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ON REFLEXIVE COMPACT OPERATORS 

AVRAHAM FEINTUCH 

1. Introduction. Let A be a compact operator on a separable Hilbert space 
Jtif. The aim of this paper is to investigate the relationship between the weak 
closure of the algebra of polynomials in A (denoted by U(A)) and its invariant 
subspace lattice Lat A. 

The operator A is reflexive if any operator which leaves invariant the 
members of Lat A must be in U(A). The following question was mentioned in 
the closing chapter of [7]. If every invariant subspace of A is spanned by the 
eigenvalues that it contains, is A reflexive? The main result of this paper is 
a positive answer for compact operators. Some related questions are then 
discussed. 

2. Preliminaries. For a linear manifold ^ , \*Jt\ will denote its closure. 
y {A) will denote the null space of A, and S% (A) its range. A\*J£ will denote 
the restriction of A to ^# . 

For n a positive integer, J4?(n) denotes the direct sum of n copies oiJtf and 
A(n) is the direct sum of n copies of A acting onJ^ (w) in the standard fashion; 
i.e. if <* i f . . . ,xn) £ J f » , 

AW (Xlt . . . ,Xn) = (Axi, . . . ,Axn). 

1 'Subspace" will mean closed linear manifold. 
The following well known lemma will be used ([7, Chap. 7]). 

LEMMA 1. / / Lat A(n) C Lat Bin) for all positive integers n ^ 1, then B Ç 
U{A). 

Definition. Spectral synthesis holds for A if every invariant subspace *Jt of 
A is spanned by the root vectors corresponding to non-zero eigenvalues' of 
A in <Jt'. Strict spectral synthesis holds for A if spectral synthesis holds for 
A and A is injective. 

We will proceed in two stages. First we will consider the case where A is 
injective and then we extend the result to the general case. 

3. Reflexivity of compact injective operators. Throughout this section 
we will assume A is compact injective. Some concepts and results of Alarkus 
[5] will be used. 
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Definition. The sequence {</>;|j = 1, 2, . . .} is minimal in ffl if $y G 
V {<t>k\k ^ j} and complete if V j ^ | j = 1 ,2 , . . .} = Jf . 

If {0j|j = 1, 2, . . .} is minimal and complete, it has a unique biorthogonal 
sequence {\pj\j = 1, 2, . . .}. 

Definition. [<t>j\j — 1, 2, . . .} is strongly complete if for any f £ Jf, / G 
V {*,!(/,*,) ̂ o} . 

There are generalizations of these concepts to subspaces. 

Definition. Let { V j\j = 1, 2, . . .} be a sequence of non-zero subspaces of Jff, 
such that V {^j\j = 1, 2, . . .} = j f . { ^ | j = 1, 2, . . .} is separated if for 
any 7, the subspaces«y^ a n d ^ ; = V {*A^k\k 9e j} intersect only at {0} and 
yf/. +J/J =^f (direct sum). 

P;- will denote the projection onjVj &\ongJVj. 

Definition. {JV2\j — 1, 2, . . .} is strongly complete if for any / £ ^ , / Ç 
V { P , / | j = l , 2 , . . . } . 

The next lemma is an immediate consequence of the above definitions. 

LEMMA 2. Let [t/V' j\j = 1, 2,...} be a sequence oj finite dimensional subspaces oj 
ffl and for eachj, let {<t>k

U) • 1 S k ^ n3\ be a basis forJ/j. Then { ¥ -\j = 1,2,...} 
is strongly complete if and only if {^^'^l ^ k S fij', j = 1, 2, . . .} is strongly 
complete. 

The importance of the concept of strong completeness becomes clear from 
the following theorem proved in [5, Theorem 6.1]. 

THEOREM 1. Suppose A is compact and its root vectors corresponding to non-zero 
eigenvalues are eigenvectors. Then A allows strict spectral synthesis if and only if 
the eigenspaces corresponding to non-zero eigenvalues are strongly complete. 

We may now proceed to the first stage of our program. 

THEOREM 2. Let A be compact and infective. If every invariant subspace of A 
is spanned by eigenvectors, then A is reflexive. 

Proof. As was pointed out in [7, Chap. 10], it suffices to show that every 
invariant subspace of A{2) is spanned by the eigenvectors it contains. 

Since every invariant subspace of A is spanned by eigenvectors, so are the 
root spaces of A. Noting that the restriction of A to a root space has only one 
point in its spectrum, it is immediately seen that every root space of A is in 
fact an eigenspace. 

Let [«SVJIJ = 1,2, . . .} denote the sequence of eigenspaces of A. By Theorem 
1 and the above, {^Vj\j = 1 ,2, . . .} is strongly complete. 

Now consider {J/72)|j = 1, 2, . . .}. This is the sequence of (finite-dimen
sional) eigenspaces of A{2). Let {<j)k

U)\l S k ^ nf\ be a basis iovJVj and 

**/'> = ( ^ ( ; ) , 0 ) , 4>k™ = <<W»>. 
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Since {-^Vj\j = 1, 2, . . .} is strongly complete, so is {0*(;)|1 ^ k g n^\ j = 
1, 2, . . .}. It follows easily from the definition that so is {\l/ki

a)\l ^ i ^ 2; 
l ^ H nj] j = 1 ,2 , . . .} in Jf<2). Thus by Lemma 4, {J/P\ is strongly 
complete. Applying Theorem 1, we see that A{2) allows spectral synthesis and 
the proof is complete. 

4. The general case. A will be assumed to be compact though not necessarily 
injective. 

THEOREM 3. / / every invariant sub space of A is spanned by eigenvectors of A, 
then A is reflexive. 

A portion of the proof will be given in a series of lemmas. All assume the 
hypothesis of Theorem 3. 

LEMMA 3. For each X ^ 0, in the spectrum of A, let JV\ denote the eigenspaces of 
A corresponding to X and let E — V {^x|X Ç <r{A) and X ̂  0}. Then the com
pression of A to E1 is zero and E = [R(A)]. 

Proof. Assume ||^4|| = 1. Suppose x d EL and e > 0. Since every invariant 
subspace of A is spanned by eigenvectors of A, so \s3rif. Thus there exists a 
sequence {#*}*=i of eigenvectors of A such that 

/] OiiXi — X 
i=\ 

< e 

for some constants {a <}*=!. Let xi, . . . , xk correspond to non-zero eigenvalues 
and xk+i, . . . , xn to zero. 

Let P be the projection on E1-. Since Xi, . . . , xk Ç E, PAP xt = 0 for 
1 <; i S k, and Axt = 0iork + l ^ i ^ n implies PAPxt = 0 for k + 1 ^ 
i ^ n. Thus 

| |Pi4P*| | = PAPix - £ «<*<) ^ \\PAP\\e ^ e. 
\ i=\ J II 

Thus PAP = 0. 
Since for x € ̂ x , Ax = Xx, it follows that E C [R(A)]. Thus ^K(4*) C £ ± . 

By the above E1- C<^(A*) thus giving E = [R(A)]. 

LEMMA 4. Suppose Lat 4̂ Ç Lat B. Then B commutes with A. 

Proof. Since 34? is spanned by eigenvectors of A, it is enough to show that 
ABx = BAx for any eigenvector x oî A. But Lat 4̂ C Lat B implies Bx = Xx 
and the rest follows immediately. 

LEMMA 5. If Je 6 Lat A^n\ then [A^J?] G Lat 5 ( n ) awd w spanned by the 
eigenvectors corresponding to the non-zero eigenvalues it contains. 

Proof. Let E be the subspace defined in Lemma 3, and note that if E — 
[R(A)l £(w) = [R(A™)] (since R(A)™ = R(A™)). Now A restricted to E is 
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injective and Lat A\E C Lat B\E. Thus by Theorem 2, B\E Ç [7(41£). Since 
£<n> CLat;4<w>nLat5<B>, it follows that Lat (A™\EW) Ç Lat (5<W>|E<W>). Since 
[i4<ni^] C E<») it follows that [i4<wK| Ç Lat 5 ^ . Also since i4<"i^ C £<»> 
and ^41£ is injective the argument of Theorem 1 shows that [A^^] is spanned 
by the eigenvectors it contains. But this is identical to the eigenvectors cor
responding to the non-zero eigenvalues which are i n ^ . 

Proof of Theorem. S u p p o s e d £ Lat A{n). By Lemma 2.3 of [6] and the fact 
that every invariant subspace of A is spanned by egienvectors, it follows that 

*Jt has a decomposition of the form 

Jf{A™\Jl) ®^ 

where the eigenvectors of the compression of A* to i f corresponding to non
zero eigenvalues span i f . If Q is the projection onJV{Ai:rl)\^)A- it follows that 
^ e Lat QA™Q and [QA™Q&] = i f . 

It is easily seen thsX^V(A^^if) is invariant under B{n). For if, (xi, . . . , xn) 
is mJY(Aw\<Jt), Axi = 0 for 1 S i ^ n. Thus Lat A C Lat 5 implies that 
the one dimensional subspaces spanned by xt and #* + Xj for 1 ^ i, j ^ w 
are all invariant under B. Thus there exists X such that Bxi = \x{ for 1 g i g 
w. It folloAVS that 5 (n)(xi, . . . , xn) = (Xxi, . . . , Xxn) which is in ^V(Aw\.Jf). 

Thus it suffices to show that QB™QS£ ÇL<£\ Note that \A™Jt\ = [y l^ i f ] 
6 Lat BW by Lemma 5. Thus if x f ^ , 5<n>,4(n)tf G [^l(w)^] C.J( and 

But 

= QBWQAWQx 

since JS(AW\*Jf) 6 Lat J4<"> H Lat 5 ^ and 4 ^ 5 ^ = B^A™. Thus 

(Q£ ( w )Q)((MwQ)if C i f . 

Since [QA™Q&] = i f it follows that QB™Q& C ^ 7 and the proof is 
complete. 

5. Reflexivity relative to (A)'. It is clear that if A has root vectors of 
multiplicity greater than 1, then A is in general not reflexive. This is true even 
in the finite dimensional case. However, in the finite dimensional case, U(A) = 
Alg Lat A P\ {A)f. This was shown to be the case for certain classes of compact 
operators in [1; 2]. Here we prove a more general result. 

LEMMA 6. Let A be a compact operator and JV\ the root spaces of A corresponding 
to an eigenvalue X ^ 0 of A. 

Then: 
(i) If B £ (Alg Lat A) r\ (A)', there exists a polynomial p such that 

Bx = p(A )x for all x Ç JV\. 

https://doi.org/10.4153/CJM-1977-049-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-049-9


464 AVRAHAM FEINTUCH 

(ii) If B Ç: (A)f and A has a cyclic vector, there exists a polynomial p such 
thatBx = p(A)xforallx ^^V\. 

(iii) If B £ {A)n then there exists a polynomial p such that Bx = p(A)x for 
allx ÇiJV\. 

Proof. These follow from the fact that^Kx is finite dimensional,<JV\ G Lat B 
in all three cases and the corresponding finite dimensional theorems. 

THEOREM 4. Let A be a compact infective operator and \J^f\ the sequence of 
root spaces of A. Suppose \J/f\ is strongly complete. Then: 

(i) U(A) = ( A l g L a t ^ ) H (AY. 
(ii) If A has a cyclic vector, U(A) = (A)'. 

(iii) U(A) = (A)". 

Proof. By the argument used in the proof of Theorem 2, {J/ ;-
w} is strongly 

complete for each integer k. Thus by [5, Corollary 6.1], spectral synthesis 
holds for A<*K 

S u p p o s e d G Lat A{lc). Then <J( is spanned by root vectors that it contains. 
Let (xi, . . . , xk) G ^be such a root vector, corresponding to the eigenvalue X. 
Then *, G <^x for 1 ^ i ^ k. Suppose B G (Alg Lat A) C\ (A)'. By Lemma 6, 
there exists a polynomial p such that Bx{ = p(A)xt. Thus B{k) (x\, . . . , xk) = 
(p(A)xi, . . . , p(A)xk) G«^. (i) now follows from Lemma 2. The proofs for 
(ii) and (iii) are similar. 

6. Cv operators. Let A be compact, H = (A*A)1/2. The eigenvalues of H 
are the ^-numbers of A. We enumerate them in decreasing order taking account 
their multiplicities and denote them by {Sj(A)\. A is in Cp if {SJ(A)} G lv 

(1 ^ p ^ °o )• The operators in C\ are called nuclear. 

Definition. A is dissipative if (l/2i)(A — A*) is non-negative. 

THEOREM 5. Let A be a nuclear dissipative operator. Then: 
(i) U(A) = (Alg Lat 4 ) H (A)'. 

(ii) If A has a cyclic vector then U(A) = (A)'. 
(iii) U(A) = (A)". 

Proof. By the argument given in Theorem 3, it is enough to show spectral 
synthesis for A{n\ n §; 1. Since if A is nuclear and dissipative so is A{n), it 
suffices to verify spectral synthesis for A. By [4, p. 231] the root vectors of A 
span Jtff. Le t^# G Lat A and P be the projection on^#. Then PAP is nuclear 
since d is an ideal. Also, by [4, p. 225] PAP is dissipative. By [4, p. 231] the 
root vectors of PAP s p a n , ^ and the proof is complete. 

7. Remarks. 1) It was shown in [3] that if U(A) is generated by compact 
operators and if A is invertible, then A~l G U(A). This motivates the following 
question: Is a commutative algebra generated by compact operators closed 
under inverses? 
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2) The problem of characterizing all compact reflexive operators seems quite 
difficult. The main difficulties arise (as expected) in the quasi-nilpotent case. 
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