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Abstract

A system of functional equations relating the Euler characteristics of moduli spaces of
stable representations of quivers and the Euler characteristics of (Hilbert-scheme-type)
framed versions of quiver moduli is derived. This is applied to wall-crossing formulas
for the Donaldson–Thomas type invariants of M. Kontsevich and Y. Soibelman, in
particular confirming their integrality.

1. Introduction

In [KS08], a framework for the definition of Donaldson–Thomas type invariants for Calabi–
Yau categories endowed with a stability structure is developed. One of the key features of this
setup is a wall-crossing formula for these invariants, describing their behavior under a change
of stability structure in terms of a factorization formula for automorphisms of certain Poisson
algebras defined using the Euler form of the category.

In [Rei10], such factorization formulas are interpreted using quiver representations, their
moduli spaces, and Hall algebras. The main result of [Rei10] interprets the factorization formula
in terms of generating series of the Euler characteristic of the smooth models of [ER09], which
can be viewed as Hilbert schemes in the setup of quiver moduli.

In the general framework of [KR00, LeB99], series of moduli spaces of stable representations
of quivers are viewed as the commutative ‘approximations’ to a fictitious non-commutative
geometry of (the path algebras of) quivers. In this framework, the smooth models can be viewed
as Hilbert schemes of points of this non-commutative geometry (for example, in the case of
moduli spaces of semisimple representations of quivers, the smooth models parameterize finite
codimensional left ideals in the path algebra of the quiver, in the same way as the Hilbert schemes
of points of an affine variety parameterize finite codimensional ideals in the coordinate ring of
the variety; see [ER09, § 6]). Since path algebras of quivers are of global dimension one, this
setup thus describes aspects of a one-dimensional non-commutative geometry.

The first aim of this paper (after reviewing some facts on quiver moduli in § 2) is to develop
a (one-dimensional, non-commutative) analog of the result [Che96] calculating the generating
series of Euler characteristics of Hilbert schemes of points of a threefold X as the χ(X)th power
of the MacMahon series (see [BF08, Theorem 4.12]; see also [LP09] and [MNOP06, Conjecture 1]
for the corresponding statement for Donaldson–Thomas invariants). Namely, we relate the
(generating series of) Euler characteristics of moduli spaces of stable quiver representations
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and Euler characteristics of their smooth models by a coupled system of functional equations;
see Theorem 3.4 and Corollary 3.5. This is achieved using a detailed analysis of a Hilbert–Chow
type morphism from a smooth model to a moduli space of semistable representations, whose
fibres are non-commutative Hilbert schemes (see § 3). The explicit cell decompositions for the
latter, constructed in [ER09], yield functional equations for the Euler characteristic.

The second aim is to prove the integrality conjecture [KS08, Conjecture 1] (relative
integrality) for the Donaldson–Thomas type invariants appearing in the wall-crossing formula
of [KS08]; see § 5. These numbers arise by a factorization of the generating series of Euler
characteristics as an Euler product (this process can thus be interpreted as fitting a genuinely
non-commutative (one-dimensional) object into a commutative (three-dimensional) framework).
Using the functional equations mentioned above, we can interpret this process as passing to
the compositional inverse of an Euler product, and elementary number-theoretic considerations
in § 4 yield the desired integrality property (it should be noted that a similar process appears
in [Sti06] in relating modular forms and instanton expansions). We also confirm a conjectural
formula of [KS08] for diagonal Donaldson–Thomas type invariants using results of [Wei09].

An independent proof of a refined version of the integrality conjecture [KS08, Conjecture 1]
was announced in [KS09].

2. Recollections on quiver moduli

In this section, we fix some notation related to quivers and their representations and collect
information on moduli spaces of stable representations of quivers and some of their variants, like
Hilbert schemes of path algebras and the smooth models of [ER09]. See [Rei08] for an overview
of these moduli spaces and the techniques used to prove some of the results cited below.

2.1 Quivers and their representations

Let Q be a finite quiver, with set of vertices I, and arrows written as α : i→ j for i, j ∈ I. Denote
by ri,j the number of arrows from i ∈ I to j ∈ I in Q. A path ω of length s in Q starting in a
vertex i ∈ I and ending in j ∈ I is a sequence i= i0

α1−−−→ i1
α2−−−→ · · · αs−−−→ is = j of arrows. For

each i ∈ I, we formally include an empty path of length 0 starting and ending in i; furthermore,
arrows are viewed as paths of length one. A path of positive length starting and ending in the
same vertex is called an oriented cycle in Q. For a path ω ending in i and a path ω′ starting in i,
the concatenation ω′ω is defined.

Define Λ = Λ(Q) = ZI, with elements written in the form d=
∑

i∈I dii, and define Λ+ =
Λ+(Q) = NI ⊂ Λ; elements of Λ+ are called dimension vectors for Q. Occasionally (namely, for
the tree quiver of § 2.4 and for the big local quiver of § 3.2), we will also use locally finite quivers,
for which the set of vertices is possibly infinite, but with only finitely many arrows between each
pair of vertices. For locally finite quivers, dimension vectors are assumed to be supported on a
finite subquiver.

Introduce a non-symmetric bilinear form 〈 , 〉, the Euler form, on Λ by

〈d, e〉=
∑
i∈I

diei −
∑
α:i→j

diej

for d, e ∈ Λ; we thus have 〈i, j〉= δi,j − ri,j . For a functional Θ ∈ Λ∗ = HomZ(Λ, Z), called
a stability, define the slope of d ∈ Λ+\0 as the rational number µ(d) = Θ(d)/dim d, where
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dim d=
∑

i∈I di. For µ ∈Q, define

Λ+
µ = {d ∈ Λ+\0, µ(d) = µ} ∪ {0}

(a subsemigroup of Λ+) and ′Λ+
µ = Λ+

µ \0.

We consider complex finite dimensional representations M of Q, consisting of a tuple of
complex vector spaces Mi for i ∈ I and a tuple of C-linear maps Mα :Mi→Mj indexed by the
arrows α : i→ j of Q. The dimension vector dimM ∈ Λ+ is defined by (dimM)i = dimC Mi. The
abelian C-linear category of all such representations is denoted by modC Q.

Define the slope of a non-zero representation M of Q as the slope of its dimension vector;
thus, µ(M) = µ(dimM). Call M Θ-semistable if µ(U) 6 µ(M) for all non-zero subrepresentations
U of M , and call M Θ-stable if µ(U)< µ(M) for all proper non-zero subrepresentations U
of M . Finally, call M Θ-polystable if it is isomorphic to a direct sum of stable representations of
the same slope. The full subcategory modµC Q of all Θ-semistable representations of slope µ ∈Q
is an abelian subcategory, that is, it is closed under extensions, kernels, and cokernels. Its
simple (respectively semisimple) objects are precisely the Θ-stable (respectively Θ-polystable)
representations of Q of slope µ.

Note that in the case Θ = 0, all representations are semistable, and the stable
(respectively polystable) ones are just the simple ones (respectively semisimple ones).

2.2 Moduli spaces of representations

By [Kin94], for every d ∈ Λ+, there exists a (typically singular) complex variety MΘ−pst
d (Q) whose

points parameterize the isomorphism classes of Θ-polystable representations of Q of dimension
vector d. It contains a smooth open subset MΘ−st

d (Q) whose points parameterize the isomorphism
classes of Θ-stable representations of Q of dimension vector d.

In the case Θ = 0, the variety MΘ−pst
d (Q) is affine, parameterizing isomorphism classes

of semisimple representations of Q of dimension vector d; it will be denoted by M ssimp
d (Q).

This variety always contains a special point 0 corresponding to the semisimple representations⊕
i∈I E

di
i , where Ei denotes the one-dimensional representation of Q concentrated at a vertex

i ∈ I, and with all arrows represented by zero maps. Note that all M ssimp
d (Q) reduce to the single

point 0 if Q has no oriented cycles. There exists a projective morphism from MΘ−pst
d (Q) to

M ssimp
d (Q).

Let n ∈ Λ+ be another dimension vector, and fix complex vector spaces Vi of dimension ni for
i ∈ I. A pair (M, f) consisting of a semistable representation M of Q of dimension vector d and
a tuple f = (fi : Vi→Mi) of C-linear maps is called stable in [ER09] if the following condition
holds: if U is a proper subrepresentation of M containing the image of f (in the sense that
fi(Vi)⊂ Ui for all i ∈ I), then µ(U)< µ(M). Two such pairs (M, f), (M ′, f ′) are called equivalent
if there exists an isomorphism ϕ :M →M ′ intertwining the additional maps, that is, such that
f ′i = ϕi ◦ fi for all i ∈ I.

By [ER09], there exists a smooth complex variety MΘ
d,n(Q), called a smooth model for

MΘ−pst
d (Q), whose points parameterize equivalence classes of stable pairs (M, f) as above. It

admits a projective morphism πd :MΘ
d,n(Q)→MΘ−pst

d (Q).

In the case of trivial stability, the smooth model (a Hilbert scheme for the path algebra
of Q) Hilbd,n(Q) :=M0

d,n(Q) parameterizes arbitrary representations M of Q of dimension
vector d, together with maps fi : Vi→Mi whose images generate the representation M . We have
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a projective morphism πd : Hilbd,n(Q)→M ssimp
d (Q). We denote by Hilbnilp

d,n (Q) the inverse image

under πd of the special point 0 ∈M ssimp
d (Q); it parameterizes pairs (M, f) as above, with M being

a nilpotent representation, in the sense that all maps Mαn ◦ · · · ◦Mα1 representing oriented cycles
i1

α1−−−→ i2
α2−−−→ · · · αn−−−→ i1 in Q are nilpotent.

We summarize the different moduli spaces in the following diagram.

MΘ
d,n(Q)

��

Hilbd,n(Q)

��

Hilbnilp
d,n (Q)? _oo

MΘ−st
d (Q) � � // MΘ−pst

d (Q) // M ssimp
d (Q)

2.3 Stratifications of moduli spaces

The variety MΘ−pst
d (Q) admits the following Luna-type stratification (that is, a finite

decomposition into locally closed subsets) induced by the decomposition types of polystable
representations: let ξ = ((d1, . . . , ds), (m1, . . . , ms)) be a pair consisting of a tuple of dimension
vectors of the same slope as d and a tuple of non-negative integers, such that d=

∑s
k=1 mkd

k.
We call such ξ a polystable type for d. Analogously to [LP87] in the case of trivial stability, the
set of all polystable representations M such that M =

⊕s
k=1 W

mk
k for pairwise non-isomorphic

stable representations Wk of dimension vector dk forms a locally closed subset of MΘ−pst
d (Q),

denoted by MΘ−pst
d (Q)ξ and called a Luna stratum of MΘ−pst

d (Q). Note that the open stratum
MΘ−pst
d (Q)((d),(1)), corresponding to the polystable type ((d), (1)), is precisely MΘ−st

d (Q).

Following [AL03], for any polystable type ξ for d, introduce local quiver data Qξ, dξ, nξ
as follows: the quiver Qξ has vertices i1, . . . , is with δk,l − 〈dk, dl〉 arrows from ik to il for
k, l = 1, . . . , s. The dimension vector dξ is defined by (dξ)ik =mk for k = 1, . . . , s, and the
dimension vector nξ is defined by (nξ)ik = n · dk, where n · e=

∑
i niei for n, e ∈ Λ. With this

notation, we have the following result (see [ER09]).

Theorem 2.1. The variety MΘ
d,n(Q) admits a stratification (in the sense defined above) by the

locally closed subsets MΘ
d,n(Q)ξ = π−1

d (MΘ−pst
d (Q)ξ). Each MΘ

d,n(Q)ξ admits a fibration (that is,

an étale locally trivial surjection) over the corresponding Luna stratum MΘ−pst
d (Q)ξ, whose fibre

is isomorphic to the nilpotent part of the Hilbert scheme for the local quiver Hilbnilp
dξ,nξ

(Qξ).

2.4 Cell decomposition of Hilbert schemes

By a cell decomposition of a variety X, we mean a filtration ∅=X0 ⊂X1 ⊂ · · · ⊂Xs =X by
closed subvarieties such that the complements Xk\Xk−1 are isomorphic to affine spaces.

For every vertex i ∈ I, we construct a (locally finite) tree quiver Qi as follows: the vertices
iω of Qi are indexed by the paths ω in Q starting in i (including the empty path starting and
ending in i); there is an arrow iω→ iαω to the vertex corresponding to the concatenation αω
for every path ω from i to j and every arrow α : j→ k. Note that Qi has a unique source,
corresponding to the empty path. By a subtree T of Qi, we mean a finite full subquiver which
is closed under taking predecessors. The dimension vector dim T ∈ Λ+(Q) is defined by setting
(dim T )j as the number of vertices iω in T corresponding to paths ω ending in j ∈ I. By an
n-forest, we mean a tuple T∗ = (Ti,k)i∈I,k=1,...,ni of subtrees Ti,k of Qi; its dimension vector is
defined as dim T∗ =

∑
i∈I
∑ni

k=1 dim Ti,k. The following theorem is proved in [ER09].
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Theorem 2.2. For all d and n, the Hilbert scheme Hilbd,n(Q) admits a cell decomposition,
whose cells are parameterized by the n-forests of dimension vector d.

It follows immediately from this theorem that the Euler characteristic (all Euler
characteristics refer to singular cohomology with compact support) of the Hilbert scheme
Hilbd,n(Q) can be computed as the number of n-forests of dimension vector d. This allows us to
characterize the generating function of these Euler characteristics by a functional equation. For
all n ∈ Λ+, we write

F (n)(t) =
∑
d∈Λ+

χ(Hilbd,n(Q))td ∈ Z[[Λ+]],

where the generating series is considered as an element of the formal power series ring Z[[Λ+]] =
Z[[ti : i ∈ I]] and monomials in the generators ti are written as td =

∏
i∈I t

di
i for d ∈ Λ+.

Proposition 2.3. The series F (n)(t) are the uniquely determined elements of Z[[Λ+]] satisfying
the following functional equations:

(1) for all n ∈ Λ+, we have F (n)(t) =
∏
i∈I F

(i)(t)ni ;

(2) for all i ∈ I, we have F (i)(t) = 1 + ti
∏
j∈I F

(j)(t)ri,j .

Proof. Comparing coefficients of td on both sides of the first identity, we see that the first claim
reduces to the definition of n-forests. With the same method, the second identity reduces to the
existence of a bijection between subtrees of Qi of dimension vector d and tuples (Tj,k)j∈I,k=1,...,ri,j

of subtrees Tj,k of Qj such that
∑

j∈I
∑ri,j

k=1 dim Tj,k = d− i. Such a bijection is provided, by
definition of the trees Qi, by grafting the subtrees Tj,k to a common root i to obtain any subtree
of Qi exactly once. 2

Remark . In the special case of a quiver with a single vertex and a number of loops, this functional
equation is derived in [Rei05].

3. Functional equation for χ(MΘ
d,n(Q)) and the big local quiver

3.1 Preparations

We prepare the derivation of functional equations by two preliminary results.

Proposition 3.1. For all d, n ∈ Λ+, we have χ(Hilbnilp
d,n (Q)) = χ(Hilbd,n(Q)).

Proof. We adopt an argument used in [CV04]. There is a natural C∗-action on representations
of Q by rescaling the maps representing the arrows by a common factor. This action induces
actions on Hilbd,n(Q) and M ssimp

d (Q), for which the map πd : Hilbd,n(Q)→M ssimp
d (Q) is

equivariant. Moreover, there exists a unique fixed point for the action of C∗ onM ssimp
d (Q), namely

the point 0, to which all points of M ssimp
d (Q) attract, in the sense that limt→0 t ·M = 0 for all

M ∈M ssimp
d (Q). Therefore, all points of Hilbd,n(Q) admit a well-defined limit in the projective

variety π−1
d (0) = Hilbnilp

d,n (Q). For each connected component C of Hilbnilp
d,n (Q), we have its

attractor AC consisting of all points of Hilbd,n(Q) whose limit belongs to C. By the Bialynicki-
Birula theorem [Bia73], the attractors AC are affine fibrations over the components C.
Consequently, the Euler characteristics of Hilbd,n(Q) and of Hilbnilp

d,n (Q) coincide. 2
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Next, we calculate the Euler characteristics of certain strata of symmetric products of a
variety. Denote by P the set of all partitions. For λ in P, denote by mk(λ) the multiplicity of k
in λ, that is, the number of indices l such that λl = k. For a variety X, we denote by Sn(X)
its nth symmetric power, that is, the quotient of Xn by the natural action of the symmetric
group Σn. The product variety Xn admits a stratification by strata Xn

I , where I = (I1, . . . , Is)
is a decomposition of {1, . . . , n} into pairwise disjoint subsets. Namely, Xn

I is defined as the set
of ordered tuples (x1, . . . , xn) such that xk = xl if and only if k, l belong to the same subset It.
Obviously, Xn

I is isomorphic to X̌k, the open subset of Xk of ordered k-tuples of pairwise different
points in X.

Any I as above induces a partition λ(I) of n, with parts being the cardinalities of the subsets
It forming I. The image of Xn

I under the quotient map q :Xn→ Sn(X) depends only on the
partition λ= λ(I) and is denoted by Snλ (X). The inverse image under q of Snλ (X) is precisely
the union of the strata Xn

I such that λ(I) = λ. Moreover, the fibre of q over a point in Snλ (X) is
finite of cardinality n!/λ1! . . . λs!. The number of decompositions I such that λ(I) = λ equals

n!
λ1! · . . . · λs!

· 1∏
k(mk(λ)!)

.

An easy induction shows that the Euler characteristic of X̌n equals

χ(X)(χ(X)− 1) · · · (χ(X)− n+ 1) = n!
(
χ(X)
n

)
.

We have thus proved the following lemma.

Lemma 3.2. For all partitions λ of n of length s, we have

χ(Snλ (X)) =
1∏

k mk(λ)!
s!
(
χ(X)
s

)
.

3.2 The big local quiver

Now we fix quiver data Q,Θ, µ, n as before, and associate to it a locally finite quiver, called the
big local quiver Q̃, as follows: the vertices i(d,k) of Q̃ are indexed by pairs (d, k) in ′Λ+

µ ×N. The
number of arrows from the vertex i(d,k) to i(d′,k′) is given as δd,d′ · δk,k′ − 〈d, d′〉. For a function
l : ′Λ+

µ →N, we define Q̃l as the full subquiver of Q̃ supported on the set of vertices i(d,k) for
d ∈ ′Λ+

µ and 1 6 k 6 l(d).

We define dimension vectors ñ for the various quivers Q̃l by ñi(d,k)
= n · d. The product

Σ =
∏
d∈′Λ+

µ
Σ∞ of infinite symmetric groups acts on the vertices of Q̃ by permutation

(σe)e∈Λ+
µ
i(d,k) = i(d,σd(k)); this restricts to an action of the subgroup Σl =

∏
d∈′Λ+

µ
Σl(d) of Σ on Q̃l.

For a polystable type ξ = ((d1, . . . , ds), (m1, . . . , ms)) as above, we can view the local quiver
Qξ as the quiver Q̃lξ just defined, where the function lξ is given by defining lξ(d) as the number of
indices 1 6 t6 s such that d= dt. The dimension vector dξ for Qξ can then be viewed as a dimen-
sion vector d̃ξ for Q̃lξ . This dimension vector can be made unique by assuming that its entries
(d̃ξ)i(d,k)

, for every fixed d ∈ ′Λ+
µ , form a partition, that is, (d̃ξ)i(d,1)

> · · ·> (d̃ξ)i(d,lξ(d))
. Therefore,

we call dimension vectors d̃ of Q̃l partitive if d̃i(d,1)
> · · ·> d̃i(d,l(d)) for all d ∈ Λ+

µ ; the set of all
partitive dimension vectors for Q̃ (respectively Q̃l) is denoted by Λ(Q̃)> (respectively Λ(Q̃l)>).
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We have a natural specialization map ν : Λ(Q̃l)+→ Λ+
µ given by ν(i(d,k)) = d. It is well-defined,

since, by assumption, dimension vectors for the (possibly infinite) quiver Q̃l have finite support.
We consider the generating function

R
(n)
l (t) =

∑
d̃∈Λ+(Q̃l)

χ(Hilb
d̃,ñ

(Q̃l))tν(d̃) ∈ Z[[Λ+
µ ]],

the specialization of the generating function F ñ(t) ∈ Z[[Λ(Q̃l)+]] for the quiver Q̃l with respect

to the map ν. By the natural Σl-symmetry of Q̃l, we have R
(i(d,k))

l (t) =R
(i(d,k′))

l (t) for all d ∈ ′Λ+
µ

and all 1 6 k, k′ 6 l(d). We denote this series by R
[d]
l (t). Applying Proposition 2.3 and the

definition of Q̃l, we get

R
(n)
l (t) =

∏
d∈′Λ+

µ

R
[d]
l (t)l(d)·(n·d)

and

R
[d]
l (t) = 1 + td ·R[d]

l (t) ·
∏
e∈′Λ+

µ

R
[e]
l (t)−〈d,e〉·l(e). (1)

For a function l : ′Λ+
µ →N with finite support, we call a dimension vector for Q̃l faithful if all its

entries are non-zero, and we denote by Λ(Q̃l)++ the set of all such dimension vectors. Define

′R
(n)
l (t) =

∑
d̃∈Λ+(Q̃l)++

χ(Hilb
d̃,ñ

(Q̃l))tν(d̃) ∈ Z[[Λ+
µ ]].

Using again the symmetry of Q̃l, we see that

R
(n)
l (t) =

∑
l′:′Λ+

µ→N

∏
d∈′Λ+

µ

(
l(d)
l′(d)

)
· ′R(n)

l′ (t), (2)

where the sum ranges over all functions l′ with finite support.
Let c : ′Λ+

µ → Z be a function with arbitrary integer values (in contrast to the function l

considered so far). We can extend the definition of the series R(n)
l (t) to this case using the

previous identity. We thus define a formal series R(n)
c (t) by

R(n)
c (t) =

∑
l′:′Λ+

µ→N

∏
d∈′Λ+

µ

(
c(d)
l′(d)

)
· ′R(n)

l′ (t),

the sum running again over functions with finite support.

Similarly to the above, we have series R[d]
c (t) as special cases of the series R(n)

c (t).

Lemma 3.3. The series R
(n)
c (t) are given by the functional equations

R(n)
c (t) =

∏
d∈′Λ+

µ

R[d]
c (t)c(d)·(n·d)

and

R[d]
c (t) = 1 + td ·R[d]

c ·
∏
e∈′Λ+

µ

R[e]
c (t)−〈d,e〉·c(e).
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Proof. For a function c as above, it is easy to see that there exist unique series P [d]
c (t) for all

d ∈ ′Λ+
µ fulfilling the equations

P [d]
c (t) = 1 + td · P [d]

c (t) ·
∏
e∈′Λ+

µ

P [e]
c (t)−〈d,e〉·c(e),

since these functional equations define recursions determining the coefficients of the series. These
coefficients depend polynomially on the values c(d) ∈ Z. The same holds for the coefficients of
the series R[d]

c (t) by definition. Now the equality P
[d]
c (t) =R

[d]
c (t) holds for all functions c with

values in N by (1) and (2); thus, it has to hold for arbitrary c. The same argument applies to
the series P (n)

c (t) defined by

P (n)
c (t) =

∏
d∈′Λ+

µ

R[d]
c (t)c(d)·(n·d),

proving the lemma. 2

3.3 Functional equation for χ(MΘ
d,n(Q))

We can now consider the generating function of the Euler characteristics of arbitrary smooth
models, using the big local quiver notation of § 3.2.

In particular, to a polystable type ξ of a dimension vector d ∈ Λ+, we have associated a
partitive dimension vector p for Q̃ (respectively for a large enough Q̃l); we denote the stratum
by MΘ−pst

d (Q)ξ by MΘ−pst
d (Q)p. With the above notation, we have

MΘ−pst
d (Q)p '

∏
d∈′Λ+

µ

S
|p(d)|
p(d) (MΘ−st

d (Q)),

by definition of MΘ−pst
d (Q)ξ. Theorem 2.1 can now be rephrased as stating that MΘ

d,n(Q) admits a
stratification indexed by partitive dimension vectors p ∈ Λ(Q̃)+ such that ν(p) = d. Each stratum
is a locally trivial fibration over MΘ−pst

d (Q)p, with fibre isomorphic to Hilbnilp
p,ñ (Q̃). We thus have,

using Lemma 3.2 for the second equality,

χ(MΘ
d,n(Q)) =

∑
p

χ(MΘ−pst
d (Q)p) · χ(Hilbnilp

p,ñ (Q̃))

=
∑
p

∏
d∈′Λ+

µ

1∏
k mk(p(d))!

l(p(d))!
(
χ(MΘ−st

d (Q))
l(p(d))

)
· χ(Hilbnilp

p,ñ (Q̃)),

the sum running over all partitive dimension vectors p for Q̃ such that ν(p) = d.

Considering the generating function Q
(n)
µ (t) ∈ Z[[Λ+

µ ]] of the Euler characteristics of the
smooth models MΘ

d,n(Q), we thus have

Q(n)
µ (t) =

∑
d∈Λ+

µ

χ(MΘ
d,n(Q))td

=
∑

p∈Λ(Q̃)>

∏
d∈′Λ+

µ

(
1∏

k mk(p(d))!
l(p(d))!

(
χ(MΘ−st

d (Q))
l(p(d))

))
· χ(Hilbnilp

p,ñ (Q̃))tν(p).
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Sorting by lengths of the partitions, this can be rewritten as∑
l

∑
p∈Λ(Q̃l)>

∏
d∈′Λ+

µ

(
1∏

k mk(p(d))!
l(d)

)
!
(
χ(MΘ−st

d (Q))
l(d)

))
· χ(Hilbnilp

p,ñ (Q̃))tν(p),

the first sum ranging over all functions l : ′Λ+
µ →N. We want to extend the range of summation

in the inner sum to arbitrary dimension vectors for each Q̃l without changing the sum. By
the Σl-symmetry of Q̃l, we can do this by incorporating a factor which counts the number of
derangements of a given partitive dimension vector p into arbitrary faithful dimension vectors.
This number is precisely ∏

d∈′Λ+
µ

l(p(d))!∏
k mk(p(d))!

,

this factor being already present in the previous sum. Thus, this sum equals∑
l:′Λ+

µ→N

∑
d̃∈Λ(Q̃l)++

∏
d∈′Λ+

µ

(
χ(MΘ−st

d (Q))
l(d)

)
· χ(Hilbnilp

d̃,ñ
(Q̃))tν(d̃),

the inner sum now running over all faithful dimension vectors for Q̃l. Using Proposition 3.1
and the notation of § 3.2, this equals∑

l:′Λ+
µ→N

∏
d∈′Λ+

µ

(
χ(MΘ−st

d (Q))
l(d)

)
′R

(n)
l (t) =R(n)

c (t)

for the function c : ′Λ+
µ → Z defined by c(d) = χ(MΘ−st

d (Q)). By Lemma 3.3, we arrive at the
following result.

Theorem 3.4. Defining series R[d](t) ∈ Z[[Λ+
µ ]] by the functional equations

R[d](t) = 1 + td ·R[d](t) ·
∏
e∈′Λ+

µ

R[e](t)−〈d,e〉·χ(MΘ−st
e (Q)),

the generating function Q
(n)
µ (t) of Euler characteristics of smooth models is given by

Q(n)
µ (t) =

∑
d∈Λ+

µ

χ(MΘ
d,n(Q))td =

∏
d∈′Λ+

µ

R[d](t)χ(MΘ−st
d (Q))·(n·d).

To make the nature of these functional equations more transparent, we will define a slight
variant of the generating functions. By the theorem, we have Q

(n)
µ (t) =

∏
i∈I Q

(i)
µ (t)ni . This

suggests the definition Q
(η)
µ (t) =

∏
i∈I Q

(i)
µ (t)η(i) for an arbitrary linear functional η ∈ Λ∗, so

that Q(n·)
µ (t) =Q

(n)
µ (t) for all n ∈ Λ+, where n· denotes the functional with value n · d on d.

In particular, we consider S(d)
µ (t) =Q

−(〈d, 〉)
µ (t) for d ∈ ′Λ+

µ .

Corollary 3.5. The series S
(d)
µ (t) for d ∈ ′Λ+

µ are given by the functional equations

S(d)
µ (t) =

∏
e∈′Λ+

µ

(1− teS(e)
µ (t))〈d,e〉·χ(MΘ−st

e (Q)).

951

https://doi.org/10.1112/S0010437X1000521X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1000521X


M. Reineke

Proof. By the definitions and Theorem 3.4, we have

S(d)
µ (t) =

∏
e∈′Λ+

µ

R[e](t)−〈d,e〉·χ(MΘ−st
e (Q)).

The functional equation in Theorem 3.4 can be restated as

R[e](t) =
(

1− te
∏
f∈′Λ+

µ

R[f ](t)−〈e,f〉·χ(MΘ−st
f (Q))

)−1

;

thus,

R[e](t) = (1− teS(e)
µ (t))−1.

Substituting this in the factorization of Sdµ(t) yields the desired equation. 2

3.4 Application to wall-crossing formulas

We apply the results of the previous sections to the setup of [Rei10]. We assume that Q is a
quiver without oriented cycles; thus, we can order the vertices as I = {i1, . . . , ir} in such a way
that k > l provided there exists an arrow ik→ il. We also choose a stability Θ for Q.

Denote by { , } the skew symmetrization of 〈 , 〉; thus, {d, e}= 〈d, e〉 − 〈e, d〉. Define
bij = {i, j} for i, j ∈ I.

We consider the formal power series ring B = Q[[Λ+]] = Q[[xi : i ∈ I]] with topological basis
xd =

∏
i∈I x

di
i for d ∈ Λ+. The algebra B becomes a Poisson algebra via the Poisson bracket

{xi, xj}= bijxixj for i, j ∈ I.

Define Poisson automorphisms Ti of B by

Ti(xj) = xj · (1 + xi){i,j}

for all i, j ∈ I.
We study a factorization property in the group Aut(B) of Poisson automorphisms of B

involving a descending product
∏←
µ∈Q indexed by rational numbers, which is indeed well defined

(see [Rei10]). The index µ plays the role of slopes of representations; thus, the product depends
on the choice of the stability Θ. The main result of [Rei10] is the following theorem.

Theorem 3.6. In the group Aut(B), we have a factorization

Ti1 ◦ · · · ◦ Tir =
←∏
µ∈Q

Tµ,

where

Tµ(xd) = xd ·Q({ ,d})
µ (x).

Here Q
(η)
µ (x) =

∏
i∈I(

∑
d∈Λ+

µ
χ(MΘ

d,i(Q))xd)η(i) denotes the specialization of the series Q
(η)
µ (t)

from the variables ti to the variables xi.

Let Φ ∈Aut(Λ) be the map induced on dimension vectors by the inverse Auslander–Reiten
translation; Φ is a Coxeter element of the corresponding Weyl group determined by the property

〈Φ(d), e〉=−〈e, d〉.
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Then we have

{ , d}= 〈−(id + Φ)d, 〉
and thus, using Corollary 3.5, we have the following corollary.

Corollary 3.7. The automorphisms Tµ of Theorem 3.6 can be written as

Tµ(xd) = xd · S(id+Φ)d
µ (x).

4. Duality for Euler products

This section is independent of the others; in particular, none of the notation referring to quivers
and their moduli spaces is used.

Let F (t) ∈ Z[[t]] be a formal power series with constant term F (0) = 1. Then we can write
F (t) as an Euler product

F (t) =
∏
i>1

(1− (−t)i)−iai (3)

for ai ∈Q (note the sign convention, which is essential in the following; see the example at the
end of this section). We can also characterize F (t) as the unique solution of a functional equation
of the form

F (t) =
∏
i>1

(1− (tF (t))i)ibi (4)

for bi ∈Q; see the remark below for the proof.

The main result of this section is the following.

Theorem 4.1. In the above notation, we have bi ∈ Z for all i> 1 if and only if ai ∈ Z for all
i> 1.

Remark . Writing H(t) =−tF (t), we have, by a straightforward calculation,

H(t) =−t
∏
i>1

(1− (−t)i)−iai

and

t=−H(t)
∏
i>1

(1− (−H(t))i)−ibi .

This means that H(t) is the compositional inverse of the series

−t
∏
i>1

(1− (−t)i)−ibi .

This shows that the series F (t) can be characterized by a functional equation of the form (4) for
unique bi, and it shows the symmetry of the statement in the theorem. Thus, we only have to
prove integrality of the ai given integrality of the bi.

As the first step towards the proof of the theorem, we will derive an explicit formula for the
ai in terms of the bi by applying Lagrange inversion to the functional equation (4). We use
the following version of Lagrange inversion.
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Lemma 4.2. Suppose that power series F (t), G(t) ∈ Z[[t]] with G(0) 6= 0 are related by F (t) =
G(tF (t)). Then, for all k, d ∈ Z, we have

(k + d)[td]F (t)k = k[td]G(t)k+d,

where [td]F (t) denotes the td-coefficient of the series F (t).

Proof. Apply [Sta99, Theorem 5.4.2] using the notation f(t) = tF (t) and d= n− k. 2

For n> 1, we denote by Ln the set of sequences l = (l1, l2, . . .) of non-negative integers such
that

∑
i ili = n, and by L the union of all Ln. For l ∈ L, we write |l|= n if l ∈ Ln.

Lemma 4.3. For all d ∈N and all ci ∈ Z for i> 1, we have

[td]
∏
i>1

(1− ti)−ci =
∑
l∈Ld

∏
i>1

(
ci + li − 1

li

)
, (5)

the sum ranging over all partitions λ of d.

Proof. For c ∈ Z, we have

(1− t)−c =
∑
l>0

(
c+ l − 1

l

)
tl,

and therefore

[td]
∏
i>1

(1− ti)−ci = [td]
∏
i>1

∑
li>0

(
ci + li − 1

li

)
tli

= [td]
∑

l1,l2,...>0

∏
i>1

(
ci + li − 1

li

)
t
∑
i ili

= [td]
∑
l∈L

∏
i>1

(
ci + li − 1

li

)
t|l|,

and the lemma follows. 2

Remark . Here and in the following, we make frequent use of binomial coefficients
(
a
b

)
for a ∈ Z

using (
−a+ b− 1

b

)
= (−1)b

(
a

b

)
. (6)

Using these preparations, we can state the desired formula relating the coefficients ai and bi.

Proposition 4.4. With the above notation, we have, for all d> 1,

d2ad =
∑
e|d

Mo(d/e)(−1)e
∑
l∈Le

(−1)
∑
i li
∏
i>1

(
ibie

li

)
, (7)

where the first sum ranges over all divisors of d, and Mo denotes the number-theoretic Moebius
function.

Proof. We apply Lemma 4.2 to the functional equation (4) using

G(t) =
∏
i>1

(1− ti)ibi
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and get

(k + d)[td]
∏
i>1

(1− (−t)i)−iaik = k[td]
∏
i>1

(1− ti)ibi(k+d). (8)

Lemma 4.3 allows us to write the left-hand side of (8) as

(k + d)(−1)d
∑
l∈Ld

∏
i>1

(
iaik + li − 1

li

)
,

and the right-hand side of (8) as

k
∑
l∈Ld

∏
i>1

(
−ibi(k + d) + li − 1

li

)
.

We use (6) and substitute k by X to rewrite (8) as

X
∑
l∈Ld

(−1)
∑
i li
∏
i>1

(
ibi(X + d)

li

)
= (−1)d(X + d)

∑
l∈Ld

∏
i>1

(
iaiX + li − 1

li

)
. (9)

Both sides behaving polynomially in X, equality for all X ∈ Z thus implies equality of the
polynomials. We want to compare the linear X-terms (the constant terms being 0) of both sides.
Note the following property.

The polynomial
(
aX+b+c−1

c

)
has constant X-coefficient

(
b+c−1
c

)
, and the polynomial

(
aX+c−1

c

)
has linear X-coefficient a/c.

Applying this, we see that the left-hand side of (9) has linear X-coefficient∑
l∈Ld

(−1)
∑
i li
∏
i>1

(
ibid

li

)
.

To analyze the linear X-coefficient of the right-hand side of (9), note first that the constant
X-coefficient of each product ∏

i>1

(
iaiX + li − 1

li

)
(10)

equals zero. Its linear X-term is non-zero only if exactly one factor appears, that is, if there is
only one non-zero entry li in l. In this case, we have li = d/i and i is a divisor of d. Thus, the
product (10) reduces to (

iaiX + d/i− 1
d/i

)
,

having linear X-coefficient (iai)/(d/i) = i2ai/d by the above. We conclude that the linear
X-coefficient of the right-hand side of (9) equals

(−1)d
∑
i|d

i2ai.

Comparison of both linear X-coefficients thus yields∑
i|d

i2ai = (−1)d
∑
l∈Ld

(−1)
∑
i li
∏
i>1

(
ibid

li

)
.

After Moebius inversion, we arrive at the claimed formula (7). 2
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To prove integrality of the ad given integrality of all bi, we thus have to prove that the right-
hand side of (7) is divisible by d2. This can be tested on the prime divisors of d. Denoting by

m(d) =mp(d) = max{m : pm|d}

the multiplicity of a prime p as a divisor of d, we thus have to prove divisibility by p2mp(d)

of the right-hand side of (7) for all primes p. We prepare this proof by stating certain
divisibility/congruence properties of binomial coefficients.

Lemma 4.5. Let p be a prime. For a, b ∈ Z and b> 0, we have

pmax(mp(a)−mp(b),0)

∣∣∣∣(ab
)
.

Proof. By a result of Kummer (see, for example, [Gra97]), the exact power of p dividing
(
a
b

)
equals the number of ‘carries’ when subtracting b from a in base p, at least when a> 0. This can
be generalized to a ∈ Z using (

−a
b

)
= (−1)b

a

a+ b

(
a+ b

b

)
. (11)

The lemma follows. 2

Lemma 4.6. Let p be a prime, and define µp = 0, 1, 2 provided that p= 2, p= 3, p> 5,
respectively. Assume that p|a, b for integers a, b with b> 0. Define η as −1 if p= 2 and
b≡ 2≡ a− b mod 4, and as 1 otherwise. Then(

a

b

)
≡ η
(
a/p

b/p

)
mod pr

for

r 6mp(a) +mp(b) +mp(a− b) +mp

((
a/p

b/p

))
− µp.

In the case p= 2, we also have (
a

b

)
≡
(
a/2
b/2

)
mod 4.

Proof. The general statement (usually [Ges83, Gra97] attributed to Jacobsthal and co-
workers [BSFTALJ52]) is proved in [Ges83, Theorem 2.2], with the assumption a> 0 there
removed by (11). For the congruence modulo 4, we calculate as in the proof of [Ges83,
Theorem 2.2] (

a

b

)
=
(
a/2
b/2

) b∏
i=1
2-i

(1 + 2(a− b)/i)≡
(
a/2
b/2

)(
1 + 2(a− b)

b∑
i=1
2-i

1/i
)

≡
(
a/2
b/2

)
(1 + (a− b)(b/2)2) mod 4.

The term (a− b)(b/2)2 is congruent to 1 mod 4 except when b/2 is odd and a/2 is even, in which
case it is congruent to −1 mod 4. But, in this case,

(a/2
b/2

)
is even by Lemma 4.5. 2

From the previous two lemmas, we derive divisibility/congruence properties of the product
of binomial coefficients appearing in (7).
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Lemma 4.7. Let p be a prime dividing e> 0. If l ∈Qe is not divisible by p (that is, some entry li
is not divisible by p), we have

p2m(e)

∣∣∣∣∏
i>1

(
ibie

li

)
.

Proof. To shorten notation, we write m=mp(e). Lemma 4.5 yields

pmax(m+m(i)−m(li),0)

∣∣∣∣(ibieli
)

;

we thus have to prove that ∑
i:li 6=0

max(m+m(i)−m(li), 0) > 2m (12)

provided that some li 6= 0 is not divisible by p. Let i0 be an index such that m(li0) = 0.
Let m0 be the minimum over all m(i) +m(li). Since e=

∑
i ili, we can distinguish two cases:

either m0 =m (case 1), or m0 <m and the minimum is obtained at least twice (case 2). For
case 1 we have, in particular, m(i0) >m; thus,

max(m+m(i0)−m(li0), 0) > 2m,

and (12) follows.
For case 2, let i1, i2 be two different indices where the minimum m0 is obtained. For s= 1, 2,

we have m+m(is)−m(lis) > 0, since, otherwise,

m>m0 =m(lis) +m(is) >m(lis)>m+m(is),

a contradiction. Again we distinguish two cases: first, assume that i0 coincides with, say, i1. Then
we can estimate∑
i:li 6=0

max(m+m(i)−m(li), 0) > max(m+m(i0)−m(li0), 0) + max(m+m(i2)−m(li2), 0)

= 2m+m0 +m(i2)−m(li2) = 2m+ 2m(i2) > 2m,

and (12) follows. Second, assume that i0 differs from i1, i2. As in the previous case, we can
estimate∑

i:li 6=0

max(m+m(i)−m(li), 0) > 3m+m(i0) +m(i1) +m(i2)−m(li1)−m(li2)

> 2m+m−m0 + 2m(i1) + 2m(i2) > 2m,

and (12) follows again. 2

Lemma 4.8. Let p be a prime dividing e> 0. If l = pl′ is an element of Le divisible by p (that
is, each li = pl′i is divisible by p), then∏

i>1

(
ibie

li

)
≡ (−1)(p−1)(e/p+

∑
i l
′
i)
∏
i>1

(
ibie/p

l′i

)
mod p2mp(e). (13)

Proof. So, assume that l = pl′, and denote again m=m(e). Applying the general congruence of
Lemma 4.6 to a non-trivial (that is, li 6= 0) factor of the left-hand side of (13), we get(

ibie

li

)
≡ ηi

(
ibie/p

li/p

)
mod pri ,
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where the sign ηi is −1 only in the case p= 2, li/2 odd, ibie/2− li/2 odd, and

ri = m(ibie) +m(li) +m(ibie− li) +m

(
ibie/p

li/p

)
− µp

> m(e) +m(i) +m(li) + min(m(e) +m(i), m(li))
+ max(m(e) +m(i)−m(li), 0)− µp

= 2m+ 2m(i) +m(li)− µp. (14)

Suppose first that p> 3. Then ri > 2m using m(li) > 1 and µp 6 1. The sign in (13) vanishes due
to the even factor p− 1, and ηi = 1. The congruence (13) follows.

Next, assume that p= 2 and m> 2. Then the estimate (14) only assures congruence of the
binomial coefficients mod 22m−1 in the case i and li/2 are odd; thus,(

ibie

li

)
≡ ηi

(
ibie/2
li/2

)
+ εi mod 22m,

where εi ∈ {0, 22m−1}, non-triviality only being possible if i and li/2 are odd. Then∏
i>1

(
ibie

li

)
≡
∏
i>1

(
ηi

(
ibie

li/2

)
+ εi

)
≡
∏
i>1

ηi

(
ibie/2
li/2

)
+
∑
i>1

εi
∏
j 6=i

ηj

(
jbje

lj/2

)
mod 22m, (15)

since all multiple products of the εi vanish mod 22m. For the same reason, we only have to
consider summands in (15) for which εi 6= 0 and each factor(

jbje/2
lj/2

)
is odd. Since m> 2, this can only happen (using Lemma 4.5) in the case m(lj) >m(j) +m for
all j 6= i such that lj 6= 0. But then

2m|e−
∑

j 6=i:lj 6=0

jlj = ili,

a contradiction to the assumptions m(ili) = 1 (by εi 6= 0) and m> 2. Thus, we have proved that∏
i>1

(
ibie

li

)
≡
∏
i>1

ηi ·
∏
i>1

(
ibie/2
li/2

)
mod 22m,

and we have to compare the sign
∏
i ηi = (−1)u to the sign of (13). Using m> 2, we have

u = |{i> 1 : li/2 odd, ibie/2− li/2 odd}|
= |{i> 1 : li/2 odd}|.

The sign in (13) equals
(−1)e/2+

∑
i li/2,

and we are done.
Finally, consider the case p= 2 and m= 1. Then the statement on congruences mod 4 of

Lemma 4.6 yields ∏
i>1

(
ibie

li

)
≡
∏
i>1

(
ibie/2
li/2

)
mod 4,
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and again we only have to consider the sign. The sign in (13) equals

(−1)1+
∑
i li/2.

We have e/2 =
∑

i ili/2; thus, the sum
∑

2-i li/2 is odd. Suppose that
∑

i li/2 is even (the only
case in which the sign of (13) potentially differs from 1). Then

∑
2|i li/2 is odd. Thus, there exists

an even index i with li/2 odd. In this case, the binomial coefficient(
ibie/2
li/2

)
is even, and the sign is irrelevant mod 4. 2

With these preparations, we can finish the following.

Proof of Theorem 4.1. Assume that p is a prime such that m=m(d) =mp(d) > 1. The divisors e
of d for which Mo(d/e) is non-zero fulfill m(e) =m(d) or m(e) =m(d)− 1, that is, they are of
the form e or e/p for a divisor e of d such that m(e) =m(d). We can thus split the right-hand
side of (7) into the following difference:∑

e|d:m(e)=m(d)

Mo(d/e)(−1)e
∑
l∈Le

(−1)
∑
i li
∏
i>1

(
ibie

li

)

−
∑

e|d:m(e)=m(d)

Mo(d/e)(−1)e/p
∑

l′∈Le/p

(−1)
∑
i l
′
i

∏
i>1

(
ibie/p

l′i

)
. (16)

Now consider a summand of the first sum of (16) corresponding to a sequence l ∈ Le. If l is
not divisible by p, then Lemma 4.7 shows that the summand is divisible by p2m(e) = p2m(d).
If l = pl′ is divisible by p, then Lemma 4.8 shows that the summand is congruent mod p2m(d) to
the summand of the second sum of (16) corresponding to the sequence l′. In other words, the
difference of the two sums in (16) vanishes mod p2m(d), proving the theorem. 2

For the application to the integrality of certain Donaldson–Thomas type invariants in the
following section, we need a slight generalization of Theorem 4.1. We treat this case separately,
although a second inspection of the proofs leading to Theorem 4.1 is necessary to avoid additional
complications in the notation used so far.

Theorem 4.9. Let F (t) ∈ Z[[t]] be a power series with F (0) = 1. For N ∈ Z, write

F (t) =
∏
i>1

(1− ((−1)N t)i)−iai

for ai ∈Q. We can characterize F (t) as the solution to a functional equation of the form

F (t) =
∏
i>1

(1− (tF (t)N )i)ibi

for unique bi ∈Q. Under these assumptions, we have bi ∈ Z for all i> 1 if and only if ai ∈ Z for
all i> 1.

Proof. The argument used in the remark following Theorem 4.1, using the power series H(t) =
t(−F (t))N , shows existence and uniqueness of the bi, as well as the symmetry of the statement of
Theorem 4.9. Application of Proposition 4.4 to G(t) = F (t)N yields the following explicit formula
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for all d> 1:

d2ad =
1
N

∑
e|d

Mo(d/e)(−1)Ne
∑
l∈Le

(−1)
∑
i li
∏
i>1

(
Nibie

li

)
. (17)

Now any summand of (17) is divisible by N ; thus, the denominator N in (17) cancels. Next,
note that none of our arguments (Lemmas 4.7 and 4.8) for the proof of Theorem 4.1 uses any
divisibility properties of the bi; thus, these arguments are valid when replacing bi by Nbi, yielding
an additional divisibility by N .

The only additional difficulty is the sign in the statement of Lemma 4.8, which now reads

(−1)(p−1)(Ne/p+
∑
i l
′
i).

Repeating the sign considerations in the proof of Lemma 4.8, we see that we can concentrate on
the case p= 2 and m(e) = 1, where the sign now reads

(−1)N+
∑
i li/2.

The argument of the proof of Lemma 4.8 is still valid in the case N is odd. On the other hand,
if N is even, we can choose an index i such that li/2 is odd, and Lemma 4.5 shows that the
binomial coefficient (

Nibie/2
li/2

)
is even, the sign thus being again irrelevant mod 4. 2

Example. We consider the example bi = 0 for all i> 2 and denote b= b1. Then F (t) is the
solution to the functional equation

F (t) = (1− tF (t)N )b,

and we want to factor F (t) as

F (t) =
∏
i>1

(1− ((−1)N t)i)−iai .

The formula (17) gives

ad =
1

Nd2

∑
e|d

Mo(d/e)(−1)(N+1)e

(
Nbe

e

)
.

In particular, we have a1 = (−1)N+1b and

a2 = 1
4b(2Nb− 1 + (−1)N ),

and we see that the choice of signs is essential for the integrality of the ad given by Theorem 4.9.

The particular case N = 1, b=−1 gives a factorization (3) for the generating function

F (t) =
1−
√

1− 4t
2t

of Catalan numbers with

ad =
1
d2

∑
e|d

(−1)e Mo(d/e)
(

2e− 1
e

)
,

which is (up to signs) sequence A131868 in [Slo].
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More generally, in the case N =m− 1 > 1, b=−1, the series F (t) is the generating series
of Euler characteristics of Hilbert schemes for the quiver with a single vertex and m loops by
Proposition 2.3.

5. Integrality of Donaldson–Thomas invariants

We specialize the results of § 3 to the generalized Kronecker quiver Km with set of vertices
I = {i, j} and m arrows from j to i. Choose the generators x=−xi and y =−xj of B; then
Bm = Q[[x, y]] with Poisson bracket {x, y}=mxy. For a, b ∈ Z with a, b> 0 and a+ b> 1, we
define a Poisson automorphism T

(m)
a,b of B by

T
(m)
a,b :

{
x 7→ x(1− (−1)mabxayb)−mb,
y 7→ y(1− (−1)mabxayb)ma,

as in [KS08, 1.4]. More generally, for an arbitrary series F (t) ∈ Z[[t]] with F (0) = 1, we define as
in [GPS10, 0.1]

T
(m)
a,b,F (t) :

{
x 7→ xF (xayb)−mb,
y 7→ yF (xayb)ma.

Note that the automorphisms T (m)
a,b for fixed slope a/b commute; thus,

∏
i>1

(T (m)
ia,ib)

di = T
(m)
a,b,F (t) (18)

for

F (t) =
∏
i>1

(1− ((−1)mabt)i)idi .

We can now use our main results (Theorems 4.9 and 3.6) to confirm [KS08, Conjecture 1].

Theorem 5.1. Writing

T
(m)
1,0 T

(m)
0,1 =

←∏
b/a decreasing

(T (m)
a,b )d(a,b,m),

we have d(a, b, m) ∈ Z for all a, b, m.

Remark . In the setup of [KS08], the integers d(a, b, m) play the role of wall-crossing Donaldson–
Thomas type invariants, that is, they describe the behavior of the Donaldson–Thomas type
invariants of [KS08] under a change of stability. The above theorem therefore proves the relative
integrality of these invariants, that is, preservation of integrality under change of stability.

Proof. We choose the stability Θ = j∗ (in fact, the only non-trivial stability; see [Rei08, 5.1]). By
Theorem 3.6, we have a factorization

T
(m)
1,0 T

(m)
0,1 = TiTj =

←∏
µ∈Q

Tµ, (19)

where

Tµ(xd) = xd ·Q({ ,d})
µ (x).

Given µ ∈Q, we write µ= b/(a+ b) for coprime non-negative a, b ∈ Z and choose integers c and d
such that ac+ bd= 1. We have thus Λ+

µ = Ntf for the dimension vector f with components fi = a
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and fj = b, and n · f = 1 for n with components ni = c and nj = d. Defining

Gµ(t) =Q(i)
µ (t)cQ(j)

µ (t)d ∈ Z[[Λ+
µ ]],

the proof of [Rei10, Theorem 6.1] shows that

Gµ(t)a =Q(i)
µ (t) and Gµ(t)b =Q(j)

µ (t).

Similarly to Corollary 3.5, we can find a functional equation for Gµ(t). We denote χµ(k) =
χ(MΘ−st

(ka,kb)(Km)) for k > 1 and N =−〈(a, b), (a, b)〉=mab− a2 − b2 and apply the first formula
of Theorem 3.4:

Gµ(t) = Q(i)
µ (t)cQ(j)

µ (t)d =Q(n)
µ (t)

=
∏
k>1

R[kf ](t)χµ(k)·kn·d

=
∏
k>1

R[kf ](t)kχµ(k).

Applying the second formula of Theorem 3.4, this yields

Gµ(t) =
∏
k>1

(
1− tkf

∏
l>1

R[lf ](t)klNχµ(l)

)−lχµ(l)

=
∏
l>1

(1− tkfGµ(t)kN )−kχµ(k).

Thus, the series Gµ(t) fulfills the functional equation

Gµ(t) =
∏
k>1

(1− (tfGµ(t)N )k)−kχµ(k). (20)

By Theorem 4.9, Gµ(t) admits a factorization

Gµ(t) =
∏
k>1

(1− ((−1)N tf )k)kdµ(k) (21)

for dµ(k) ∈ Z for all k > 1.
Defining Fµ(t) ∈ Z[[t]] by Fµ((−1)a+btf ) =Gµ(t), we have

Tµ = T
(m)
a,b,Fµ(t) (22)

(the sign appearing due to the convention x=−xi, y =−xj) and

Fµ(t) =
∏
k>1

(1− ((−1)N+a+bt)k)kdµ(k)

=
∏
k>1

(1− ((−1)mabt)k)kdµ(k).

By (18) and (22), this yields

Tµ =
∏
k>1

(T (m)
ka,kb)

dµ(k).

Together with the factorization (19), this yields the factorization claimed in the theorem, with
d(ka, kb, m) = dµ(k). 2
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Using a result of Weist, we can also confirm a conjecture in [KS08, 1.4] concerning the diagonal
term of the factorization in Theorem 5.1.

Theorem 5.2. For all k > 1, we have

d(k, k, m) =
1

(m− 2)k2

∑
i|k

Mo(k/i)(−1)mi+1

(
(m− 1)2i− 1

i

)
.

Proof. By [Wei09, 6.2], we have χ(MΘ−st
d,d (Km)) = 0 for d> 2, whereas the moduli space

MΘ−st
1,1 (Km) is isomorphic to Pm−1. In the notation of (20) and (21) above, we can apply the

example at the end of the previous section with b=−m and N =m− 2 and arrive at the claimed
formula. 2
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