ON REFLEXIVE COMPACT OPERATORS

AVRAHAM FEINTUCH

1. Introduction. Let A be a compact operator on a separable Hilbert space \mathscr{H}. The aim of this paper is to investigate the relationship between the weak closure of the algebra of polynomials in A (denoted by $U(A)$) and its invariant subspace lattice Lat A.

The operator A is reflexive if any operator which leaves invariant the members of Lat A must be in $U(A)$. The following question was mentioned in the closing chapter of [7]. If every invariant subspace of A is spanned by the eigenvalues that it contains, is A reflexive? The main result of this paper is a positive answer for compact operators. Some related questions are then discussed.
2. Preliminaries. For a linear manifold $\mathscr{M},[\mathscr{M}]$ will denote its closure. $\mathscr{N}(A)$ will denote the null space of A, and $\mathscr{R}(A)$ its range. $A \mid \mathscr{M}$ will denote the restriction of A to \mathscr{M}.

For n a positive integer, $\mathscr{H}^{(n)}$ denotes the direct sum of n copies of \mathscr{H} and $A^{(n)}$ is the direct sum of n copies of A acting on $\mathscr{H}^{(n)}$ in the standard fashion; i.e. if $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \mathscr{H}{ }^{(n)}$,

$$
A^{(n)}\left\langle x_{1}, \ldots, x_{n}\right\rangle=\left\langle A x_{1}, \ldots, A x_{n}\right\rangle .
$$

"Subspace" will mean closed linear manifold.
The following well known lemma will be used ([7, Chap. 7]).
Lemma 1. If Lat $A^{(n)} \subseteq$ Lat $B^{(n)}$ for all positive integers $n \geqq 1$, then $B \in$ $U(A)$.

Definition. Spectral synthesis holds for A if every invariant subspace \mathscr{M} of A is spanned by the root vectors corresponding to non-zero eigenvalues of A in \mathscr{M}. Strict spectral synthesis holds for A if spectral synthesis holds for A and A is injective.

We will proceed in two stages. First we will consider the case where A is injective and then we extend the result to the general case.
3. Reflexivity of compact injective operators. Throughout this section we will assume A is compact injective. Some concepts and results of Markus [5] will be used.

[^0]Definition. The sequence $\left\{\phi_{j} \mid j=1,2, \ldots\right\}$ is minimal in \mathscr{H} if $\phi_{j} \notin$ $\bigvee\left\{\boldsymbol{\phi}_{k} \mid k \neq j\right\}$ and complete if $\bigvee\left\{\phi_{j} \mid j=1,2, \ldots\right\}=\mathscr{H}$.

If $\left\{\phi_{j} \mid j=1,2, \ldots\right\}$ is minimal and complete, it has a unique biorthogonal sequence $\left\{\psi_{j} \mid j=1,2, \ldots\right\}$.

Definition. $\left\{\phi_{j} \mid j=1,2, \ldots\right\}$ is strongly complete if for any $f \in \mathscr{H}, f \in$ $\bigvee\left\{\phi_{j} \mid\left(f, \psi_{j}\right) \neq 0\right\}$.

There are generalizations of these concepts to subspaces.
Definition. Let $\left\{V_{j} \mid j=1,2, \ldots\right\}$ be a sequence of non-zero subspaces of \mathscr{H}, such that $\bigvee\left\{\mathscr{N}_{j} \mid j=1,2, \ldots\right\}=\mathscr{H} .\left\{\mathscr{N}_{j} \mid j=1,2, \ldots\right\}$ is separated if for any j, the subspaces \mathscr{N}_{j} and $\mathscr{N}^{j}=\bigvee\left\{\mathscr{N}_{k} \mid k \neq j\right\}$ intersect only at $\{0\}$ and $\mathcal{N}_{j}+\mathscr{N}^{j}=\mathscr{H}$ (direct sum).
P_{j} will denote the projection on \mathscr{N}_{j} along \mathscr{N}^{j}.
Definition. $\left\{\mathscr{N}_{j} \mid j=1,2, \ldots\right\}$ is strongly complete if for any $f \in \mathscr{H}, f \in$ $\bigvee\left\{P_{j} f \mid j=1,2, \ldots\right\}$.

The next lemma is an immediate consequence of the above definitions.
Lemma 2. Let $\left\{\mathscr{N}_{j} \mid j=1,2, \ldots\right\}$ be a sequence of finite dimensional subspaces of \mathscr{H} and for each j, let $\left\{\phi_{k}{ }^{(j)}: 1 \leqq k \leqq n_{j}\right\}$ be a basis for \mathscr{N}_{j}. Then $\left\{V_{j} \mid j=1,2, \ldots\right\}$ is strongly complete if and only if $\left\{\phi_{k}{ }^{(j)} \mid 1 \leqq k \leqq n_{j} ; j=1,2, \ldots\right\}$ is strongly complete.

The importance of the concept of strong completeness becomes clear from the following theorem proved in [5, Theorem 6.1].

Theorem 1. Suppose A is compact and its root vectors corresponding to non-zero eigenvalues are eigenvectors. Then A allows strict spectral synthesis if and only if the eigenspaces corresponding to non-zero eigenvalues are strongly complete.

We may now proceed to the first stage of our program.
Theorem 2. Let A be compact and injective. If every invariant subspace of A is spanned by eigenvectors, then A is reflexive.

Proof. As was pointed out in [7, Chap. 10], it suffices to show that every invariant subspace of $A^{(2)}$ is spanned by the eigenvectors it contains.

Since every invariant subspace of A is spanned by eigenvectors, so are the root spaces of A. Noting that the restriction of A to a root space has only one point in its spectrum, it is immediately seen that every root space of A is in fact an eigenspace.

Let $\left\{\mathscr{N}_{j} \mid j=1,2, \ldots\right\}$ denote the sequence of eigenspaces of A. By Theorem 1 and the above, $\left\{\mathscr{N}_{j} \mid j=1,2, \ldots\right\}$ is strongly complete.

Now consider $\left\{\mathscr{N}_{j}{ }^{(2)} \mid j=1,2, \ldots\right\}$. This is the sequence of (finite-dimensional) eigenspaces of $A^{(2)}$. Let $\left\{\phi_{k}{ }^{(j)} \mid 1 \leqq k \leqq n_{j}\right\}$ be a basis for \mathscr{N}_{j} and

$$
\psi_{k_{1}}{ }^{(j)}=\left\langle\phi_{k}{ }^{(j)}, 0\right\rangle, \quad \phi_{k_{2}}{ }^{(j)}=\left\langle 0, \phi_{k}{ }^{(j)}\right\rangle .
$$

Since $\left\{\mathcal{N}_{j} \mid j=1,2, \ldots\right\}$ is strongly complete, so is $\left\{\phi_{k}{ }^{(j)} \mid 1 \leqq k \leqq n_{j} ; j=\right.$ $1,2, \ldots\}$. It follows easily from the definition that so is $\left\{\psi_{k i}{ }^{(j)} \mid 1 \leqq i \leqq 2\right.$; $\left.1 \leqq k \leqq n_{j} ; j=1,2, \ldots\right\}$ in $\mathscr{H}^{(2)}$. Thus by Lemma $4,\left\{\mathscr{N}_{j}{ }^{(2)}\right\}$ is strongly complete. Applying Theorem 1, we see that $A^{(2)}$ allows spectral synthesis and the proof is complete.
4. The general case. A will be assumed to be compact though not necessarily injective.

Theorem 3. If every invariant subspace of A is spanned by eigenvectors of A, then A is reflexive.

A portion of the proof will be given in a series of lemmas. All assume the hypothesis of Theorem 3.

Lemma 3. For each $\lambda \neq 0$, in the spectrum of A, let \mathscr{N}_{λ} denote the eigenspaces of A corresponding to λ and let $E=\bigvee\left\{\mathscr{N}_{\lambda} \mid \lambda \in \sigma(A)\right.$ and $\left.\lambda \neq 0\right\}$. Then the compression of A to E^{\perp} is zero and $E=[R(A)]$.

Proof. Assume $\|A\|=1$. Suppose $x \in E^{\perp}$ and $\epsilon>0$. Since every invariant subspace of A is spanned by eigenvectors of A, so is \mathscr{H}. Thus there exists a sequence $\left\{x_{i}\right\}_{i=1}^{n}$ of eigenvectors of A such that

$$
\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}-x\right\|<\epsilon
$$

for some constants $\left\{\alpha_{i}\right\}_{i=1}^{n}$. Let x_{1}, \ldots, x_{k} correspond to non-zero eigenvalues and x_{k+1}, \ldots, x_{n} to zero.

Let P be the projection on E^{\perp}. Since $x_{1}, \ldots, x_{k} \in E, P A P x_{i}=0$ for $1 \leqq i \leqq k$, and $A x_{i}=0$ for $k+1 \leqq i \leqq n$ implies $P A P x_{i}=0$ for $k+1 \leqq$ $i \leqq n$. Thus

$$
\|P A P x\|=\left\|P A P\left(x-\sum_{i=1}^{n} \alpha_{i} x_{i}\right)\right\| \leqq\|P A P\| \epsilon \leqq \epsilon .
$$

Thus $P A P=0$.
Since for $x \in \mathscr{N}_{\lambda}, A x=\lambda x$, it follows that $E \subset[R(A)]$. Thus $\mathscr{N}\left(A^{*}\right) \subset E^{\perp}$. By the above $E^{\perp} \subset \mathscr{N}\left(A^{*}\right)$ thus giving $E=[R(A)]$.

Lemma 4. Suppose Lat $A \subseteq$ Lat B. Then B commutes with A.
Proof. Since \mathscr{H} is spanned by eigenvectors of A, it is enough to show that $A B x=B A x$ for any eigenvector x of A. But Lat $A \subseteq$ Lat B implies $B x=\lambda x$ and the rest follows immediately.

Lemma 5. If $\mathscr{M} \in \operatorname{Lat} A^{(n)}$, then $\left[A^{(n)} \mathscr{M}\right] \in$ Lat $B^{(n)}$ and is spanned by the eigenvectors corresponding to the non-zero eigenvalues it contains.

Proof. Let E be the subspace defined in Lemma 3, and note that if $E=$ $[R(A)], E^{(n)}=\left[R\left(A^{(n)}\right)\right]$ (since $R(A)^{(n)}=R\left(A^{(n)}\right)$). Now A restricted to E is
injective and Lat $A \mid E \subseteq$ Lat $B \mid E$. Thus by Theorem $2, B \mid E \in U(A \mid E)$. Since $E^{(n)} \subseteq \operatorname{Lat} A^{(n)} \cap$ Lat $B^{(n)}$, it follows that Lat $\left(A^{(n)} \mid E^{(n)}\right) \subseteq \operatorname{Lat}\left(B^{(n)} \mid E^{(n)}\right)$. Since $\left[A^{(n)} \mathscr{M}\right] \subseteq E^{(n)}$ it follows that $\left[A^{(n)} \mathscr{M}\right] \in$ Lat $B^{(n)}$. Also since $A^{(n)} \mathscr{M} \subseteq E^{(n)}$ and $A \mid E$ is injective the argument of Theorem 1 shows that $\left[A^{(n)} \mathscr{M}\right]$ is spanned by the eigenvectors it contains. But this is identical to the eigenvectors corresponding to the non-zero eigenvalues which are in \mathscr{M}.

Proof of Theorem. Suppose $\mathscr{M} \in \operatorname{Lat} A^{(n)}$. By Lemma 2.3 of [6] and the fact that every invariant subspace of A is spanned by egienvectors, it follows that \mathscr{M} has a decomposition of the form

$$
\mathscr{N}\left(A^{(n)} \mid \mathscr{M}\right) \oplus \mathscr{L}
$$

where the eigenvectors of the compression of A^{*} to \mathscr{L} corresponding to nonzero eigenvalues span \mathscr{L}. If Q is the projection on $\mathscr{N}\left(A^{(n)} \mid \mathscr{M}\right)^{\perp}$ it follows that $\mathscr{L} \in \operatorname{Lat} Q A^{(n)} Q$ and $\left[Q A^{(n)} Q \mathscr{L}\right]=\mathscr{L}$.

It is easily seen that $\mathscr{N}\left(A^{(n)} \mathscr{M}\right)$ is invariant under $B^{(n)}$. For if, $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is in $\mathscr{N}\left(A^{(n)} \mid \mathscr{M}\right), A x_{i}=0$ for $1 \leqq i \leqq n$. Thus Lat $A \subset$ Lat B implies that the one dimensional subspaces spanned by x_{i} and $x_{i}+x_{j}$ for $1 \leqq i, j \leqq n$ are all invariant under B. Thus there exists λ such that $B x_{i}=\lambda x_{i}$ for $1 \leqq i \leqq$ n. It follows that $B^{(n)}\left\langle x_{1}, \ldots, x_{n}\right\rangle=\left\langle\lambda x_{1}, \ldots, \lambda x_{n}\right\rangle$ which is in $\mathscr{N}\left(A^{(n)} \mid \mathscr{M}\right)$.

Thus it suffices to show that $Q B^{(n)} Q \mathscr{L} \subset \mathscr{L}$. Note that $\left[A^{(n)} \mathscr{M}\right]=\left[A^{(n)} \mathscr{L}\right]$ \in Lat $B^{(n)}$ by Lemma 5. Thus if $x \in \mathscr{L}, B^{(n)} A^{(n)} x \in\left[A^{(n)} \mathscr{M}\right] \subset \mathscr{M}$ and $Q B^{(n)} A^{(n)} x \in Q \mathscr{M}=\mathscr{L}$.

But

$$
\begin{aligned}
Q B^{(n)} A^{(n)} x & =Q B^{(n)} A^{(n)} Q x \\
& =Q B^{(n)} Q A^{(n)} Q x
\end{aligned}
$$

since $\mathscr{N}\left(A^{(n)} \mid \mathscr{M}\right) \in$ Lat $A^{(n)} \cap$ Lat $B^{(n)}$ and $A^{(n)} B^{(n)}=B^{(n)} A^{(n)}$. Thus
$\left(Q B^{(n)} Q\right)\left(Q A^{(n)} Q\right) \mathscr{L} \subset \mathscr{L}$.
Since $\left[Q A^{(n)} Q \mathscr{L}\right]=\mathscr{L}$ it follows that $Q B^{(n)} Q \mathscr{L} \subset \mathscr{L}$ and the proof is complete.
5. Reflexivity relative to $(A)^{\prime}$. It is clear that if A has root vectors of multiplicity greater than 1 , then A is in general not reflexive. This is true even in the finite dimensional case. However, in the finite dimensional case, $U(A)=$ Alg Lat $A \cap(A)^{\prime}$. This was shown to be the case for certain classes of compact operators in $[\mathbf{1} ; \mathbf{2}]$. Here we prove a more general result.

Lemma 6. Let A be a compact operator and \mathscr{N}_{λ} the root spaces of A corresponding to an eigenvalue $\lambda \neq 0$ of A.

Then:

(i) If $B \in(\operatorname{Alg}$ Lat $A) \cap(A)^{\prime}$, there exists a polynomial p such that $B x=p(A) x$ for all $x \in \mathscr{N}_{\lambda}$.
(ii) If $B \in(A)^{\prime}$ and A has a cyclic vector, there exists a polynomial p such that $B x=p(A) x$ for all $x \in \mathscr{N}_{\lambda}$.
(iii) If $B \in(A)^{\prime \prime}$ then there exists a polynomial p such that $B x=p(A) x$ for all $x \in \mathscr{N}_{\lambda}$.

Proof. These follow from the fact that \mathscr{N}_{λ} is finite dimensional, $\mathscr{N}_{\lambda} \in$ Lat B in all three cases and the corresponding finite dimensional theorems.

Theorem 4. Let A be a compact injective operator and $\left\{\mathscr{N}_{j}\right\}$ the sequence of root spaces of A. Suppose $\left\{\mathcal{N}_{j}\right\}$ is strongly complete. Then:
(i) $U(A)=($ Alg Lat $A) \cap(A)^{\prime}$.
(ii) If A has a cyclic vector, $U(A)=(A)^{\prime}$.
(iii) $U(A)=(A)^{\prime \prime}$.

Proof. By the argument used in the proof of Theorem 2, $\left\{\mathscr{N}_{j}{ }^{(k)}\right\}$ is strongly complete for each integer k. Thus by [$\mathbf{5}$, Corollary 6.1], spectral synthesis holds for $A^{(k)}$.

Suppose $\mathscr{M} \in \operatorname{Lat} A^{(k)}$. Then \mathscr{M} is spanned by root vectors that it contains. Let $\left\langle x_{1}, \ldots, x_{k}\right\rangle \in \mathscr{M}$ be such a root vector, corresponding to the eigenvalue λ. Then $x_{i} \in \mathscr{N}_{\lambda}$ for $1 \leqq i \leqq k$. Suppose $B \in(\operatorname{Alg}$ Lat $A) \cap(A)^{\prime}$. By Lemma 6 , there exists a polynomial p such that $B x_{i}=p(A) x_{i}$. Thus $B^{(k)}\left\langle x_{1}, \ldots, x_{k}\right\rangle=$ $\left\langle p(A) x_{1}, \ldots, p(A) x_{k}\right\rangle \in \mathscr{M}$. (i) now follows from Lemma 2. The proofs for (ii) and (iii) are similar.
6. C_{p} operators. Let A be compact, $H=\left(A^{*} A\right)^{1 / 2}$. The eigenvalues of H are the s-numbers of A. We enumerate them in decreasing order taking account their multiplicities and denote them by $\left\{s_{j}(A)\right\} . A$ is in C_{p} if $\left\{s_{j}(A)\right\} \in l^{p}$ $(1 \leqq p \leqq \infty)$. The operators in C_{1} are called nuclear.

Definition. A is dissipative if $(1 / 2 i)\left(A-A^{*}\right)$ is non-negative.
Theorem 5. Let A be a nuclear dissipative operator. Then:
(i) $U(A)=(\operatorname{Alg} \operatorname{Lat} A) \cap(A)^{\prime}$.
(ii) If A has a cyclic vector then $U(A)=(A)^{\prime}$.
(iii) $U(A)=(A)^{\prime \prime}$.

Proof. By the argument given in Theorem 3, it is enough to show spectral synthesis for $A^{(n)}, n \geqq 1$. Since if A is nuclear and dissipative so is $A^{(n)}$, it suffices to verify spectral synthesis for A. By [4, p. 231] the root vectors of A span \mathscr{H}. Let $\mathscr{M} \in$ Lat A and P be the projection on \mathscr{M}. Then $P A P$ is nuclear since C_{1} is an ideal. Also, by [4, p. 225] PAP is dissipative. By [4, p. 231] the root vectors of $P A P$ span \mathscr{M} and the proof is complete.
7. Remarks. 1) It was shown in [3] that if $U(A)$ is generated by compact operators and if A is invertible, then $A^{-1} \in U(A)$. This motivates the following question: Is a commutative algebra generated by compact operators closed under inverses?
2) The problem of characterizing all compact reflexive operators seems quite difficult. The main difficulties arise (as expected) in the quasi-nilpotent case.

References

1. A. Feintuch, On commutants of compact operators, Duke Math. J. 41 (1974), 387-391.
2. -_ Erratum, On commutants of compact operators, Duke Math. J. 43 (1976), 215.
3. -_ Algebras generated by invertible operators, Proc. Amer. Math. Soc. to appear.
4. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non-self-adjoint operators, Trans. Math. Mono. 18 (Providence, A.M.S. 1969).
5. A. S. Markus, The problem of spectral synthesis for operators with point spectrum, Math. USSR-Izvestija 4 (1970), 670-696.
6. R. Leggett, On the invariant subspace structure of compact dissipative operators, Indiana Math. J. 22 (1973), 919-928.

Ben Gurion University, Beersheva, Israel

[^0]: Received January 13, 1976 and in revised form, July 13, 1976 and November 17, 1976.

