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ABSTRACT

We revisit the dividend payment problem in the dual model of Avanzi et al.
([2–4]). Using the fluctuation theory of spectrally positive Lévy processes, we
give a short exposition in which we show the optimality of barrier strategies for
all such Lévy processes. Moreover, we characterize the optimal barrier using
the functional inverse of a scale function. We also consider the capital injection
problem of [4] and show that its value function has a very similar form to the
one in which the horizon is the time of ruin.
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1. INTRODUCTION

In the so-called dual model, the surplus of a company is modeled by a Lévy
process with positive jumps (spectrally positive Lévy processes); see [2–4, 7]. This
is an appropriate model for a company driven by inventions or discoveries. Our
goal is to determine the optimal dividend strategy until the time of ruin for all
spectrally positive Lévy processes.

In [2], Avanzi and Gerber consider the dividend payment problem when the
Lévy process is assumed to be the sum of an independent Brownian motion
and a compound Poisson process with i.i.d. positive hyper-exponential jumps;
they determine the optimal strategy among the set of barrier strategies. (The
special case in which the jumps are exponentially distributed was obtained by
[7].) The optimality over all admissible strategies is later shown by [4] using the
verification approach in [7].

In this paper, using the fluctuation theory, we give a short proof of the opti-
mality of barrier strategies for all spectrally positive Lévy processes of bounded
or unbounded variation. Moreover, the optimal barrier is characterized using
a functional inverse of the scale functions. We also consider the cash injection
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problem considered in [4]: a variant of the dividend payment problem in which
the shareholders are expected to give capital injection in order to avoid ruin. We
observe that the form of the value function for this problem is very similar to
the first problem we consider in which the horizon is the time of ruin.

Let us describe the dividend payment problems under consideration in more
specific terms. We will denote the surplus of a company by a spectrally positive
Lévy process X = {Xt; t ≥ 0} whose Laplace exponent is given by

ψ(s) := logE
[
e−sX1

] = cs + 1
2
σ 2s2

+
∫

(0,∞)

(e−sz − 1 + sz1{0<z<1})ν( dz), s ∈ R, (1.1)

where ν is a Lévy measure with the support (0, ∞) that satisfies the integrability
condition

∫
(0,∞)

(1 ∧ z2)ν( dz) < ∞. It has paths of bounded variation if and
only if σ = 0 and

∫
(0,1) z ν( dz) < ∞; in this case, we write (1.1) as

ψ(s) = ds +
∫

(0,∞)

(e−sz − 1)ν( dz), s ∈ R,

with d := c + ∫
(0,1) z ν( dz). We exclude the trivial case in which X is a subor-

dinator (i.e., X has monotone paths a.s.). This assumption implies that d > 0
when X is of bounded variation.

Let Px be the conditional probability under which X0 = x (also let P ≡ P0),
and let F := {Ft : t ≥ 0} be the filtration generated by X. Using this, the drift of
X is given by

μ := E[X1] = −ψ ′(0+). (1.2)

We also assume that μ < ∞ (and hence |ψ ′(0+)| < ∞) to ensure that the
problem is nontrivial.

1.1. The dividend payment problem until the time of ruin

We first consider a control problem in which the goal is to maximize the ex-
pected net present value (NPV) of dividends until ruin. A (dividend) strategy
π := {

Lπ
t ; t ≥ 0

}
is given by a nondecreasing, right-continuous and F-adapted

process starting at zero. Corresponding to every strategy π , we associate a con-
trolled surplus process Uπ = {Uπ

t : t ≥ 0}, which is defined by

Uπ
t := Xt − Lπ

t , t ≥ 0,

whereUπ
0− = x is the initial surplus and Lπ

0− = 0. The time of ruin is defined to
be

σπ := inf
{
t > 0 : Uπ

t < 0
}
.
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A lump sum payment must be smaller than the available funds and hence it is
required that

Lπ
t − Lπ

t− ≤ Uπ
t−, t ≤ σπ a.s. (1.3)

Let � be the set of all admissible strategies satisfying (1.3). The problem is to
compute, for q > 0, the expected NPV of dividends until ruin

vπ(x) := Ex

[∫ σπ

0
e−qt dLπ

t

]
, π ∈ �,

and to obtain an admissible strategy that maximizes it, if such a strategy exists.
Hence, the problem is written as

v(x) := sup
π∈�

vπ(x), x ≥ 0. (1.4)

1.2. Dividend payment problem with capital injections

In this variant of the dividend payment problem, the time horizon is infinity,
and the shareholders are required to inject just enough cash to keep the com-
pany alive. A strategy is now a pair π̄ := {

Lπ̄
t , Rπ̄

t ; t ≥ 0
}
, where Lπ̄ is the

cumulative amount of dividends as in the classical dividend problem and Rπ̄ is
again a nondecreasing, right-continuous andF-adapted process starting at zero,
representing the cumulative amount of injected capital satisfying∫ ∞

0
e−qt dRπ̄

t < ∞, a.s. (1.5)

Assuming that ϕ > 1 is the cost per unit injected capital, we want to maximize

v̄π̄ (x) := Ex

[∫ ∞

0
e−qt dLπ̄

t − ϕ

∫ ∞

0
e−qt dRπ̄

t

]
, x ≥ 0.

Hence, the problem is

v̄(x) := sup
π̄∈�̄

v̄π̄ (x), x ≥ 0,

where �̄ is the set of all admissible strategies that satisfy (1.3) and (1.5).

1.3. Outline

In this note, we give a short proof showing that for a general spectrally positive
Lévy process, barrier strategies are optimal for both problems, and we give a
simple characterization of the optimal barriers in terms of the scale functions;
see (2.13) and (3.4). It is interesting to note that the forms of the value functions
(3.1) and (3.5) are the same, while the characterizations of barrier levels are in
terms of different scale functions. Also, while, in the spectrally negative model,
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optimal strategies may not lie in the set of barrier strategies, our results show
that the dual model can be solved in general by a barrier strategy regardless of
the Lévy measure. Regarding the spectrally negative Lévy model, we refer the
reader to [6] for examples where barrier strategies are suboptimal and to [15] for
a sufficient condition for optimality.

The structure of the rest of the paper is as follows. In Section 2, we solve
the optimal dividend problem in which the time horizon is the time of ruin. In
this section, we first collect a few results about the scale functions for spectrally
one-sided Lévy processes.We then construct a candidate optimal solution out of
barrier strategies byC1 (resp.C2) conditions at the barrier when X is of bounded
(resp. unbounded) variation, and verify its optimality. In Section 3, we solve the
dividend payment problem with capital injections, where we follow the same
plan as the one described for Section 2. We conclude the paper with numerical
examples in Section 4.

2. SOLUTION OF THE DIVIDEND PROBLEM UNTIL THE TIME OF RUIN

For the dividend problem we described in Section 1.1, a barrier strategy at level
a ≥ 0 is denoted by πa :=

{
Lat ; t ≤ σa

}
, where for all t ≥ 0 :

Lat := sup
0≤s≤t

(Xs − a) ∨ 0,

Ua
t := Xt − Lat ,

and σa := inf
{
t > 0 : Ua

t < 0
}
. The corresponding expected NPV of dividends

becomes

va(x) := Ex

[∫ σa

0
e−qt dLat

]
, 0 ≤ x ≤ a. (2.1)

Extending (2.1) to the whole R+,

va(x) =
{

va(x), 0 ≤ x ≤ a,
x− a + va(a), x > a. (2.2)

Our objective is to show that the optimal control lies in the class of barrier strate-
gies and to identify a∗ such that v = va∗ .

2.1. Scale functions

Fix q > 0. For any spectrally positive Lévy process, there exists a function called
the q-scale function

W(q) : R �→ [0, ∞),
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which is zero on (−∞, 0), continuous and strictly increasing on [0, ∞), and is
characterized by the Laplace transform:∫ ∞

0
e−sxW(q)(x) dx = 1

ψ(s) − q
, s > �(q), (2.3)

where
�(q) := sup{λ ≥ 0 : ψ(λ) = q}.

Here, the Laplace exponent ψ in (1.1) is known to be zero at the origin, convex
on R+; therefore, �(q) is well defined and is strictly positive as q > 0. We also
define

Z(q)(x) := 1 + q
∫ x

0
W(q)(y) dy, x ∈ R,

and its anti-derivative

Z
(q)

(y) :=
∫ y

0
Z(q)(z) dz = y+ q

∫ y

0

∫ z

0
W(q)(w) dw dz, y ∈ R.

Notice that becauseW(q) is uniformly zero on the negative half line, we have

Z(q)(y) = 1 and Z
(q)

(y) = y, y ≤ 0. (2.4)

Remark 2.1. (1) If X is of unbounded variation, it is known that W(q) is
C1(0, ∞); see, e.g., Chan et al. [9]. Hence, Z

(q)
is C2(0, ∞) and C1(R) for

the bounded variation case, while it is C3(0, ∞) and C2(R) for the unbounded
variation case.

(2) Regarding the asymptotic behavior near zero, we have that

W(q)(0) =
{
0, if X is of unbounded variation
1
d
, if X is of bounded variation

}
, (2.5)

and

W(q)′(0+) := lim
x↓0

W(q)′(x) =
⎧⎨⎩

2
σ 2 , if σ > 0
∞, if σ = 0 and ν(0, ∞) = ∞
q+ν(0,∞)

d2 , if X is compound Poisson

⎫⎬⎭ .

(2.6)

2.2. Constructing a candidate value function

The following is a direct application of the results given in Theorem 1 of [5] (see,
in particular, page 167 of this reference).
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Lemma 2.1. For every 0 ≤ x ≤ a,

va(x) = −k(a − x) + Z(q)(a − x)
Z(q)(a)

k(a),

where

k(y) := Z
(q)

(y) − 1
�(q)

Z(q)(y) + ψ ′(0+)

q
, y ≥ 0. (2.7)

Remark 2.2. Observe that k(0) = − 1
�(q)

+ ψ ′(0+)

q (< 0 by the convexity of ψ on
[0, ∞)). As a result,

va(a) = 1
�(q)

− ψ ′(0+)

q
+ k(a)
Z(q)(a)

, a ≥ 0.

By (2.2), for x > a,

va(x) = (x− a) + 1
�(q)

− ψ ′(0+)

q
+ k(a)
Z(q)(a)

.

On the other hand, by (2.4), k(y) = y− 1
�(q)

+ ψ ′(0+)

q for any negative y. Therefore,
regardless of whether a is larger than x or not, we can write

va(x) = −k(a − x) + Z(q)(a − x)
Z(q)(a)

k(a), a, x ≥ 0. (2.8)

Remark 2.3. The function |k(x)|, x ≥ 0, is uniformly bounded by |k(0)| < ∞,
which follows from the stochastic representation of this function in [5]. As a re-
sult, using the duality and Wiener–Hopf factorization of spectrally positive Lévy
processes (see, e.g., pages 73–74 and 212–213 of [13]),

lim
a↑∞

va(a) = lim
a↑∞

[
1

�(q)
− ψ ′(0+)

q
+ k(a)
Z(q)(a)

]
= 1

�(q)
− ψ ′(0+)

q

= E[(S− X)η(q)] + E[Xη(q)] = E[Sη(q)],

where St := sup0≤s≤t(Xs ∨ 0) and η(q) is an exponential random variable with
parameter q > 0 that is independent of X.

This asymptotic behavior is consistent with that of the expected NPV of divi-
dends ṽa, when X is a spectrally negative process, of a given barrier strategy start-
ing at the barrier:

lim
a↑∞

ṽa(a) = E[Sη(q)],

which is equation (3.15) in [5].
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We note that va, for any a ≥ 0, is clearly continuous everywhere on [0, ∞)

with va(0) = 0. Here, we shall examine the smoothness of va at x = a to obtain
a candidate barrier level a∗. In particular, we will choose a∗ so that va∗ is C1

for the case X is of bounded variation and C2 for the case X is of unbounded
variation.

Fix x �= a. By differentiating (2.8), we obtain that

v′
a(x) = Z(q)(a − x) − qW(q)(a − x)�(a), (2.9)

and when X is of unbounded variation (see Remark 2.1 (1))

v′′
a (x) = −qW(q)(a − x) + qW(q)′(a − x)�(a), (2.10)

where

�(a) := 1
�(q)

+ k(a)
Z(q)(a)

, a > 0. (2.11)

Substituting (2.7) into (2.11), we see that �(a) = 0 if and only if

Z
(q)

(a) = −ψ ′(0+)

q

(
= μ

q

)
. (2.12)

On the other hand, since Z
(q)

(x) is strictly increasing, it goes to∞ as x ↑ ∞ and
to −∞ as x ↓ 0, there exists a unique solution to (2.12). Because Z

(q)
(0) = 0,

the solution is strictly positive if and only ifμ > 0.We will denote our candidate
barrier level by

a∗ =
⎧⎨⎩
(
Z

(q)
)−1 (

μ

q

)
> 0 if μ > 0,

0 if μ ≤ 0.
(2.13)

The following proposition states that with this choice of barrier level, the corre-
sponding expected NPV function (2.2) is smooth enough to apply the verifica-
tion arguments addressed below. In view of Remark 2.1 (1), the smoothness at
barrier level a is the only point of concern.

Proposition 2.1. Suppose a∗ > 0.

(i) If X is of bounded variation, va is continuously differentiable on (0, ∞) if and
only if a = a∗.

(ii) If X is of unbounded variation, va is continuously differentiable on (0, ∞) for
all a > 0. However, va is twice continuously differentiable on (0, ∞) if and
only if a = a∗.

Proof. (i) Because Z(q) and W(q) are continuous on R and R\{0}, respec-
tively, it is clear in view of (2.9) that the differentiability holds anywhere on
(0, ∞)\{a}. In order to show for x = a, letting x ↑ a in (2.9),

v′
a(a−) = 1 − qW(q)(0)�(a).
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Since, when X is of bounded variationW(q)(0) �= 0 (see (2.5)), v′
a(a−) = 1 only

when �(a) = 0, which happens only when a = a∗.
(ii) When X is of unbounded variation W(q)(0) = 0, therefore v′

a(a−) = 1
for all a > 0. The differentiability on (0, ∞)\{a} is clear similarly to (i).

Regarding the twice differentiability, becauseW(q) andW(q)′ are continuous
on R and R\{0}, respectively, it is clear in view of (2.10) that the twice differen-
tiability holds anywhere on (0, ∞)\{a}. On the other hand,

v′′
a∗(x) = −qW(q)(a∗ − x), (2.14)

from which it follows that v′′
a∗(a∗−) = 0 sinceW(q)(0) = 0. For any other choice

of a, v′′
a (a−) �= 0, which follows from (2.6) and (2.10).

We shall show below that a∗, as determined in (2.13), is indeed the optimal
barrier level and (2.2) with a = a∗, which can be written as

va∗(x) =
{

−Z
(q)

(a∗ − x) − ψ ′(0+)

q = −Z
(q)

(a∗ − x) + μ

q , if μ > 0,

x, if μ ≤ 0,
(2.15)

for any x ≥ 0, is the value function of the dividend payment problem.

2.3. Verification

By Remark 2.1 (1) and Lemma 2.1, va∗ defined in (2.15) is C2(0, ∞) (resp.
C1(0, ∞)) when X is of unbounded (resp. bounded) variation. Moreover, it is
clear that va∗(0) = 0 in both cases. Therefore, we can use Proposition 4 of [5],
which is a generic verification theorem for the dividend payment problems of
any Lévy process. (Also see Lemma 3.1 of [7].) From this theorem, it follows
that to prove the optimality of va∗ it is sufficient to demonstrate the following
variational inequality:

max
{
(L − q)va∗(x), 1 − v′

a∗(x)
} = 0, x > 0. (2.16)

Here, L is the infinitesimal generator associated with the process X applied to a
sufficiently smooth function f

L f (x) := −c f ′(x)+1
2
σ 2 f ′′(x)+

∫ ∞

0

[
f (x+ z) − f (x) − f ′(x)z1{0<z<1}

]
ν( dz).

We show that va∗ indeed satisfies (2.16) and its optimality over all admissible
strategies �.

Theorem 2.1. We have v = va∗ as defined in (2.15) and πa∗ is the optimal strategy
over �.

Proof. We will verify that va∗ satisfies (2.16) in four steps.
Step 1. Suppose a∗ > 0. By Lemma 2.1, it is clear that v′

a∗(a∗) = 1. Moreover,
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by (2.14), we have that v′′
a∗(x) < 0, for x ∈ (0, a∗). Hence , v′

a∗(x) is decreasing
on (0, a∗). This shows, for 0 < x < a∗, we have 1 − v′

a∗(x) ≤ 0.
Step 2. Again suppose a∗ > 0. Because of our assumption that ψ ′(0+) > −∞,
Proposition 2 of [5] implies that, with X̃ := −X and g(x) := Z

(q)
(x)+ψ ′(0+)/q,

the process {e−q(t∧T(0,a∗))g(X̃t∧T(0,a∗)
); t ≥ 0} for T(0,a∗) := inf{t > 0 : X̃t /∈ (0, a∗)}

is amartingale. Now, thanks to the smoothness of Z
(q)

as inRemark 2.1 (1), Itô’s
lemma applies. In particular, following the same line of arguments presented in
Section 4 of [8], this implies that

∫ t∧T(0,a∗)

0 e−qs(L − q)g(X̃s) ds = 0, t ≥ 0 a.s.
Hence, we must have (L−q)g(x) = 0 for 0 < x < a∗. In view of (2.15), we have
(L − q)va∗(x) = 0 for all 0 < x < a∗.
Step 3. For x ≥ a∗, by (2.2), we have 1 − v′

a∗(x) = 0.
Step 4. Suppose a∗ > 0. Thanks to the smoothness of va∗ at x = a∗, which we
proved in Proposition 2.1, Step 2 implies that (L − q)va∗(a∗) = 0. Due to the
form of va∗ on x ≥ a∗ as in (2.2), Lva∗(x) is a constant. On the other hand,
qva∗(x) is increasing in x. Hence, (L − q)va∗(x) is decreasing on [a∗, ∞) and it
follows that (L − q)va∗(x) ≤ 0 for x ≥ a∗.

Now, suppose a∗ = 0 (thus μ ≤ 0). Then f (x) := va∗(x) = x and (L −
q)va∗(x) = (L − q) f (x) = L f (x) − qx, which is bounded from above by 0
because L f (x) = μ ≤ 0 for any x ≥ 0.

3. SOLUTION OF THE DIVIDEND PROBLEM WITH CAPITAL INJECTION

For the capital injection problem as defined in Section 1.2, we consider the dou-
bly reflected Lévy process with upper barrier b > 0 and lower barrier 0 of the
form

Vb
t := Xt − Lbt + R0

t , t ≥ 0.

As shown by [16], this is aMarkov process taking values only on [0, b]. By mod-
ifying Theorem 1 of [5], for any b > 0 and 0 ≤ x ≤ b, we obtain that

Ex

[∫ ∞

0
e−qt dLbt

]
= −Z

(q)
(b − x) − ψ ′(0+)

q
+ Z(q)(b)
qW(q)b)

Z(q)(b − x),

Ex

[∫ ∞

0
e−qt dR0

t

]
= Z(q)(b − x)

qW(q)(b)
.

Hence, the expected payoff corresponding to the strategy π̄b := t{Lbt , R0
t ; t ≥ 0}

∈ �̄ is

v̄b(x) := −Z
(q)

(b − x) − ψ ′(0+)

q
+ Z(q)(b) − ϕ

qW(q)(b)
Z(q)(b − x), 0 ≤ x ≤ b.

(3.1)
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Similarly to our observations in Remark 2.2, using (2.4), (3.1) holds even when
x > b. Finally, we extend it to the negative line so that

v̄b(x) = ϕx+ v̄b(0), x < 0. (3.2)

Remark 3.1. Since Z(q)(b)/W(q)(b) ∼ q/�(q) as b ↑ ∞ (see, e.g., Exercise 8.5
of [13]), it follows that

v̄b(b) = −ψ ′(0+)

q
+ Z(q)(b) − ϕ

qW(q)(b)
b↑∞−−→ −ψ ′(0+)

q
+ 1

�(q)
= E[Sη(q)].

This result complements the observation in Remark 2.3; as b increases to ∞ the
impact of ruin vanishes.

3.1. Ansatz and verification

Analogous to the previous section, we choose our candidate barrier level using
the C1 (C2) condition at the barrier. For x �= b, by taking derivatives

v̄′
b(x) = Z(q)(b − x) − W(q)(b − x)

W(q)(b)
(Z(q)(b) − ϕ),

v̄′′
b (x) = −qW(q)(b − x) + W(q)′(b − x)

W(q)(b)
(Z(q)(b) − ϕ).

(3.3)

Hence, it is clear that theC1 (resp.C2) condition at x = b for the bounded (resp.
unbounded) variation case holds if and only if Z(q)(b) = ϕ. Since Z(q) is strictly
increasing on (0, ∞), Z(q)(0) = 1 and limx→∞ Z(q)(x) = ∞ (see e.g. Lemma 3.3
in [12]), there exists a unique

b∗ := (Z(q))−1(ϕ) > 0 whenever ϕ > 1. (3.4)

The candidate value function simplifies to

v̄b∗(x) := −Z
(q)

(b∗ − x) − ψ ′(0+)

q
= −Z

(q)
(b∗ − x) + μ

q
. (3.5)

Remark 3.2. As ϕ ↓ 1, b∗ ↓ 0. This is consistent with the observation given in
page 158 of [5]. On the other hand, b∗ ↑ ∞ as ϕ ↑ ∞; as ϕ increases, it gets
more risky to pay dividends.

Thanks to Remark 2.1 (1) and the way b∗ is chosen to ensure the smoothness
at b∗, we can apply Proposition 4 (2) of [5], which tells us that it is sufficient to
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show that v̄b∗ satisfies the following variational inequality:

max
{
(L − q)v̄b∗(x), 1 − v̄′

b∗(x)
} = 0, x > 0, (3.6)

v̄′
b∗(x) ≤ ϕ, x > 0, (3.7)

v̄′
b∗(x) = ϕ, x < 0. (3.8)

The steps of proving the verification are similar to the ones in Theorem 2.1.
Therefore, we will only verify (3.7) and (3.8). For 0 < x < b∗, by (3.3), the
monotonicity of Z(q) and (3.5) implies, v̄′

b∗(x) = Z(q)(b∗ − x) ∈ [1, ϕ]. For
x ≥ b∗, it is clear that v̄′

b∗(x) = 1 < ϕ. Also, (3.8) is satisfied by (3.2). In
summary, we have the following.

Theorem 3.1. We have v̄ = v̄b∗ as defined in (3.5) and π̄b∗ := {Lb∗
t , R0

t ; t ≥ 0} is
the optimal strategy over �̄.

4. NUMERICAL EXAMPLES

We have shown that the dividend payment and cash injection problems both
admit solutions written in terms of the scale function. In order to put this in
practice, the only task left to do is to compute the scale function. There are sev-
eral examples of Lévy processes whose scale functions are known explicitly; see
[11–14]. In general, the scale function can be computed efficiently by inverting
the Laplace transform (2.3) (see [17, 12]), or alternatively it can be approximated
by those of phase-type Lévy processes (see [1, 10]). Here, we shall use the latter
and confirm via numerical examples the results obtained in the previous sec-
tions.

Consider a spectrally positive Lévy process of the form

Xt − X0 = −dt + σ Bt +
Nt∑
n=1

Zn, 0 ≤ t < ∞,

for some d ∈ R and σ ≥ 0. Here, B = {Bt; t ≥ 0} is a standard Brow-
nian motion, N = {Nt; t ≥ 0} is a Poisson process with arrival rate λ, and
Z = {Zn; n = 1, 2, . . .} is an i.i.d. sequence of phase-type-distributed random
variables with representation (m, α,T); see [1]. These processes are assumed
mutually independent. Its Laplace exponent (1.1) is then

ψ(s) = ds + 1
2
σ 2s2 + λ

(
α(s I − T)−1t − 1

)
,

which is analytic for every s ∈ C except at the eigenvalues of T. Suppose,
{−ξi,q; i ∈ Iq} is the set of the (complex-valued) roots of the equality ψ(s) = q
with negative real parts, and if these are assumed distinct, then the scale function
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can be written

W(q)(x) =
∑
i∈Iq

Ci,q
[
e�(q)x − e−ξi,q x

]
and

W(q)(x) =
∑
i∈Iq

Ci,q
[
e�(q)x − e−ξi,q x

]+ 1
d
e�(q)x,

for the case σ > 0 and σ = 0, respectively for some {Ci,q; i ∈ Iq}; see [10]. For
the phase-type distribution, we use m = 6,

T =

⎡⎢⎢⎢⎢⎢⎣
−4.0488 0.0000 0.0000 0.0000 0.0000 0.0000
0.1320 −4.0012 0.0000 0.0455 3.7040 0.0044
0.2367 0.8595 −4.2831 0.1897 0.2918 2.3724
3.1532 0.0000 0.0000 −4.0229 0.0000 0.0000
0.2497 0.0000 0.0000 3.7024 −4.0124 0.0000
0.0434 2.1947 0.0938 0.1704 0.1217 −4.9612

⎤⎥⎥⎥⎥⎥⎦ and

α =

⎡⎢⎢⎢⎢⎢⎣
0.0052
0.0659
0.7446
0.0398
0.0043
0.1403

⎤⎥⎥⎥⎥⎥⎦ .

This approximates (the absolute values of) the Gaussian distribution with mean
zero and standard deviation 1, obtained using the EM algorithm; see [10] for
the approximation performance of the corresponding scale function. We also
let q = 0.05 and λ = 3.5.

We shall first confirm the results obtained in Theorem 2.1. We consider both
the bounded and unbounded variation cases with σ = 0 and σ = 1, respectively.
In Figure 1, we show the value function va∗ as well as the point (a∗, va∗(a∗)) for
d = 2.0, 2.33, 2.67, 3.0 or equivalently μ = 0.80, 0.47, 0.13, −0.20. The value
function as well as the value of a∗ decrease as d increases (orμ decreases); in par-
ticular a∗ = 0 for the case d = 3.0 (or μ = −0.20 ≤ 0). It is also observed that
the value function is smooth at a∗ for both bounded and unbounded variation
cases.

Next we give results on the capital injection problem and confirm the results
in Theorem 3.1. In Figure 2, we plot the value function as well as the point
(b∗, v̄b∗(b∗)) = (b∗, μ/q) for σ = 0, 1 and ϕ = 1.001, 1.5, 2, 5. Here, we use the
common value of d = 2.33 and hence v̄b∗(b∗) is the same for each. The value
function is indeed decreasing in the unit cost ϕ and the value of b∗ decreases to
zero as ϕ decreases to 1. As in the case of the dividend payment problem, we
can again confirm the smoothness of the value function for all cases.
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σ = 0 σ = 1

FIGURE 1: Results on the dividend payment problem for σ = 0 (left) and σ = 1 (right) with
d = 2.0, 2.33, 2.67, 3.0 (or μ = 0.80, 0.47, 0.13,−0.20, respectively) and a common value of λ = 3.5.

σ = 0 σ = 1

FIGURE 2: Results on the capital injection problem for the cases σ = 0 (left) and σ = 1 (right) for
ϕ = 1.001, 1.5, 2, 5 with a common value d = 2.33 and λ = 3.5.
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negative Lévy processes. Probability Theory and Related Fields, 150, 691–708.

[10] EGAMI, M. and YAMAZAKI, K. (2012) Phase-type fitting of scale functions for spectrally
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