
J. Functional Programming 9 (4): 479–482, July 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

479

Book reviews

The Functional Approach to Programming by Guy Cousineau and Michel

Mauny, Cambridge University Press, 1998, ISBN 0-521-57681-4 pbk,

xiv+445pp.

The Functional Approach to Programming has been written for a fairly sophisticated audience

with a good understanding of programming (but not necessarily functional programming),

data structures, compilers, semantics and computer graphics. The book originated from

material for a course by one of the authors. It covers a wide range of topics, but in spite

of the size of the book I found the coverage sometimes a little unsatisfactory because (1) a

fair number of the programming examples are not discussed in depth, (2) some of the design

decisions are not well motivated, and (3) there is no emphasis on program design.

This is a professional English translation of a French book. Unfortunately, some of the

jargon has been literally translated. For example, the book uses type synthesis where type

inference would be more appropriate, convergent instead of confluent, delayed evaluation

instead of normal order evaluation, ascendant analysis instead of bottom-up analysis, etc.

There are indications that the programming examples have also been translated with the risk

of introducing errors. A related issue is the choice of names for certain standard operations.

For example, where an English text would use reduce or foldr, the Functional Approach to

Programming uses list_it.

The book has 13 chapters, which are grouped into three parts as discussed below. The text

provides some exercises, with a pointer to the authors’ web site for answers. The bibliography

is adequate, but could have been more extensive. Each chapter is concluded by a summary

and a section entitled ‘To learn more’. I found this a nice feature of the book.

Basic principles

Chapter 1 covers in less than 30 pages everything from the syntax of CAML to higher

order functions, polymorphism, type inference and the equivalence of functions. CAML is

rather similar to SML except that CAML lacks the sophisticated module facility provided by

SML. As a consequence most examples are fragments of programs, rather than collections

of modules that form a program. It is noteworthy that only in Chapter 12 are there pictures

showing, for example, how the append function on lists introduces sharing. In my experience,

these pictures are an invaluable pedagogical aid in explaining to most students from the

beginning what their programs are really doing.

Chapter 2 introduces elementary data structures (tuples, lists, trees, sets), as well as some

useful operations of the data structures, like Quicksort. The fine points of parsing strings into

CAML data structures and printing the data structures again are not explained.

Chapter 3 presents the denotational and operational semantics of the core of CAML,

assuming that the reader is familiar with formal semantics. I enjoyed reading this chapter,

as it takes a rather more fundamental approach than most other texts that I know of.

The fundamental approach taken could have been pushed a little further by discussing the

soundness of the type system more fully.

Chapter 4 introduces the imperative features of CAML. These include mutable records,

mutable references, side effecting I/O and ‘physical’ equality (used to detect sharing). The

https://doi.org/10.1017/S0956796899223556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899223556

480 Book reviews

chapter tries to extend the semantics of the core language already given in Chapter 3 with

a semantics for the imperative features, but falls short because the effects of imperative

constructs on the state of the computation are not modelled.

Applications

Chapter 5 introduces the first application: unification over terms. This is an interesting

problem, but as an application it is rather closely related to what implementors of functional

programming languages are interested in. I felt that the use of exceptions in this chapter (see,

for example, assoc on page 143+) is a little unnatural.

Chapter 6 discusses trees represented as data structures. Basic algorithms are presented for

building and searching binary trees and AVL trees. The algorithms over trees are then used

to implement dictionaries, sets and queues. The worst case complexity of the algorithms is

discussed, but the more important amortised complexity is ignored. Okasaki’s book Purely

Functional Data Structures treats this subject in a more systematic way.

Chapter 7 discusses graphs, but instead of implementing the graphs as data structures, they

are implemented as functions. I found this a creative approach, which is shown to have useful

applications to programming simple games, like solitaire. It would have been interesting to see

how elegant CAML, with its range of imperative features, could have been used to implement

graph traversal in the more traditional way. I found the compact encoding of the state of

the games somewhat ad hoc. For example, on page 219 we find a fairly inelegant way of

compressing 33 bits into two integers.

Chapter 8 discusses another favourite of implementors of functional languages: parser

combinators. These make it possible to write a parser in such a way that it can be read as

a grammar. Comparing the power of the parser combinators presented here with Wadler’s

list-of-successes method left me a little less than impressed. For example, when written using

Wadler’s parser combinators, the grammars (a | ε)a and aa | a behave indistinguishably. Not

so in the approach taken here.

Chapter 9 presents the MLgraph library and its applications to geometric drawings. The

first application is rendering binary trees in an aesthetic fashion. The more demanding problem

of rendering graphs is not discussed. The second application is tiling in the hyperbolic plane.

The images generated are truly amazing, resembling M. C. Escher’s engravings. This is clearly

a very strong point of the book.

Chapter 10 discusses exact arithmetic over natural, integer and rational numbers. In the

first instance, arbitrary numbers are implemented as lists of base 10,000 numbers. Secondly,

an implementation is given using doubly-linked lists built out of mutable records. This is

followed by an application showing how π can be approximated using a series expansion. It

would have been useful to give some ideas on the complexity of the various operations.

Implementation

Chapter 11 presents an environment-based, eager evaluator of the purely functional core

of CAML. The implementation is directly based on the operational semantics presented in

Chapter 3. The implementation is then changed to provide lazy evaluation, unfortunately

without also showing the changes in the operational semantics.

Chapter 12 introduces the idea of compiling the purely functional core of CAML into

an abstract machine code. The semantics of the abstract machine instructions are presented

using an ad hoc notation rather than the more usual operational semantics notation. The

compilation of core CAML to abstract machines is done in the usual way, using compilation

schemes.

Chapter 13 revisits the type inference system from Chapter 5. Type schemes are introduced

https://doi.org/10.1017/S0956796899223556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899223556

Book reviews 481

to avoid having to type check a let expression once for each of its uses. Good use is made of

mutable record to improve the efficiency of the unification process.

Summarising, this is an interesting book on ‘functional programming’, which covers a lot

of ground. Contrary to what the title suggests, the book is not so much about ‘programming’.

I feel that the authors could have done more to show case the strengths of functional

programming, while making use of CAML’s imperative features where necessary to achieve

efficiency. The book is a translation, which has inevitably reduced the quality somewhat.

Pieter Hartel

University of Southampton, UK

Computability and Complexity: From a Programming Perspective by Neil D.

Jones, MIT Press, 1997.

Neil Jones is well known as a programming languages researcher, but he is equally at home in

the theory community. His new textbook, Computability and Complexity: From a Programming

Perspective, is one which perhaps only he could have written.

As the title suggests, Jones approaches the fields of computability and complexity from a

programming language perspective. That is, he takes simple programming languages as his

basic models of computation, rather than the ubiquitous Turing machine. Not only does this

allow the reader to more easily draw on all her hard-won intuitions about programming in

understanding computability and complexity, it also allows the reader to more easily apply

results from computability and complexity to everyday programming tasks.

Most of the book is formulated in terms of a toy imperative language with sequencing,

assignments, and while-loops. This is already a big improvement over the finite state machines

used to express control in Turing machines. Of course, control is only half the story – one

must also consider the kinds of data manipulated by the programs. Here, Jones makes another

huge improvement over typical presentations. Rather than choosing an unstructured domain

such as symbols or integers, he allows structured data in the form of Lisp s-expressions. This

inspired choice really pays off in the study of computability, where many of the important

results involve encoding programs as data. As you can probably imagine, it is much easier and

much more intuitive to encode a program as an s-expression than to use the more common

Gödel numbering.

Jones balances his unconventional presentation with a fairly conventional choice of topics.

The first half of the book covers computability theory, including standard topics such as

decidability and the halting problem; the robustness of computability over various models

of computation; Rice’s theorem; and Gödel’s incompleteness theorem. The second half of

the book covers complexity theory, including the usual range of complexity classes such

as PTIME, NPTIME, PSPACE, and LOGSPACE; completeness results; Levin’s theorem;

and Blum’s speedup theorem. My only complaint in these areas is the skimpy coverage of

NP-completeness. Most readers will probably want to supplement the text with additional

references such as Garey and Johnson’s classic Computers and Intractability: A Guide to the

Theory of NP-Completeness.

Jones also includes extensive discussion of several non-traditional topics related to his

own personal research. For example, programming language researchers will not be sur-

prised to find a chapter on partial evaluation. Similarly, complexity researchers will welcome

Jones’s proofs that constant factors do matter for language-based models of computation

(whereas constant factors do not matter for Turing machines), and that the complexity classes

LOGSPACE and PTIME can be precisely characterized as the sets of problems solvable by

programs written in certain restricted languages.

The greatest weakness of this book is that it was released a few rounds of proof-reading

too early – it is littered with more mistakes than I have ever before encountered in a published

https://doi.org/10.1017/S0956796899223556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899223556

482 Book reviews

book.1 Most of the mistakes are minor and easily corrected, but they are so numerous that

they are practically guaranteed to confuse the unwary or immature reader.

In spite of the mistakes, I highly recommend this book to programming language re-

searchers as a reference or as a text for self-study. Unfortunately, I cannot recommend it as

a textbook for undergraduate students or beginning graduate students, at least not yet. I am

hopeful that most of the mistakes will be corrected in a second edition – perhaps even in a sec-

ond printing – and I would be pleased to recommend the book for classroom use at that time.

Chris Okasaki

Columbia University

1 An extensive list of the most important technical corrections is available from the author’s web site at
http://www.diku.dk/users/neil/Comp2book.html.

https://doi.org/10.1017/S0956796899223556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899223556

