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1. Introduction. Let at{n) denote the sum of the rth powers of the divisors of n,
<x(n) = a^in). Also place

v(x) = x2{logx+2y-i-K(2)}, A(x) = £ a((a,b))-v(x), (1.1)
a,b£x

where y is Euler's constant, £ (s) is the Riemann ^-function and x ^ 2. The function A(x) is the
remainder term arising in the divisor problem for ff((m,«)). Cesaro proved originally [1],
[6, p. 328] that A(x) = o(x2 log x). More recently in I [2, (3.14)] it was shown by elementary
methods that A(x) = O(x3/2 log*). This estimate was later improved to 0{x3'2) in II [3,
(3.7)]. In the present paper (§ 3) we obtain a much more substantial reduction in the order of
A(x), by showing that A(x) can be expressed in terms of the remainder term in the classical
Dirichlet divisor problem. On the basis of well known results for this problem, it follows
easily that A(x) = O(x4'3). The precise statement of the result for o((m,«)) is contained in
(3.2).

The analogous problem for CT2((
W> ")) is a l s o considered in § 3. Place

£ ) ^ { ( ( } (1.2)
a, b&x 3

It was shown in [2, (3.13)], [3, (3.5)] that A'(x) = O(x2 log*). In this paper, we express
A'(;t) in terms of the remainder term in the divisor problem for a(ri), obtaining as a consequence
a material improvement in the order of A'(x). The main result in the case of a2{(nt, «)) is
found in (3.9).

In § 4 we consider average values in two classes of functions generalizing a((m,«)) and
<r2((m, «)), respectively. The results are analogous to those obtained for A(x) and A'(x) in
§ 3, and furnish improvements on estimates proved in [2, Theorem (a = 1, a = 2)], (also see
[3, Theorem 4.1]). The corollaries of § 4 contain estimates for the special functions <j>((m, n))
and <j>2((m> "))» where <(>t(n) denotes the generalized totient function.

The method of this paper is essentially a refinement of that employed in II.

2. Preliminary details. We collect in this section a number of known miscellaneous facts
that will be needed in the later discussion. Denoting by [x] the integral part of x, we place
ip(x) = x— [x] —\ and write

nix H
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The functions p(x) and p'{x) occur in the remainder terms of the average-value problems for
T(«) = ao{ri) and a{n), respectively. In particular, we recall that [8, p. 16], [5, p. 37],

), 8'(x)=-xp'(x) + 0(x), (2.2)

where <5(x) and 8'(x) are the " remainders ",

5(x)= £ T(n)-x(logx + 2y-l) , 5'(x) = £ a(n)-|x2C(2).

It is also remarked that, if a and /? are the least values such that for all e > 0,

+ y+'}, (2.3)

then a^ 27/82 [4], j?^ 4/5 [5]. While these estimates have been improved, the exact values
of a and /? are still unknown. It is easily verified that a > 0, /? ^ 0 (compare [9, p. 187]).

The following classical estimates will also be required. In particular [8, p. 15],

^ fV) (2.4)
n&x Tl X \X J

moreover [7, (2), p. 26)]

I ^ b ^ ) (2-5)
In addition, we note the elementary fact that

^ • ¥ = 0 ( - 2 77 (26)

Adopting the notation

Si*(x)= E °tifi,b)), S2*(x)= E o2(ia,b)), (2.7)

we remark [3, (3.9)] that

¥f y j —̂ \ I Z.TI — •* ll I -r* 7 ( H ^_ JL ll I _ « X I / Y I —m - H / v i (/ Si

moreover

] E ( ) ^ (2.9)

the latter relation following from [3, (3.8)] in conjunction with the identity
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The next lemma was proved first in II. Let g(n) and h(ri) denote arbitrary arithmetical
functions and place

/(»)= E g(d)h(5), (2.10)

kin) = £ h(d), qin) = £ 0(<O//^\ (2.11)
d \ n d \ n \dj

where fi(n) denotes the Mobius function. Furthermore, let K*(x) denote the summatory

function of k((m, n)), K*(x) = £ fc((a, b)l We have [3, (4. 2)]
a,b£x

LEMMA 2.1. On the basis of the above notation

I /««.*>))= E q(n)K*(A (2.12)
a,b&x nSx \nj

Finally, we mention the following estimate proved in II:

LEMMA 2.2 [3, Lemma 4.2]. If g{n) is bounded then q(n) = O(n*)for all £ > 0.

3. The average order of <r((/w, n)) and a2((pi, «)). We consider first the function a((m, «)).

THEOREM 3.1. Ifp(x) is defined by (2.1), then

A(x)=-4xp(x) + O(xlogx); (3.1)

moreover, for all e > 0,

A(x) = O(x1+a+e), (3.2)

where a is defined by (2.3).

Proof. Denote by Sj, S2, S3, SA respectively, the four terms arising in (2.8). Applying
(2.4) and (2.5), one obtains

J

E A -

from which it follows that

} ( ) 2 / / | 3 / 2 (3.3)
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As for S2 we have

S 2 = I ( i ) I (± ( ) ) (V ( ) ) i £ ( E

from which one deduces that

S2 = x3/2 + O(xlogx). (3.4)

Regarding S3, one obtains

from which it follows that that

S3 = - ^ c
2 + 2x3/2

lKx/x) + x3/2 + O(x). (3.5)

Also it is clear that

S 4 = - ± x 3 / 2 + O(x). (3.6)

Since Sj*(x) = St + S2 + S3 + S4, it follows from (3.3), (3.4), (3.5) and (3.6) that

S,*(x) = x2{log x + 2y-i-K(2)}-4xp(*) + O(x logx), (3.7)

which is equivalent to (3.1). (3.2) results immediately from (3.1) and (2.3), because a ̂  0.
This proves the theorem.

Remark. We note that if, in calculating A(x), the third expressions obtained for St and
S2 are used, then (by [5, Lemma 8]) the formula (3.1) is replaced by

A(x)=-4xp(x)+xp\x) + O(x), (3.1a)

so that, by (2.3) and the fact that j?^ 0,

A(x) = -4xp(x)+O{x(log x)"+'} (e > 0). (3.1b)

However, this result leads to no improvement over (3.2).
We now consider o2((

m, w))> proving

THEOREM 3.2. A'(*)= -2x2p'(x) + O(x2), (3.8)

where p'(x) is defined by (2.1); moreover, for all e >0,

A'(x) = 0{x2(logxy+8}, (3.9)

where /? is defined by (2.3).
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Proof. Denote the three terms of (2.9) by Tu T2, T3 respectively. Then by the estimates
of § 2, one obtains

= 2jf E -i - T E V * * V (*)-** E A

3 nSl n 3 nSx n nSx tl
from which it follows that

7\ = lx3{2C(2)-C(3)}-2x2p'W-x2 log x + O(x2). (3.10

In the case of T2 we have

T2=\ E (2«-l){4+^)j = x2E - + O(xa),
2nSx [n2 \nj) nSxl)

so that T2 = x2 logx+O(x2). (3.11)

Also, evidently T3 = O(x2). (3.12)

Since S2*(x) = TJ + TJ + TJ, it follows from (3.10), (3.11) and (3.12) that

S2*(x) = ix3{2C(2)-C(3)}-2xy(x) + O(x2), (3.13)
which can be restated as (3.8). The result (3.9) is a consequence of (3.8), (2.3) and the fact that
P ̂  0. This completes the proof.

4. The general functions/t((m, «)) and/2((m, «)). As in I and II we define/,(«) by

/,(")= E did) 5'. (4.1)
dd = n

It is noted, on the basis of Lemma 2.1 with h{n) = n', that

C(\ (4.2)

where Sr*(x) is the summatory function of <rt((m,«)). It follows then from (4.2) and the
definition of q{n) that

As in I and II we place

L(s, g) = I °M (s > 1), (4.4)
n = l 71

and denote its derivative by L'(s, g). We now consider the average order of ft((m, «)) in the
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cases t = 1 and t = 2, with a boundedness restriction on g («). It is convenient to introduce the
following notation in considering /i((m, «)),

(4.5)

(4-6)

We prove now

THEOREM 4.1. Ifg{n) is bounded, then

F*(x) = R(x)-4x £ $Mp (-) + O(x log3 x); (4.7)
us* n \nj

moreover, for all e > 0,

where a is defined by (2.3).

Proof. By (3.7) and (4.3) with t = 1, it follows that

F* = S1 + S2 + S3 + SA + SS, (4.9)

where

(4.10)

2 y g(d)logd y fi(8)
S2 = -x 2, ^ — L. -7T> (4.11)

dg a s^ld o

dSx fl iSxId O

(4.13)I p(
fl 3^x/d O \d
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By (4.10) one obtains

= •£- (log x + C , ) ( L ( 2 , g) + o(-)\ + o\x log x £ ±
C(2) I WJ I «*d

from which it follows that

C(2)

By (4.11) and (2.6) one deduces that

As for S5, it follows from (4.14) that

so that

By (4.12) and (2.6) we have

and therefore

x2C(2)L(2 a") ->
S3 = 2(\ + °(x l o 8 *)• (4-17)

Placing dd = n in (4.13) one may write, on the basis of (2.11),

(4-18)

S5 = o(x log x j ; i ^ ^ = 0(x log3 x), (4.19)

and (4.7) results on combining (4.9), (4.15), (4.16), (4.17), (4.18) and (4.19).
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We deduce now (4.8), recalling first that a > 0. By Lemma 2.2 and (2.3), if t, is chosen
such that 0< £ ̂ a, then for all e > 0,

Hence (4.8) results from (4.7) and the theorem is proved.
Placing g(n) = n{ri) in (4.8), we obtain the following corollary.

COROLLARY 4.1. For all e > 0,

Y 4>{(a, b)) = ——<log x + 2}> — \—-Jf (2)—^—^> + O(x1+a+E). (4-20)
..___* C2(2)[ C(2)J

It is convenient in considering/2((/w,«)) to write

C2 = i{2C(2)-C(3)}, R'(x) = X L^'^C2- (4.21)

THEOREM 4.2. If g(n) is bounded, then

F2*(x) = R'(x)-2x2 £ ZX^p'l - )+O(x2); (4.22)
-_. n2 \nj

if P is defined as in (2.3), then for all e > 0,

Proof. By (4.2) with . = 2, in conjunction with (3.13), we may write

F2*(x) = 7\ + T2 + T3, (4.24)

where r. = C2x
3 £ ^ , (4.25)

T . = _ 2 x 2 £ ^ p / ^ (4.26)

and where, by Lemma 2.2,

From (4.25) one obtains

so that by (2.11) and Lemma 2.2

T1=R'(x) + O(xl+i), 0 < { g l . (4.28)

Combination of (4.24), (4.26), (4.27) and (4.28) leads to (4.22).
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We recall that the quantity /? defined by (2.3) is non-negative. Hence if I; is any positive
number less than 1, it follows by Lemma 2.2 that for all e > 0,

= oj((log x / + e £ - r q f = °((lo8 x> }• (4-29>

Thus (4.23) results from (4.22), and the theorem is proved.
The case g(n) = n(n) in (4.23) yields the following special result.

COROLLARY 4.2. For all e > 0,

3

Y, 4>iiia,b)) = ——{2C(2)-C(3)} + O{x2(logx)p+C}. (4.30)
a.b£x 3C (3)
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