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Abstract

Consider positive solutions of the one dimensional heat equation. The space variable x lies
in (-a, a): the time variable t in (0, oo). When the solution u satisfies (i) u(±a,t) = 0, and
(ii) w(-,0) is logconcave, we give a new proof based on the Maximum Principle, that, for any
fixed t > 0, u(-,t) remains logconcave. The same proof techniques are used to establish several
new results related to this, including results concerning joint concavity in (x, t) similar to those
considered in Kennington [ 15].

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 35 K 05.

1. Introduction

1.1. First results. Section 1 states our main results. They are proved in
Sections 4, 5 and 6. In the intervening Sections 2 and 3 some standard
results, needed for the new proofs, are collected together.

Let Q, c Rd be an open bounded convex set. Except in those parts of
Section 1 where we review results published elsewhere, d — 1. A real function
/ denned over a convex set Q is called logconcave if / is a nonnegative
function on Q and if, with

xx = (1 -T)XO + TXI,

f(XT) > (f(Xo))l-T(f(Xl)Y VXO,X{ € n , T G [0, 1].
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[2] Positive solutions of the one dimensional heat equation 247

Similarly, a real function / denned over a convex set Cl is called logconvex if
/ is a positive function on Q and 1 / / is logconcave.

Consider solutions to the heat equation: u = u(x, t) defined for x e Cl and
for t > 0 satisfying

T— = AM in Q. x (0, oo),

W M = 0 ondfix[0,oo),

u(x,O) = uo(x) Vxefi.

where Mo is a given function with wo vanishing on dfi.
The concavity properties of solutions of problems similar to problem (P)

have been considered in many papers, including [3], [10], [11], [16] and,
most recently, Kennington [15]. Theorem 1.3, proved in Section 6 below is
suggested by Kennington's results, though our methods of proof are different
from Kennington's.

Our methods of proof can also be used to give new proofs, when d = 1,
of older results, for example Theorem 1.0, which we now state.

THEOREM 1.0 {d > 1). Let Cl be a convex open subset ofRd and let u0, the
initial distribution of temperature on Q, be positive and logconcave.

Then the distribution of temperature u{z,t), solving problem (P), at any
later time t is logconcave.

The one dimensional version which is stated below, and some generali-
sations, are the main results which will be proved in this paper. A func-
tion / e C2{-a,a) which is positive in (-a,a) is logconcave if and only if
(log/)** < 0 in (-a,a): it is strictly logconcave if and only if (log/)** < 0
in (-a, a). With the same restrictions of smoothness and positivity of/ ,

ffxx-tt(log/)** =
P

THEOREM 1.0. Let Q. = (-a, a) c R and let wo, the initial distribution of
temperature on (-a, a), satisfy

(i) Mo 6 C°°[-a, a], UQ and all even-order derivatives are zero atx — ±a,
(ii) in (-a, a) the function UQ is {strictly) positive, «o > 0, and strictly

logconcave,
(iii) sup[_aia]|^|<oo.

Let u e C°° solve problem (P). Then the distribution of temperature u(x, t),
at any later time t is a strictly logconcave function ofx.

The proof is given in Section 4.
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248 G. Keady [3]

We remark that the smoothness hypotheses above are stronger than neces-
sary for the result. A limiting argument, not given in this paper, can be used
to weaken them, and to establish the d = 1 version of Theorem 1.0 (d > 1).

Define
*2 ' x nx

The function U\{., t) is, at each fixed t concave in the space variable, and

n2 ( n2t

Returning to positive solutions of problem (P), since

(1.1a) u(x, t) ~cui{x, t) asr-KX),

with

(1.1b) / 0 ( ) ^ ,
a J -a *•<*

we have
uuxx — ul 2

— S >c2 as t -+ oo,
U\Ulxx-Ufx

and so u is logconcave at large time. For the proof, see Lemma 3.5. When it
is convenient to use this in our new proofs it will be used.

Relaxing the condition that Q be bounded, for this paragraph take fl = R.
Define

2

At each fixed value of x, Koo is a solution of the heat equation. Further, at
each fixed value of t, Koo is logconcave in x. This provides an example to
check against Theorem 1.0. The function Koo is the kernel function for the
heat equation on R.

We remark that the logconcavity of the kernel function for other convex
domains was the route through to the first proof of Theorem 1.0, which was
given by Brascamp and Lieb [3]. Korevaar [16] gave a different proof. Both
these methods of proof, (and some others, including one based on Burger's
equation) are given in a survey in Keady [13]. Other surveys are given in
Kawohl [10], [11], and Ellis and Newman [5]. The survey [13] also indi-
cates some of the ways that the proofs given in this paper can be adapted
to new problems, not just the heat equation problem treated in this paper.
Our method of proof, which we give in Section 4, can be modified to prove
various other results. These results are Theorems 1.2, 4.1 (and Theorem
A. 1.0, applying to the space discretisation of the heat problem (P), given in
Keady [13]), all of which appear to be new, and Theorem 1.3. Our methods
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[4] Positive solutions of the one dimensional heat equation 249

of proof are similar to those used, for elliptic problems, in Makar-Limanov
[17], Acker, Payne and Philippin [1], Keady [12] and Caffarelli and Friedman
[4]-

As stated earlier, Theorem 1.0 is true for Q c Rd when d > 1 as well
as d = 1. Theorem 1.1 (i) below is a very elementary result which is true
only for d — 1 as it relies on the coincidence of superharmonic and concave
function classes in R1. (For a counterexample in d = 2 consider the large
time asymptotics when Q is a disk.) A more difficult result is Theorem 1.1 (ii)
which also has only been proved when d = 1. Theorem 1.1 (ii) concerns
quasiconcave functions. A nonnegative function / defined on a convex set
Q is said to be quasiconcave if {x \ f(x) > c} is convex for all positive c.

THEOREM 1.1. Let Q = {-a, a) c R1. Let u solve problem (P).

(i) Let Mo be concave. Then u{x,t), at any later time t, is a concave
function of x.

(ii) If Mo is positive and quasiconcave, a characterisation for which is

Uox > 0 for - a < x <£, and UQX < 0 for £ < x < a,

then so is u(-, t) at any subsequent time t.

PROOF, (i) We first prove the result when we have more regularity: namely
where Mo € C°°([-a,a]) with Mo and all even-order derivatives zero at x =
±a. (The general situation with less regularity on Mo can be obtained from
this particular situation by a limiting procedure.) Thus we consider such
smooth «o, and suppose that MO is not identically zero. Since Mo is concave,
ut(x,0) = uxx(x,0) < 0. Next the function ut satisfies

= (ut)xx inQx(0,oo),

M, = 0 ondfix[0,oo),

0 ) < 0 VxeQ.

Thus, by the Maximum Principle,

u, < 0 inQx(0,oo).

Hence uxx{x,t) < 0 in Q x (0,oo) so that, at fixed t > 0 , u(-,t) is strictly
concave.

(ii) The maximum principle proof of this is complicated and is omitted
here. See Matano [18], Nickel [19]. The sketch of a proof in Keady [13]
requires the additional hypothesis that UQ be such that u is (real-)analytic
in a domain containing Cl x [0, oo) in order to apply level curve arguments.
Polya [20] gives a different proof.
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t

The new proof of Theorem 1.0 given in Section 4 is similar to the elemen-
tary proof of Theorem 1.1 (i) in that both use the Maximum Principle.

(For the definition of when a nonnegative function / defined over a con-
vex set Q is called a-concave see [3] or [13]. Theorem 1.1 establishes the
persistence of a-concavity when a = 1 and when a = -oo, while Theorem 1.0
establishes the persistence when a = 0. For other values of a < 1 there are
counterexamples: see the corrections to [13]. For the use of different tech-
niques on a different parabolic problem, but still establishing the persistence
of power concavity, see Benilan and Vazquez [2].)

Theorem 1.0 generalises in various ways. As one example we mention
Theorem 4.1. Theorem 4.1 can be established by the methods of Section 4
but not, it appears, by the methods of the earlier proofs of Theorem 1.0.

1.2. More general boundary data. More general boundary conditions than
u(±a, t) = 0 could be considered. We define

(1.2) I2 = uuxx-u
2

x.

Indeed our proof of Theorem 1.0 will follow from Theorem 1.2:

THEOREM 1.2. Suppose that u is a solution of the heat equation, is positive
in il x [0, oo), and is sufficiently smooth. Suppose that Ii is known to be
nonpositive

(i) initially, that is at t = 0, and
(ii) in neighbourhoods of the boundaries x — ±a.

Then the distribution of temperature u(-,t) is, at each fixed value oft>0,
a logconcave function ofx.

PROOF. This is an immediate consequence of Theorem 4.0(a) the proof
of which will be given in Section 4.

1.3. Concavity jointly in (x, t). Kennington [15] has established results
suggesting Theorem 1.3 below.

Consider positive functions of the two variables (x, t). When these are
suitably smooth these are jointly concave (in (x,t)) if the matrix of second
partial derivatives is negative semidefinite. A positive function u(x, t), which
is suitably smooth, is jointly logconcave if and only if

h = uuxx -ul<0, J2 = uu,t - u2 < 0,

Ki = (uuxx - u2
x){uuu - u]) - (uuxt - uxu,f > 0.

The function U\, being a product of a function of t which is logconcave and
of a function of JC which is (log-)concave, is an example of a function which
is jointly logconcave on (—a, a) x (0, oo).

https://doi.org/10.1017/S1446788700035679 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035679


[6] Positive solutions of the one dimensional heat equation 251

THEOREM 1.3. Let Q = {-a, a) c R. Suppose that u is a solution of the
heat equation, is positive and is sufficiently smooth. Suppose that h and -K2

(and hence J2) are known to be nonpositive

(i) initially, that is at t — 0, and
(ii) in neighbourhoods of the boundaries x = ±a.

Then the distribution of temperature u(x, t) is a logconcave function of(x, t)
in(-a,a)x(0,T).

PROOF. Combine the results of Theorems 1.2 and 6.0. The latter is proved
in Section 6.1.

The questions in Section 6.2 (and generalisations in [13]) are of the fol-
lowing form: given that «o is logconcave (in x) and then further hypotheses
on M0, what further properties does u have beyond those established by The-
orem 1.0. Perhaps the simplest question is Question 6.1: do the level curves
of the kernel function K enclose convex sets in (x, *)-space?

Another paper with some consideration of joint-concavity questions aris-
ing in parabolic problems is Keady and Stakgold [14].

2. Maximum principles

The following notation will be used:

QT = (a,b)x(0,T),

ST = ([a, b] x {0}) U ({a} x [0, T)) U ({b} x [0, T)).

The set ST will be called the parabolic boundary of QT.
The following form of the Maximum Principle is a special case of that

proved in Protter and Weinberger [21], Theorem 4, p. 172 (where less smooth-
ness on the coefficients is required than that in our hypotheses). An alter-
native source for the proof, when A\, AQ and / are continuous on QT is
Friedman [7], Theorem 1, p. 34.

MAXIMUM PRINCIPLE 2.1. Let AQ, A\ and f belong to C(QT). Suppose u
is in the function space

UGC1(QT),

and satisfies

du d2u . du . r^n • „-Al—+A0u = f>0 inQT,
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where

(2.1) ^ 0 > 0 in fir-

(i)//
m = inf u, m < 0,

Or

anrf /Aere exists {£,, x) € Gr such that u{£, T) = m, then u = m in Qx.
(ii) Ifu is not identically zero throughout QT and

M > 0 on ST,

then

u > 0 in QT-

(iii) (77H? Hopf result.) With the hypotheses in (ii), ifu(b,r) = 0 for 0 <

In Sections 4, 5 and 6 we will need Maximum Principles where we do not
know the sign of AQ. Following Protter and Weinberger [21, p. 175] we have
the following.

MAXIMUM PRINCIPLE 2.2. Suppose that all the hypotheses of Maximum
Principle 2.1 are satisfied except for the nonnegativity constraint (2.1).

Then the conclusions (ii), (iii) of Maximum Principle 2.1 remain true.

PROOF. Let

zW2> > o,
satisfy the hypotheses of Maximum Principle 2.2. Let

Define the operator L(1) by

With

QT

the nonnegativity constraint (2.1) of Maximum Principle 2.1 on A^ is sat-
isfied.

(Similar results are given in Sperb [22, p. 21].)
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[8] Positive solutions of the one dimensional heat equation 253

Extensions of these Maximum Principles, proved in Gidas, Ni and Niren-
berg [8] are used in [4] and [13].

3. Miscellaneous results for the heat equation

Various bounds used in the proofs of Theorems 1.0, 1.2, 1.3, etc. are
given in this section. Detailed proofs of the theorems stated in this section
are given in [13].

THEOREM 3.1 (Bounds on u). Let u solve the heat problem (P) with UQ €
C[-a,a] (with uo(±a) = 0). Then

i —a

is a monotone decreasing function of t for t > 0.
Furthermore

max \u(x,t)\ = lim Mn(t)
l/2n,

—a<x<a n—KX>

and, defining
Moo(t) = max \u(x, t)\,

—a<x<a

A/QO is a monotone decreasing function of t for t >0.

THEOREM 3.2 (Bounds on \ux\). Let u solve the heat problem (P) with
M0 e Cl[-a,a] (with uo(±a) = 0). Define

M£>(t)= max \ux(x,t)\.
—a<x<a

Then Moo is a monotone decreasing function of t for t > 0.

Engler [6] proves a generalisation of this where the interval (-a,a) c R is
replaced by convex Q c R ( / , and \ux\ is replaced by |Vw|.

THEOREM 3.3 (Bounds on Ii). Let u solve the heat problem (P) with Mo
satisfying hypothesis (i) of Theorem 1.0. Then u, uxx, ux and Ii — uuxx - ux,
are bounded on [-a, a] x [0, oo).

PROOF. We have already seen that

0 < M < max M0 on (-a, a) x (0, oo),

and
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254 G. Keady [9]

0 < u2 < max u\x on (-a, a) x (0, oo).
l-a,a]

All that remains to do is to bound u, = uxx. We have

{uxx)t = {uxx)xx in {-a, a) x (0, oo),

uxx(±a, t)-0 for all t e (0, oo),

uxx(x, 0) = uOxx for all x e (-a, a).

Thus

minio, min(wOx.x)f < uxx{x,t) < max {0, max(uOxx) \ in (-a,a)x(0,oo).
I l-a,a] ) \ [-a,a] )

This completes the proof.

THEOREM 3.4 (Bounds on «,/«). Let u solve the heat problem (P) with the
initial data UQ satisfying hypotheses (i) and (iii) of Theorem 1.0 and u0 > 0
/« (-a, a), with

^ ^ ^ forxe(-a,a).

Then
-< — <P+ on (-a, a) x [0, oo).

PROOF. We have, with v — ut - 0u, that v satisfies the heat equation, that
v(±a, t) — 0 for all t and, that, initially,

0?_ - fi)u0 < v(x,0) < (fi+ - 0)uo.

With P set to /?_, the Maximum Principle 2.1 gives ut - P-u > 0 on (-a, a) x
[0,oo). Similarly, with p set to P+, the Maximum Principle 2.1 gives ut —
P+u<0on (-a, a) x [0,oo).

LEMMA 3.5 (Asymptotics for 72). Let u be a positive solution of the heat
problem (P) with the initial data wo satisfying hypothesis (i) of Theorem 1.0.
Let c be defined by equation (1.1b). Then

uuxx -ux 2— ^ > c2 as / -> oo,
u\ulxx-u\x

where the convergence is uniform in x.

PROOF. Write u = cu\ + R where

R(x,t) = exp (^-^j X>exp (~U J ) «m
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[10] Positive solutions of the one dimensional heat equation 255

where the bj are Fourier coefficients obtained from UQ. Since «o is smooth,
for all t > 0 the preceding Fourier series for u and the similar Fourier series
for its jc-derivatives are absolutely and uniformly convergent. We have

uuxx - u\ =C2 + cuixxR + cu{Rxx - 2culxRx + RRXX - R2
X

The second term is order exp(-(37r2?)/(4a2)), and the result follows.

THEOREM 3.6 (A bound on h at the boundary). Let u solve the heat prob-
lem (P) with «o satisfying all the hypotheses of Theorem 1.0, and in addition
part (ii) strengthened so that with

h = uuxx - u\,

on [-a, a], Ii is strictly negative initially. Then there exists 8 , independent of
t, such that

h < 0 for -a<x<-a + d and for a - S < x <a.

PROOF. The Hopf form of the Maximum Principle 2.1 gives that

h < 0 at x = ±a , t > 0,

and so there exists a positive function S(t) such that

I2 < 0 for - a < x < -a + d(t) and a - d(t) < x < a.

Next we make some estimates on S(t).
Using the hypothesis in the theorem and continuity of h in a neighbour-

hood of t = 0 we have that, for some small e > 0,

S{t) > So > 0 for 0 < t < s.

Next using Lemma 3.5 on the asymptotic behaviour of solutions of prob-
lem (P) as t —> oo, for some large T < oo,

S{t) >doo>0 for T < t < oo.

We could take Soo = a.
Using the continuity of h in [-a, a] x [e, T] we have, from h(±a, t) < 0,

that

8{t) > Sin, > 0 for e < t < T.

This establishes the result.
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Remark. The smoothness hypothesis (i) of Theorem 1.0 is much stronger
than is needed for Theorems 3.3 to 3.6.

4. Concavity properties in x at fixed t

The function (log u)x satisfies Burger's equation,

((lOgW)*), - ((l0gM)x)^ = 2(l0gK)jt((l0gH)jt);t.

Differentiating with respect to x gives, with

I0 = {\ogu)xx,

ht - hxx 7r^0x = ^ 0 '

Denning
Ik = uk(\ogu)xx,

we have

ht ~ hxx + 2(k - \)^Ikx = (lu-kIk + k(k - 1)^|) Ik,

= ±(2uul + (k2-k-2)u2
x)Ik.

The preceding equations are of the form (with n = 1)
n

(4.1) I,-Ixx + AlIx + AoI = 0, Ao = J2"jIJ-
7=0

If, with some I = wli with w > 0, we have

a, > 0 for 0 < j < n,

the Maximum Principle 2.1, in a straightforward application (except for cer-
tain technicalities about unbounded coefficients and boundedness of / ) , will
give

7 ( 0 , J C ) < 0 initially => I(x,t)<0 W > 0.

With I = ukh we do not have a, > 0. (A table of a, for various W
with / = W{u,ux)h is given in Keady [13].) However it is possible to use
Maximum Principle 2.2 as follows. Our proof of Theorem 1.0 (as also that
of Theorem 4.1) will follow from a combination of a boundary concavity
result and Theorem 1.2. Theorem 1.2 is an immediate consequence of an
Interior Concavity Maximum Principle, Theorem 4.0 below. Only part (a)
and not part (b) will be needed.
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[12] Positive solutions of the one dimensional heat equation 257

THEOREM 4.0 (Interior concavity maximum principle). Let u be a positive
solution of the heat equation on QT-

(a) Ifh <0onST then I2<0on QT.
(b) Ifh >0onST then I2 > 0 on QT.

PROOF. This follows from Maximum Principle 2.2 (and the results of Sec-
tion 3 in as much as they ensure that the coefficients in the equation (4.1)
are bounded as is required by Maximum Principle 2.2).

PROOF OF THEOREM 1.0 WITH d = 1. We first prove the result with the
stronger hypotheses of Theorem 3.6. From the asymptotic behaviour given
in Lemma 3.5 it can be seen that, for T sufficiently large, «(•, T) is strictly
logconcave. Thus

h(x, T)<0 for - a < x < a.

Also, by the hypotheses on UQ

/2(x,0) < 0 for -a<x <a.

By Theorem 3.6, for 0 < t < T and some e > 0

h(x, t) < 0 for - a < x < -a + e and for a - e < x < a,

and also, by Theorem 3.3, h is bounded on [-a, a] x [0, T]. By Theorems
3.3 and 3.4 the coefficients are also bounded on [-a + e,a - e] x [0, T], so
that, applying the Interior Concavity Maximum Principle, Theorem 4.0, on
[-a + e,a - e] x [0, T], establishes the theorem, provided h(uo) > 0 on the
closed interval [-a, a].

The hypothesis (ii) of Theorem 1.0 is that h{uo) > 0 on the open interval
(—a, a). Such «o may be approximated as close as we wish in the maximum
norm by M|,£) with h(u^) > 0 on the closed interval [-a,a]. Combining this
with the result of the first paragraph established the theorem.

The strictness, h < 0, in the interior comes from a further application of
Maximum Principle 2.2.

Since translates of logconcave functions are not necessarily logconcave, the
following cannot obviously be deduced from Theorem 1.0.

THEOREM 4.1. Let u solve

ut = uxx,

u(±a,t) = M> 0,

u(x,0) = uo(x) >M>0, uo(±a) = M,

with UQ logconcave.
Then u(-,t) is logconcave at all subsequent times.
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PROOF. The results of Section 3 can be extended to cover the changed
Dirichlet conditions. For example an informal description of the extension
of Lemma 3.5 is as follows. Since

1 cos I

with
-if

the function u(-,t) is concave at large time and

I2(M + cux) = Mcuixx + c2l2(ui) < 0,

for M > 0 and c > 0.

After noting that we still have

I2(±a) = -ux(±a)2 < 0,

the proof is identical to that of Theorem 1.0.

5. Logconvexity in t

Define
J2 = uuu - u2.

Observe that, when u satisfies the heat equation, J2 = (h)xx-

THEOREM 5.0. Let Q = (-a,a) c R. Suppose that u satisfies the heat
equation, is positive and is sufficiently smooth. Suppose that J2>0

(i) initially, that is for t = 0, and
(ii) in neighbourhoods of the boundaries x — ±a.

Then, at fixed values of x, the distribution of temperature u{x,t) is a log-
convex function oft.

REMARK. The function (M + u\) for M > 0 satisfies the hypotheses of
Theorem 5.0 and for it J2 > 0 everywhere, the case where M is zero corre-
sponding to J2 being zero everywhere.

PROOF. A calculation gives

and hence

(hx), - (hx)xx + ^f(hx)x - ^(

J2t - Jlxx + —^-Jlx - -yiph = -jji

https://doi.org/10.1017/S1446788700035679 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035679


[14] Positive solutions of the one dimensional heat equation 259

Also J2 > 0 at, and in from, the boundary and initially. Using this an
application of the Maximum Principle 2.2 establishes the theorem.

REMARK. Consider positive solutions of problem (P). Because the coeffi-
cients in equation (5.1) become unbounded as x tends to ±a, merely knowing
that J2 > 0 on the parabolic boundary Sy is not good enough to establish that
72 > 0 in QT. For all positive solutions of problem (P), J2{±a) = 0 — J2X{±a)
while

Jixx(±a) = 2(ux(±a)uxtl(±a) - uxt(±a)2).
With the additional hypothesis that J2 > 0 initially, the first of the two terms
on the right hand side is positive. (This is because J2 > 0 implies that
un > 0, and with this known around the boundary the Maximum Principle
establishes that utt > 0 in the interior, and ux{±a)uxtt{±a) > 0.) Necessary
for hypothesis (ii), for problem (P), is that J2xx > 0.

Consideration of the asymptotics at large time indicates that very few
positive solutions of problem (P) will have Ji > 0 on Q x [0,00).

6. Concavity properties jointly in (x, t)

6.1. Logconcavity jointly in (x, t). Kennington [15] has established, by
different techniques, for problems similar to ours, various results concerning
concavity jointly in (JC, /).

Consider positive functions of the two variables (x, t). When these are
suitably smooth these are jointly concave (in (x, t)) if the matrix of second
partial derivatives is negative semidefinite. A positive function u(x, t), which
is suitably smooth, is jointly logconcave if and only if

h = uuxx -u2
x<0, J2 = uu,, - u2 < 0,

K2 = (uuxx - u2
x){uun - uj) - (uux, - uxutf > 0.

The final condition immediately above can be written

K2/u = uH+T>0,

where
H = (uxxutt - u2

xt),

T = (-ut
2uxx + 2uxutux, - ux

2ult).

We remark that I2 < 0 and K2 > 0 implies that J2 < 0.
Although the function u\ satisfies the hypotheses, Theorem 6.0 is unlikely

to be useful for problem (P). Outside the context of the zero Dirichlet condi-
tions of problem (P), there are other positive solutions of the heat equation,
which have joint concavity properties.
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THEOREM 6.0 (Interior joint concavity maximum principle). Let Q =
{-a, a) c R. Suppose that u solves the heat equation, is positive, and is suf-

ficiently smooth. Suppose that (a) I2 < 0 in QT- Suppose also that K2 is
nonnegative

(i) initially, that is for t = 0, and
(ii) in neighbourhoods of the boundaries x = ±a.

Then K2 > 0 everywhere and, using (a), the distribution of temperature
u{-, •) is a logconcave function of{x,t).

REMARK. A similar joint-logconvexity maximum principle is obtained
when condition (a) above is replaced by (b) I2 > 0 in QT.

PROOF. Our proof consists in verifying that K2 satisfies a parabolic equa-
tion,

(6.1) K2, - K2xx + A i K2x + A0K2 = 0,

with
Ax = d/(ul2), Ao = -C0/(u

2I2),

where
C, = 2(uI2)x, Co = 2(-«J + u3utt).

The behaviour of the coefficients is such that the Maximum Principle 2.2 can
be applied to find that the property K2 > 0 persists if it is true initially.

(Though not used in proofs in this paper the identities of this paragraph
may be of interest and of use in settling the questions given in Section 6.2.
We have

Using that u solves the heat equation we have

~ M ^ (uuxt-K = d e t f ( " M ' M ^ ( u u x t u x u t ) \2 \ { u u u u ) ( u u - u j ) J'{uuxt-uxut)

Thus a solution u of the heat equation is jointly logconcave if and only if
(-I2) is a nonnegative function which is logconvex in JC at each fixed value
of t. Another identity is that

K2/u = det
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Thus K2/1A is a Hankel determinant of order three, as denned in [9, p. 70],
while h is a Hankel determinant of order two.)

Consider problem (P). Using the asymptotic expressions (1.1a) and (1.1b),
it can be verified that, for sufficiently large time, each of -I2 and T are
positive. Also -Ji and K2 tend to zero faster than u2. In particular the
solution given by the right-hand side of (1.1a), that is (1.1c), is jointly log-
concave. More generally consider the problem in Theorem 4.1. Since the
boundary data is independent of time ut{±a) = 0 so that Ji{±a) = 0 and
so K2(±a) = -u(±a)2uxt(±a)2 < 0. Thus for such problems it will not be
common for the solution to be jointly logconcave.

6.2. Other joint concavity questions for problem (P). The kernel function
K for the heat equation is logconcave in x. It is not jointly logconcave
everywhere in (x, t). (An explicit calculation of J2 for the infinite-interval
kernel function A",*, shows that J2 can take on either sign depending on where
in (x, t) it is evaluated. Similarly an explicit calculation of K2 for the infinite-
interval kernel function A"oo shows that then K2 is negative for all (x,t).)

To see that K is not jointly logconcave everywhere in (x, t), consider
asymptotics at large time. Recall that K2{u\) = 0. Also, for solutions of
problem (P), Ki is zero on x = ±a. We have

„ , . ^ / n2t\ (nx\ (nx
K(x,x,t) ~ exp [~—2} cos ( _ j cos(—

+ / 7T2A . (nx\ . (nx\
exp r sin — sin — ) .

\ a2 J \ a ) V a )
From this a calculation establishes that the sign of K2(K) at large time de-
pends on x and on x.

Although not jointly logconcave in (x, t), the kernel function for the heat
equation may, however, be jointly quasiconcave in (x,t). Evidence for this
is that, for the function A^, this property can be easily verified.

QUESTION 6.1. Let £1 = (a, b) c R and let K be the kernel function for the
heat equation, with zero data at the endpoints of the interval. Let

T{K) = (-K")3 + 2K'K"K'" - (K')2K"".

Is the distribution of temperature K{x, x, t) a quasiconcave function of(x, t),
that is, is T(K) > Ofor all time?

Evidence in favour of a positive answer to Question 6.1 is that, not only is
the result true when £1 = R, but the result is also true when a = 0 and b = 00.
In this latter case the kernel Ks is given by

Ks(x, x, t) = K^x.x, t) - K^x, -x, t).
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The REDUCE programs used to check that T(Koo) > 0 and T(KS) > 0 are
given in Keady [13]. (We also have, for the finite interval (-a, a), numerical
evidence in favour of a positive answer to Question 6.1.)

Many identities related to attempts to answer the questions in this section
are given in [13]. One is that

(6.2) T l = - h L - .
u u\ u\

From the right hand equality of (6.2) it is immediate that, for solutions with
h < 0, T > 0 wherever K2 > 0.

Since K2/u = T + uH, at points where K2 < 0 and T > 0 we must have
H < 0. Also from equations (6.2) at points where utT > 0 we have H < 0.
More might be true. We have that H(K) < 0 for sufficiently large values of
time.

QUESTION 6.2. Is H{K) < 0 everywhere?

We remark that

(6.3) Ht - Hxx + 2-^Hx - 2-^H = 0,

at points where ut = 0, H — — u2
xt < 0, and at x = ±a, H < 0. This suggests

that if H < 0 initially it is likely that H will stay nonpositive.
Several related questions are discussed in [13].
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