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A simple efficient method is presented for the determination of the intrinsic transmissivity
tensor, as well as the intrinsic correction tensors at successive orders in the dimensionless
slip parameter, that predicts the effective transmissivity tensorial coefficient for steady,
one-phase, isothermal, creeping flow of a Newtonian fluid with slip boundary condition
in a rough fracture. It is demonstrated that the solution of the first N ancillary closure
problems provides the slip correction tensors up to the 2N − 1 order, hence reducing
the computational requirements by a factor of ∼2 compared with the conventional
approach. In particular, the first-order correction tensor (i.e. a Klinkenberg-like tensor)
can be obtained by solving the closure problem required for the computation of the
intrinsic transmissivity tensor. In addition, symmetry and definiteness (positiveness or
negativeness) properties of the individual tensors are analysed. It is shown that a Padé
approximant, built on the correction tensors at the first three orders, outperforms the
predictions for the effective transmissivity tensor. The new approach is illustrated and
validated with numerical examples on model rough fractures.

Key words: lubrication theory, porous media

1. Introduction

Flow in fractures is a situation widely encountered in practical applications such as the
leakage rate of seals (e.g. Pérez-Ràfols, Larsson & Almqvist 2016; Rui et al. 2023),
gas leak through reservoir caps or gas recovery in fractured rocks (see Zhou et al.
(2023) and references therein), among many others. Modelling flow in rough fractures

† Email address for correspondence: didier.lasseux@u-bordeaux.fr

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 969 A9-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

56
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:didier.lasseux@u-bordeaux.fr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.564&domain=pdf
https://doi.org/10.1017/jfm.2023.564


T. Zaouter, F.J. Valdés-Parada, M. Prat and D. Lasseux

has been carried out using the average Reynolds equations over several decades. In early
works, surface roughness was treated as a stochastic variable in one dimension (Tzeng
& Saibel 1967); however, in the work by Patir & Cheng (1978), an average Reynolds
equation was proposed in terms of the macroscopic pressure gradient and shear flow
factors, thus making it possible to handle three-dimensional fractures. Using the volume
averaging method, Prat, Plouraboué & Letalleur (2002) later showed that these factors
were predictable from closure problem solutions in a representative periodic unit cell.

While many studies of flow through rough fractures have adopted no-slip boundary
conditions at the solid–fluid interface, this assumption is not always justified in situations
of practical interest such as non-wetting fluid flow (Lee, Yo & Lee 2013) or rarefied
gas flow (Wang, Tang & Jing 2019). In the slip regime, characterised by a Knudsen
number (i.e. the ratio of the gas molecules mean-free path to a characteristic constriction
length) smaller than ∼0.1, gas flow can be modelled, at the local scale, with the Reynolds
(lubrication) equation that includes gas slippage effects at the walls (Zaouter, Lasseux &
Prat 2018). The same type of model operates as well for slip mechanisms different from
Knudsen effects.

Since fractures often exhibit a roughness that is multiscale in nature, upscaled flow
models are favoured in practice. Such models also have a Reynolds-like form involving
the macroscopic effective transmissivity tensor that lumps the geometrical and slip effects.
To separate the latter from the pure viscous contribution, a Knudsen number power-series
expansion can be performed, which provides the intrinsic transmissivity tensor as well as
a series of intrinsic correction tensors at multiple orders. These tensors can be considered
to be intrinsic as they only depend on the fracture geometry. They can be computed
from solving a set of sequentially coupled ancillary closure problems on a periodic unit
cell representative of the system under consideration. These problems can be relatively
difficult to solve and computationally costly, and the sequential coupling is prone to the
propagation of numerical errors in the solutions at the successive orders. Moreover, the
use of power-series expansions does not necessarily guarantee convergence and this poses
a serious problem in terms of accuracy.

To address this issue, a procedure is derived that considerably simplifies the
determination of the successive correction tensors as the solution of the first N closure
problems provides the correction tensors up to the 2N − 1 order. The analysis allows
determination of the symmetry and definiteness properties of the individual tensors. In
addition, it is shown that the power-series expansion can be employed to form a Padé
approximant, which, in its simplest form, is built using the first three correction tensors,
that are obtained from the solution of only the first two ancillary closure problems.

The article is organised as follows. In § 2, the local and macroscale models derived
in Zaouter et al. (2018) for gas slip flow in a rough fracture are recalled. In addition,
the associated closure problems resulting from power-series expansions in the Knudsen
number are presented. In § 3, an integral approach is used to express the correction
tensors at the different orders in the Knudsen number, showing that the computational
requirements are reduced by a factor of almost two. The analysis also provides the proof of
symmetry and semi-positive definiteness of the tensors. In addition, a Padé approximant is
constructed requiring the minimum number of correction tensors to provide an alternative
estimate of the effective transmissivity tensor. In § 4, numerical examples are used to
validate the method derived here and illustrate the dependence of the transmissivity
on the average Knudsen number, considering random rough fractures. The performance
of the first-order (i.e. Klinkenberg) and higher-order corrections is explored. The Padé
approximant is shown to outperform the predictions from the original power-series
expansion. Finally, conclusions are presented in § 5.
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2. Reynolds models at the local and macroscopic scales

The developments that follow are carried out considering the (slightly) compressible,
isothermal, Newtonian and steady creeping flow of a gas within a fracture, assuming
that Knudsen effects may be significant but in a rarefied regime corresponding to slip
flow. Nevertheless, generalisation to slip flow in a broader context is straightforward, as
it would require assuming a diffuse reflection at the solid–fluid interfaces and replacing
the Knudsen number by the slip length to characteristic aperture size ratio (Bolaños &
Vernescu 2017).

2.1. Local description
Derivation of the local Reynolds equation for flow in a rough fracture in the presence of
slip was carried out in a previous work (see § 2 in Zaouter et al. 2018). The flow model at
the roughness scale can be written in the following form:

∇ · q = 0, in Aβ, (2.1a)

q = −ρ h3

12μ

(
1 + 6ξ

λ

h

)
∇p, in Aβ, (2.1b)

ρ = ϕ( p), in Aβ, (2.1c)

q · n = 0, at Cβσ . (2.1d)

In the above equations, q denotes the local mass flow rate per unit width of the fracture,
and can be referred to as the local mass flux. In (2.1b), h = h(x, y) represents the local
aperture at a point (x, y) in the mid-plane of the fracture (see figure 1) where the pressure
is p, the density is ρ and the mean-free path is λ, μ being the dynamic fluid viscosity,
that is assumed constant. In addition, ξ = (2 − σv)/σv is a parameter that accounts for
the molecular reflection process at the solid–fluid interfaces, σv being the tangential
momentum accommodation coefficient (Maxwell 1879). Moreover, Aβ represents the
portion of the fracture that is occupied by the fluid phase, β, and Cβσ denotes the contours
of the solid contact zones, σ (where h = 0), that are eventually present between the two
rough surfaces forming the fracture (see figure 1). The state equation, (2.1c) relates the
density only to the fluid pressure, under the assumption of isothermal conditions. To arrive
at this flow model, it is assumed that the roughness at both walls is slowly varying. This
means that the slope of the two surfaces is everywhere small compared with unity, i.e.
that ε = hβ/�β � 1, hβ being the characteristic aperture size and �β the characteristic
length scale in the x- and y-directions of the fracture over which hβ varies significantly.
The model is O(ε2(1 + ξKn)) accurate and its use is constrained by the Knudsen number,
Kn = λ/hβ � 0.1.

2.2. Macroscopic model
The Reynolds model given in (2.1) operates locally in the two-dimensional domain
corresponding to the mid-plane of the fracture. A macroscopic description over a
representative element of the fracture is nevertheless of major interest and was developed
in Zaouter et al. (2018) (cf. § 3). Under the assumption of a separation of length scales,
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Figure 1. Top: sketch of the system consisting of a fracture between two rough surfaces. Note that h(x, y)
represents the local aperture at any point in the mid-plane of the fracture. Bottom left: top view of part of the
fracture. Bottom right: detail of the two-dimensional domain in which the Reynolds model applies, including
the corresponding phases and characteristic lengths, the periodic unit cell, the axes and the notations.

i.e. �β � L, L being the size of the system, it is given by

∇ · 〈q〉 = 0, (2.2a)

〈q〉 = −〈ρ〉β K

μ
· ∇〈p〉β, (2.2b)

〈ρ〉β = ϕ(〈p〉β). (2.2c)

In this model, the superficial and intrinsic surface averages of a variable, ψ , taking
values in Aβ are respectively defined as

〈ψ〉 = 1
A

∫
Aβ

ψ dA, (2.3a)

〈ψ〉β = 1
Aβ

∫
Aβ

ψ dA. (2.3b)

In these definitions, A and Aβ are the areas of A and Aβ , respectively, A being the
averaging surface identified as the representative (periodic) unit cell of the fracture
aperture field, and Aβ the portion of A occupied by the β-phase, i.e. where h /= 0
(cf. figure 1). Equation (2.2c) is the formal state equation at the macroscopic scale
that follows from (2.1c). The above macroscopic model is obtained assuming a slightly
compressible flow characterised by ρ − 〈ρ〉β � 〈ρ〉β . In the momentum equation (2.2b),
K is the apparent (effective) transmissivity tensor that is obtained from the solution of the
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following closure problem in a periodic (two-dimensional) unit cell:

∇ · (k(∇b + I)) = 0, in Aβ, (2.4a)

n · k(∇b + I) = 0, at Cβσ , (2.4b)

b(r + li) = b(r), i = 1, 2, (2.4c)

K = 〈k(∇b + I)〉. (2.4d)

Here, the local transmissivity k is defined as

k = k0 + αk1, k0 = h3

12
, k1 = h2

12
, α = 6ξ λ̄, (2.5)

and λ̄ is the mean-free path corresponding to the average density, 〈ρ〉β . Note that ξ λ̄ can
be identified as the slip length in the general case, beyond the context of gas flow in the
presence of Knudsen effects. Moreover, I is the identity tensor, and in (2.4c), li represents
the lattice vector of the two-dimensional unit cell in the ith-direction (i.e. l1 = �xex, l2 =
�yey, (ex, ey) forming the system of coordinates in the plane of the fracture, see figure 1).
Note that the problem defined in (2.4) may appear as ill posed since b is defined to within
an additive constant. However, from (2.4d), it is clear that this constant plays no role in the
prediction of K and, hence, it is not required to specify it. The field of b, compliant with
the closure procedure, is nevertheless constrained by 〈b〉β = 0.

The second-order effective transmissivity tensor, K , is apparent (i.e. non-intrinsic) in
the sense that it depends on the flow characteristic through λ̄. This means that if one is
interested in studying the dependence of K on λ̄, it is necessary to solve the boundary-value
problem given in (2.4) for any value of this parameter. To elucidate this dependence, b can
be expanded in power series of Kn = λ̄/hβ , which, in dimensional form, translates into
b = ∑m

j=0 α
jbj. Accordingly, the power-series expansion, K̂m, of K at the mth-order in

Kn, is obtained as

K̂m =
m∑

j=0

α jK j. (2.6)

Note that, although the flux to force linearity is preserved during the averaging
procedure, the linearity between K and ξ λ̄ does not persist, in general, due to the disordered
nature of the fracture aperture field that is captured in the upscaling process. For this
reason, it is relevant to consider the above expansion beyond the first order. Nevertheless,
the use of a power-series expansion, as expressed in (2.6), although of practical value,
shall be considered with caution regarding the radius of convergence with respect to Kn. A
thorough analysis of this convergence criterion, which may depend on the fracture aperture
field, is certainly of utmost importance but goes beyond the scope of the present work. To
circumvent this issue, the correction tensors series can be used to build a Padé approximant
as will be detailed in § 3.5.

With the above expansions, the second-order tensors, K j for j ≥ 0, are obtained from the
solution of the closure problem at the corresponding order given by

Order j = 0

∇ · (k0(∇b0 + I)) = 0, in Aβ, (2.7a)

n · k0(∇b0 + I) = 0, at Cβσ , (2.7b)

b0(r + li) = b0(r), i = 1, 2, (2.7c)

K0 = 〈k0(∇b0 + I)〉. (2.7d)
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Order j ≥ 1

∇ · (k0∇bj + k1(∇bj−1 + δK
j1I)) = 0, in Aβ, (2.8a)

n · (k0∇bj + k1(∇bj−1 + δK
j1I)) = 0, at Cβσ , (2.8b)

bj(r + li) = bj(r), i = 1, 2, (2.8c)

K j = 〈k0∇bj + k1(∇bj−1 + δK
j1I)〉. (2.8d)

In (2.8), δK
j1 represents the Kronecker delta. As in the problem for b, no constraint is

assigned for bj, which is hence defined to within an arbitrary additive constant that has
no influence on K j.

It must be noted that the zeroth-order problem yields the intrinsic transmissivity tensor
that is the only relevant effective coefficient at the macroscale in the absence of slip.
The successive orders j ≥ 1 provide the effective correction tensors due to slip effects.
Conversely to K , the tensors K0, K1, . . . , are all intrinsic to the fracture under consideration
as they only depend on its aperture field, making K̂m fully predictive. Moreover, they
allow distinguishing of the contributions from slip effects from purely viscous effects. In
particular, at the first order in Kn, the correction leads to the Klinkenberg relationship when
the gas can be considered as ideal (see end of § 3, p. 429 in Zaouter et al. 2018), similar to
the classical correction to Darcy’s law in the context of slip flow in porous media (Lasseux
et al. 2014; Lasseux, Valdés-Parada & Porter 2016).

From the above expansion in Kn, it appears that the determination of the jth-order
correction tensor requires the solution of the series of j + 1 problems (from order 0 to
j). This can be extremely costly in terms of computational time and resources to achieve
enough accuracy, in particular because the closure problem at order j involves the gradient
of the solution at the j − 1 order, hence contributing to a propagation of errors detrimental
to the final solution. This motivates exploring of simplifications in the procedure to obtain
the correction tensors, which are presented in the following section. The approach is
based upon an integral formula, that results from the divergence theorem, which is used
recursively to express K2N−1 in terms of the first N closure problems solution. Moreover,
this approach allows determination of the symmetry and definiteness properties of the
correction tensors in a very simple way. In addition, the use of a simple Padé approximant
is explored, that only requires the solution of the first two closure problems.

3. An efficient procedure to obtain the correction tensors K j, j ≥ 1

3.1. Integral formula
In order to progress towards a simplified method of determining K j, it is of interest to
derive an integral formula that will be extensively used in the following. Consider an
arbitrary second-order tensor field, A, and a vector field a defined in a domain Ωβ of
boundary ∂Ωβ and having sufficient regularity. On the basis of the divergence theorem,
they satisfy the following identity:∫

Ωβ

(∇ · A)a dΩ +
∫
Ωβ

AT · ∇a dΩ =
∫
∂Ωβ

n · A a dS. (3.1)

Here, n is the unit normal vector at ∂Ωβ pointing out of Ωβ . When this formula is
considered in the periodic unit cell, A , representative of the fracture (Ωβ ≡ Aβ) with
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periodic fields A and a, further considering A to be solenoidal and satisfying n · A = 0 at
Cβσ , the above identity simplifies to give

〈AT · ∇a〉 = 0, (3.2)

where 〈ψ〉 is the surface superficial average of ψ defined in (2.3a). With this result at
hand, the transmissivity tensors can be reformulated. Important properties for K and K0
are first analysed before focusing on K j, j ≥ 1.

3.2. Properties of K and K0

In Lasseux & Valdés-Parada (2017) (see section II C), K and K0 were shown to be
symmetric tensors. The analysis is now completed with a proof of their positiveness. To
do so, the relationship given in (3.2) is considered taking A ≡ k(∇b + I) (see (2.4)) and
a ≡ b. This leads to 〈k∇b〉 + 〈k∇bT · ∇b〉 = 0. Adding the transpose of this result to the
expression of K given in (2.4d) yields K = 〈k∇b + kI + k∇bT + k∇bT · ∇b〉, that is

K = 〈k(∇bT + I) · (∇b + I)〉. (3.3)

Similarly, taking A ≡ k0(∇b0 + I) (see (2.7)) and a ≡ b0 in relation (3.2) gives

K0 = 〈k0(∇bT
0 + I) · (∇b0 + I)〉. (3.4)

The last two expressions confirm that both K and K0 are symmetric tensors and,
moreover, that they are semi-definite positive. Indeed, for any arbitrary constant non-zero
vector, ω, the quantity ω · K · ω = 〈k((∇b + I) · ω)2〉 is positive (and similarly for ω ·
K0 · ω). Therefore, K and K0 admit an inverse, which indicates that (2.2b) can be used
in a reciprocal form, regardless flow is in the slip regime or not. These results, in
terms of symmetry, positiveness (and consequently on the existence of an inverse) can
straightforwardly be generalised to many diffusive processes in porous media, for instance,
for the effective diffusivity tensor for passive mass diffusion (i.e. with no adsorption or
chemical reaction) in homogeneous (Whitaker 1999, chap. 1) and heterogeneous porous
media, the effective conductivity tensor for thermal conduction in a porous medium
(Whitaker 1999, chap. 2) and the effective permeability for one-phase creeping flow in
heterogeneous porous media (Whitaker 1999, chap. 5). Finally, the fact that K is symmetric
and positive is consistent with the Clausius–Duhem inequality.

3.3. Reformulation of K1

The interest is now focused on the first-order correction tensor, K1. Applying the integral
formula given in (3.2) with A ≡ k0∇b1 + k1(∇b0 + I) (see (2.8) with j = 1) and a ≡ b0,
and taking the transpose of the result, yields 〈k0∇bT

0 · ∇b1〉 = −〈k1∇bT
0 · (∇b0 + I)〉. In

addition, using again (3.2) with A ≡ k0(∇b0 + I) (see (2.7)) and a ≡ b1, gives 〈k0∇bT
0 ·

∇b1〉 = −〈k0∇b1〉. When the combination of these two expressions is substituted back
into the definition of K1 given in (2.8d) (taking j = 1), it follows that

K1 = 〈k1(∇bT
0 + I) · (∇b0 + I)〉. (3.5)

This last result has many important consequences. First, it shows that the first-order slip
correction tensor can be obtained from the solution of the zeroth-order closure problem
that hence provides both K0 and K1. The above result shows that, if one is restricted to the
classical first-order correction at the macroscopic scale, the zeroth-order closure problem
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(which physically corresponds to flow under no-slip conditions) contains all the physical
information that is necessary to predict both the intrinsic transmissivity and first-order
correction tensors. Second, it readily proves that K1 is a symmetric, semi-definite positive
tensor. Therefore, if a first-order correction is considered reasonable, which is the case
when the Knudsen number is small enough (see some examples in § 4 of Zaouter et al.
2018), only the solution of (2.7) is required and K̂1 (see (2.6)) is symmetric, semi-definite
positive. Consequently, it admits an inverse. These conclusions are similar to those
obtained for slip flow in porous media analysed in Lasseux, Zaouter & Valdés-Parada
(2023).

At this point, it is of interest to investigate the slip correction tensors of higher orders.

3.4. Alternative expression of Kj, j ≥ 2
A simpler expression of K j compared with (2.8d), j ≥ 2, can be obtained by first
considering (3.2), taking A ≡ k0(∇b0 + I) (see (2.7)) and a ≡ bj, which gives 〈k0∇bj〉 =
−〈k0∇bT

0 · ∇bj〉. Similarly, taking A ≡ k0∇b1 + k1(∇b0 + I) (see (2.8) with j = 1) and
a ≡ bj−1 yields 〈k1∇bj−1〉 = −〈(k0∇bT

1 + k1∇bT
0 ) · ∇bj−1〉. When these two results are

substituted back into the expression of K j given in (2.8d) ( j > 1), the following alternative
expression of this tensor is obtained:

K j = −〈k0∇bT
1 · ∇bj−1〉. (3.6)

To arrive at this result, the fact that 〈∇bT
0 · (k0∇bj + k1∇bj−1)〉 = 0 was employed. This

follows from an additional use of (3.2) with A ≡ k0∇bj + k1∇bj−1 (see (2.8)) and a ≡ b0
and the application of a transpose.

If j = 2, no further step is required as (3.6) gives

K2 = −〈k0∇bT
1 · ∇b1〉. (3.7)

If j ≥ 2, the next step, taking (3.6) as the initial stage, is to further employ the integral
formula (3.2) repeatedly taking A ≡ k0∇bj−n + k1∇bj−n−1 and a ≡ bn with n increasing
from 1 to ( j − 1)/2 if j is odd or from 1 to j/2 if j is even. After substituting the ensuing
relationships into the successive expressions of K j at each value of n, this finally yields
(note that this procedure is indeed also valid for j = 2)

K j =
{〈k1∇bT

( j−1)/2 · ∇b( j−1)/2〉, j odd,

−〈k0∇bT
j/2 · ∇bj/2〉, j even,

j ≥ 2. (3.8)

This recurrent procedure is illustrated in Appendix A for j = 3 and j = 4.
The result given in (3.8) has important consequences. First, it shows that the jth-order

correction tensor is obtained from the solution of the closure problems from order 0 to
( j − 1)/2 if j is odd or j/2 if j is even, instead of the j + 1 closure problems from order 0
to j, as could be inferred from the expanded closure scheme (see (2.8d)). In other words, the
solution of the first N closure problems provides all the correction tensors, K j, for j up to
2N − 1, i.e. K̂2N−1. This represents a considerable simplification since the computational
requirements are divided by a factor of roughly two for the same targeted order of the
power-series expansion. Second, it shows that all the correction tensors are symmetric
and, moreover, that the odd-order correction tensors are semi-definite positive whereas
the even-order ones are semi-definite negative. This further proves that the correction
tensors form an alternate series. Furthermore, the fact that K2 is negative indicates that
the diagonal terms of K are concave functions of α near α = 0. All these conclusions are
similar to those reached in Lasseux et al. (2023) for slip flow in porous media.
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3.5. Padé approximant
Since the asymptotic behaviour of K in the limit ξKn → +∞ is known and the
power-series expansion in ξKn is alternate, another use of this expansion is proposed to
construct a Padé approximant, K̃ (n,d), which is given by (Baker & Graves-Morris 1996)

K̃ (n,d) =
( n∑

i=0

αiGi

)
·
⎛
⎝ d∑

j=0

α jF j

⎞
⎠

−1

, (3.9)

where Gi and F j are two series of second-order tensors that will be identified later on.
Note that (3.9) corresponds to the ‘right’ approximant in the sense that the inverse term is
placed at the right of the expression. Equivalently, a ‘left’ approximant can be constructed
and it can be shown that the two are in fact equal (Zinn-Justin 1971).

To determine the values of n and d, an asymptotic analysis of the closure problem (2.4)
can be carried out. The limit α → +∞, shows that K ∼ αK ′

1 (i.e. K scales linearly with
α at sufficiently large values of this parameter). The intrinsic tensor K ′

1 providing the
asymptotic slope is given by the solution of the following intrinsic closure problem for b′

∇ · (k1(∇b′ + I)) = 0, in Aβ, (3.10a)

n · k1(∇b′ + I) = 0, at Cβσ , (3.10b)

b′(r + li) = b′(r), i = 1, 2, (3.10c)

K ′
1 = 〈k1(∇b′ + I)〉. (3.10d)

Consequently, a Padé approximant also exhibiting a linear asymptotic behaviour in
the limit α → +∞ shall be preferentially chosen, hence suggesting n = d + 1 in (3.9).
For the sake of brevity in presentation, the developments are carried out for the case
d = 1, which provides the simplest Padé approximant K̃ (2,1). So as to determine the
tensorial coefficients Gi, i = 0, . . . , 2 and F j, j = 0, 1, (3.9) is equated to K̂3, which
gives

(G0 + αG1 + α2G2)− (K0 + αK1 + α2K2 + α3K3) · (F 0 + αF 1) = O(α4). (3.11)

Identification of the different terms at the successive orders in α leads to

G0 = K0 · F 0, (3.12a)

G1 = K1 · F 0 + K0 · F 1, (3.12b)

G2 = K2 · F 0 + K1 · F 1, (3.12c)

0 = K3 · F 0 + K2 · F 1. (3.12d)

Without loss of generality, F 0 can be chosen as F 0 = I , and this allows one to solve the
preceding system of equations to obtain

G0 = K0, (3.13a)

G1 = K1 − K0 · K−1
2 · K3, (3.13b)

G2 = K2 − K1 · K−1
2 · K3, (3.13c)

F 1 = −K−1
2 · K3. (3.13d)
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Figure 2. Unit cell aperture field of an anisotropic Gaussian fracture. White areas represent contact spots of
zero aperture.

This yields the final result

K̃ (2,1) = (K0+α(K1 − K0 · K−1
2 · K3)+α2(K2 − K1 · K−1

2 · K3)) · (I − αK−1
2 · K3)

−1.
(3.14)

It can be shown that the Padé approximant tensor K̃ (2,1) given by (3.14) is symmetric. This
follows from the symmetry of all the tensors K j, j ≥ 0 and the fact that the transpose of
K̃ (2,1) would be equal to the ‘left’ Padé approximant, which itself is equal to the ‘right’
approximant K̃ (2,1) (Zinn-Justin 1971). In addition, since the expression of K̃ (2,1) solely
involves the tensors K j up to j = 3, this approximant can be obtained from the solution of
only the first two closure problems, as shown in the previous section. The performance of
this approach is assessed by means of numerical simulations in what follows.

4. Illustrative example

In this section, a numerical example illustrating the dependence of the transmissivity upon
the average Knudsen number is, reported, considering synthetic random rough fractures.
The asymptotic expansion of the transmissivity given by (2.6), truncated up to the third
order, as well as the Padé approximant given by (3.14), are investigated as well.

The first fracture under consideration was obtained by generating an anisotropic
Gaussian shortly correlated surface employing the procedure described in Bergström
(2012), with a discretisation of 1025 × 1025 points. A size �x = �y = � for the unit cell,
correlation lengths σcx = 0.04� and σcy = 0.02� (in the x- and y-directions, respectively)
and a root mean square roughness Rq = 10−3� were used. The surface was then brought
into contact with a flat plane by vertical overlap, and the aperture was defined as the height
difference between the two surfaces. When this difference was negative, the aperture was
set to zero, which produces contact zones. The relative position of the two surfaces was
chosen to obtain a contact area equal to 7 % of the total area. The resulting periodic unit
cell aperture field is represented in figure 2.

To begin with, it is of interest to investigate the local flow fields for the particular unit
cell configuration reported in figure 2 and make comparisons between the fields of the
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Figure 3. Magnitudes of the microscale flux fields (a) q and (b) q̂1 normalised by ‖〈q〉‖. The corresponding
flow streamlines are superimposed in green colour. The results were obtained on the periodic unit cell of
figure 2, taking ξKnx = 0.15 and ξKny = 0.19 and a pressure gradient along −ex.

microscale flux, q, and its first-order expansion, q̂1. To this end, it is necessary to derive an
expression for q and q̂1. This is accomplished by using Gray’s decomposition p = p̃ + 〈p〉β
(Gray 1975) and the representation of p̃ in terms of the macroscopic pressure gradient
applied on the unit cell according to the closure procedure reported in § 3.2 in Zaouter
et al. (2018) in (2.1b). For q, the closure for p̃ reads p̃ = b · ∇〈p〉β and this leads to

q = −ρ
μ

k(I + ∇b) · ∇〈p〉β. (4.1a)

For q̂1, b is expanded at the first order to yield p̃ = (b0 + αb1) · ∇〈p〉β . This leads to

q̂1 = −ρ
μ

[k0(I + ∇b0)+ α(k1(I + ∇b0)+ k0∇b1)] · ∇〈p〉β. (4.1b)

In the above equations, b, b0 and b1 result from the solutions of (2.4), (2.7) and (2.8) (with
j = 1), respectively. They are carried out with the same finite volume numerical method
as that employed in Zaouter et al. (2018), that is second-order accurate in space. For the
sake of brevity, numerical simulations are restricted to the closure problems solution up to
the first order so that the comparison between only q and q̂1 is reported.

In figure 3, the magnitudes and streamlines of the microscale flux fields, q and q̂1
(normalised by ‖〈q〉‖), imposing incompressible flow, are reported for ξKnx = 0.15 and
ξKny = 0.19. For the sake of simplicity, the macroscopic pressure gradient is taken to be
along −ex. As can be observed in this figure, the flux magnitudes do not seem to exhibit
significant differences. However, this can be misleading since the flux magnitudes are
strongly influenced by the x-component values, which may not markedly differ between
themselves, and this may damp the differences between the y-components. A much more
significant mismatch is noticeable in the streamline patterns. These remarks suggest that
significant differences may be observed between K and K̂1 as will be shown later. For the
moment, it is pertinent to gain a more quantitative idea about the differences between the
microscale flux predictions. In figure 4 the fields of the relative differences, defined as

εi = q̂1i − qi

〈qi〉 , i = x, y, (4.2)

are reported for both components of the flux, taking the same conditions as those
considered in figure 3. The results show that the largest differences are found for the
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Figure 4. Differences between the (a) x and (b) y components of the microscale flux q and q̂1 reported in
figure 3, respectively normalised by the corresponding averages 〈qi〉 (i = x, y).

K0/�
3 K1/�

2

Component Conventional Improved Δ (%) Conventional Improved Δ (%)

xx 2.533 × 10−10 2.532 × 10−10 0.049 1.741 × 10−7 1.740 × 10−7 0.102
yy 1.149 × 10−10 1.149 × 10−10 0.056 9.661 × 10−8 9.651 × 10−8 0.106
xy 1.169 × 10−12 1.160 × 10−12 0.821 2.356 × 10−9 2.335 × 10−9 0.854
yx 1.169 × 10−12 1.160 × 10−12 0.821 2.356 × 10−9 2.335 × 10−9 0.854

Table 1. Dimensionless components of the intrinsic transmissivity tensor, K0, and slip correction tensor,
K1, computed from the conventional method ((2.7d) and (2.8d) with j = 1, respectively) and the improved
method ((3.4) and (3.5), respectively). Here, Δ is the relative difference between the values obtained from the
conventional and improved methods, taking the former as the reference.

predictions of the y-component of the flux, especially in throats formed between close solid
contact patches. This suggests that the first-order predictions of K may be less accurate for
the off-diagonal terms than for the diagonal ones, as will be further explored.

With the solutions for b0 and b1 at hand, K0 and K1 can be computed either from
(2.7d) and (2.8d) ( j = 1), respectively, (this is referred to as the conventional method
hereafter) or from (3.4) and (3.5), respectively, (a procedure called the improved method).
The components of K0 and K1, computed with the two different methods, are reported in
table 1. These results confirm the symmetry of these two tensors and show an excellent
agreement for all the components, with a maximum relative difference, Δ, around 0.8%
with respect to the conventional method. For K0, this difference only originates from
signatures of the numerical inaccuracies on ∇b0 between formulas (2.7d) and (3.4). Note
that, in practice, (2.7d) should be preferred to (3.4) to compute K0 as it is expected to
be, however, more accurate. For K1, a supplementary effect comes from the fact that the
solution for b1 is tainted by the inaccuracies on ∇b0 when the conventional method is
employed. In any case, the differences remain small and decrease as the computational
mesh size is decreased (i.e. for sufficiently converged solutions). Such small error appears
more than acceptable compared with the computational burden of having to solve multiple
closure problems up to the desired order. Nevertheless, it is difficult to assess which
method is more accurate to compute K j for j ≥ 1. These results validate the approach
presented in this work.
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Figure 5. (a) The xx-components, (b) yy-components, (c) xy-components of the effective transmissivity tensor,
K , of the anisotropic Gaussian fracture, sketched in figure 2, normalised by the corresponding components of
the intrinsic transmissivity tensor, K0 (open symbols), as a function of the Knudsen number; components of the
power-series expansions, K̂ mij (for m up to 3, see (2.6)), and the Padé approximant, K̃ (2,1)ij , i, j = x, y (lines).
(d–f ) Corresponding relative errors.

The focus is now laid upon the series expansions of the transmissivity tensor. From the
zeroth- and first-order closure problem solutions, the correction tensors K j in (2.6) can be
computed up to j = 3 with the improved method. The analysis is carried out in terms of
the Knudsen number, which is considered to be dependent on the flow direction following
the definition proposed in Zaouter et al. (2018), i.e. Kni = λ̄/hβi, i = x, y, where hβi is
estimated as hβi = 3

√
12K 0ii . In this way, hβi represents the aperture of a fracture made of

two plane parallel plates that would exhibit the same intrinsic transmissivity K 0ii in the
ith-direction. In agreement with the slip flow regime, results are reported for ξKni ≤ 0.15,
with the idea that ξ ≈ 1. With these estimates of hβi, and taking the correlation length,
σci, as a measure of �βi, this leads to ε ∼ 0.036 in the x-direction and ε ∼ 0.055 in the
y-direction, confirming that the Reynolds approximation, which is the basis of the model
employed here, is perfectly justified.

In figure 5, the components of the transmissivity tensors, normalised by the
corresponding intrinsic transmissivity component, are represented as a function of ξKni,
i = x, y. For K xy/K 0xy , the Knudsen number is taken as Knx. Since the tensors are all
symmetric, values of only one of the off-diagonal components are reported. From this
figure, it can be clearly seen that the components of K (open symbols in figure 5) are
increasing nonlinear functions (in magnitude) of the Knudsen number. Nonlinearity was
already discussed in Zaouter et al. (2018) (see end of p. 431). Moreover, the concave
dependence of the diagonal terms upon ξKni is confirmed. A similar behaviour is also
observed for the off-diagonal terms, the formal proof of which, in the general case, remains
yet unclear. Successive expansions of the transmissivity at increasing orders (lines in
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Component K/�3 K̂1/�
3 K̃ (2,1)/�

3 ΔK̂1
(%) ΔK̃ (2,1)

(%)

xx 1.690 × 10−9 1.821 × 10−9 1.726 × 10−9 7.711 2.104
yy 9.047 × 10−10 9.845 × 10−10 9.303 × 10−10 8.823 2.831
xy 1.634 × 10−11 2.237 × 10−11 1.762 × 10−11 36.883 7.803

Table 2. Comparison of the dimensionless effective transmissivity tensor with K̂1/�
3 and K̃ (2,1)/�

3 for the
fracture depicted in figure 2 taking ξKnx = 1.03 and ξKny = 1.35. Here, ΔK̂1

= |K ij − K̂ 1ij |/K ij, ΔK̃ (2,1)
=

|K ij − K̃ (2,1)ij |/K ij, i, j = x, y.

figure 5) provide greater accuracy at small Knudsen numbers. This is further supported
by figure 5(d–f ) showing the relative error, εij, between the ij-component of the effective
transmissivity tensor, K ij, i, j = x, y, and its prediction either by the series expansion, K̂ mij ,
m = 1, 2, 3, or the Padé approximant, K̃ (2,1)ij , taking K ij as the reference.

The results in figure 5 show that a first-order approximation is only reasonable for
sufficiently small values of ξKni (i.e. smaller than 0.05 in the case under study).
Note that a third-order approximation contributes to reduce the error in the predictions
up until a cross-over value of ξKni that is approximately 0.08. For larger values, a
third-order power-series expansion actually decreases the accuracy of the predictions.
This behaviour is certainly related to the radius of convergence of the power-series
expansion. Furthermore, the Padé approximant clearly outperforms the predictions from
the power-series expansion. Indeed, the maximum relative error resulting from this
approach is approximately 1% for the off-diagonal term, whereas for the diagonal terms
this value decreases by about one order of magnitude. These results are in agreement with
the observations made on the flux fields reported in figures 3 and 4. These conclusions are
indeed dependent on the unit cell geometry. In Appendix B, the results corresponding to
an isotropic Gaussian geometry are reported. In this case, the cross-over value of ξKni is
approximately twice the one deduced from figure 5. Nevertheless, the Padé approximant
remains in excellent agreement. This confirms the relevance of this approach.

It is worth pointing out that the formalism of rarefied flow used in this work limits
the Knudsen number values that can be used. Still, in the context of flow with slip
effects induced by other physical mechanisms (for example, an effective slip boundary
condition resulting from replacing a rough surface by an effective one), it is admissible to
consider much larger values of the dimensionless slip length. Consequently, significantly
larger errors in the effective transmissivity predictions from a first-order expansion can
be expected. For the purpose of illustration, results for the fracture depicted in figure 2
corresponding to ξKnx = 1.03 and ξKny = 1.35 are reported in table 2, which confirm
the expected behaviour and further justify the relevance of the Padé approximant. Note
that the relative errors given in this table are expected to remain more or less constant as
ξKn keeps increasing. This is due to the fact that K , K̂1 and K̃ (2,1) all behave linearly in
the limit ξKn → +∞.

5. Conclusions

In this work, an efficient method to determine the intrinsic and slip correction
transmissivity (second-order) tensors, involved in the macroscopic model for steady,
creeping, single-phase, isothermal, Newtonian slip flow in a rough fracture is reported.
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Figure 6. Unit cell aperture field of an isotropic Gaussian fracture.

These coefficients result from a power-series expansion of the closure problem that yields
the effective transmissivity tensor in terms of the dimensionless slip parameter (i.e. the
Knudsen number for rarefied gas flow or, more generally, the slip length to characteristic
aperture size ratio). They are obtained from the solution of closure problems at the
successive orders in the slip parameter within a periodic unit cell representative of the
system. The reported method shows that the solution of the first N closure problems
provides the intrinsic and correction transmissivity tensors up to the order 2N − 1. In
particular, the classical first-order (Klinkenberg-like) correction tensor is obtained from
the solution of the same (zeroth-order) closure problem that is required to compute the
intrinsic transmissivity tensor (that is the single effective coefficient in the absence of
slip effects). This result allows one to conclude that the no-slip flow pore-scale fields
(i.e. the solution of the zeroth-order closure problem) also contain all the physical
information characterising the first-order slip correction. The formulation allows one to
also conclude that the effective and intrinsic transmissivity tensors, together with the
odd-order correction tensors, are semi-definite positive, whereas the even-order correction
tensors are semi-definite negative, and further, that all the tensors are symmetric. In
addition, the power-series expansion was used to construct the simplest Padé approximant
for the effective transmissivity tensor, which only requires the solution of the zeroth- and
first-order closure problems. The method is validated through numerical examples of slip
flow within random rough fractures showing its relevance. In particular, the numerical
results show that the Padé approximant outperforms the predictions from the power-series
expansion.
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Figure 7. (a) The xx-components, (b) yy-components, (c) xy-components of the effective transmissivity tensor,
K , of the isotropic Gaussian fracture, sketched in figure 2, normalised by the corresponding components of the
intrinsic transmissivity tensor, K0 (open symbols), as a function of the Knudsen number; components of the
power-series expansions, K̂ mij (for m up to 3, see (2.6)), and the Padé approximant K̃ (2,1)ij , i, j = x, y (lines).
(d–f ) Corresponding relative errors.

Appendix A. Procedure to express K j, j ≥ 2

The purpose of this appendix is to illustrate the recurrent procedure leading to the
expressions of K j given in (3.8). This is carried out for j = 3 and j = 4.

Procedure for K3 ( j = 3)
In this case, (3.6) gives K3 = −〈k0∇bT

1 · ∇b2〉 and the recurrence procedure is carried
out once (for n = 1) with the identity given in (3.2) taking A ≡ k0∇bj−n + k1∇bj−n−1 and
a ≡ bn, i.e. A ≡ k0∇b2 + k1∇b1 and a ≡ b1. This yields 〈k0∇bT

1 · ∇b2〉 = −〈k1∇bT
1 ·

∇b1〉. Upon substitution of this result into the above expression of K3, it follows that
K3 = 〈k1∇bT

1 · ∇b1〉.
Procedure for K4 ( j = 4)
The starting point is (3.6), which gives K4 = −〈k0∇bT

1 · ∇b3〉, whereas the recurrence
is employed with n = 1, 2. Consequently, the integral formula (3.2) is used twice, first
with A ≡ k0∇b3 + k1∇b2 and a ≡ b1 (n = 1), and second, with A ≡ k0∇b2 + k1∇b1
and a ≡ b2 (n = 2). This leads to 〈k0∇bT

1 · ∇b3〉 = −〈k1∇bT
1 · ∇b2〉 for n = 1 and

〈k1∇bT
1 · ∇b2〉 = −〈k0∇bT

2 · ∇b2〉 for n = 2. Combining these two results leads to K4 =
−〈k0∇bT

2 · ∇b2〉.

Appendix B. Results for an isotropic Gaussian surface

In this section, results are presented for the isotropic Gaussian fracture illustrated in
figure 6. This geometry was constructed employing the same procedure described in the
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Effective transmissivity for slip flow in a fracture

main text for the Gaussian anisotropic fracture, albeit the correlation lengths are now
σcx = σcy = 0.05� maintaining the same root mean square roughness value. Two rough
surfaces were generated in this way and the relative position of the two surfaces was chosen
in order for the contact area to occupy now 30% of the total area.

The predictions of the transmissivity tensor components using both the power-series
expansion and the Padé approximant as functions of ξKni, i = x, y are reported in figure 7
along with the corresponding relative errors. Contrary to the case presented in the main
text, for the present geometry and the ranges of ξKni, the predictions from the power-series
expansion improve as more terms are included in the series. Moreover, the values of
the relative errors are, overall, smaller than in the anisotropic case. Furthermore, the
cross-over value of ξKni beyond which the third-order correction term in the power-series
expansion no longer provides more accuracy is almost twice that in the anisotropic case
for the xx and yy components. This is a clear indication that the performance of the
power-series expansion depends on the aperture field structure. In addition, the predictions
from the Padé approximant are in excellent agreement (the relative error remains less
than approximately 10−3) with the results for K , as in the anisotropic case reported in
the main text. The differences between this case and the latter are obviously attributed to
the geometries considered in the unit cells.
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