLEP, but is fast with respect to

the usual O(ε2) speed characteristic of slowing drifting spikes (cf. [16]).

4.1 Slow passage through a competition instability

Our first scenario is to consider a two-spike steady-state solution when τ = 0, and to study

the effect of a slow transition in β below the competition stability threshold βc2 (3.30) of

the NLEP, and hence, we choose β(0) > βc2 which triggers a competition instability of

the spike amplitudes. To analyse this transition, we proceed as in [1], [9], [21], and [33],

by introducing the WKBJ-type perturbation:

v = ve + φ(x)eσ
−1Λ(σt) , u = ue + η(x)eσ

−1Λ(σt) , (4.1)

with Λ(0) = 0 and φ� 1, ψ � 1. Here, ve, ue is the two-spike steady-state solution. Upon

substituting (4.1) into (1.1), and linearizing the resulting system, we obtain that φ and η

satisfy

ε2φxx − (ue − 1)φ+ 3v2eφ− veη = Λ′(T )φ , |x| � 1 ; φx(±1) = 0 , (4.2a)

Dηxx −
(
1 + τΛ′(T )

)
η = −6ε−1β(T )v2eφ , |x| � 1 ; ηx(±1) = 0 , (4.2b)

where β(T ) = β(0) − T and T = σt is the new time scale with ε2 � σ � 1.

Upon comparing (4.2) with (3.2), we observe that the eigenvalue parameter λ in (3.2) is

replaced by Λ′(T ). As such, when τ = 0, we conclude from the results (3.28) and (3.27b)

of the NLEP theory with k = 2, j = 1, and τ = 0, that Λ′(T ) satisfies

Λ′

U0 − 1
= 3 − χ1(0) , χ1(0) = 3

√
2πω0β(T )

[
tanh

(ω0

2

)
+

1

sinhω0

]−1

, (4.3)

where ω0 = 1/
√
D. To simplify (4.3), we first use (2.7) with k = 2, written as

U0 − 1 =

(
β

β2
− 1

)−1

, β2 =
1√

2πω0

tanh
(
ω0/2

)
,

to reduce (4.3) to

Λ′ = 3

(
β

β2
− 1

)−1 [
1 − β

β2

(
tanh(ω0/2)

tanh(ω0/2) + cschω0

)]
. (4.4)

Then, we use the identity

tanh(ω0/2)

tanh(ω0/2) + cschω0
= 1 − γ , where γ ≡ 1

1 + 2 sinh2
(
ω0/2

) < 1 , (4.5)
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to express (4.4) in compact form as

Λ′(T ) = −3 +
3γ

[
β(T )/β2

](
β(T )/β2

)
− 1

= −3 + 3γ
β(T )

β(T ) − β2
. (4.6)

We recall from (2.7) that there is no two-spike steady-state solution when β < β2.

Moreover, from (3.30) with k = 2, the two-spike steady-state is linearly unstable to a

competition instability on the range β2 < β < βc2 when τ = 0. Upon setting k = 2 in

(3.30), we can readily write the competition instability threshold βc2 in terms of γ, as

βc2 =
β2

1 − γ
. (4.7)

For the slow transition, we let β(T ) = β(0)−T , where T = σt with σ � 1, and choose

β(0) so that β(0) > βc2. Then, by increasing T , we are performing a slow sweep that

will eventually cross below the competition instability threshold βc2. As characteristic of

delayed bifurcation problems (cf. [1,9,21,33]), we will show that the instability is triggered

not at βc2 but at some β� with β� < βc2. From (4.1), the criterion for detecting the

point at which the instability is triggered is related to determining a time T� at which

Λ(T�) = 0. We now show, for arbitrary β(0) > βc2, that there is a unique T� with

β2 < β(T�) < βc2 at which the delayed competition instability is triggered. For this, we

will need to show that the instability is triggered before β passes below the existence

threshold β2.

Without loss of generality, we will set Λ(0) = 0. Our result for Λ(T ) for T > 0 is as

follows.

Lemma 4.1 Let β(T ) = β(0) − T where β(0) is any value satisfying β(0) > βc2. Then, we

have

(i) Λ′(0) < 0 ,

(ii) Λ′ = 0 , when β = βc2 ,

(iii) ∃ a unique β = β� , with β2 < β� < βc2 , at which Λ = 0 .

(4.8)

Here, β� ≡ β(T�) = β(0)−T�, relates β� to the time T� at which the competition instability

is finally triggered.

Proof To prove (i), we use β(0) > βc2 = β2/(1 − γ), to estimate 1 − β2

β(0)
> γ since γ < 1.

Upon using this inequality in (4.6), we find that

Λ′(0) = −3 + 3γ
β(0)

β(0) − β2
< −3 + 3 = 0 .

To establish (ii), we set Λ′ = 0 to obtain the unique root γβ = β − β2, which yields

β = βc2 ≡ β2/(1 − γ).

This establishes that Λ(0) = 0, Λ′(T ) < 0 for 0 � T < Tc, Λ
′(Tc) = 0 where β(Tc) = βc2,

and Λ′(T ) > 0 for T > Tc. To prove (iii), it suffices to show that Λ(T ) → +∞ as

β → β+
2 .
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Figure 5. Left panel: Λ(T ) versus T , computed from (4.9), for a two-spike steady-state solution

with D = 1 and τ = 0 as β = 0.5 − T is slowly swept below the competition instability threshold

βc2 ≈ 0.296. The instability is triggered when Λ(T�) = 0, which yields T� ≈ 0.323 and β(T�) ≈
0.1768. Right panel: |v|∞ =

√
2(U0 − 1) versus β for a two-spike steady-state with D = 1. The

heavy solid portion is linearly stable for τ = 0, while the dashed portion is unstable. The transition

occurs at the competition threshold βc2 ≈ 0.296. The open circle indicates the starting point for the

slow sweep, while the bullet indicates where the delayed competition instability is finally triggered.

To establish such a result, we determine Λ by using (4.6) where we substitute β(T ) =

β(0) − T . This yields

Λ′(T ) = −3 + 3γ
β(T )

β(T ) − β2
= −3 + 3γ

[
1 +

β2

β(0) − β2 − T

]
.

Now, we integrate with respect to T , which leads to

Λ(T ) = −3T (1 − γ) − 3β2γ log (β(0) − β2 − T ) + c

for some integration constant c. Next, we use Λ(0) = 0 which gives c = 3β2γ log (β(0) − β2),

and results in

Λ(T ) = −3T (1 − γ) − 3β2γ log

(
1 − T

β(0) − β2

)
, (4.9)

where 0 < γ < 1 is defined in (4.5). Therefore, Λ→ +∞ as T approaches β(0) − β2 from

below, corresponding to β(T ) → β+
2 . �

In the left panel of Figure 5, we use (4.9) to plot Λ(T ) versus T for D = 1 and

β(0) = 0.5. For this example, we calculate that β2 ≈ 0.104, βc2 ≈ 0.296, and β� ≈ 0.176,

corresponding to T� ≈ 0.323. In the right panel of Figure 5, we plot the bifurcation

diagram of the two-spike steady-state showing the initial point for the slow sweep and the

point at which we predict that the competition instability is triggered. From the criterion

(3.3) for the stability of the background state, we conclude from Figure 2 that, for this

parameter set, the background state is linearly stable throughout the slow sweep. We

provide full numerical simulations for the scenario we analysed here in Section 4.3. There,

we observe in Experiment 4 that the competition instability first leads to the annihilation

of one of the two spikes and can lead to a subsequent finite-time blow-up of the remaining

spike.
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4.2 Slow passage through a Hopf bifurcation

Next, we consider a one-spike steady-state solution in the shadow limit D � 1 for a fixed

τ > 0. We analyse the effect of decreasing β slowly in time towards the existence threshold

β1, so that β that must cross below the Hopf bifurcation threshold βH = β1(1 + 3τ), as

obtained from (3.15) with β1 = 1/(
√

2π). In the numerical results shown in Experiment

3 of Section 4.3, this slow sweep initially triggers a time-periodic oscillation of the spike

amplitude, which is followed by a finite-time blow-up, see Figure 12.

To analyse this slow passage problem, we proceed as in Section 4.1 and introduce the

perturbation (4.1) to obtain the linearized problem (4.2). Now, the NLEP becomes (3.11)

where λ is to be replaced by Λ′(T ) and for D � 1, the associated spectral problem is

given by (3.14) with λ = Λ′(T ). We conclude that Λ′(T ) must satisfy

(
1 + τΛ′) =

3U0

3(U0 − 1) − Λ′ ,

which is a quadratic equation. From (2.7), we have U0 − 1 =
(
β/β1 − 1

)−1
where β1 =

1/(
√

2π). Upon using this expression for U0, we solve the equation above for Λ′ to obtain

Λ′ =
1

2τ

⎡
⎣(

3τβ1

β − β1
− 1

)
±

√(
1 − 3τβ1

β − β1

)2

− 12τ

⎤
⎦ , (4.10)

where β(T ) = β(0) − T . We assume that β(0) > βH = β1(1 + 3τ), and choose β(0) such

that the term inside the square root in (4.10) is negative. This latter condition holds when

β(0) > βH , for τ � 1/12 ; βH < β(0) < β1

[
1 +

3τ

(1 − 2
√

3τ)

]
, for 0 < τ < 1/12 .

(4.11)

Assuming that the condition (4.11) on β(0) holds, we separate Λ(T ) into real and imaginary

parts, as Λ = ΛR + iΛI , and obtain from (4.10) that

Λ′
R(T ) =

1

2τ

(
3τβ1

β − β1
− 1

)
. (4.12)

The criterion for the triggering of an instability is that there exists a unique T� such

that ΛR(T�) = 0, with ΛR(T ) < 0 on 0 < T < T�. The following result guarantees the

existence of such a T�.

Lemma 4.2 Let β(T ) = β(0) − T where β(0) satisfies condition (4.11). Then, for

Re(Λ(T )) ≡ ΛR(T ), we have

(i) Λ′
R(0) < 0 ,

(ii) Λ′
R = 0 , when β = βH = β1(1 + 3τ) ,

(iii) ∃ a unique β = β� , with
1√
2π

≡ β1 < β� < βH , at which ΛR = 0 .

(4.13)
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Figure 6. Left panel: ΛR(T ) versus T , computed from (4.14), for a one-spike steady-state solution

with D � 1 and τ = 1.0 as β = 1−T is slowly swept below the Hopf instability threshold βH ≈ 0.90.

The instability is triggered when ΛR(T�) = 0, which yields T� ≈ 0.191 and β(T�) ≈ 0.809. Right

panel: |v|∞ =
√

2(U0 − 1) versus β for a one-spike steady-state with D � 1 and τ = 1. The heavy

solid portion is linearly stable for τ = 1, while the dashed portion for β < βH = β1(1 + 3τ) with

β1 ≈ 0.225 is unstable due to a Hopf bifurcation. The open circle indicates the starting point for

the slow sweep, while the bullet indicates where we predict that the delayed oscillatory instability is

finally triggered.

Here, β� ≡ β(T�) = β(0)−T�, relates β� to the time T� at which the oscillatory instability

due to the Hopf bifurcation is finally triggered.

The proof of this result is very similar to that in Lemma 4.1 and is omitted. Instead of

(4.9), and with ΛR(0) = 0 when β = β(0), we readily derive from (4.12) that

ΛR(T ) = −T
2τ

− 3β1

2
log

(
1 − T

β(0) − β1

)
, β1 ≡

1√
2π

. (4.14)

For τ = 1.0 and β(0) = 1, in the left panel of Figure 6, we use (4.14) to plot ΛR(T )

versus T . For this example, we calculate that β1 ≈ 0.225, βH ≈ 0.90, and β� ≈ 0.809,

corresponding to T� ≈ 0.191. In the right panel of Figure 6, we plot the bifurcation

diagram of the one-spike steady-state solution showing the initial point for the slow

sweep and the point at which we predict that the Hopf bifurcation will be triggered. Since

this slow passage problem is for the shadow limit D � 1, we conclude from Figure 2 that

the trivial background state for the activator is always linearly stable.

4.3 Full numerical results under a slow sweep

In this section, we show results from full numerical computations on (1.1) using FlexPDE6

[12] that correspond to our linear stability predictions and, in particular, our predictions

of triggered competition or oscillatory instabilities under a slow sweep in β. For one

particular example, we will consider the effect of an instability of the trivial background

state for the activator v.

Experiment 1: We first illustrate an apparent finite-time blow-up of a single spike solution

in the shadow limit D � 1 as β is slowly swept below the existence threshold β1, as
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Figure 7. Results of Experiment 1. Left panel: The evolution of the spike amplitude as β is slowly

ramped according to β = max(0.3 − σt, βf). When βf > β1 (heavy dashed), the spike amplitude

reaches an equilibrium value close to that predicted by the steady state theory of Section 2 (dashed

horizontal). When βf < β1, an apparent finite-time blow-up of the amplitude occurs. The heavy

solid (heavy dotted) portion indicates the time during which β > β1 (β < β1). Right panel: The

corresponding spike profiles at times t = 0 (solid), t = 3.8 (dashed), and t = 7.6 (dotted). In both

figures, D = 100, τ = 0, ε = 0.01, and σ = 0.01.

studied in Section 4.2. We take τ = 0, D = 100 � 1, and ε = 0.01 in (1.1) and construct

a one-spike equilibrium solution as in Section 2. With D � 1 and k = 1, the result (2.8)

states that the one-spike steady-state exists for β > β1 = 1/(
√

2π) ≈ 0.225. For β, we

consider the slow ramp β = max(0.3 − σt, βf), where σ = 0.01. For βf , we consider two

scenarios namely that it is larger than β1 with βf = β1 + 0.01 and smaller than β1 with

βf = β1 − 0.01. For both choices, the evolution of the spike amplitude |v|∞ is given as a

function of t in Figure 7 (left) by the thick, dashed (βf > β1), or solid (βf < β1), curves. In

the first scenario where βf > β1, the system reaches an equilibrium with a spike amplitude

close to that predicted by the steady state theory of Section 2 (dashed horizontal). In

the second scenario, where βf < β1, Figure 7 (left) shows a rapid increase in the spike

amplitude beginning when β is ramped below β1. The heavy solid (heavy dotted) portion

indicates the time during which β > β1 (β < β1). In Figure 7 (right), we show the spike

profile at various times over the course of the slow ramp of β for the second scenario.

Notice that as the spike amplitude grows, the width narrows due to the spatial scaling in

(2.1).

To support our conjecture of a finite-time blow-up in the second scenario, we plot in

Figure 8 the numerically computed norms |u|∞ and |v|∞ near the apparent singularity

time T ≈ 8.1197. The log–log plot in the right panel of Figure 8 supports the scaling law

|u|∞ ∼ O((T − t)−1) and |v|∞ ∼ O((T − t)−1/2) as t→ T− we assume in Section 5.

Experiment 2: Next, we investigate the effects of an instability of the trivial background

state for the activator v on the dynamics of a one-spike pattern subject to a slow sweep of

β. Here, we take D = 0.1, τ = 0, and ε = 0.02. For this example, we also need to calculate

the competition stability thresholds βc2 and βc3 for a two- and a three-spike steady-state,

and the threshold βb, obtained from (3.3), at which the background state goes unstable.

These thresholds are plotted for a range of D in Figure 9. In particular, for D = 0.1, we

find that βc3 ≈ 0.082, βb ≈ 0.077, and βc2 = 0.071. Moreover, the existence thresholds
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Figure 8. Results of Experiment 1. Left panel: Numerical results computed from the PDE model

(1.1) supporting the apparent finite-time blow-up conjecture for |u|∞ (heavy solid) and |v|∞ (heavy

dashed) as observed in Figure 7 when β = max(0.3 − σt, βf), with βf = β1 − 0.01, is slowly ramped

below the existence threshold β1. The parameters are D = 100, ε = 0.01, σ = 0.01, and τ = 0. The

apparent blow-up time (light solid vertical line) is T ≈ 8.1197. Right panel: The corresponding

log–log plot where the solid (dashed) is a plot of (T − t)−1 ((T − t)−1/2), while the solid (open)

circles are (renormalized) data for |u|∞ ( |v|∞) from the left panel.

given in (2.7) for a k-spike steady-state with k = 1, 2, 3 are β1 ≈ 0.079, β2 ≈ 0.0654, and

β3 ≈ 0.0588 for D = 0.1.

We will show that the instability of the background state can initially lead to the

formation of additional spikes that have the effect of “absorbing” extra energy when the

condition β < β1 would otherwise lead to a finite-time blow-up of a one-spike pattern.

However, since β1 is below the competition thresholds for multi-spike patterns, this

absorption is only temporary. The competition instabilities lead to elimination of all but

one spike, which is then assured to blow-up when β is below the instability threshold of

the background state. We illustrate this phenomenon below.

Starting from a one-spike steady-state solution, as constructed in Section 2 and shown

in the left panel of Figure 10, we perform a slow sweep of β according to β(t) =

max(0.15 − σt, 0.065) for two values of σ. Since β(0) > βb, we observe two qualitatively

different evolutions depending on σ. For σ only moderately small, the instability of the

background state does not have enough time to develop before β is ramped to below βb.

The only pattern that exists during the sweep in β is a single spike centred at x = 0. In

this scenario, because min(β(t)) < β1, we observe a finite-time blow-up of the one-spike

pattern in the same manner as in Experiment 1 (not shown).

However, for σ sufficiently small – we take σ = 0.001 – the instability of the background

state does have time to grow into a three-spike pattern as shown in the centre and right

panels of Figure 10 before β crosses below the background instability threshold βb.

However, once β is ramped below βc3, the competition instability eliminates the middle

spike, leaving a two-spike quasi-equilibrium pattern as shown in the left panel of Figure 11.

A further decrease in β triggers another competition instability, leaving a one-spike quasi-

equilibrium pattern as shown in the centre panel of Figure 11. The process by which this

off-centred quasi-equilibrium spike then apparently undergoes a finite-time blow-up is the

same as shown below in Experiment 4.
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Figure 9. Plot of the competition instability thresholds βc2 and βc3 for two-spike and three-spike

steady-state solutions versus D, together with the instability threshold βb of the trivial background

state for a one-spike solution. The one-spike existence threshold β1 is always below the two

competition thresholds βck for k = 2, 3. Therefore, if β is slowly ramped to below β1, a finite-time

blow-up of a one-spike pattern is assured, no matter how slowly the sweep is performed.
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Figure 10. Results of Experiment 2 where v is plotted (thinner solid) and u (thick solid). Left panel

(t = 0, β = 0.15): A one-spike equilibrium initial condition. Centre panel (t = 20, β = 0.13): The

instability of the background state results in the growth of two bumps on either side of the spike.

Right panel (t = 40, β = 0.11): The two small bumps develop into spikes located at equilibrium

locations x = ±2/3. In all figures, β is above the instability threshold βb = 0.077 of the background

state. Here, D = 0.1, τ = 0, ε = 0.02, and σ = 0.001. Solid: v, heavy solid: u.

This experiment should be compared to Experiment 5.2(a) of [19], where β was also

ramped past the one-spike existence threshold. In the process of the sweep, dynamics

similar to Figure 10 (centre) developed, where two bumps were formed on either side of

the original spike. However, instead of evolving close to a three-spike equilibrium, the

pattern evolved to a constant steady state. This is in contrast to the process described

above, where a series of unstable intermediate states gives way to a one-spike pattern that

has an apparent finite-time blow-up.

Experiment 3: In this experiment, we consider a one-spike pattern with τ = 1, ε = 0.01,

and with D � 1 in (1.1). We aim to illustrate the theory of Section 4.2, and in particular

the example of Figure 6, for slow passage through a Hopf bifurcation threshold. We
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Figure 11. Continuation of the evolution begun in Figure 10 (left) of the results of Experiment

2 where again v is plotted thinner and u thicker. Left panel (t = 77.5, β = 0.0725): Two-spike

quasi-equilibrium pattern after the middle spike in Figure 10 (right) has been eliminated due to a

competition instability. Centre panel (t = 105, β = 0.045): A one-spike quasi-equilibrium solution

with an off-centred spike after the right spike in the left panel has been eliminated. Right panel:

Evolution of |v|∞ in time. Spike elimination events cause the heights of the remaining spikes to

increase. Rapid increase of the amplitude of the final remaining spike suggests a finite time blow-up.

The background state is stable in the left and centre figures. Here, D = 0.1, τ = 0, ε = 0.02, and

σ = 0.001.

begin with a slight perturbation of a one-spike steady-state as constructed in Section 2.

With τ = 1 and D � 1, we obtain from (3.15) that the Hopf bifurcation threshold for

β is βH ≈ 0.9. To illustrate the theory presented in Figure 6, we perform the slow ramp

β(T ) = 1 − T , where T = 0.002t. The resulting deviation of the spike amplitude from

its steady-state value is shown by the heavy solid curve against β(T ) in the left panel of

Figure 12. For comparison against the theory, we also plot in this figure in light solid the

perturbation (4.1) from the stationary solution which is the quantity ±Cexp(Λ/0.002) for

some chosen C , where Λ is determined from (4.14).

The one-spike steady-state solution is stable during the time that β > βH . This is

consistent with Figure 12, where we initially observe decaying oscillations in the spike

amplitude. However, once β is slowly decreased below βH ≈ 0.9 (dashed vertical), the Hopf

bifurcation threshold for the unramped problem is crossed and the amplitude oscillations

begin to increase. The delay in the onset of the Hopf bifurcation results from the time

needed in order for the oscillations to recover their strength lost during the stable phase

of the ramp. We observe that the value of β at which the amplitude of oscillations returns

to its original value (dotted horizontal) is β(T ∗) ≈ 0.788. This is in excellent agreement

with the NLEP theory of Section 4.2, which predicts a value of β(T ∗) ≈ 0.809. In the right

panel of Figure 12, we show that the delayed Hopf bifurcation results in fully non-linear

oscillations, leading to an apparent finite-time blow-up in the spike amplitude before β

reaches the one-spike existence threshold β1 ≈ 0.225. We note that the right panel of

Figure 12 is a plot of the actual spike amplitude |v|∞; no steady-state value has been

subtracted from it.

Experiment 4: For our final experiment, we consider a two-spike solution with τ = 0,

D = 1, and ε = 0.002 in (1.1). We aim to illustrate the theory of Section 4.1 and in

particular the example of Figure 5 for slow passage through a competition instability

threshold. We begin with an odd perturbation of a two-spike equilibrium solution with
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Figure 12. Results of Experiment 3. Left panel: The deviation of the spike amplitude from its

steady-state value (heavy solid curve) as β is slowly ramped according to β(σt) = 1−σt. The thinner

solid curve is the quantity ±Cexp(Λ/σ) for some chosen C , with Λ given by (4.14). When β is

above the Hopf bifurcation threshold βH (dashed vertical line), the one-spike steady-state is stable,

causing oscillations in the deviation to decay. When β < βH , the Hopf mode is unstable so that

the oscillations grow. The bifurcation is fully triggered when the oscillations return to their original

magnitude (dotted horizontal line). This occurs at β(T ∗) ≈ 0.788, in excellent agreement with the

theoretical value of β(T ∗) ≈ 0.809. Right panel: The ensuing fully non-linear oscillations of the

spike amplitude |v|∞ leading to an apparent finite-time blow-up before β reaches the existence

threshold β1 ≈ 0.225. In both figures, D = 100, τ = 1, ε = 0.01, and σ = 0.002.

spikes centred at x = ±0.5. This perturbed solution is shown in the left panel of Figure 13.

For D = 1, we obtain from the result of the NLEP analysis (3.30) that the competition

instability threshold is βc2 ≈ 0.296. To best illustrate the theory, we choose the perturbation

to be the eigenfunction corresponding to a competition instability for β = 0.28 < βc2. We

begin with β = β(0) = 0.5 > βc2 so that the two-spike pattern is initially stable. We then

slowly ramp β according to β = 0.5 − T , where T = 0.02t. For the time during which

β > βc2, the pattern is stable, leading to a decay of the odd perturbation. This is observed

in the centre panel of Figure 13, where we plot the difference in spike amplitudes (circles)

normalized to have an initial value of unity as a function of β(T ). For comparison, the

solid curve in the centre panel of Figure 13 is the quantity exp(Λ(β)/0.02), here Λ(β)

evolves as in equation (4.9). We observe excellent agreement in the rate of the initial

decay.

When β is ramped below βc2 ≈ 0.296, the amplitude difference begins to increase as the

competition threshold is slowly passed. We again observe excellent agreement between β

values for which this occurs numerically and the corresponding NLEP prediction. For

all β < βc2, the two-spike equilibrium is unstable to an O(1) competition instability.

This is reflected by the increasing normalized amplitude difference in the centre panel

of Figure 13. It results in a one-spike pattern with a spike at some point x = x0 as in

Figure 13 right panel, after one of the spikes has been eliminated. By the convention of

the delayed bifurcation analysis in Section 4.1, we consider the competition instability

fully triggered when the normalized amplitude difference reaches its initial value of 1. This

occurs when β ≈ 0.187, as compared to the theoretically predicted value of β ≈ 0.176. We

conjecture that this slight discrepancy is due to the accumulation of numerical errors, as
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Figure 13. Results of Experiment 4. Left panel: A two-spike steady-state solution. Centre panel:

The normalized difference in spike amplitudes as β is slowly ramped according to β(σt) = 0.5 − σt.

The light solid is the quantity exp(Λ/σ), where Λ is obtained from (4.9). When β is above the

two-spike competition threshold βc2 (dashed vertical), the two-spike pattern is stable, resulting in

a decay in the amplitude difference. When β is ramped below βc2, the amplitude difference begins

to grow. The competition instability is fully realized when the normalized amplitude difference

returns to 1, occurring at β(T ∗
num) ≈ 0.188, which is close to the theoretically predicted value of

β(T ∗
asymp) ≈ 0.177 given in Figure 5. Here, T ∗

num ≈ 15.6, and T ∗
asymp ≈ 16.15. Right panel: The

resulting quasi-equilibrium one-spike pattern after the left spike has been eliminated. In all figures,

D = 1, σ = 0.02, τ = 0, and ε = 0.002. Solid: v, heavy solid: u.

we observe full agreement in both the initial decay (Figure 13 (centre panel)) as well as

initial growth rates when β < βc2 (not shown).

The growth of the competition instability for β < βc2 does not saturate, but instead

continues until only one spike remains in a quasi-equilibrium state, as shown in the

right panel of Figure 13. This remaining spike then drifts on an O(ε2) time-scale towards

its equilibrium location x = 0 while its amplitude evolves accordingly. The differential-

algebraic system governing these dynamics has been derived in many past works through

application of a Fredholm alternative (e.g., [16]), and will not be repeated here. We instead

focus on the possibility of a finite time blow-up of the amplitude of the remaining spike

triggered by the slow drift. To illustrate this phenomenon, we follow the procedure of

Section 2 to obtain that a single quasi-equilibrium spike centred at x = x0 exists only if

β > βq1, where βq1 is given by

βq1 =
tanh(ω0(1 + x0)) + tanh(ω0(1 − x0))

2
√

2πω0

, ω0 = 1/
√
D . (4.15)

For D = 1, a plot of (4.15) versus x0 is shown in Figure 14, and this result agrees with

the existence threshold β1, defined in (2.7) with k = 1, when x0 = 0.

Because βq1 is a decreasing function of x0, there are three different scenarios for

the fate of the remaining spike. If the ramp of β is terminated at some βf > β1 (i.e.,

β = max(β0 −T , βf)), the spike will simply drift to x = 0 and remain there for all time. If

βf < βq1(0.5), the amplitude of the remaining spike will blow-up in finite time before any

substantial drift in location occurs. If βq1(0.5) < βf < β1, such as shown in Figure 14, the

spike drifts towards x = 0 until the drift triggers a finite time blow-up. We illustrate this

phenomenon in Figure 15, where we set βf = 0.1589 so that x∗0 ≈ 0.42 where βq1
(x∗0 ) = βf .

In the left panel of Figure 15, we plot T = σt as a function of the location x0 of the right
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Figure 14. Existence threshold βq1(x0) in (4.15) of a quasi-equilibrium one-spike pattern centred

at x = x0 for D = 1. When βq1(0.5) < βf < β1, a finite time blow-up of a single quasi-equilibrium

spike is triggered by the slow spike drift towards the origin; it is initiated when the spike location

reaches x0 = x∗0 .

spike. In the computations, we have taken σ = 0.004. In the right panel of Figure 15, we

show the corresponding evolution of the logarithm of the amplitude of the right spike

as function of T = σt. During the time over which the competition instability eliminates

the other spike located at x = −0.5, the rightmost spike is essentially stationary. In the

right panel of Figure 15, we show the corresponding evolution of the logarithm of the

amplitude of the right spike. As the competition mode grows, so does the amplitude of

the right spike. Once the left spike is eliminated, the right spike drifts slowly towards

x = 0. The amplitude grows correspondingly during this time. However, once the spike

location reaches near x0 = x�0 ≈ 0.42, we observe that the spike ceases its slow drift;

quasi-equilibrium theory is no longer valid in this regime. Simultaneously, we see a rapid

increase in the amplitude of the spike, indicative of a finite-time blow-up.

5 The blow-up profile for the non-local Ginzburg–Landau model

In the numerical simulations of the previous section Section 4.3, finite-time blow-up was

observed in several of the Experiments. Here, we focus on the shadow limit D � 1 as

studied in Experiment 1, and hence, we analyse the existence of a solution that blows

up in finite time to the non-local GL model (1.3). We assume the finite-time singularity

to be positioned at x = x0, for some constant x0 ∈ (−1, 1), and to occur at blow-up

time t = T < ∞. We will show that this blow-up solution exists only if β < β1, where

β1 = 1/(
√

2π) is the existence threshold of a one-spike steady-state solution.

To study the behaviour of the blow-up profile near the singularity, we rescale space,

time, and v by factors of a suitably chosen norm of the solutions, denoted by L(t), which

blows up at the singularity. This rescaling is motivated by the invariance present in the

equation ut = Δu + u3. Here, we use the dynamical rescaling introduced in [11] for this
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Figure 15. Results of Experiment 4. Left panel: Values of T = σt as a function of the location

of the right spike. The right spike initially stays at x0 = 0.5 as the competition instability develops.

Once the left spike is eliminated, the right spike begins to drift slowly towards x = 0. During this

drift, the quasi-equilibrium spike-existence threshold is reached near x0 ≈ 0.42. Right panel: The

corresponding evolution of the logarithm of the spike amplitude. The rapid increase near T ≈ 2.84

suggests that the finite time blow-up coincides with the spike’s approach to x = 0.42. Here, D = 1,

σ = 0.004, τ = 0, and ε = 0.002.

equation, which is defined by

y ≡ x− x0

εL(t)
, s = − log(T − t) , L(t) ≡

√
T − t , v(x, t) =

1

L(t)
w(y , s) . (5.1)

Note that L is indeed chosen such that L(t) → 0 as t→ T−.

This rescaling guarantees that the rescaled problem is no longer singular and equation

(1.3) becomes

ws = wyy −
1

2

(
w + ywy

)
+ e−sw + w3 − βw Ĩ(w) , Ĩ(w) ≡

∫ ε−1(1−x0)e
s
2

−ε−1(1+x0)e
s
2

w3 dy . (5.2)

Since t→ T− corresponds to s→ ∞, we will first determine the limiting behaviour of

the solution to (5.2) as s→ ∞. This limiting steady-state solution W (y) satisfies

Wyy −
1

2
(yW )y − βW I(W ) +W 3 = 0 , I(W ) ≡

∫ ∞

−∞
W 3 dy . (5.3)

We will look for a positive solution to (5.3) with one maximum at the origin, so that

Wy = 0 at y = 0 and W → 0 as y → ±∞. Observe that solutions to this equation are

symmetric.

Note that for every solution W to equation (5.3) the product of β and I(W ) is constant,

and therefore, the solution branch of (5.3) can be parameterized by this product that we

denote by c. In terms of the solution, β = β(c) is then given by

β(c) ≡ c∫ ∞
−∞ [W (y)]3 dy

, (5.4a)
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Figure 16. Left panel: W (0) versus β as computed numerically (solid curve) from (5.4) in terms of

the parameter c. The discrete points are the asymptotic result W (0) =
√

2c versus β = β1

(
1 − 1

3c

)
.

As c → ∞, we have β → β1 = 1/(
√

2π) from below, where β1 is the existence threshold for a one-

spike solution (vertical dashed line). Right panel: validation of the asymptotics β ∼ β1

(
1 − 1/(3c)

)
as c → +∞. We plot c

(
β/β1 − 1

)
versus c, where β is computed numerically from (5.4). This

this quantity tends to the theoretically predicted value of −1/3 as c → ∞ given by the horizontal

dashed line.

and the solutions satisfy

Wyy −
1

2
(yW )y − cW +W 3 = 0 , (5.4b)

where W has a maximum at the origin (Wy = 0 at y = 0), and W → 0 as y → ±∞. To

gain insight about the behaviour of solutions, we first solve equation (5.4b) numerically

as c is varied, and use (5.4a) to obtain β. This results in the solution branch where the

solution at the origin, W (0), is given versus β as shown in the left panel of Figure 16.

We now observe that β tends from below to the existence threshold β1 = 1/(
√

2π) of a

one-spike solution – the vertical asymptote in the left panel of Figure 16 – as c→ +∞ in

(5.4b). As expected, this implies that there does not exist a blow-up solution in the range

of β, β > β1 where a one-spike steady-state solution exists.

To show that this is indeed the case, we now analyse equation (5.4b) for c � 1 to

construct such a blow-up solution for β < β1. For this, we study the equation in various

regions and assume that the main part of the solution lies around the origin since the

solution decays to zero as y → ±∞. In this region around y = 0, the solution has a

maximum (at y = 0), and therefore, we call this the bump region.

First, we zoom into the origin and rescale y and W by introducing the local variables

z and W by

z =
√
cy , W(z) = c−1/2W

(
z/
√
c
)
. (5.5)

Upon substituting (5.5) into equation (5.4b), we obtain that W(z) satisfies

Wzz −
1

2c
[W − zWz] −W + W3 = 0 . (5.6)

We define the bump region as the region where |z| � √
c, and hence |y| � 1, so that

the second term in this equation is higher order compared to the rest of the terms. We
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then expand the solution in terms of the small parameter 1
c

W = W0 +
1

c
W1 + · · · , (5.7)

and obtain to leading-order that

W0zz −W0 + W3
0 = 0

so that

W0 =
√

2sechz. (5.8)

At next order, we obtain that W1 satisfies

L0W1 ≡ W1zz −W1 + 3W2
0W1 =

1

2
[W0 + zW0z] , (5.9)

where L0 was introduced in (3.5b).

Although the two-term approximation (5.7) does not provide a uniformly valid char-

acterization of W (y) for y � 1, we show below in a WKBJ analysis of the far-field of

the blow-up profile that our two-term result (5.7) is sufficient to determine a two-term

approximation of the integral in (5.4a) defining β. Before we turn to this WKBJ-approach,

we first determine this approximation of β.

Upon using the expansion (5.7) and the rescaling (5.5), we find that

∫ ∞

−∞
W 3 dy = c

∫ ∞

−∞

(
W0 + c−1W1 + · · ·

)3
dz ∼ c

[∫ ∞

−∞
W3

0 dz + 3c−1

∫ ∞

−∞
W2

0W1 dz

]
.

(5.10)

The first term in this expansion can be determined by using the sech-solution (5.8) which

yields
∫ ∞
−∞ W3

0 dz =
√

2π.

Next, we determine the second integral in expression (5.10). We use equation (5.9) and

the identity L0W2
0 = 3W2

0 (see Lemma 2.3 of [25]), together with integration by parts and

the decay of W0 at infinity, to obtain

∫ ∞

−∞
W2

0W1 dz =
1

3

∫ ∞

−∞

(
L0W2

0

)
L−1

0

[
1

2
(W0 + zW0z)

]
dz ,

=
1

6

∫ ∞

−∞
W2

0 (W0 + zW0z) dz ,

=
1

6

∫ ∞

−∞

(
W3

0 +
1

3
z
(
W3

0

)
z

)
dz =

1

9

∫ ∞

−∞
W3

0 dz =

√
2π

9
.

Upon substituting both of these results into (5.4a), we obtain that, to leading order, for

c� 1, we have

β =
c

c
√

2π +
√

2π
3

=
1√
2π

[
1 − 1

3c

]
= β1

[
1 − 1

3c

]
, as c→ ∞ , (5.11)
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Figure 17. The solid curves are the full numerical solution to (5.4b) for c = 2.0455 (β ≈ 0.1899)

and for c = 7.558 (β ≈ 0.21508). The curve with the larger W (0) value corresponds to c = 7.558.

The dashed curves are the leading-order bump solution (5.12). This bump solution is essentially

indistinguishable from the numerical solution for c = 7.558, and for c = 2.0455.

where β1 = 1/(
√

2π) is the existence threshold of a one-spike steady-state solution.

In Figure 16, we compare this asymptotic result with the one from numerical simulations.

In the right panel of Figure 16, we plot c
(
β
β1

− 1
)

versus c, where β is computed

numerically from (5.4a). This plot corresponds nicely to the asymptotic prediction of

(5.11) that c
(
β
β1

− 1
)
→ −1/3 as c→ ∞. In the left panel of Figure 16, we plot the curve

W (0) versus β which are both parameterized by c as W (0) =
√

2c and β = β1

(
1 − 1

3c

)
,

by the discrete points. These agree rather well with the full numerical result (solid line)

even when β is not close to the existence threshold β1.

We summarize the results so far as follows. We showed for |y| � 1 that as c → ∞, or

equivalently as β → β−1 , the leading order solution in the bump region is given by

W (y) =
√

2c sech(
√
cy) , where c =

[
3

(
1 − β

β1

)]−1

. (5.12)

We plot this leading order bump solution (5.12) in dashed curves in Figure 17 for

c = 2.0455 (β ≈ 0.1899) and for c = 7.558 (β ≈ 0.21508) where the latter corresponds

to the larger value of W (0). In this figure, we also show the full numerical solution to

(5.4b) with solid lines. We observe that the bump solution is essentially indistinguishable

from the full numerical result even for the only moderately large value c = 7.558 where

β lies close to β1 = 1√
2π

≈ 0.225079. Even for c = 2.0455, the bump solution still provides

a decent approximation of the true solution for small y, but differs from the numerical

solution in the far field. We expect that the correspondence near the origin will improve

by adding the higher order terms W1 for the solution (see expression (5.7)). We remark

that the value β ≈ 0.21508 for c = 7.558 corresponds to the terminal value of β used in

the slow sweep as shown in the right panel of Figure 7, and hence, lies close to β1.
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Next, we will complete the asymptotic analysis and use a WKBJ-analysis to analyse

(5.4b) for |y| � O(c−1/2). By symmetry, we only need to consider the region on the

right-hand side y > 0 of the maximum of W . For this range of y, we assume that W � 1

and we can neglect the W 3-term in (5.4b) to obtain the linearized problem

Wyy −
y

2
Wy −

(
c+

1

2

)
W = 0 . (5.13)

Upon introducing the Liouville transformation

W = exp
(
y2/8

)
U(y) , (5.14)

we obtain that U(y) satisfies

Uyy −
[
c+

1

4
+
y2

16

]
U = 0 . (5.15)

Applying the WKBJ-method then gives

U =
1

[q0(y)]1/4

[
a0e

∫
y √q0(η)dη + b0e

−
∫
y √q0(η)dη

]
, where q0(y) ≡ c+

1

4
+
y2

16
. (5.16)

Next, we match this solution to the solution (5.12) in the bump region. We do this

matching in the region where c−1/2 � y � 1 so that both solutions are valid. Then, the

bump solution becomes to leading order

W = 2
√

2ce−
√
cy.

Since y � 1(� √
c), the leading order of the integral in (5.16) can be determined, and

using W = Uey
2/8 the WKBJ-solution becomes

W (y) = c−
1
4

[
a0e

√
cy + b0e

−√
cy

]
. (5.17)

This can be matched directly to the bump solution by choosing a0 = 0 and b0 = 2
√

2c
3
4 .

Note that this expression can be used provided that y � √
c.

Using expression (5.16), we can also determine the behaviour of the solution in the far

field where |y| � √
c. Then, the solution becomes

W = b0

(
c+

y2

16

)−1/4
[
y

2
+

√
4c+

y2

4

]−2c− 1
2

exp

(
y2

8
− y

2

√
c+

1

4
+
y2

16

)
(5.18)

= 2b0y
−2c−1e−c−

1
4 = 4

√
2c

3
4 y−2c−1e−c−

1
4 , y � O(

√
c) ,

to leading order. This results in algebraic decay for W in the far field. Hence, this WKBJ-

analysis has shown how the exponential decay of the bump solution makes a transition

to algebraic decay in the far field.

Finally, we observe from (5.17) that, to leading-order, we can use the far-field behaviour

W ∼ 2
√

2ce−
√
cy of the bump solution on the entire range O(c−1/2) � y � O(c1/2).
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Figure 18. Left panel: Comparison of the asymptotic estimate for vmax given by (5.19b) with that

obtained from numerically solving the full nonlocal problem (1.3) (open circles) using FlexPDE6 [12].

The initial condition used in solving (1.3) is given by (5.19a) with t = 0 and T = 1. The parameters

are ε = 0.01 and β = β1 − 0.01. Right panel: The blow-up time T ≈ 0.49255 (vertical dashed line)

in (5.19b) was estimated so that the numerical data appeared linear on the log–log scale. In this

panel, the corresponding log–log plot is given.

Therefore, the integral
∫ ∞
−∞W 3 dy can be evaluated asymptotically up to negligible

exponentially small terms in c by using only the approximate solution in the bump region.

This justifies the calculation in (5.10)–(5.11).

In summary, upon returning to the dynamical rescaling (5.1), it follows that for t→ T−

and for β → β−
1 , where β1 ≡ 1/(

√
2π), a solution to (1.3) that blows up at x = x0 is given

by

v ∼ 1√
T − t

W

[
x− x0

ε
√
T − t

]
, where W (y) =

√
2

3
(
1 − β/β1

) sech

(
y

√
1

3
(
1 − β/β1

)
)
,

(5.19a)

when |y| � 1. Therefore, we find that the maximum of the profile has the scaling

behaviour

vmax ∼
1√
T − t

√
2

3
(
1 − β/β1

) , β1 ≡
1√
2π

. (5.19b)

In Figure 18, we compare (5.19b) to the full numerical results in which the PDE (1.3) is

solved using FlexPDE6 [12] when β = β1 − 0.01 and ε = 0.01. As initial condition, we use

(5.19a) with t = 0 and T = 1. The numerical results are given by open circles. In the left

panel of Figure 18, we plot vmax and see that these numerics correspond very well to the

asymptotic expression (5.19b) for vmax. From this plot, the blow-up time T was estimated

as T ≈ 0.49255, given by the vertical dashed line. Using this, the plot can also be given on

a log–log scale as is done in the right panel of Figure 18. Note the very good agreement

between the two results, solid and circles, even further away from the blow-up time.

Remark 5.1 The analysis above can be adjusted and applied to similar types of systems. For

example, for the shadow limit resulting from the RD system obtained by replacing βv3 by βv2
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in (1.1b) solutions that blow-up in finite time can also be shown to exist in an analogous

way. This modified RD system was considered numerically in Section 5 of [19], where a

blow-up behaviour of localized spike solutions was conjectured.

5.1 Linear stability of the blow-up profile

In this subsection, we study the linear stability of the blow-up profile. We do this in the

context of the rescaled problem (5.2) and not for the original PDE (1.3). We substitute

w(s, y) = W (y) + eλsφ(y) , (5.20)

into (5.2) where φ � 1 and W is the solution we constructed in the previous section.

Upon neglecting the e−sw term, which vanishes when t → T−, we obtain the linearized

problem

φyy −
1

2
(yφ)y − βφ

∫ ∞

−∞
W 3 dy − 3βW

∫ ∞

−∞
W 2φ dy + 3W 2φ = λφ . (5.21)

Then, after using the expression for β in (5.4a), equation (5.21) results in the NLEP

φyy −
1

2
(yφ)y − cφ− 3cW

∫ ∞
−∞W 2φdy∫ ∞
−∞W 3 dy

+ 3W 2φ = λφ , (5.22)

where W (y) is a solution of (5.4). In the construction of the solution W , we introduced

the rescaling (5.5) and it is convenient to change to the same variables in equation (5.22).

Therefore, we introduce the variables

z =
√
cy , W(z) = c−1/2W

(
z/
√
c
)
, Φ(z) = φ

(
z/
√
c
)
, (5.23)

so that (5.22) transforms to

LΦ ≡ L0Φ− 3W
∫ ∞
−∞ W2Φdz∫ ∞
−∞ W3 dz

= λ0Φ+
1

2c
(zΦ)z , where L0Φ ≡ Φzz −Φ+ 3W2Φ ,

(5.24)

and λ0 = λ
c
. In (5.24), the blow-up profile W(z) satisfies equation (5.6), which is given by

Wzz −W + W3 =
1

2c
(W + zWz) . (5.25)

We now show, as observed for other blow-up problems in [2], that (5.24) has two

positive, but irrelevant, eigenvalues associated with shifts in the blow-up location and

time.

Our result is as follows:

Lemma 5.1 The NLEP (5.24) has two positive eigenvalues associated with the near-

similarity group variables (5.1). For all c > 0, we have that Φ = Wz and λ0 = 1
2c

is

an eigenpair associated with translation of the blow-up location. Moreover, Φ = W + zWz

and λ0 = 1
c

is an eigenpair associated with translation of the blow-up time.
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Proof To show that Φ = Wz is a solution of (5.24), we substitute it into this equation.

First, we determine LWz = 1
2c

(Wz + zWzz) + λ0Wz . Next, we find that

LWz = L0Wz − 3W
∫ ∞
−∞ W2Wz dz∫ ∞
−∞ W3 dz

= Wzzz −Wz + 3W2Wz =
1

2c
(2Wz + zWzz) , (5.26)

where we use that the integral
∫ ∞
−∞ W2Wz dz is zero from the fact that W → 0 as

z → ±∞. To obtain the last equality, we differentiate (5.25).

Upon comparing these two results, we conclude that λ0 = 1
2c

. Therefore, Φ = Wz and

λ0 = 1
2c

is an eigenpair.

Now, we show that Φ = W + zWz and λ0 = 1
c

is an eigenpair. We first determine

LW as

LW = (Wzz −W) + 3W3 − 3W =

(
−W3 +

1

2c
(W + zWz)

)
+ 3W3 − 3W ,

= 2W3 − 3W +
1

2c
(W + zWz) , (5.27)

where in the second equality we use the equation (5.25) for the blow-up profile. Then, we

obtain L (zWz), again using the differentiated version of equation (5.25), as

L (zWz) = (zWz)zz − zWz + 3W2Wzz − 3W
∫ ∞
−∞ W2 (zWz) dz∫ ∞

−∞ W3 dz
,

= z
(
Wzzz −Wz + 3W2Wz

)
+ 2Wzz −W

∫ ∞
−∞ z

(
W3

)
z
dz∫ ∞

−∞ W3 dz
,

=
z

2c
(2Wz + zWzz) + 2Wzz + W . (5.28)

Upon adding (5.27) and (5.28), we find that

L (W + zWz) = 2
(
Wzz −W + W3

)
+

1

2c
(W + zWz) +

z

2c
(2Wz + zWzz) ,

=
1

c
(W + zWz) +

1

2c
(W + zWz) +

z

2c
(2Wz + zWzz) , (5.29)

where we again use (5.25).

On the other hand, from the right-hand side of (5.24), we require that

L (W + zWz) = λ0 (W + zWz) +
1

2c
(W + zWz) +

z

2c
(2Wz + zWzz) .

This expression agrees with (5.29) when λ0 = 1
c
. Therefore, Φ = W + zWz and λ0 = 1

c
is

an eigenpair of (5.24). �

As discussed in [2], these two positive eigenvalues arise as a consequence of the

invariances with respect to translations in x and t of the original PDE, and the form of

the variables of the dynamical rescaling (5.1). In equation (1.3), when x0 is subject to a

shift x0 → x0 + δ, one solution is transformed into another. In terms of the dynamical
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rescaling, this translated solution takes the form

v(x, t) =
1√

(T − t)
W

(
x− (x0 + δ)

ε
√

(T − t)

)
= e

s
2

(
W (y) − δεe

s
2Wy(y)

)
,

where δ is small. Hence, the eigenvalue λ, as given in (5.20) is 1
2

with eigenfunction

Wy so that after transforming with c, we get that λ0 = λ
c

= 1
2c

is the eigenvalue with

eigenfunction Wy .

In a similar way, by perturbing the blow-up time T to T = T + δ, 0 < δ � 1, we find

that the translated solution reads to leading order as

v(x, t) =
1√

(T + δ − t)
W

(
x− x0

ε
√

(T + δ − t)

)
= e

s
2

(
1 − 1

2
δes

)
W

(
y(1 − 1

2
δes)

)
,

= e
s
2

(
1 − 1

2
δes

) (
W (y) − 1

2
δesWy(y)

)
,

= e
s
2

(
W (y) − 1

2
δes

[
W +Wy(y)

])
,

and hence, the eigenvalue λ = 1 and λ0 = λ
c

= 1
c

is the eigenvalue with associated

eigenfunction W + zWz .

Fortunately, these positive eigenvalues do not lead to instability since our aim is to

study the stability of one particular blow-up solution. Therefore, we do not allow for

perturbations tangent to a family of blow-up solutions. However, the symmetries leading

to the eigenvalues in Lemma 5.1, shifting x0 and translating T is a perturbation in the

direction of a different blow-up solution. Hence, both of these eigenvalues do not need to

be taken into account in a conclusion regarding the spectral stability of the solution.

Next, to determine whether (5.24) has other positive eigenvalues that would lead to a

genuine instability. For this, we numerically compute the spectrum of (5.24) in Re(λ) > 0.

To do so, we discretize (5.24) to O(h2) using centred differences for Φzz and [zΦz]z
on a uniform mesh with meshsize h, while using the trapezoidal rule for the non-local

term. The eigenvalues of the resulting matrix problem are then computed numerically

to determine the eigenvalues with the largest real parts. These computations used 400

uniformly spaced meshpoints on a domain 0 < z < 15. For the case where Φ is even

in y, we plot in Figure 19 the only positive eigenvalue of (5.24). This agrees to several

significant digits with the positive eigenvalue λ0 = 1
c

associated with a shift in the blow-up

time T . Note that the corresponding eigenfunction of this eigenvalue is indeed even. A

similar computation for the class of eigenfunctions for which Φ is odd reveals that λ0 = 1
2c

(which has an eigenfunction that is odd) is the only unstable eigenvalue (not shown). As

a result, this numerical evidence shows that the blow-up profile is indeed stable.

Although it appears to be difficult to prove rigorously for all c > 0 that (5.24) has no

other positive eigenvalues other than the two associated with the near-similarity group,

such a proof is easily given for the limiting problem where c → ∞, corresponding to

β → β1. In the limit c → ∞, we have W ∼ W0 =
√

2sechz and also the two positive

eigenvalues associated with the similarity variables tend to zero. In addition, the NLEP
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Figure 19. The only positive eigenvalue of (5.24) for the class of even eigenfunctions, as computed

by discretizing (5.24) and computing the eigenvalues of a matrix eigenvalue problem. This only

positive eigenvalue is, to within several digits of accuracy, the eigenvalue λ0 = 1/c associated with

a translation in the blow-up time.

(5.24) reduces to leading order to

L0Φ− 3W0

∫ ∞
−∞ W2

0Φdz∫ ∞
−∞ W3

0 dz
= λ0Φ where L0Φ ≡ Φzz − Φ+ 3W2

0Φ . (5.30)

From the proof of Lemma 5.1, it follows that λ0 = 0 is an eigenvalue of multiplicity two,

with eigenfunctions Φ = Wz and Φ = W + zWz .

To show there are no positive eigenvalues for the limiting problem (5.30), we observe

that (5.30) is an explicitly solvable NLEP in the sense of [25].

As such, following the proof of Lemma 3.1 above, we use Green’s identity on W2
0 and Φ

to obtain the usual integral identity
∫ ∞
−∞

(
W2

0L0Φ− ΦL0W2
0

)
dz = 0. Upon using (5.30)

for L0, together with L0W2
0 = 3W2

0 (see Lemma 2.3 of [25]), this identity yields

0 =

(
3

∫ ∞
−∞ W3

0 dz∫ ∞
−∞ W3

0 dz
+ λ0 − 3

) ∫ ∞

−∞
W2

0Φdz = λ0

∫ ∞

−∞
W2

0Φdz .

Therefore, for eigenfunctions for which
∫ ∞
−∞ W2

0Φdz �= 0, we obtain that λ0 = 0 is the

only discrete eigenvalue. For eigenfunctions for which
∫ ∞
−∞ W2

0Φdz = 0, (5.30) yields the

local eigenvalue problem L0Φ = νΦ. It was proved in Proposition 5.6 of [6] that the point

spectrum of this local eigenvalue problem consists only of ν0 = 3, for which Φ > 0 and

consequently
∫ ∞
−∞ W2

0Φdz �= 0, together with translation mode ν1 = 0, associated with

the odd eigenfunction Φ = W0z . As such, we conclude that the limiting problem (5.30)

has no positive eigenvalue.
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6 Discussion

We have used a combination of asymptotic analysis, linear stability theory, and full

numerical simulations to investigate intricate dynamical behaviour of spike-type solutions

to a RD system that finally leads to finite-time blowup behaviour of a localized solution.

By slowly ramping a bifurcation parameter linearly in time through various linear stability

and existence thresholds associated with multi-spike steady-states, we show that there can

be a dynamically intricate route, or transition, of either spike nucleation, spike annihilation,

or temporal oscillation of the spike amplitude that precedes an ultimate finite-time blow-

up of a spike amplitude. Our analysis of this new type of spike behaviour was motivated

by some numerical observations in [7] and [19].

From a mathematical viewpoint, our analysis, together with that in [33], provides one

of the first detailed analyses of delayed bifurcation behaviour for localized structures in

PDEs. Our study hints at the rather wide variety of routes to finite-time blow-up in PDE

RD systems, as opposed to that which occurs in standard well-studied scalar models, such

as those associated with quasilinear heat equations.

A key open problem is to provide a theoretical global existence analysis of solutions

to (1.1). For the non-local GL model (1.3), we have used a combination of asymptotic

analysis and numerical methods to suggest that finite-time blow-up at x = 0 will occur

when β is below the existence threshold β1 of a one-spike steady-state solution. To

provide a rigorous proof of this conjecture would complete the picture. In addition, for

those parameter ranges for the full RD system (1.1) where finite-time blow-up is observed,

it would be interesting to extend the centre-manifold approach of [11] to provide a

detailed characterization of the blow-up profile through the use of a near-similarity group

transformation. In this direction, to analytically characterize the novel route to blow-up

observed numerically in Figure 12, whereby the spike amplitude develops increasingly

large oscillations, before apparently bouncing off to infinity, would be a challenge.
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