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Turbulent flows over porous lattices consisting of rectangular cuboid pores are investigated
using scale-resolving direct numerical simulations. Beyond a certain threshold which is
primarily determined by the wall-normal Darcy permeability, K y, near-wall turbulence
transitions from its canonical regime, marked by the presence of streak-like structures, to
another marked by the presence of Kelvin–Helmholtz-like (K–H-like) spanwise-coherent
structures. The threshold agrees well with that previously established in studies where
permeable-wall boundary conditions had been used as surrogates for a porous substrate
(Gómez-de Segura & García-Mayoral, J. Fluid Mech., vol. 875, 2019, pp. 124–172). In the
smooth-wall-like regime, none of the investigated substrates demonstrate any reduction in
drag relative to a smooth-wall flow. At the permeable surface, a notable component of the
flow is that which adheres to the pore geometry and undergoes modulation by the turbulent
scales of motions due to the interaction mechanism described by Abderrahaman-Elena
et al. (J. Fluid Mech., vol. 865, 2019, pp. 1042–1071). Its resulting effect can be
quantified in terms of an amplitude modulation (AM) using the approach of Mathis
et al. (J. Fluid Mech., vol. 628, 2009, pp. 311–337). This pore-coherent flow component
persists throughout the porous substrate, highlighting the importance of a given substrate’s
microstructure in the presence of an overlying turbulent flow. This geometry-related aspect
of the flow is not accounted for when continuum-based models for a porous medium or
effective representations of them, such as wall boundary conditions, are used. The intensity
of the AM effect is enhanced in the K–H-like regime and becomes strengthened with
larger permeability. As a result, structured porous materials may be designed to exploit or
mitigate these flow features depending upon the intended application.
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1. Introduction

The interaction between fluid flows and porous media has in recent years witnessed
a notable increase in attention. This is owing to their wide-ranging practical
applications from heat exchangers (Kuruneru et al. 2020) to nuclear reactors (Hassan &
Dominguez-Ontiveros 2008) as well as their pronounced presence in geophysical flows
(Kazemifar et al. 2021). They are also interesting from a purely flow physics perspective,
particularly with regards to turbulent flows, as their permeable quality can lead to the
alteration of turbulence at the interface of porous media (Manes, Poggi & Ridolfi 2011).
The interactions in this interfacial flow region affect the transport processes occurring
between the surface and subsurface flows, motivating the need to better understand them.

Early studies of turbulence over porous media were mainly concerned with the effect
that a permeable surface had on the structure of the overlying turbulent flow. This was
primarily motivated by the understanding that the effect of wall permeability is distinct
from wall roughness, an observation made in the comparative experiments of Zagni &
Smith (1976) and Manes et al. (2009). One of the early numerical efforts pursuing this
line of inquiry was that of Breugem, Boersma & Uittenbogaard (2006) who conducted
direct numerical simulations (DNS) of turbulent channel flow with a porous substrate on
one side. They classified the substrates in terms of their permeability Reynolds number,
ReK = √

Kuτ /ν = √
K+, and resolved the flow inside the porous region as a continuum

using the volume-averaged Navier–Stokes equations to only recover the scales of motion
which were larger than the characteristic pore dimensions. Their results demonstrated
that for highly permeable cases (

√
K+ � 1), the canonical streaks and quasistreamwise

vortices of near-wall turbulence cease to exist and are replaced by large cross-stream
vortical structures. Other observations made were that the logarithmic region of the mean
velocity profiles over permeable surfaces differed from that over impenetrable smooth
walls, resulting in the von Kármán constant, κ , being different for the porous channels.
Additionally, their results also demonstrated an apparent lack of outer-layer similarity.
Using the same methodology as Breugem et al. (2006), similar observations were also
made in the later work of Kuwata & Suga (2017) who did scale-resolving DNS using the
lattice-Boltzmann method. The earlier experimental work of Manes et al. (2011), however,
did not report similarly divergent values of κ , with the authors suggesting those reported
by Breugem et al. (2006) could be attributable to the lack of inner–outer scale separation,
which itself could be a low-Reynolds-number effect. While not the focus of their work,
the experimental measurements of Kim et al. (2020) of turbulent flows over packed beds
of spheres were consistent with that of Manes et al. (2011) in this regard. In the recent
DNS study by Shahzad, Hickel & Modesti (2023) of turbulent flows over perforated plates
at Reτ = 500−2000, all flow cases demonstrated outer-layer similarity and κ ≈ 0.39,
with the authors also suggesting that the κ discrepancy in the work of Breugem et al.
(2006) being attributable to the low Reynolds number of that study. Recently, Chen &
García-Mayoral (2023) examined outer-layer similarity of wall-bounded turbulence by
doing DNS of turbulent flows over canopies at at Reτ = 550−1000. They demonstrated
that the method for estimating κ used by Breugem et al. (2006) and Kuwata & Suga (2017)
can result in κ values which are potentially misleading. The method of the latter authors
relies upon forcing the linearity of the mean velocity profile in logarithmic coordinates by
introducing a suitably large displacement length such that the diagnostic function of the
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Turbulent flows over porous lattices

mean velocity exhibits a flat plateau region corresponding to 1/κ . Chen & García-Mayoral
(2023) remark that κ cannot be meaningfully defined for flows where Reτ < 300 due to
the limited range of wall-normal coordinates which prevents a logarithmic region from
manifesting. In this low-Reynolds-number range, the diagnostic function by default will
not have a plateau region of constant 1/κ which would correspond to a logarithmic
region. It is also affected by the wake region above it (Luchini 2018). Thus, Chen &
García-Mayoral (2023) demonstrate that enforcing the appearance of a plateau without
correcting for the wake behaviour could lead to physically misleading values of κ .

Concerning the flow inside porous substrates subject to an overlying turbulent flow,
Breugem et al. (2006) observed the presence of velocity fluctuations beneath the surface
and considered them to be motions induced by pressure fluctuations. Kuwata & Suga
(2017) likewise attributed the subsurface velocity fluctuations to the strong pressure
diffusion directed into the substrate and caused by the Kelvin–Helmholtz-like (K–H-like)
cross-stream rollers. More recently, Kim et al. (2020) provided direct experimental
evidence of amplitude modulation (AM) for turbulence over permeable walls, a possibility
that was highlighted by Efstathiou & Luhar (2018) based on skewness measurements in
turbulent boundary layers over porous foams. This latter aspect will be of significance
when examining the flow in the substrate region.

Kuwata & Suga (2017) examined the significance of anisotropy in porous media
comprised of cubic pores and having either one (K y), two (K y, K z; K x, K y) or three
(K x, K y, K z) non-zero diagonal components in the permeability tensor. They showed
that wall-normal permeability alone did not affect the overlying turbulent flow and the
additional presence of streamwise or spanwise permeability is necessary for alterations
to occur. This configuration is unlike the DNS of Jiménez et al. (2001), where a
permeable-wall boundary condition was used to permit penetration of wall-normal
velocity. Likewise, the DNS study by Shahzad et al. (2023) of turbulent flows
over perforated plates – porous walls with only non-zero wall-normal permeability –
demonstrated that such porous structures can lead to non-smooth-like flow. This seeming
contradiction is attributable to the specific geometry used in the K y-only porous DNS of
Kuwata & Suga (2017), which shelters the overlying turbulent flow from any recirculation
that would occur in the cavities of the porous structures and causes the flow to simply
‘skim’ over the pores. This limitation does not exist for the boundary condition of
Jiménez et al. (2001), which implicitly models the permeable wall as if it were connected
underneath to a plenum chamber. Further examination of anisotropic permeability was
carried out in the DNS study by Gómez-de Segura & García-Mayoral (2019), where
the effect of a permeable wall was incorporated using wall boundary conditions derived
from the Darcy–Brinkman equation for modelling porous media flows. For highly
streamwise-preferential configurations (K x � K y), it was shown that the wall-normal
permeability is the principal component responsible for the breakdown of the near-wall
streak cycle and the emergence of the cross-stream K–H-like structures observed by
Breugem et al. (2006). The threshold marking the onset of this K–H-like regime was
estimated to be

√
K y

+ ≈ 0.4, with the flow fully belonging to this regime beyond
√

K y
+ ≈

0.6. In this regime, drag became degraded compared with smooth-wall turbulence.
Reductions in drag, however, were demonstrated for cases where the wall-normal
permeability was

√
K y

+ < 0.4.
The purpose of this study is to more closely examine the interaction between porous

substrates and turbulent flows, both in the vicinity of the permeable surface and inside the
porous substrate. This is investigated numerically using DNS which resolves the scales
of motion from the bulk flow down to the pore scale. The substrates examined span both
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Figure 1. Sketch of the computational domain.

the canonical wall turbulence and K–H-like regimes. This allows for determining which
aspects of the flow are mainly due to the change in turbulence and whether there are flow
features which persist across both flow regimes, particularly in the substrates. The effect
of surface geometry is also investigated.

The structure of the paper is as follows. In § 2, the porous substrate geometries
considered and their characteristics along with the numerical methods are introduced.
How the overlying bulk turbulence becomes modified due to the presence of substrates
and the resulting consequences in terms of drag are discussed in § 3, where an assessment
of outer-layer similarity and characterization of the bulk turbulence regime with respect
to permeability is also described. In § 4, the surface flow is examined to highlight
the differences that exist in terms of flow structure over the substrates falling into
different turbulence regimes. The flow in the substrates is examined in § 5. The amplitude
modulation of this flow by the overlying turbulence is discussed in § 6. The results are
summarized and discussed in § 7.

2. DNS of turbulent flow over porous substrates

2.1. Numerical method
The configuration used in this study is an open-channel as depicted in figure 1. It is
comprised of a bulk flow region with height δ and a porous substrate region of depth h.
The direct numerical simulations using this set-up were conducted using the open-source
solver PARIS simulator (Aniszewski et al. 2021) with in-house modifications. The code
solves the incompressible Navier–Stokes equations,

∇ · u = 0, (2.1a)

∂u
∂t

+ (u · ∇) u = − 1
ρ

∇p + ν∇2u, (2.1b)

where u = (u, v, w), p and ν are the velocity vector, pressure and kinematic viscosity,
respectively. The velocity can be decomposed into its mean and fluctuating components
through the Reynolds decomposition (Reynolds 1895)

u(x, y, z, t) = U( y) + u′(x, y, z, t), (2.2)

where u is the instantaneous velocity vector, U is the time- and plane-averaged mean
velocity and u′ is the fluctuating velocity varying over both space and time. Later on in
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this paper when examining the modulated flow inside the porous substrates, the further
decomposition of u′ into a time-steady and time-varying component (Reynolds & Hussain
1972)

u′(x, y, z, t) = ũ(x, y, z) + u′′(x, y, z, t) (2.3)

will also be used.
The dimensions of the computational domain are (Lx, Ly, Lz) = (6.3δ, 1.3δ, 3.15δ)

in the streamwise (x), wall-normal ( y) and spanwise (z) directions. The domain is
periodic along x and z while being bounded by a free-slip surface at y = δ and a no-slip
wall at y = −0.3δ. The thickness of the porous substrate is h = 0.3δ. The simulations
were conducted at a constant mass flow rate, which was adjusted to target a nominal
Reτ = uτ δ/ν = 360. Here, uτ = √

τw/ρ is the friction velocity at y = 0 (the substrate
surface), with τw obtained from the integral balance

τw = −Pxδ, (2.4)

where Px is the mean pressure gradient. Note that at y = 0, due to presence of a permeable
surface τw will have contributions from both viscous and turbulent stresses,

τw = μ
dU
dy

∣∣∣∣
y=0

+ ρu′v′|y=0. (2.5)

Throughout this paper, the superscript ‘+’ indicates scaling in inner units, where quantities
are normalized using uτ and ν. The numerical grid has a resolution of (Nx, Ny, Nz) =
(1620, 324, 810). The grid spacing is uniform along x and z while being non-uniform along
y. The grid is stretched in the region above the substrate using a hyperbolic tangent function
and uniform within the substrate. The simulation results are grid independent at the chosen
resolution. The grid independence was determined by conducting simulations at coarser
and finer resolutions. The results of these simulations are gathered in Appendix A.

The equations are spatially discretized on a staggered Cartesian grid using central
second-order finite differences. The fractional-step method (Kim & Moin 1985) is
used to solve the discretized incompressible Navier–Stokes equations. At each time
step an intermediate non-divergence free velocity field is first calculated. The Poisson
equation obtained by imposing the incompressibility constraint is then solved using the
fast-Fourier-transform-based solver of Costa (2018) to obtain the pressure correction. The
pressure correction is then used to project the velocity field onto a divergence free vector
space. The time integration uses a triple-substep Runge–Kutta method where both the
advective and diffusive terms are treated explicitly.

The immersed boundary method of Breugem & Boersma (2005) is used to numerically
realize the porous substrates. Unlike direct-forcing or penalization-based methods, it
involves modifying the discretized advective and diffusive flux terms of the Navier–Stokes
equations such that the no-slip and no-penetration conditions become exactly imposed
for the regions of the numerical domain which are defined as solids. This makes it
a more accurate method for realizing geometries which are Cartesian conforming, as
demonstrated by Paravento, Pourquie & Boersma (2008).

In addition to the simulations including porous substrates, an open-channel flow over
a smooth wall at Reτ = 360 was also simulated to serve as a baseline for comparisons.
Quantities normalized using the smooth-wall friction velocity and kinematic viscosity are
indicated by the subscript ‘o’.
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Figure 2. (a) Schematic of general substrate geometry along with (b,c) its nomenclature.

2.2. Porous geometries
The porous substrates investigated are lattices where the pores are repeating rectangular
cuboids (figure 2). The solid matrix is made of rods with a cross-section of d × d. The
spacings (pitches) sx, sy and sz determine the cross-sections of the pores and their resulting
void volume. Consistent with previous experimental and numerical studies (Manes et al.
2011; Kuwata & Suga 2017; Gómez-de Segura & García-Mayoral 2019), the substrates are
characterized in terms of their permeabilities obtained from Darcy’s law (Darcy 1856),

uD = − 1
μ

K · ∇p, (2.6)

where uD is the Darcy velocity vector, p is the pressure averaged over the fluid phase
and K is the permeability tensor. As such, the law represents the balance between the
pressure gradient that drives the flow through a porous medium and the resistance exerted
by the medium’s solid structure upon the flow. As the Darcy permeabilities are only
dependent on the geometry of a substrate, they are suitable parameters for encapsulating
the geometrical differences between different porous media. Similar to porous structures
studied by Kuwata & Suga (2017), the Cartesian structure of the substrates makes
the off-diagonal terms of the permeability tensor zero, giving a tensor with only the
three diagonal components K xx, K yy and K zz, which are written as K x, K y and K z for
simplicity. These components were computed from the results of Stokes flow simulations
conducted using representative element volumes (REVs) of each substrate using the same
solver that was used for the turbulent flow simulations. The dimensions of the REVs
were (Lx, Ly, Lz) = (0.3δ, 0.3δ, 0.3δ) and the grid resolution similar to the turbulent
simulations in terms of grid spacing. The inner-scaled lengths

√
K x

+,
√

K y
+ and

√
K z

+
are used to characterize the porous substrates throughout the paper.

The main cases (HP1, HP2, HP3, MP, LP1, LP2, LP3) span a range of wall-normal
permeabilities,

√
K y

+, to facilitate investigating how near-wall turbulence becomes
altered due to a progressively weakening wall-impedance. Here, HP designates higher
permeability substrates (

√
K y

+ > 2), LP designates lower permeability substrates(√
K y

+ < 1
)

and MP a moderate permeability case falling between the other two groups(
1 <

√
K y

+ < 2
)

. Cases HP2′ and HP3′ – where the wall-parallel spacings of HP2 and

HP3 have been swapped – retain the wall-normal permeability of HP2 and HP3 but have
increased streamwise permeability and hence anisotropy, Φxy = K x/K y.

The simulation parameters along with the characteristics of their porous substrates
are gathered in table 1. Representative elements for the HP and LP porous geometries
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Case Symbol Reτ ϕ sxo
+ syo

+ szo
+ √

K xo
+ √

K yo
+ √

K zo
+ Φxy

HP1 385 0.75 36.0 108.0 28.0 3.21 3.44 4.72 0.93
HP2 373 0.68 36.0 54.0 28.0 2.74 2.62 3.84 1.05
HP3 360 0.62 36.0 36.0 28.0 2.19 2.19 2.81 1.00
MP 359 0.50 28.0 27.0 28.0 1.50 1.53 1.50 0.98
LP1 356 0.49 21.0 54.0 21.0 1.04 0.73 1.04 1.43
LP2 359 0.39 21.0 36.0 21.0 0.91 0.62 0.91 1.47
LP3 359 0.26 21.0 21.0 21.0 0.50 0.50 0.50 1.00

HP2′ 378 0.68 28.0 54.0 36.0 3.84 2.62 2.74 1.47
HP3′ 361 0.62 28.0 36.0 36.0 2.81 2.19 2.19 1.28

Table 1. The DNS cases of open-channel turbulent flow over porous substrates. The porosity for each substrate
is given by ϕ. The pore spacings are sxo

+, syo
+ and szo

+, while
√

K xo
+,
√

K yo
+ and

√
K zo

+ are the effective
permeabilities, which are analogous to the permeability Reynolds number, ReK . The ratio of streamwise to
wall-normal permeability is Φxy. The rod or filament thickness of the solid matrix is d/δ = 0.039 or do

+ = 14
for all cases. Labels, colours and symbols remain consistent throughout the manuscript.
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Figure 3. Representative elements of the LP and HP substrates in table 1. (a) HP1; (b) HP2; (c) HP3; (d) LP1;
(e) LP2; ( f ) LP3. Cases HP2′ and HP3′ (not shown) are rotated versions of HP2 and HP3 around the y axis by
π/2.

examined are shown in figure 3. The substrates will first be assessed with regards to certain
aspects of permeable-wall turbulence which have been reported in the literature. This
includes the transition of turbulence from the canonical near-wall regime to the K–H-like
regime (Gómez-de Segura & García-Mayoral 2019) and the resulting drag changes.
An important difference exists between pore-scale resolving simulations, and other
simulation approaches such as volume-averaged Navier–Stokes simulations (Breugem
et al. 2006; Rosti, Brandt & Pinelli 2018) and permeable-wall boundary conditions
(Jiménez et al. 2001; Gómez-de Segura & García-Mayoral 2019). In the latter approaches,
the permeability and porosity are predefined numerical parameters and independent from
one another.
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Figure 4. Instantaneous (a–c) streamwise velocity, (d–f ) wall-normal velocity and (g–i) pressure fluctuations
at y+ ≈ 5: (a,d,g) HP1; (b,e,h) LP1; (c, f,i) smooth-wall. Flow direction is from left to right.

For the cases considered in this work, the substrate’s geometry determines both the
permeability and the porosity. This imposes constraints on the permeabilities and the
degree of anisotropy that can be obtained. For example, a change in sx will change the
pore cross-section along both y and z, leading to changes in K y and K z. The Reynolds
numbers of DNS studies are also generally low relative to experiments. As such, achieving
effective permeabilities (

√
K x

+,
√

K y
+,
√

K z
+) which are large (such as those in Manes

et al. (2011)) becomes challenging.

3. Overlying turbulent flow

3.1. Surface region flow
The changes in the overlying turbulent flow are first assessed qualitatively by examining the
flow field above the permeable surface at y+ ≈ 5. Figure 4 shows instantaneous snapshots
of the velocity and pressure fluctuations for HP1 and LP1. These two cases have the highest√

K y
+ of the HP and LP groups, respectively. This allows for a better assessment of the

role wall impedance plays in causing changes in turbulence near the surface. Note that at
the surface, the relevant permeability component is K y as the flow must first be able to
penetrate into the substrate before becoming redirected into the horizontal directions, for
which K x and K z are important.

Beginning with observations for the streamwise velocity component, LP1 (figure 4b)
exhibits regions of elongated positive and negative fluctuations which are similar to
the streaky pattern observed over a smooth-wall (figure 4c). This streamwise coherency
is diminished in HP1 (figure 4a), where the aforementioned regions are instead more
clump-like and also exhibit a degree of regularity along the spanwise dimension
of the domain. This is indicative of the near-wall turbulence becoming altered. For
the wall-normal velocity component, the similarity between LP1 (figure 4e) and the
smooth-wall (figure 4f ) is reflective of the similarity seen in their streamwise velocity
fields. Case LP1 has a greater degree of intensity but remains structurally similar to its
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Figure 5. (a) Mean velocity profiles of the bulk flow region above the porous substrates. (b) Difference in
porous-wall and smooth-wall velocities. Symbols and colours follow the descriptions in table 1. The black line
in (a) is a reference smooth-wall solution at Reτ = 360.

smooth-wall counterpart; HP1 (figure 4d), however, shows not only a noticeably stronger
intensity in wall-normal velocity fluctuations but also structural differences, with there
seemingly being an emergent spanwise coherency. The differences in the pressure fields
are consistent with the observations made for the velocity fields. Case HP1 (figure 4g)
demonstrates a spanwise patch along x+ ≈ 1200 which is coincident with the spanwise
coherent regions seen at the same position in its u and v fields. The pressure fluctuations
of HP1 are also more intense compared with LP1 (figure 4h) and the smooth-wall case
(figure 4i). Another distinctive quality of HP1 is the visible signature of the permeable
surface in its flow field, particularly when examining the wall-normal velocity (figure 4d).
This indicates that the surface granularity becomes perceived by the turbulent flow, such
that it leaves a visible footprint in the flow field. This is similar to what has been observed
in flows over roughness (Abderrahaman-Elena, Fairhall & García-Mayoral 2019) and
canopies (Sharma & García-Mayoral 2020).

3.2. Changes in mean flow, velocity fluctuations and Reynolds shear stress
Surfaces which depart from a hydrodynamically smooth behaviour change the overall
level of momentum carried by the bulk flow, i.e. the amount of drag generated at the
surface changes. As explained by Spalart & McLean (2011) and Chung et al. (2021),
a suitable metric for quantifying this is the shift in the logarithmic region of the mean
velocity profile, 
U+, which was introduced by Hama (1954) and Clauser (1954) and is
more commonly known as the roughness function. As such, 
U+ accounts for the mean
momentum deficit of the flow relative to smooth-wall flow. For the porous substrates,
this is examined in figure 5(a,b), showing the mean velocity profiles, U+( y+), and
the velocity difference, 
U+( y+) = U+( y+)porous − U+( y+)smooth, respectively. All of
the porous substrates examined increase drag compared with the baseline smooth-wall
case (
U+ < 0), although the LP cases do not impose a significant drag penalty. The
structural differences observed in the flow over the different substrates are also reflected
here, such that they become distinguishable into two overall groups. The substrates
with lower wall-normal permeability (LP1, LP2, LP3, MP) do not deviate greatly from
the smooth-wall (
U+ > −1) and the LP cases are almost indistinguishable from the
smooth-wall case. The substrates with higher wall-normal permeability (HP1, HP2, HP2′,
HP3, HP3′) on the other hand result in 
U+ values which are notable (
U+ � −2). The
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Figure 6. Reynolds shear-stress profiles of the bulk flow region above the porous substrates. The black line is
a reference smooth-wall solution at Reτ = 360.

same distinction can be made for the Reynolds shear stress (figure 6), where substrates
LP1, LP2, LP3 and MP result in slightly greater levels of turbulent activity close to the
permeable surface whereas this activity is more pronounced for the HP substrates with a
gap emerging between the former and the latter substrates in terms of their surface-level
−u′v′+ activity.

Following the approach of MacDonald et al. (2016) and García-Mayoral, Gómez-de
Segura & Fairhall (2019), to assess the contributing factors to 
U+, the mean momentum
equation for the bulk flow region above the substrate is considered

ν
dU
dy

− u′v′ = u2
τ

(
1 − y

δ

)
. (3.1)

Scaling (3.1) in inner units gives

dU+

dy+ − u′v′ + = 1 − y+

δ+ . (3.2)

Integrating (3.2) between y+ = 0 (the substrate surface) and a position far above the
substrate where the flow statistics are smooth-wall-like, y+ = H+, results in

∫ y+=H+

y+=0
−u′v′ + dy+ + U+ ( y+ = H+)− U+ ( y+ = 0

) = H+ − H+2

2δ+ . (3.3)

For a smooth-wall flow, there will be no mean velocity at y+ = 0 (no-slip) and hence
U+( y+ = 0) = U+

slip = 0. Taking the difference of (3.3) between a porous case and the
smooth-wall case allows for quantifying the contributions of the interfacial slip velocity
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Case κ 
U+ ε+ RMSE R2

Smooth-wall 0.39 0.00 0.0 0.04 0.99
HP1 0.39 −3.17 4.6 0.05 0.99
HP2 0.39 −2.52 4.2 0.05 0.99
HP3 0.39 −2.00 3.8 0.05 0.99
MP 0.39 −0.88 2.2 0.05 0.99
LP1 0.39 −0.27 1.3 0.07 0.99
LP2 0.39 −0.26 1.3 0.07 0.99
LP3 0.39 −0.34 0.9 0.06 0.99
HP2′ 0.39 −2.76 2.6 0.02 0.99
HP3′ 0.39 −2.08 2.3 0.05 0.99

Table 2. The von Kármán constant, κ , and virtual origin (or zero-plane displacement height), ε, resulting from
the fitting of the log-law (3.5) to the mean velocity profiles of the different cases in table 1. The values of 
U+
for each case are also reported. The last two columns report the root mean square (r.m.s.) error and goodness
of fit, respectively.

and changes in Reynolds stress to 
U+,


U+ = U+ ( y+ = H+)
porous − U+ ( y+ = H+)

smooth

= U+
slip −

∫ y+=H+

y+=0

[(
−u′v′ +

porous

)
−
(
−u′v′ +

smooth

)]
dy+

− H+2

2

(
1

δ+porous
− 1

δ+smooth

)

= 
U+
slip + 
U+

uv + 
U+
Re ≈ 
U+

slip + 
U+
uv. (3.4)

The term 
U+
Re quantifies the contributions from additional turbulence scales and emerges

due to the differences in Reτ , i.e. δ+
porous and δ+

smooth. However, it remained negligible
for the simulations conducted here and is therefore omitted. Note that differences in Reτ

would also result in non-zero 
U+
Re between smooth-wall flows and that this component

is not due to the wall having a non-smooth characteristic.
The decomposition of (3.4) was applied to the different substrate cases by setting

H+ = 200, which measures 
U+ inside the region where it has achieved a flat value
(figure 5b). Table 2 lists the corresponding 
U+ values for each configuration. The
contributions obtained from (3.4) are shown in figure 7. There, it can be observed that the
slip velocity contribution, 
U+

slip, to 
U+ does not vary significantly across the different
cases. The Reynolds shear stress contribution, 
U+

uv , is drag degrading and hence always
negative. The magnitude of 
U+

uv decreases monotonically from HP1, which has the
overall highest permeability, to the LP cases which are similar in terms of 
U+. The
dominant component across all cases is 
U+

uv and grows larger for substrates with greater
wall-normal permeabilities. It is notably larger in magnitude than 
U+

slip for the HP cases.
These results are consistent with what was observed for the profiles of the mean velocity
(figure 5a) and Reynolds shear stress (figure 6). A jump in 
U+

uv is also seen here when
going from the LP cases to the HP cases, suggestive of additional contributions resulting
from the structural changes in turbulence that were observed in figure 4. The same trend
holds for HP2′ and HP3′ which have weak streamwise-preferential anisotropy unlike their
baseline counterparts HP2 and HP3. However, their increased anisotropy leads to increased
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Figure 7. The slip velocity, 
U+
slip, and Reynolds shear stress, 
U+

uv , contributions to 
U+.

drag. In the LP cases on the other hand, as the anisotropy increases from LP3 to LP1 the
drag becomes reduced, although the changes are small. Overall, none of the substrates
allow for the development of any significant slip velocity at their surfaces. Therefore, the
differences in 
U+ are primarily due to the differences in −u′v′+ close to the permeable
surface.

The DNS of Gómez-de Segura & García-Mayoral (2019) where permeable-wall
boundary conditions were used to effectively model anisotropic porous substrates
suggested that streamwise-preferential configurations can result in drag reduction when
turbulence is smooth-wall-like. Unfortunately, the mostly isotropic configurations of the
substrates considered here do not permit investigating whether this applies to them. An
earlier effort by the authors of this paper (Habibi Khorasani, Luhar & Bagheri 2022a)
was directed towards this. The substrates used then were streamwise-preferential but still
did not demonstrate drag reduction for those belonging to the smooth-wall-like turbulence
regime. However, the flow in the porous region was weakly resolved due to the insufficient
resolution of the simulations. A definitive conclusion could therefore not be made about
drag reduction being achievable or not.

3.3. Logarithmic law and outer-layer similarity
Throughout the literature, assessments have been made about the applicability of the
log-law, expressed as

U+ = 1
κ

ln
(
y+)+ B, (3.5)

to non-smooth-wall flows. If the mean velocity of a non-smooth flow demonstrates a
logarithmic scaling similar to a smooth-wall flow, the von Kármán constant, κ , should
also be similar to the smooth-wall value. This similarity then also serves as an indicator
that the two flows are outer-layer similar. When examining the log-law for non-smooth
flows, a modified form of it,

U+ = 1
κ

ln
(
y+ − ε+)+ A + 
U+, (3.6)

is used instead. Here, A is the log-law intercept for a smooth-wall profile and 
U+ is the
previously introduced mean velocity shift. Here ε+ is the zero-plane displacement height
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Turbulent flows over porous lattices

or virtual origin and accounts for the differences in the origin of the logarithmic region. It
therefore sets the location of the wall-normal coordinate origin, i.e. y+ = −ε+. Different
approaches have been used for determining ε+. The method introduced by Jackson (1981)
for rough-wall flows, where the virtual origin is associated with the centre of the drag
forces acting on the rough wall, is a popular one. However, MacDonald et al. (2018)
showed that a more suitable choice for ε+ is the location at which the Reynolds shear
stress, u′v′, decays to zero. This definition of the virtual origin has also been used by
Ibrahim et al. (2021) in their framework of quantifying drag changes for smooth-wall-like
turbulence, where it accurately accounts for the turbulent contribution to drag. Using the
same approach, for the porous substrates considered here, virtual origins are obtained
that do not exceed a few wall units (ε+ < 5). The values of ε+ are gathered in table 2.
Comparing these values with the permeabilities of table 1, it is clear that the virtual

origin is of the order of the permeabilities, with values close to
√

K +
z . For permeable-walls

which retain smooth-wall-like turbulence, ε has been shown to relate to the spanwise slip
caused by the permeable substrate (Gómez-de Segura & García-Mayoral 2019), and the
slip itself was shown by Abderrahaman-Elena & García-Mayoral (2017) to relate to

√
K z

+
through analytical solutions of the Brinkman equation. However, it should be emphasized
that this is only applicable to the viscous-dominated smooth-wall-like regime of drag
change established in Luchini, Manzo & Pozzi (1991) and Luchini (1996). Additionally,
the presence of tangential permeability is not necessary for slip to occur. This is evident
from the DNS of Shahzad et al. (2023), who also reported ε+ < 5 but for acoustic liners
where

√
K x

+ =
√

K z
+ = 0.

After determining ε+, the values of κ were obtained by fitting (3.6) to the mean velocity
profiles of each case. These values are gathered in table 2. κ ≈ 0.39 across all cases which
is the value commonly reported for smooth-wall turbulence. Similar to the virtual origins,
this result also mirrors that of Shahzad et al. (2023). For the reasons described earlier in
§ 1, the approach of Breugem et al. (2006) has not been adopted to determine ε+ and κ .
The Reynolds number for the flows examined here is too low for the diagnostic function,
y+ dU+/dy+, to be reliably used. It should also be reiterated that the flow configuration
used here is an open channel, whereas those of Breugem et al. (2006) and Kuwata &
Suga (2017) were asymmetric confined channels. This undermines any direct comparisons.
Regarding the κ values obtained in prior work and the choice of method to do so, the
interested reader is referred to the work of Chen & García-Mayoral (2023) which directly
deals with subjects of log-law analysis and outer-layer similarity in obstructed flows. The
recent work of Luchini (2024) may also provide insight regarding log-laws in general.

Setting aside log-law behaviour, the similarity hypothesis of Townsend (1976) requires
that the inner-scaled turbulent fluctuations be similar away from the wall. In figure 8, the
r.m.s. velocity fluctuations (figure 8b) and Reynolds shear stress (figure 8a) distributions
in outer-scaled wall-coordinates are similar beyond y/δ ≈ 0.25. This reflects figure 5(b),
where 
U+ became flat beyond y+/Reτ ≈ 0.25. Therefore, the effect of the porous
substrates does not extend far into the overlying flow, reinforcing the existence of
outer-layer similarity.

3.4. Flow regime distinction based on permeability
The separation of the substrates into two groups becomes more clearly distinguishable
when plotting the drag change, 
U+, against the square root of the wall-normal
permeability (figure 9a). The leap in 
U+ when going from the LP to the HP cases
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Figure 8. (a) Reynolds shear stress and (b) r.m.s. velocity fluctuations above the substrates in outer-scaled
wall coordinates.

has been attributed to the near-wall turbulence dynamics undergoing a transition and
departing the canonical regime for a K–H-like one (Gómez-de Segura & García-Mayoral
2019). Using linear stability analysis with boundary conditions derived from the
Darcy–Brinkman equation, Gómez-de Segura, Sharma & García-Mayoral (2018) proposed
the following relation for quantifying the influence of a substrate’s permeability on
triggering this transition:

K Br1
+ = K y

+ tanh

(√
2K x

+

9

)
tanh2

(
h+√

12K y
+

)
≈ K y

+ tanh

(√
2K x

+

9

)
. (3.7)

For sufficiently deep substrates, the second hyperbolic tangent term becomes ≈ 1 and the
relation becomes simplified, with the dominant term becoming K y

+. Gómez-de Segura &

García-Mayoral (2019) determined
√

K +
Br1

≈ 0.4 − 0.6 as the threshold in which the onset
and transition to the K–H-like regime occurs. The results of applying (3.7) to the DNS data
in this work is shown in figure 9(c). It indicates that case MP and beyond should belong to

the fully developed K–H-like regime, since
√

K +
Br1

≈ 0.68 for MP. Cases HP2′ and HP3′,
which differ in terms of their Φxy anisotropy from the other HP cases (figure 9b), also
conform to (3.7). However, as will be shown later in § 3.5 through spectral analysis, case
MP does not fall into the fully developed K–H-like regime, but does show evidence of the
onset of the regime. It should be noted that (3.7) was originally obtained for conditions
where

√
K x

+ >
√

K y
+, i.e. streamwise-preferential substrates, therefore it may not be

suitable for the substrates under consideration here. For conditions where
√

K x
+ <

√
K y

+,
Sharma et al. (2017) demonstrated that linear stability analysis leads to different results,
described using

K Br2
+ =

√
K x

+K y
+ tanh

(
h+

18

√
K x

+

K y
+

)
tanh2

(
h+√
K x

+

)
≈
√

K x
+K y

+, (3.8)

where the hyperbolic tangent terms again become ≈ 1. The results from applying (3.8) to
the simulation data of the cases in table 1 are shown in figure 9(d). They are similar to
those in figure 9(c) obtained using (3.7). Anisotropy becomes reflected more prominently
when characterizing the substrates using (3.8), as HP2′ and HP3′ become more separated
from HP2 and HP3 in figure 9(d) compared with figure 9(c). Sharma et al. (2017)
reported that for

√
K Br2

+ > 2 the K–H-like instability becomes fully developed. For HP3,√
K Br2

+ ≈ 2.2, and in § 3.5 it will be shown through spectral analysis that the HP cases
belong to the K–H-like regime. As such, the instability criteria of Gómez-de Segura et al.
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Figure 9. Mean velocity shift plotted against (a) wall-normal permeability, (b) the streamwise to wall-normal
anisotropy ratio, (c) effective permeability of (3.7) and (d) effective permeability of (3.8). Here �, blue, LP1;
♦, blue, LP2; ✩, blue, LP3; ©, purple, MP; ♦, red, HP3; ✩, red, HP2; ©, red, HP1; ♦, blue, HP3′; ✩, green,
HP2′. The vertical lines mark the thresholds beyond which the cases are expected to fall into the fully developed
K–H-like regime according to Gómez-de Segura & García-Mayoral (2019) and Sharma, Gomez-de Segura &
Garcia-Mayoral (2017).

(2018) and Sharma et al. (2017) are good predictors of when the turbulence dynamics
over porous structures cease to be canonical. The first-order influence of K y

+ becomes
evident when taking into account that the weakening of the wall-blocking effect at the
surface is directly tied to this permeability component. Once permeability at the surface
is present to a sufficiently large degree to permit the penetration of momentum into the
substrate, the fluid moving below the surface must then contend with the horizontal
blockage imposed by the substrate which is characterized by K x

+ and K z
+, giving these

permeability components second-order significance. The two criteria of (3.7) and (3.8)
will probably exhibit more distinguishable results from one another for substrates with
higher anisotropy, whereas here they give results which are mostly similar to one another.

Earlier in the introduction, it was mentioned that the predominance of K y
+ may seem

to contradict the results of Kuwata & Suga (2017) for their porous structure which only
had the K y

+ permeability component but differed little from smooth-wall turbulence. This
can be made more confusing when one considers the earlier work of Jiménez et al. (2001),
where a permeability boundary condition was used to allow for wall transpiration and
the resulting flows became K–H-like. For the case of Kuwata & Suga (2017), the lack
of any wall-parallel permeability prevents flow from recirculating within the substrate.
This has the effect of inhibiting wall transpiration since there is no room for the fluid to
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Figure 10. Quadrant maps of u′ and v′ at y+ ≈ 5: (a) smooth-wall, (b) LP1, (c) HP1. The dashed lines are
hyperbolas marking |u′+v′+| = 8 × −u′v′+. The colour bar indicates the frequency of events in each bin of
the map.

achieve recirculation underneath. This restriction does not exist for the boundary condition
used by Jiménez et al. (2001), which implicitly assumes that the permeable wall has a
plenum chamber underneath it. This is also the reason why the acoustic liners of Shahzad
et al. (2023) demonstrate non-smooth-wall behaviour, despite only having K y

+. The liners
consist of arrays of cavities with a perforated lid on top of them. Each cavity has multiple
orifices with diameters larger than 80 in wall units over it, making the cavity volume
relatively large. Each cavity in effect then behaves as a plenum chamber where the fluid
can recirculate.

3.5. Turbulence structure
In figure 6, it was shown that the HP cases are distinguished by higher Reynolds shear
stresses in the region close to the permeable surface. Quadrant analysis of the velocity
fluctuations can be leveraged to examine the change in turbulence intensities with respect
to flow events, in particular the contribution from ejections (Q2, u′ < 0 and v′ > 0) and
sweeps (Q4, u′ > 0 and v′ < 0). This is shown for the y+ ≈ 5 plane above the surface
in figure 10. Going from an impenetrable smooth-wall (figure 10a) to the permeable case
of LP1 (figure 10b) and finally the greater permeable case of HP1 (figure 10c), a tilting
and expansion of the joint probability distributions of u′ and v′ is observed. As explained
by Manes et al. (2011), the tilting is attributable to an increase in v′ activity, which is
also evident when viewing the r.m.s. velocity fluctuations in figure 11, particularly when
going from the LP to the HP cases. In terms of flow events, sweeps become increasingly
dominant as the permeability increases, in both strength and number of occurrences,
contributing to a greater generation of Reynolds shear stress in the near-surface region.
Structurally, the rounder distribution for the HP1 is also indicative of turbulence growing
less anisotropic (Suga, Mori & Kaneda 2011). These features are common to flows over
permeable surfaces, be they canopies (Finnigan, Shaw & Patton 2009) or porous media
(Manes et al. 2011).

The experiments of Manes et al. (2011) also showed the distribution of points initially
growing and then subsequently shrinking when going from their lowest permeability to
their highest permeability case (refer to figure 15 of their manuscript). They attributed
this behaviour to the near-surface flow mechanism changing to a mixing-layer type for the
highest permeability porous media they investigated, similar to what occurs for turbulence
over canopies (Finnigan 2000). The highest permeability examined by Manes et al. (2011),
for which they observed mixing-layer behaviour, was

√
K+ ≈ 17 at Reτ ≈ 3848. This is
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Figure 11. Distributions of the r.m.s. velocity fluctuations for the bulk turbulent flow overlying the porous
substrates.

considerably greater than the highest effective wall-normal permeability investigated here
(
√

K y
+ ≈ 3.4), suggesting that the cases in this study do not fall into the category of

mixing-layer type behaviour.
The differences in turbulence structure become better established by examining the

spectral energy densities of the velocity fluctuations. The spectra of cases HP1 and LP1
in figure 12 are different from one another, with HP1 exhibiting energetic scales at large
spanwise wavelengths which are absent in LP1. For case MP, the onset of the instability
can be inferred from the emergence of energetic scales at large λ+z , but it is not yet
intensified. This spanwise coherent component is attributable to the existence of spanwise
rollers associated with a K–H-like instability over permeable boundaries (Gómez-de
Segura & García-Mayoral 2019). A visualization of the vortical structures appearing in
the HP cases is shown in figure 13. Additionally, by using spectral proper orthogonal
decomposition (SPOD), modes are obtained for HP1 which capture the spanwise coherent
rollers but for LP1, and indeed all of the LP cases, no such modes are obtained. These
SPOD modes for HP1 may be viewed in Appendix B, but have been omitted from the
main text for brevity. The emergence of these K–H-like structures is the cause behind
the intensification of turbulent activity in the proximity of the substrate surface and drag
increase.

Recalling the drag decomposition in figure 7, it was observed that increased
streamwise-preferential anisotropy had a drag reducing effect in the LP cases, albeit a
small one. As it is clear now that these cases belong to the smooth-wall-like turbulence
regime, this makes the trend observed for drag change in line with the results of Gómez-de
Segura & García-Mayoral (2019). In the smooth-wall-like regime, the changes in drag
are due to the ‘virtual-origin’ effect (Luchini et al. 1991; Jiménez 1994; Luchini 1996;
García-Mayoral et al. 2019; Ibrahim et al. 2021; Habibi Khorasani et al. 2022b), where the
Reynolds shear stress generating quasistreamwise vortices can become displaced farther
away from the surface where a slip velocity is present, resulting in a net drag reduction.
This linear mechanism of passive drag reduction is only achievable so long as the flow
surrounding the surface remains quasilaminar (Luchini 2015) and becomes negated beyond
it. Owing to their smooth-wall-like quality, the drag components of LP1, LP2 and LP3 are
likely quantifiable in terms of virtual origins using the approach of Ibrahim et al. (2021),
but this has not been carried out here.
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Figure 12. Premultiplied two-dimensional spectral energy densities: (a,e,i) kxkzEuu; (b, f,j) kxkzEvv ;
(c,g,k) kxkzEww; (d,h,l) kxkzEuv at y+ ≈ 5. Here (a–d) HP1; (e–h) MP; (i–l) LP1.

h = 0.3δ
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0.15δ

Figure 13. Vortex visualization using the Q-criterion above substrate HP1 in an x–y slice through the
simulation domain. Vortex cores (light colour) are regions of Q > 0 (high vorticity) and surrounded by a sheet
(dark colour) of Q < 0 (high shear). The hot and cold regions below the surface represent positive and negative
wall-normal velocity fluctuations, respectively. Flow direction is from left to right.

4. Surface flow

The focus is now placed on the permeable surface of the substrates at y+ = 0, which is the
region directly in contact with the overlying turbulent flow. Figure 14 shows the velocity
and pressure fluctuations at y+ = 0; the differences that were observed in the flow fields of
HP1 and LP1 above the surface (figure 4) are also reflected here. It can be observed from
figure 14(a) that HP1 lacks the streaky patterns of LP1, shown in figure 14(b), but has more
intense activity. The imprint of the surface geometry is also more clearly visible in the flow
field of HP1. For the wall-normal velocity, spanwise coherent patterns are observable for
HP1 (figure 14c) whereas such coherency is not discernible for LP1 (figure 14d).
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Figure 14. Instantaneous fluctuations of (a,b) streamwise velocity, (c,d) wall-normal velocity and
(e, f ) pressure at y+ = 0. Here (a,c,e) HP1; (b,d, f ) LP1. Flow direction is from left to right. The white regions
represent the solid rods of the substrate.

The spectral energy densities at the surface level in figure 15 reveal the signature of
the K–H-like structures (indicated with the red lines) observed in figure 12 for HP1.
For LP1, no such signature is visible and overall far less flow activity occurs at the
permeable surface. Additionally, the spectra show energetic regions at wavelengths equal
to the horizontal substrate spacings sx

+ and sz
+ (indicated using the green lines) along

with their subharmonic wavelengths. These regions represent the pore-coherent flow
which is modulated by the ambient turbulence, as similarly occurs over rough surfaces
(Abderrahaman-Elena et al. 2019). The pore-coherent flow component forming along
the spanwise direction repeats periodically along the streamwise direction in intervals of
λx

+ = sx
+. This flow component is modulated by the ambient turbulence and becomes

amplified over a broad range of spanwise wavelengths as can be seen in figure 15(a,b)
for the u and v spectra of HP1. A similar effect takes place for the pore-coherent flow
component forming along the streamwise direction. While the pore-coherent flow does
exist for LP1, it is significantly weaker compared with HP1. Regarding the HP2′ and
HP3′ cases, some delicate differences can be observed compared with HP2 and HP3, but
the assessment of them is not done here and is instead gathered in Appendix C for the
interested reader.

Ultimately, the modulated pore-coherent flow (areas enclosed by green lines in the
spectra of figure 15) and its subharmonics for the HP cases are seemingly attributable to
the energetically coherent ambient turbulent scales, particularly those associated with the
K–H-like structures. This would explain why the LP cases, despite having streamwise and
spanwise pitches of comparable size to those of the HP cases, do not exhibit similarly
strong pore-coherent flows. Broadband excitation of any flow component induced by
the geometry of the porous substrate is contingent upon the existence of broadband
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Figure 15. Premultiplied two-dimensional spectral densities: (a,e) kxkzEuu; (b, f ) kxkzEvv ; (c,g) kxkzEww;
(d,h) kxkzEuv at y+ = 0. Here (a–d) HP1; (e–h) LP1. The red lines demarcate 200 � λx

+ � 800 and 200 �
λz

+. The green lines enclose the signature of the pore-coherent flow which are coincident with λx
+ = sx

+ and
λz

+ = sz
+.

energetic turbulent scales. The observations made here have important implications for the
subsurface flow since the pore-coherent flow, which undergoes modulation by the ambient
turbulence, factors into the scale-selection that takes place at the surface and therefore the
scales of motion that occur inside the substrates.

5. Subsurface flow

Thus far, the effects due to the presence of a porous substrate have been examined for
the overlying flow. Attention is now given to the subsurface flow that develops inside the
substrates.

5.1. Mean flow, fluctuating velocities and Reynolds shear stress
First, the mean velocity along with the fluctuations of the different velocity components are
examined. Figure 16 demonstrates that the mean flow develops a region of negative shear
beneath the surface. This negative shear is induced by the overlying K–H-like structures
(Endrikat et al. 2021). As such, it is notable for the HP cases, while a very weak mean
flow develops inside the substrates for the LP cases. Within the region of negative shear,
the mean flow undergoes flow reversal. Larger wall-normal pore spacings cause this region
to become extended and the position at which the flow undergoes reversal corresponds to
the bottom of the first pore layer, i.e. y+ ≈ −sy

+. The exponential decay exhibits similarity
across the different HP cases, but requires both a large enough wall-normal pore spacing
and K–H-like flow to develop at the surface since the LP cases do not exhibit such a quality.

The Reynolds shear stress undergoes a sign reversal for the HP cases which the LP cases
do not (figure 17). As the first pore layer becomes deeper, this reversal region becomes
extended. Overall, however, −u′v′+ is weak below the surface. Cases HP2′ and HP3′
exhibit the same pattern as the other HP cases.

For the velocity fluctuations (figure 18), all of them gradually decay towards the floor of
the porous substrates where they become forcibly dampened due to the no-slip condition.
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Figure 16. Mean velocity profiles inside the substrates for the cases of table 1.
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Figure 17. Reynolds shear stress profiles inside the substrates for the cases of table 1.

However, both u′ and w′ undergo dampening at the bottom of each pore layer as evident by
their oscillatory patterns, whereas v′ largely demonstrates a monotonic decay. Considering
the downward path from a surface pore-opening; the wall-normal flow entering an opening
will not come across any barriers along the way towards the substrate floor since it moves
through what is essentially a narrow duct. For wall-parallel flow, however, at the bottom
of each pore layer the interconnected rods of the substrate’s geometry will impede any
in-plane motion. The overall magnitude of the spanwise velocity fluctuations is less than
those of the streamwise and wall-normal velocity fluctuations, which follows from the
spanwise velocity also being the least energetic velocity component at the surface of the
substrates. Note that the magnitude of v′ entering the substrate remains the same as it
is above-surface, while the magnitudes of both u′ and w′ become strongly diminished.
This relates to what was said earlier about v′ facing less impediment as it moves through
the substrate. The dense layer of solid at the substrate top strongly impedes wall-parallel
motion as it penetrates into the substrate compared with wall-normal motion. Here HP2′
and HP3′ have stronger streamwise fluctuations compared with HP2 and HP3. This can
primarily be attributed to their larger K +

x , resulting in less impedance of streamwise
momentum, but may also be attributable to the stronger turbulence at the surface (figures 6
and 11), resulting in a greater modulation of the subsurface flow, an aspect which will be
examined in § 6.

Some of the observations made here have been similarly reported for turbulent flows
over engineered dense canopies (Sharma & García-Mayoral 2020), such as the gradual
decay of the wall-normal fluctuations. Periodic dampening of the fluctuations were not
reported for the canopy flows, but this is attributable to the porous substrates having layers
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Figure 18. Streamwise (a), wall-normal (b) and spanwise (c) r.m.s. velocity fluctuations within the porous
substrates.

of interconnected solid elements whereas canopy posts are isolated from one another and
do not place similar restrictions on in-plane fluid motion. Similar dampening patterns were
observed in the DNS of Kuwata & Suga (2017) and the experiments of Suga, Okazaki &
Kuwata (2020).

5.2. Flow structure and features
The surface flow was described in § 4 and bearing in mind the observations made there
the subsurface flow is now examined by assessing the instantaneous fluctuations within
the first pore layer at y+ ≈ −15 in figure 19. The flow fields of both HP2 and HP3 show
spanwise elongated patterns in both their streamwise and wall-normal velocity fluctuations
(figure 19a,e,b, f ). The pressure fluctuations of both HP2 (figure 19i) and HP3 (figure 19j)
reflect the patterns of their streamwise and wall-normal velocity fluctuations. Kuwata &
Suga (2016) attributed the velocity fluctuations occurring within the porous substrate to
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Figure 20. Premultiplied spectral densities: (a,e,i,m) kxkzEuu; (b, f,j,n) kxkzEvv ; (c,g,k,o) kxkzEww; (d,h,l,p)
kxkzEuv at y+ ≈ −15. Here (a–d) HP2; (e–h) HP3; (i–l) HP2′; (m–p) HP3′. Note the differences in the overall
magnitude of the contours for the different cases. The green lines enclose the most energetically significant
parts of the pore-coherent flow and the red lines those of the K–H-like rollers.

the pressure fluctuations caused by the K–H-like flow at the surface. The observations
made here seem to agree with this, as the turbulence in the near-surface region of both
HP2 and HP3 falls into the K–H-like regime. The flow field of HP3′ (figure 19d,h,l) is
similar to HP3 (figure 19b, f,j) with no discernible differences existing between them. The
flow field of HP2′ in figure 19(c,g,k) shows a stronger spanwise coherency than HP2 in
figure 19(a,e,i) (this greater coherency can also be observed in the flow field at y+ = 0
in figure 32, and is attributed to the stronger K–H-like scales visible in the spectra of
figure 33).

More details are revealed by examining the spectra of the fluctuations within the first
pore layer at y+ = −15, shown in figure 20. The spectra of HP2 and HP3 (figures 20a–d
and 20e–h) show that almost no ambient turbulence scales penetrate into the substrate.
Only the pore-coherent flow remains energetically discernible, as seen by its spectral
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signature enclosed by the green lines of figure 20. The pore-coherent flow is also
diminished compared with the surface region (figure 33), but not as strongly as the ambient
turbulence.

For HP2′, its stronger K–H-like scales at the surface level lead to the survival of those
scales down to this depth within the substrate (the regions enclosed by the red lines
in figure 20i,j,l), although they are quite weak. Despite having the same wall-normal
permeability as HP2, the streamwise favourable anisotropy of HP2′ leads to stronger
turbulent scales at the surface which are then able to penetrate deeper into the substrate.

Owing to the fact that turbulence does not survive this deep into the porous substrates
for HP2, HP3, HP2′ and HP3′, the coherent patterns observed in their flow fields
(figure 19) must be attributed to the pore-coherent flow which remains detectable at
this depth. The broadband spanwise intensification of the pore-coherent flow, however, is
imparted to it from the surface level turbulence which possess spanwise coherent energetic
scales. The modulation persists throughout the substrate and hence why the spectra in
figure 20 show long patches of spanwise energetic scales, particularly for the wall-normal
velocity.

Ultimately, for the porous substrates under consideration here, there exists a notable
pore-coherent flow component below the surface, and in some cases weak scales of
ambient turbulence related to the K–H-like instability. Similarly, in flows over canopies the
fluctuations below the canopy tip-plane are attributed to the strong overlying cross-flow
rollers that develop due to the existence of a perturbed mixing layer (Sharma &
García-Mayoral 2020). As mentioned previously in § 3.5, for a mixing layer to emerge over
porous media, very high effective surface permeability (or permeability Reynolds number)
is required (Jiménez et al. 2001; Manes et al. 2011). Outside of this mixing layer regime,
the notable flow activity below the surface mainly resides in the pore-coherent scales of
the flow which undergo modulation by the turbulence at substrate’s surface. Manes et al.
(2011) examined whether the resulting eddy structures over their porous foams shared the
same characteristics as those reported over canopies and which are associated with an
inflectional instability of the mean velocity (White & Nepf 2007). They observed this to
not be the case for low to intermediate ranges of permeability. This also applies to the
porous substrates examined in this paper and the analysis done to quantify this is gathered
in Appendix B.

Before proceeding further, as a final examination to see whether the flow structure inside
the substrates undergoes any notable change deeper inside the substrate, the instantaneous
fluctuations as well as the spectra at y+ ≈ −55 for case HP1 alone are shown in figure 21.
One can witness that the patterns are overall similar to those observed at y+ ≈ −15 for
the rest of the HP cases, with the most notable scales of motion again being those of
the pore-coherent flow, while a weak footprint of the K–H-like scales are also present.
The existence of the latter at this depth is of course attributable to the stronger overlying
K–H-like structures of HP1. In addition, HP1 also lacks interconnected rod layers inside
the substrate which would impede downward directed flow. The explanation for the
spanwise coherence of the flow field is similar to what was previously described for the
flow at the shallower depth of y+ ≈ −15. The spectral signature of the pore-coherent flow
which encompasses a range of streamwise scales is repeated along the spanwise direction
at intervals equal to the spanwise spacing (λz

+ = sz
+), i.e. between two consecutive pores

along this direction. In essence, the patches are collections of narrow fingers of streamwise
velocity which are confined to the pores due to a microchannelization effect. These flow
elements appear as a spanwise coherent region macroscopically due to being modulated in
amplitude, which is what will be examined next.
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Figure 21. Instantaneous velocity fluctuations and premultiplied spectral energy densities of case HP1 at
y+ ≈ −55: (a) streamwise fluctuations, (b) wall-normal fluctuations, (c) pressure fluctuations; (d) kxkzEuu,
(e) kxkzEvv , ( f ) kxkzEww and (g) kxkzEuv . The green lines enclose the most energetically significant parts of the
pore-coherent flow and the red lines the surviving turbulence belonging to the K–H-like scales.
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Figure 22. Decomposition of fluctuating streamwise velocity of case HP1 at y+ ≈ −55 according to (2.2)
and (2.3): (a) u′; (b) u′′; (c) ũ.

6. Surface-flow induced AM of subsurface flow

The pore-coherent flow is subject to AM by the scales of the overlying ambient turbulence,
evidence of which was provided in the experimental investigation of Kim et al. (2020).
This phenomenon will now be examined for the substrates considered in this study.

The presence of a solid structure introduces spatial inhomogeneities to the flow field.
This gives rise to a dispersive velocity field, ũ, as defined in (2.3). Amplitude modulation,
however, is a dynamic effect that is not reflected in the time-averaged dispersive velocity
field. The fluctuating velocity along with its different components from (2.2) and (2.3) are
shown in figure 22 for case HP1. The dispersive velocity field is weak and does not have
irregularities, but as is evident in the spectra of figure 21(d), the pore-coherent flow which
resides in u′′ has a different spatial pattern.

Abderrahaman-Elena et al. (2019) conducted a Fourier analysis of the flow within
the roughness sublayer of rough-wall turbulence and proposed an algebraic model
for decomposing the velocity signals into its background and roughness-coherent (the
rough-wall analogue of the pore-flow) components. Their decomposition accounts for
the cross-interaction of the velocities across the different flow components and the
modulations that arise as a result of them. As such, the model can be used to decompose the
velocities even in the event that some degree of scale overlap between the background and
roughness-coherent flow exists. When scale-separation between the two flow components
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Figure 23. Raw (−−) and low-pass filtered (− −, red) spanwise-averaged velocity signals of case HP1:
(a) streamwise velocity fluctuations at both y+ ≈ 5 and y+ = 0, (b) streamwise velocity fluctuations at y+ ≈ 5
and wall-normal velocity fluctuations at y+ = 0. The solid to faded lines represent three successive time signals.

exist, the model functions similar to regular Fourier filtering. Since for the porous
substrates examined here the wavelengths of the pore-coherent flow and those of
the ambient turbulence do not significantly overlap, regular Fourier filtering has been
employed to separate the flow components and quantify AM. This is demonstrated in
figure 23, where the high-frequency (low-wavelength) amplitude-modulated signal of the
pore-coherent flow has been removed from the streamwise velocity signal at the surface
( y+ = 0) using low-pass filtering. This recovers the low-frequency (long-wavelength)
signal of the ambient turbulence. There does not seem to be a discernible AM effect above
the surface at y+ ≈ 5, as the pore-flow component (the undulations of the black line) does
not undergo notable changes in amplitude. The AM effect is similarly demonstrated for the
wall-normal velocity in figure 23. Note that this AM phenomenon is different from AM
observed in canonical turbulent flows between the inner and outer flow regions (Mathis,
Hutchins & Marusic 2009). That effect is due to the existence of large-scale structures
within the log-layer which emerge when the Reynolds number becomes sufficiently large
(Reτ > 1700).

The approach undertaken here to quantify AM follows that of Mathis et al. (2009),
where the correlation between the low-pass filtered (large-scale) streamwise velocity
fluctuations, u′

L, and the long-wavelength envelope of the high-pass filtered (small-scale)
velocity fluctuations, EL(u′

s), taken at two different fixed y positions ( y1 for the u′
L and y2

for u′
s) quantifies the degree of AM (note that u′

s can be any of the velocity components)

Ru( y1, y2) = u′L EL(u′
s)√

u′
L

2
√

EL(u′
s)

2
. (6.1)

In (6.1), E denotes the envelope of a signal and is acquired using the Hilbert transform. The
Hilbert transform of a real-valued function, f (t), produces another real-valued function,
f̃ (t). Together, f (t) and f̃ (t) form a harmonic conjugate pair and define the complex analytic
signal of f (t),

F(t) = f (t) + if̃ (t) = E(t)eiφ(t). (6.2)

This provides the instantaneous envelope, E(t), and phase, φ(t), allowing for the
demodulation of the original modulated signal, f (t). More details regarding the Hilbert
transform may be found in Mathis et al. (2009) and the references contained therein.
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Figure 24. Amplitude modulation of v by u. Panel (a) shows large-scale streamwise velocity fluctuations (−−)
at y+ ≈ +5 and the long-wavelength envelope of small-scale wall-normal velocity fluctuations (−−, red) at
y+ = 0 of case HP2; panel (b) shows the same, only with the envelope (−−, red) now phase-shifted by π.

Other approaches can also be used to the assess modulation effects, such as wavelet
analysis used by Baars et al. (2015) to quantify AM and frequency modulation effects.
The Hilbert-based approach, however, remains robust. The long-wavelength envelope of
small-scale velocity, EL(u′

s), obtained after taking the Hilbert transform of the velocity
time-signal, is then high-pass filtered to keep only the modulated small-scale velocity
signal. Unlike in experimental measurements, the velocity signals here are not single-point
measurements. Instead, spanwise-averaged one-dimensional velocity signals at different
y+ planes are used to first obtain instantaneous correlations and then followed by
ensemble-averaging over all temporal samples to obtain a single correlation coefficient.

Figure 24(a) shows how the small-scale wall-normal velocity fluctuations at the
permeable surface are modulated in amplitude by the large-scale streamwise velocity
fluctuations of the ambient turbulence above it. The envelope of v′

s rises and falls along
with the variations in the amplitude of u′

L. The high degree of correlation becomes clearer
when considering figure 24(b), where the envelope of v′

s is phase-shifted by π, making
it overlap to a significant extent with the signal of u′

L. This also demonstrates that events
of u and v are almost always in antiphase with respect to one another close to the surface.
Such a modulation effect is not observed between u′

L and w′
s in figure 25. This does not,

however, mean that a modulation of w does not take place, as all three velocity components
cross-interact with and modulate one another (Abderrahaman-Elena et al. 2019). It only
suggests that a modulating effect exclusively directed from u to w does not seem to be
occurring in this instance.

The instantaneous frequencies of the velocities can be calculated from their analytic
signals obtained using the Hilbert transform. These can then be used to calculate the
instantaneous phase-difference between the streamwise and wall-normal velocities. A
probability density histogram of instantaneous phase differences is shown in figure 26(b)
for case HP1, demonstrating that u′ and v′ are predominately in antiphase. The probability
density histogram for the AM correlation coefficient (6.1) is shown in figure 26(a) and
demonstrates the persistent presence of AM between the u′ and v′ as they evolve in time
while the same is not observed between u′ and w′ in figure 26(d,c).

Examination of the flow inside the substrates (figures 21 and 22) demonstrated that AM
is present within them. As such, it is of interest to see how deep the effect persists and
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also how its strength differs between the various substrates. Figure 27 displays the AM
effect on the wall-normal velocity at different depths for the substrates of table 1. The AM
remains quite strong halfway down into the substrates for the HP cases. It is much weaker
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Figure 27. Degree of AM of the wall-normal velocity. Light to darker shades correspond to y+ ≈ −5,
y+ ≈ −50 and y+ ≈ −110, respectively.

overall for the LP cases, highlighting how the energetic surface level dynamics of the HP
cases which fall into the K–H-like regime enhances this effect.

7. Summary and conclusions

Direct numerical simulations of turbulent flows in an open channel geometry where
the wall-side of the channel is covered by a porous substrate have been carried out
in this work. Anisotropic porous substrates with permeability components of different
values were first assessed in how they cause changes in the overlying turbulent flow.
When the wall-impedance condition becomes weakened, near-wall turbulence undergoes
a transition away from its canonical structure – characterized by the presence of streaks
and quasistreamwise vortices – to one where spanwise coherent structures reminiscent of
the K–H instability emerge.

The primary permeability component of significance in determining wall-impedance
is K y. An analysis using the K Br permeability criteria of Sharma et al. (2017) and
Gómez-de Segura et al. (2018) for predicting when turbulence transitions to a K–H-like
regime remains robust for the DNS data in this study. The K Br condition was obtained
using linear stability analysis of permeable wall boundary conditions derived using the
Darcy–Brinkman equation but remain applicable to the pore-scale resolved DNS data in
this study, indicating that the microstructure details of the porous substrates do not have a
leading-order impact on the instability. This agrees with the argument made by White &
Nepf (2007), who assessed that only the overall resistance of the porous layer is important
and not the details of its geometry in bringing about and sustaining the instability.

Past results in the literature using continuum-based approaches of representing a porous
region or using permeable wall boundary conditions have suggested that a reduction
in drag is perhaps attainable for certain combinations of permeability, particularly for
streamwise preferential anisotropy (Gómez-de Segura & García-Mayoral 2019). However,
none of the porous substrates examined here resulted in drag reduction (figure 5a).
Drag reduction in a passive manner can be obtained if a surface can simultaneously
weaken viscous dissipation while impeding turbulent mixing from taking place close
to its vicinity, an effect which is quantified in the ‘virtual-origin’ framework (Luchini
1996; Ibrahim et al. 2021). The weakening of viscous dissipation is typically quantified in
terms of a slip velocity, which is negligible for the porous substrates tested in this study.
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Figure 28. Conceptual sketch showing the evolution of turbulence over porous substrates. The lower limit√
K x

+K y
+ < 5 is based on (3.8) and the threshold shown in figure 9(d). The upper limit 15 <

√
K x

+K y
+ is

inferred from the results of Manes et al. (2011) in conjunction with (3.8).

Turbulent activity, however, increases in the vicinity of the surface such that the net effect
becomes one of drag increase (figure 7). Streamwise-preferential anisotropy does not lead
to a drag reducing effect, which can only occur in the canonical smooth-wall-like regime of
near-wall turbulence, and which only the LP cases belong to. They do, however, exhibit a
trend of drag decrease with increased streamwise-preferential anisotropy. Ultimately, drag
reduction using porous media must be assessed in terms of the slip-velocity (or slip-length)
they can cause at the surface.

At the surface of the porous media, spectral analysis reveals the existence of flow
signatures conforming to the geometry of the surface and with amplified levels of energy
(figure 15). Inside the porous substrates, the surviving turbulence scales become rapidly
dampened and the flow component which significant energy-wise is the pore-coherent flow
figure 20. The structure of the pore-coherent flow is geometry dependent, which makes the
microstructure of the porous medium, particularly at the surface, an important aspect of
its design.

The aforementioned pore-coherent flow undergoes significant AM by the ambient
turbulent motion present near the surface of the porous media. This AM effect extends
deep into the porous media, perturbing its flow and becoming a principal means of
inducing flow activity inside it. Stronger ambient turbulence at the surface strengthens this
effect, such that it becomes more pronounced for the cases which fall into the K–H-like
regime (figure 26). This is because the K–H-like structures lead to greater momentum
exchange between the surface and subsurface flow. These flow features are conceptually
illustrated in figure 28, where going from left to right indicates an increase in K +

y and
ultimately K Br

+.
Knowledge of the regimes illustrated in figure 28 and the scale interaction which occurs

between the porous media and turbulent flow can be leveraged in applications involving
heat and mass transfer. Unlike flow momentum, heat transfer stands to benefit from more
intense turbulent activity in the vicinity of the porous medium, as this will lead to greater
thermal convection. To what degree this can be exploited, is one example of an interesting
line of inquiry that can be pursued in relation to turbulence and porous media.

Acknowledgements. The authors express their gratitude to the reviewers for providing many useful critiques
of the paper during its review process. The numerical simulations in this work were conducted using the
computational resources of PDC Center for High Performance Computing, KTH Royal Institute of Technology,
and the National Supercomputer Centre (NSC), Linköping University. Access to the resources of these

984 A63-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.198


S.M. Habibi Khorasani, M. Luhar and S. Bagheri

supercomputing centres was granted by the Swedish National Infrastructure for Computing (SNIC) through
project 2022/1-38.

Funding. This work was supported through grant SSF-FFL15-0001 from the Swedish Foundation for Strategic
Research (SSF) and by the Air Force Office of Scientific Research (AFOSR) through grant A9550-19-1-7027
(programme managers Dr G. Abate and Dr D. Smith).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Seyed Morteza Habibi Khorasani https://orcid.org/0000-0001-6520-3261;
Mitul Luhar https://orcid.org/0000-0002-7970-9762;
Shervin Bagheri https://orcid.org/0000-0002-8209-1449.

Appendix A. Grid resolution assessment

While the resolution requirements for regular channel flow simulations are well-established
throughout the literature (Kim & Moin 1985; Lee & Moser 2015), problems involving
fluid–solid interactions need to be assessed on a case-by-case basis. The baseline grid has
a resolution of (Nx, Ny, Nz) = (1620, 324, 810). This grid more than suffices for resolving
the bulk flow region, but it must be determined whether or not the wall-parallel resolution
is sufficient for resolving the solid phase of the porous substrates. With this baseline
configuration, the number of wall-parallel grid-points per substrate rod thickness becomes
d/
x,z = 10. This was chosen based on the grid study results of Sharma & García-Mayoral
(2020) which was conducted for turbulent flows over canopies. They showed that such
a concentration of points per canopy element was enough to resolve them and their
induced flow. Nevertheless, to ensure that this resolution is sufficient, a grid study for
case HP1 was carried out using both a coarser and refined grid. The refined grid had
a resolution of (Nx, Ny, Nz) = (3240, 324, 1620) giving d/
x,z = 20 while the coarser
grid of (Nx, Ny, Nz) = (810, 324, 405) gave d/
x,z = 5. The wall-normal grid is kept
the same, which is stretched in the bulk flow region and achieves a constant spacing at
y ≈ 0.0042 ( y+ ≈ 15) resulting in d/
y = 25. Case HP1 is chosen since it is has some
the strongest flow activity in the substrate region and serves as an appropriate candidate for
grid resolution assessment of the HP cases. The LP cases are close to the smooth-wall limit
and have very little flow penetrating into the substrate, hence a separate grid resolution
assessment for them would be redundant.

From figure 29, it is clear that the baseline grid with d/
x,z = 10 resolves the flow in
both the bulk and substrate regions well with the results being grid independent at this
resolution. For the coarse grid with d/
x,z = 5, the discrepancy is highest immediately
below the surface for the r.m.s. wall-normal velocity fluctuations where the error is ≈7 %.
The sufficiency of the baseline grid resolution is further reinforced by the results in table 3,
where the calculated Darcy permeabilities for the porous substrates using the baseline
and refined grid resolutions is reported. No appreciable improvement in the permeability
estimates was achieved by increasing the number of grid points per rod from d/
x,z = 10
to d/
x,z = 20.

Appendix B. Assessment of whether or not the K–H-like structures are similar to
those of mixing-layer type flows

In the experiments of turbulent flows over porous metal foams conducted by Manes et al.
(2011), they examined whether the resulting turbulent flow at the permeable surface of
the media were similar to those reported by White & Nepf (2007) for sparse porous
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Figure 29. (a,d) Mean velocity, (b,e) r.m.s. velocity fluctuations and (c, f ) Reynolds shear stress of the
(a–c) bulk flow and (d–f ) substrate regions for HP1. The solid lines represent the results from using d/
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Case
√

K xo
+ √

K yo
+ √

K zo
+ √

K xo
+

HR

√
K yo

+
HR

√
K zo

+
HR 
x% 
y% 
z%

HP1 3.207 3.437 4.721 3.189 3.417 4.694 −0.56 −0.59 −0.58
HP2 2.738 2.623 3.844 2.723 2.608 3.823 −0.55 −0.58 −0.55
HP3 2.191 2.194 2.805 2.180 2.182 2.791 −0.51 −0.55 −0.50
MP 1.495 1.534 1.495 1.487 1.525 1.487 −0.54 −0.59 −0.54
LP1 1.038 0.734 1.038 1.032 0.729 1.032 −0.58 −0.69 −0.58
LP2 0.912 0.623 0.912 0.907 0.619 0.907 −0.55 −0.65 −0.55
LP3 0.503 0.503 0.503 0.499 0.499 0.499 −0.80 −0.80 −0.80

Table 3. Darcy permeability estimates for the substrates of table 1 using Stokes flow simulations of REVs
(such as those shown in figure 3). The permeabilities with the subscript HR have a grid resolution of d/
x,z =
20 and those without d/
x,z = 10. The last three columns list the differences in the permeabilities obtained
using the two resolutions.

arrays of cylinders serving as models for vegetation canopies. White & Nepf (2007)
demonstrated that the coherent motion at the top of the arrays exhibited a single dominant
frequency which was the same as that in free shear layers subject to K–H instability. They
therefore characterized the flows as being similar to mixing layers where the instability
originates at the inflection point of the mean velocity profile inside the porous region.
Manes et al. (2011) performed a similar frequency analysis, but observed that only for
their highest permeability case did the frequency approach the value associated with
mixing-layer type flows. They concluded that for low to moderate permeabilities, the
coherent turbulent motion in the vicinity of the permeable surface is not due to the
inflectional instability of the mean velocity profile. In a recent DNS study by Wang et al.
(2022) where transfer entropy was used to measure causal interactions between porous
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Figure 30. The SPOD eigenvalues of the (a) streamwise and (b) wall-normal velocity fluctuations at the
surface ( y+ = 0) of HP1. The peak in the leading SPOD mode at f = 0.22Ū/θ is circled in red. The shading
of the curves varies from dark to bright as the mode number increases.

0

1200

2400

z+

x+

0

1200

2400

x+

(b)(a)

Figure 31. First SPOD mode at f = 0.22Ū/θ of the (a) streamwise and (b) wall-normal velocity fluctuations
at the surface ( y+ = 0) of HP1.

media and turbulent flows, the frequencies at which these interaction took place over the
various porous media were in agreement with the results of Manes et al. (2011).

The dominant frequency reported by White & Nepf (2007) was f = 0.032Ū/θ , where
θ = ∫∞

−∞(1/4 + (U − Ū/
U)2) dy; 
U = Uy=δ − UP; Ū = (Uy=δ + UP)/2 and UP is
the velocity deep inside the porous medium. The frequencies reported by Manes et al.
(2011) for their porous media (1.9 ≤ √

K+ ≤ 8.4) were much higher than 0.032 and only
the case of

√
K+ = 17.2 had a frequency close to f = 0.032Ū/θ .

A similar frequency characterization was performed for HP1 which has the highest
wall-normal permeability

√
K y

+ = 3.4 out of all the cases in table 1. First, SPOD (Towne,
Schmidt & Colonius 2018) is applied to the surface flow of HP1. Examination of the SPOD
eigenvalues in figure 30 reveals a peak in the leading SPOD mode at f = 0.22Ū/θ for
both the streamwise and wall-normal velocity components. This is close to f ≈ 0.22Ū/θ

reported by Manes et al. (2011) for their metal foam which had a permeability of
√

K+ =
3.2. Observing the first SPOD mode for both the streamwise and wall-normal velocity in
figure 31 reveals recurrent spanwise-elongated patterns. Such patterns are not recovered
in the SPOD modes for any of the LP cases (not shown). This further demonstrates the
regime distinction that was described in §§ 3.4 and 3.5. So it can be concluded that for the
porous substrates of table 1, the mixing-layer analogy does not hold, in agreement with
the conclusion made by Manes et al. (2011).
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Figure 33. Premultiplied two-dimensional spectral densities: (a,e,i,m) kxkzEuu; (b, f,j,n) kxkzEvv ;
(c,g,k,o) kxkzEww; (d,h,l,p) kxkzEuv at y+ = 0. Here (a–d) case HP2; (e–h) case HP3; (i–l) case HP2′;
(m–p) case HP3′. The green lines enclose the most energetically significant parts of the pore-coherent flow
and the red lines those of the K–H-like rollers.

Appendix C. Comparison of surface flow features between HP2, HP3 and
HP2′, HP3′

Thus far, it has been shown that the flow structure close to the surface of the substrates are
quite different between the LP and HP cases. The LP cases are essentially smooth-wall-like
and permit very little turbulent activity from taking place in the proximity of the surface
and hence do not motivate further examination. The question now posed is how significant
is the pore-coherent flow – determined by wavelengths of the porous medium – relative to
the existence of the K–H-like structures. For this purpose, HP2′ and HP3′ are examined.
They are similar to HP2 and HP3 but with sx and sz exchanged (table 1). The wall-normal
permeability in this way remains the same but the pore-coherent flow will change and its

984 A63-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.198


Turbulent flows over porous lattices

effect on the flow can be scrutinized. Additionally, the HP2′ and HP3′ have streamwise
preferential anisotropy which will be factored into the analysis that follows.

When considering the flow fields of HP2 and HP2′, one can observe a greater degree
of spanwise coherence for HP2′ in both its streamwise velocity field (figure 32c) and
its wall-normal velocity field (figure 32g) compared with those of HP2 (figure 32a,g).
The spatial patterns of the velocity and pressure fields for HP2′ (figure 32c,g,k) also visibly
mirror one another, whereas this is less evident for HP2 (figure 32a,e,i).

Examining the spectra in figure 33, it can be observed that the ambient turbulence has
broadband spanwise coherent scales, in the range of 200 � λx

+ � 800 and 200 � λz
+,

in both the streamwise velocity (figure 33i,m), wall-normal velocity (figure 33j,n) and
Reynolds shear stress (figure 33l,p) spectra of HP2′ and HP3′. The structure of the ambient
turbulence in HP2 and HP3 is similar. The spectra of HP2′ do, however, demonstrate
a patch of more energetic broadband spanwise scales compared with HP2 (this could
be the reason why the flow field of HP2′ in figure 32 manifests a greater degree of
spanwise coherency compared with HP2). When examining the pore-coherent flow, which
are the areas enclosed by green lines in the spectra of figure 33, the broadband streamwise
component of them overlap with the ambient turbulence scales to a certain extent such
that a degree of scale interaction is taking place between them, but it is not over a wide
enough range of scales to alter the structure of the ambient turbulence. For HP2′ and
HP3′, the spanwise pitch length, sz

+, is larger compared with HP2 and HP3, and thus
the streamwise pore-coherent flow component overlaps with the ambient turbulence to a
greater extent, but still not great enough to be disruptive to the overall dynamics of the
turbulence in the near-surface region.
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