Acyclic coefficient systems on buildings

Elmar Grosse-Klönne
In memory of Prof. Hans Joachim Nastold

Abstract

For cohomological (respectively homological) coefficient systems \mathcal{F} (respectively \mathcal{V}) on affine buildings X with Coxeter data of type \widetilde{A}_{d}, we give for any $k \geqslant 1$ a sufficient local criterion which implies $H^{k}(X, \mathcal{F})=0$ (respectively $\left.H_{k}(X, \mathcal{V})=0\right)$. Using this criterion we prove a conjecture of de Shalit on the acyclicity of coefficient systems attached to hyperplane arrangements on the Bruhat-Tits building of the general linear group over a local field. We also generalize an acyclicity theorem of Schneider and Stuhler on coefficient systems attached to representations.

Introduction

Let X be an affine building whose apartments are Coxeter complexes attached to Coxeter systems of type \widetilde{A}_{d} and let \mathcal{F} be a cohomological coefficient system (CCS) on X. The purpose of this paper is to give a local criterion which assures that for a given $k \geqslant 1$ the cohomology group $H^{k}(X, \mathcal{F})$ vanishes (similarly for homological coefficient systems) (HCSs).

For a sheaf \mathcal{G} on a topological space Y it is well known that $H^{k}(Y, \mathcal{G})=0$ for all $k \geqslant 1$ if \mathcal{G} is flasque, i.e. if all restriction maps $\mathcal{G}(U) \rightarrow \mathcal{G}(V)$ for open $V \subset U \subset Y$ are surjective. We are looking for an adequate notion of 'flasque' CCS on X.

If $d=1$ the same condition works: if the restriction map $\mathcal{F}(\sigma) \rightarrow \mathcal{F}(\tau)$ for any 0 -simplex σ contained in the 1 -simplex τ is surjective, then $H^{1}(X, \mathcal{F})=0$. This is easily seen using the contractibility of X. However, if $d>1$ the surjectivity of $\mathcal{F}(\sigma) \rightarrow \mathcal{F}(\tau)$ for any ($k-1$)-simplex σ contained in the k-simplex τ does not guarantee $H^{k}(X, \mathcal{F})=0$. The other naive transposition of the flasqueness concept from topological spaces to buildings would be to require for any $(k-1)$-simplex σ the surjectivity of $\mathcal{F}(\sigma) \rightarrow \prod_{\tau} \mathcal{F}(\tau)$, taking the product over all k-simplices τ containing σ. This would indeed force $H^{k}(X, \mathcal{F})=0$, but would also be a completely useless criterion: for example, it would not be satisfied by a constant CCS \mathcal{F} (of which we know $H^{k}(X, \mathcal{F})=0$, by the contractibility of X).

Let us describe our criterion $\mathcal{S}(k)$. We fix an orientation of X. It defines a cyclic ordering on the set of vertices of any simplex, hence a true ordering on the set of vertices of any pointed simplex. To a pointed $(k-1)$-simplex $\widehat{\eta}$ we associate the set $N_{\widehat{\eta}}$ of all vertices z for which $(z, \widehat{\eta})$ (i.e. z as the first vertex) is an ordered k-simplex (in the previously qualified sense). We define what it means for a subset M_{0} of $N_{\widehat{\eta}}$ to be stable with respect to $\widehat{\eta}$ (if, for example, $d=1$ the condition is $\left|M_{0}\right| \leqslant 1$). Our criterion $\mathcal{S}(k)$ which assures $H^{k}(X, \mathcal{F})=0$ is then that for any such $\widehat{\eta}$ and for any subset M_{0}

[^0]
E. Grosse-Klönne

of $N_{\widehat{\eta}}$, stable with respect to $\widehat{\eta}$, the sequence

$$
\mathcal{F}(\eta) \longrightarrow \prod_{z \in M_{0}} \mathcal{F}(\{z\} \cup \eta) \longrightarrow \prod_{z, z^{\prime} \in M_{0}} \mathcal{F}\left(\left\{z, z^{\prime}\right\} \cup \eta\right)
$$

is exact (where in the target of the second arrow the product is over pairs $z, z^{\prime} \in M_{0}$ of incident vertices). For example, a constant CCS \mathcal{F} satisfies $\mathcal{S}(k)$.

Having fixed a vertex z_{0}, the central ingredient in the proof is then a certain function i on the set X^{0} of vertices which measures the combinatorical (not Euclidean) distance from z_{0}; it depends on our chosen orientation.

Dual to $\mathcal{S}(k)$ we describe a criterion $\mathcal{S}^{*}(k)$ which guarantees $H_{k}(X, \mathcal{V})=0$ for HCSs \mathcal{V} on X.
The basic example is, of course, the case where X is the Bruhat-Tits building of $\mathrm{PGL}_{d+1}(K)$ for a local field K. Our original motivation for developing the criterion $\mathcal{S}(k)$ was the following. In [Sch92], Schneider defined a certain class of $\mathrm{SL}_{d+1}(K)$-representations, the 'holomorphic discrete series representations', as the global sections of certain equivariant vector bundles on Drinfel'd's symmetric space $\Omega_{K}^{(d+1)}$ of dimension d over K. In a subsequent paper [Gro04], for any such vector bundle V, we will construct an integral model \mathcal{V} as an equivariant coherent sheaf on the formal \mathcal{O}_{K}-scheme $\Omega_{\mathcal{O}_{K}}^{(d+1)}$ underlying $\Omega_{K}^{(d+1)}$. Using the criterion $\mathcal{S}(k)$ and the close relation between $\Omega_{K}^{(d+1)}$ and X, we will show that if V is strongly dominant (in a suitable sense), then $H^{k}\left(\Omega_{\mathcal{O}_{K}}^{(d+1)}, \mathcal{V}\right)=0$ for all $k \geqslant 1$. Examples for such \mathcal{V} are the terms of the logarithmic de Rham complex of $\Omega_{\mathcal{O}_{K}}^{(d+1)}$.

Here we present two other applications. The first is a proof of a conjecture of de Shalit on p-adic CCSs of Orlik-Solomon algebras. For an arbitrary field K, the assignment of the OrlikSolomon algebra A to a hyperplane arrangement W in $\left(K^{d+1}\right)^{*}$, the complement of a finite set $\mathcal{A} \subset \mathbb{P}\left(K^{d+1}\right)$ of hyperplanes in $\left(K^{d+1}\right)^{*}$, is a classical theme. A is defined combinatorically in terms of the hyperplanes and turns out to be isomorphic with the cohomology ring of W. Of course K may also be a local field. However, de Shalit [deS01] discovered that one can go further and give the story a genuinely p-adic flavour. Namely, if K is a local field he allowed $\mathcal{A} \subset \mathbb{P}\left(K^{d+1}\right)$ to be infinite. He did not assign a single Orlik-Solomon algebra to \mathcal{A} but a CCS system $A=A(\cdot)$ of Orlik-Solomon algebras on the Bruhat-Tits building X of $\mathrm{PGL}_{d+1}(K)$ which then should play the role of a cohomology ring of the 'hyperplane arrangement' defined by \mathcal{A}. The algebra $A(\sigma)$ for a j-simplex σ is closely related to a suitable tensor product of Orlik-Solomon algebras for finite hyperplane arrangements in k-vector spaces, for k the residue field of K. de Shalit conjectures that these beautiful CCSs are acyclic in positive degrees, $H^{k}(X, A)=0$ for all $k \geqslant 1$. He proved the conjecture for any \mathcal{A} if $d \leqslant 2$. For arbitrary d he proved it if \mathcal{A} is the full set $\mathbb{P}\left(K^{d+1}\right)$ of all K-rational hyperplanes, and Alon [Alo] proved it if \mathcal{A} is finite. Here we give a proof for all \mathcal{A} and d by showing that A always satisfies $\mathcal{S}(k)$.

In fact we prove a version with arbitrary coefficient ring: while in [deS01] the coefficient ring of the CCS A is K, we allow an arbitrary coefficient ring R, e.g. also $R=\mathbb{Z}$ or $R=k$. While de Shalit's proof in the case $d \leqslant 2$ also works for arbitrary R, his proof in the case $\mathcal{A}=\mathbb{P}\left(K^{d+1}\right)$ but d arbitrary, which is by reduction to the main result of [SS93], does not work for coefficient rings R other than characteristic zero fields. We explain why this improvement for $\mathcal{A}=\mathbb{P}\left(K^{d+1}\right)$ and $R=\mathbb{Z}$ should have an application to a problem on p-adic Abel-Jacobi mappings raised in [RX03].

The second application we describe is concerned with the technique of Schneider and Stuhler to spread out representations of $\mathrm{GL}_{d+1}(K)$ as HCSs on the Bruhat-Tits building of $\mathrm{PGL}_{d+1}(K)$. For a $\mathrm{GL}_{d+1}(K)$-representation on a (not necessarily free) $\mathbb{Z}\left[\frac{1}{p}\right]$-module V (where $p=\operatorname{char}(k)$) which is generated by its vectors fixed under a principal congruence subgroup $U^{(n)}$ of some level $n>1$, we prove that the chain complex of the corresponding HCS is a resolution of V. For fields of characteristic zero as coefficient ring (instead of $\mathbb{Z}\left[\frac{1}{p}\right]$) this is the main result of [SS93], where,

Acyclic coefficient systems on buildings

however, $n=1$ is allowed. While the proof in [SS93] uses the Bernstein-Borel-Matsumoto theory, we do not need any representation theoretic input whatsoever.

1. The criterion

Let $d \geqslant 1$ and let X be an affine building whose apartments are Coxeter complexes attached to Coxeter systems of type \widetilde{A}_{d}. We refer to [Bro89] for the basic definitions and properties of buildings. For $0 \leqslant j \leqslant d$ we denote by X^{j} the set of j-simplices. We generally identify a j-simplex with its set of vertices.

We fix an orientation of X. It distinguishes for any simplex a cyclic ordering on its set of vertices. A pointed k-simplex is an enumeration of the set of vertices of a k-simplex in its distinguished cyclic ordering; we write it as an ordered $(k+1)$-tuple of vertices.

For an apartment A in X we will slightly abuse notation by not distinguishing between A and its geometric realization $|A|$. There is (see [Bro89, p. 148]) an isomorphism of A with $\mathbb{R}^{d+1} / \mathbb{R} \cdot(1, \ldots, 1)$, we view it here as an identification, such that, if $\left\{e_{0}, \ldots, e_{d}\right\}$ denotes the standard basis of \mathbb{R}^{d+1} the following holds:
(a) the set of vertices in A is $\mathbb{Z}^{d+1} / \mathbb{Z} \cdot(1, \ldots, 1)$;
(b) a $k+1$-tuple $\left(x_{0}, \ldots, x_{k}\right)$ of vertices in A is a pointed k-simplex if and only if there is a sequence

$$
\emptyset \neq J_{0} \subsetneq \cdots \subsetneq J_{k-1} \subsetneq\{0, \ldots, d\}
$$

such that $\sum_{j \in J_{t}} e_{j}$ represents $x_{t}-x_{k}$ (formed with respect to the obvious group structure on $\left.\mathbb{Z}^{d+1} / \mathbb{Z} \cdot(1, \ldots, 1)\right)$, for any $0 \leqslant t \leqslant k-1$.

If $\left(x_{0}, \ldots, x_{k}\right)$ is a pointed k-simplex, we define $\ell\left(\left(x_{0}, \ldots, x_{k}\right)\right)$ to be the maximal number r such that there exists a pointed r-simplex $\left(y_{0}, \ldots, y_{r}\right)$ with $x_{0}=y_{0}$ and $x_{k}=y_{r}$. For a pointed ($k-1$)-simplex $\widehat{\eta}=\left(x_{1}, \ldots, x_{k}\right)$ we define the set

$$
N_{\widehat{\eta}}=\left\{z \in X^{0} \mid\left(z, x_{1}, \ldots, x_{k}\right) \text { is a pointed } k \text {-simplex }\right\} .
$$

For $z \in N_{\widehat{\eta}}$ we write $(z, \widehat{\eta})$ for the pointed k-simplex $\left(z, x_{1}, \ldots, x_{k}\right)$. We define a partial ordering \leqslant on $N_{\hat{\eta}}$ by

$$
u_{1} \leqslant u_{2} \Longleftrightarrow\left[u_{1}=u_{2} \text { or }\left(u_{1}, u_{2}, \widehat{\eta}\right) \text { is a pointed }(k+1) \text {-simplex }\right] .
$$

Lemma 1.1. For any $u_{1}, u_{2} \in N_{\widehat{\eta}}$ the set

$$
W_{u_{1}, u_{2}}^{\widehat{\eta}}=\left\{u \in N_{\widehat{\eta}} \mid u \leqslant u_{1} \text { and } u \leqslant u_{2}\right\}
$$

is empty or it contains an element u such that $\ell((u, \widehat{\eta}))<\ell((w, \widehat{\eta}))$ for all $w \in W_{u_{1}, u_{2}}^{\widehat{\eta}}-\{u\}$.
Proof. Suppose we have two such candidates u, u^{\prime}. We can find an apartment A which contains η, u_{1}, u_{2}, u and u^{\prime} (for example, because $\eta \cup\left\{u_{1}, u\right\}$ and $\left\{u^{\prime}, u_{2}\right\}$ are simplices). We identify A with $\mathbb{R}^{d+1} / \mathbb{R} \cdot(1, \ldots, 1)$ as above. There exist subsets $\emptyset \neq J_{t} \subsetneq\{0, \ldots, d\}$ for $1 \leqslant t \leqslant k-1$ and $\emptyset \neq I_{s} \subsetneq\{0, \ldots, d\}$ for $s=1,2$ such that $x_{t}-x_{k}$ is represented by $\sum_{j \in J_{t}} e_{j}$ and $u_{s}-x_{k}$ is represented by $\sum_{j \in I_{s}} e_{j}$. We have $I_{s} \subsetneq J_{1} \subsetneq \cdots \subsetneq J_{k-1}$ for $s=1,2$. Hence, both $u-x_{k}$ and $u^{\prime}-x_{k}$ are represented by $\sum_{j \in I_{1} \cap I_{2}} e_{j}$.

If $W_{u_{1}, u_{2}}^{\widehat{\eta}} \neq \emptyset$ we denote the element $u \in W_{u_{1}, u_{2}}^{\widehat{\eta}}$ from Lemma 1.1 by $\left[\eta \mid u_{1}, u_{2}\right]$. If $W_{u_{1}, u_{2}}^{\widehat{\eta}}=\emptyset$ then $\left[\eta \mid u_{1}, u_{2}\right]$ is undefined. A subset M_{0} of $N_{\widehat{\eta}}$ is called stable with respect to $\widehat{\eta}$ if for any two vertices $u_{1}, u_{2} \in M_{0}$ the vertex $\left[\widehat{\eta} \mid u_{1}, u_{2}\right]$ is defined and belongs to M_{0}. (See Lemma 2.2 below for what this means on Bruhat-Tits buildings. When working out the applications described later, we became fully convinced that stability is a very natural condition.) Note that M_{0} is stable with respect

E. Grosse-Klönne

to $\widehat{\eta}=\left(x_{1}, \ldots, x_{k}\right)$ if and only if it is stable with respect to the pointed 0 -simplex x_{k}; this is because of $\left[x_{k} \mid u_{1}, u_{2}\right]=\left[\eta \mid u_{1}, u_{2}\right]$, as we saw in the proof of Lemma 1.1.

A CCS \mathcal{F} on X is the assignment of an abelian group $\mathcal{F}(\tau)$ to every simplex τ of X, and a homomorphism $r_{\sigma}^{\tau}: \mathcal{F}(\tau) \rightarrow \mathcal{F}(\sigma)$ to every face inclusion $\tau \subset \sigma$, such that $r_{\rho}^{\sigma} \circ r_{\sigma}^{\tau}=r_{\rho}^{\tau}$ whenever $\tau \subset \sigma \subset \rho$, and r_{τ}^{τ} is the identity.

Given a CCS \mathcal{F}, define the group $C^{k}(X, \mathcal{F})$ of k-cochains $(0 \leqslant k \leqslant d)$ to consist of the maps c, assigning to each k-simplex τ an element $c_{\tau} \in \mathcal{F}(\tau)$. Define

$$
\partial=\partial^{k+1}: C^{k}(X, \mathcal{F}) \longrightarrow C^{k+1}(X, \mathcal{F})
$$

by the rule

$$
(\partial c)_{\tau}=\sum_{\tau^{\prime} \subset \tau}\left[\tau: \tau^{\prime}\right] r_{\tau}^{\tau^{\prime}}\left(c_{\tau_{i}}\right)
$$

where $\left[\tau: \tau^{\prime}\right]= \pm 1$ is the incidence number (with respect to a fixed labeling of X as in $[\operatorname{Bro89}$, p. 30]). Then $\left(C^{\bullet}(X, \mathcal{F}), \partial\right)$ is a complex $\left(\partial^{2}=0\right)$, and its cohomology groups are denoted $H^{k}(X, \mathcal{F})$.

Consider for $1 \leqslant k \leqslant d$ the following condition $\mathcal{S}(k)$ for a $\operatorname{CCS} \mathcal{F}$ on X : for any pointed $(k-1)$ simplex $\widehat{\eta}$ with underlying $(k-1)$-simplex η and for any subset M_{0} of $N_{\widehat{\eta}}$ which is stable with respect to $\widehat{\eta}$, the following subquotient complex of $C^{\bullet}(X, \mathcal{F})$ is exact:

$$
\mathcal{F}(\eta) \xrightarrow{\partial^{k}} \prod_{z \in M_{0}} \mathcal{F}(\{z\} \cup \eta) \xrightarrow{\partial^{k+1}} \prod_{\substack{z, z^{\prime} \in M_{0} \\\left\{z, z^{\prime}\right\} \in X^{1}}} \mathcal{F}\left(\left\{z, z^{\prime}\right\} \cup \eta\right) .
$$

(We regard the first term as a subgroup of $C^{k-1}(X, \mathcal{F})$, the second as a direct summand of $C^{k}(X, \mathcal{F})$, and the third term as a quotient of $C^{k+1}(X, \mathcal{F})$.) Note that $\mathcal{S}(k)$ depends on the chosen orientation of X.
Theorem 1.2. Let \mathcal{F} be a $C C S$ on X. Let $1 \leqslant k \leqslant d$ and suppose $\mathcal{S}(k)$ holds true. Then $H^{k}(X, \mathcal{F})=0$.

We fix once and for all a vertex $z_{0} \in X^{0}$. Given an arbitrary vertex $x \in X^{0}$, choose an apartment A containing z_{0} and x. Choose an identification of A with $\mathbb{R}^{d+1} / \mathbb{R} \cdot(1, \ldots, 1)$ as before, but now require in addition that $z_{0} \in A$ corresponds to the class of the origin in $\mathbb{R}^{d+1} / \mathbb{R} \cdot(1, \ldots, 1)$. Let $\sum_{j=0}^{d} m_{j} e_{j}$ be the unique representative of x for which $m_{j} \geqslant 0$ for all j, and $m_{j}=0$ for at least one j. Let π be a permutation of $\{0, \ldots, d\}$ such that $0=m_{\pi(d)} \geqslant \cdots \geqslant m_{\pi(0)}$ and set

$$
i(x)=\left(m_{\pi(d)}, \ldots, m_{\pi(1)}\right) \in \mathbb{N}_{0}^{d}
$$

Lemma 1.3. The d-tuple $i(x)$ is independent of the choice of A.
Proof. Let us write $i_{A}(x)$ instead of $i(x)$ in order to indicate the reference to A in the above definition. Suppose the apartment A^{\prime} also contains z_{0} and x. Choose a chamber (d-simplex) C in A containing x, and a chamber C^{\prime} in A^{\prime} containing z_{0}. Choose an apartment $A^{\prime \prime}$ in X containing C and C^{\prime}, and let $\pi: X \rightarrow A^{\prime \prime}$, respectively $\pi^{\prime}: X \rightarrow A^{\prime \prime}$, be the retraction from X to $A^{\prime \prime}$ centered in C, respectively centered in C^{\prime} (see [Bro89, p. 86]). Then π, respectively π^{\prime}, induces an isomorphism of oriented chamber complexes $A \cong A^{\prime \prime}$, respectively $A^{\prime} \cong A^{\prime \prime}$. Hence $i_{A}(x)=i_{A^{\prime \prime}}(x)=i_{A^{\prime}}(x)$.

Here is another, equivalent but more intrinsic definition of $i(x)$ (we do not need it). For $x, y \in X^{0}$ let $d(x, y) \in \mathbb{Z}_{\geqslant 0}$ be the minimal number t such that there exists a sequence x_{0}, \ldots, x_{t} in X^{0} with $x=x_{0}, y=x_{t}$ and $\left\{x_{r-1}, x_{r}\right\} \in X^{1}$ for all $1 \leqslant r \leqslant t$. For $x \in X^{0}$ and a subset $W \subset X^{0}$ let $d(x, W)=\min \{d(x, y) \mid y \in W\}$. For $1 \leqslant i \leqslant d$ define the subset W_{i} of X^{0} inductively as follows: $W_{1}=\left\{z_{0}\right\}$ and

$$
W_{i}=\left\{z \in X^{0} \left\lvert\,\left\{\begin{array}{c}
\text { there exist elements } z_{0}, \ldots, z_{r} \in X^{0} \text { such that } r=d\left(z, W_{i-1}\right) \\
z_{0} \in W_{i-1}, z_{r}=z \text { and } \ell\left(\left(z_{\ell-1}, z_{\ell}\right)\right)=1 \text { for all } 1 \leqslant \ell \leqslant r
\end{array}\right\}\right.\right\} .
$$

Acyclic coefficient systems on buildings

In particular $W_{1} \subset W_{2} \subset \cdots \subset W_{d}$. For $x \in X^{0}$ we then have

$$
i(x)=\left(d\left(x, W_{1}\right), d\left(x, W_{2}\right), \ldots, d\left(x, W_{d}\right)\right)
$$

Yet another equivalent definition of $i(x)$ (which we do not need either) results from the fact that the type of a minimal chamber-gallery connecting x and z_{0} encodes $i(x)$ if x and z_{0} are not incident.

On the set of ordered d-tuples $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}_{\geqslant 0}^{d}$ (and hence on the set of d-tuples $i(x)$ for $x \in X^{0}$) we use the lexicographical ordering:

$$
\left(n_{1}, \ldots, n_{d}\right)<\left(n_{1}^{\prime}, \ldots, n_{d}^{\prime}\right) \Longleftrightarrow\left\{\begin{array}{c}
\text { there is a } 1 \leqslant r \leqslant d \text { such that } \\
n_{j}=n_{j}^{\prime} \text { for } 1 \leqslant j \leqslant r-1 \text { and } n_{r}<n_{r}^{\prime}
\end{array}\right\} .
$$

Lemma 1.4. Let η be a $(k-1)$-simplex and let x_{1}, \ldots, x_{k} be an enumeration of its vertices which satisfies $i\left(x_{1}\right) \leqslant \cdots \leqslant i\left(x_{k}\right)$. Then in fact $i\left(x_{1}\right)<\cdots<i\left(x_{k}\right)$ and $\widehat{\eta}=\left(x_{1}, \ldots, x_{k}\right)$ is a pointed ($k-1$)-simplex.
Proof. Choose an apartment A containing z_{0} and η, and choose an identification of A with $\mathbb{R}^{d+1} / \mathbb{R}$. $(1, \ldots, 1)$ as before, with $z_{0} \in A$ corresponding to the class of the origin in $\mathbb{R}^{d+1} / \mathbb{R} \cdot(1, \ldots, 1)$. Then the claims follow easily from our description of the simplicial structure of $\mathbb{Z}^{d+1} / \mathbb{Z} \cdot(1, \ldots, 1)$.
Lemma 1.5. For any $x \in X^{0}, x \neq z_{0}$, there is among the vertices incident to x a unique vertex $\nu(x)$ with minimal i-value: for all other vertices z incident to x we have $i(\nu(x))<i(z)$. If z is incident to x, different from $\nu(x)$ and satisfies $i(z)<i(x)$, then $\nu(x)$ and z are incident and $\ell((\nu(x), z)) \leqslant \ell((x, z))$.

Proof. Let $\left[z_{0}, x\right]$ be the geodesic (with respect to the Euclidean distance function on the geometric realization $|X|$ of X) between z_{0} and x. Let τ be the minimal simplex which contains x and whose open interior (viewed as a subset of $|X|$) contains a point of $\left[z_{0}, x\right]$. We assert that the vertex $\nu(x)$ of τ with minimal i-value is as claimed. To see this, let A be an arbitrary apartment containing x and z_{0}. Then τ is contained in A because this is true for $\left[z_{0}, x\right]$. Explicitly it can be described as follows. Choose an identification of A with $\mathbb{R}^{d+1} / \mathbb{R} \cdot(1, \ldots, 1)$ as before, with $z_{0} \in A$ corresponding to the class of the origin in $\mathbb{R}^{d+1} / \mathbb{R} \cdot(1, \ldots, 1)$. After reindexing the basis if necessary there are sequences $0 \leqslant r_{0}<r_{1}<\cdots<r_{s}=d$ and $0<m_{1}<\cdots<m_{s}$ (some $1 \leqslant s \leqslant d$) such that the vertex x is represented by $y_{s}=\sum_{i=1}^{s} \sum_{j=r_{i-1}+1}^{r_{i}} m_{i} e_{j}$. Then $\left\{h y_{s} \mid 0 \leqslant h \leqslant 1\right\}$ represents $\left[z_{0}, x\right]$, and τ is a s-simplex, the other vertices are represented by $y_{t}=\sum_{i=1}^{t} \sum_{j=r_{i-1}+1}^{r_{i}} m_{i} e_{j}+\sum_{i=t+1}^{s} \sum_{j=r_{i-1}+1}^{r_{i}}$ $\left(m_{i}-1\right) e_{j}$ for $t=0, \ldots, s-1$. In particular, $\nu(x)$ is represented by y_{0} and it is clear that it has minimal i-value among the vertices of A incident to x. Since any vertex in X incident to x lies in such an A the assertion follows. Also the other claims can immediately be read off from this analysis on an apartment.
Proposition 1.6. Let $\hat{\eta}=\left(x_{1}, \ldots, x_{k}\right)$ be as in Lemma 1.4 and let $\eta=\left\{x_{1}, \ldots, x_{k}\right\}$. Then

$$
M_{0}=\left\{u \in X^{0} \mid\{u\} \cup \eta \text { is a } k \text {-simplex and } i(u)<i\left(x_{1}\right)\right\}
$$

is contained in $N_{\widehat{\eta}}$ and stable with respect to $\widehat{\eta}$.
Proof. The containment $M_{0} \subset N_{\widehat{\eta}}$ follows from Lemma 1.4 with k instead of $(k-1)$. To prove that M_{0} is stable with respect to $\widehat{\eta}$ let $u_{1}, u_{2} \in M_{0}$. First it follows from Lemma 1.4 (with k and $k+1$ instead of $(k-1)$) and Lemma 1.5 that $\nu\left(x_{k}\right) \in W_{u_{1}, u_{2}}^{\widehat{\eta}}$, hence $\left[\widehat{\eta} \mid u_{1}, u_{2}\right]$ is defined. Since ($\left[\hat{\eta} \mid u_{1}, u_{2}\right], x_{1}, \ldots, x_{k}$) is a pointed k-simplex and since for any pointed k-simplex the underlying cyclic ordering of the vertices is independent of the pointing, there are, in view of Lemma 1.4 with k instead of $(k-1)$, only the two possibilities $i\left(\left[\widehat{\eta} \mid u_{1}, u_{2}\right]\right)<i\left(x_{1}\right)$ and $i\left(\left[\hat{\eta} \mid u_{1}, u_{2}\right]\right)>i\left(x_{k}\right)$. If $i\left(\left[\widehat{\eta} \mid u_{1}, u_{2}\right]\right)<i\left(x_{1}\right)$ then $\left[\widehat{\eta} \mid u_{1}, u_{2}\right] \in M_{0}$ and we are done. If $i\left(\left[\widehat{\eta} \mid u_{1}, u_{2}\right]\right)>i\left(x_{k}\right)$ then $\nu\left(\left[\hat{\eta} \mid u_{1}, u_{2}\right]\right) \in W_{u_{1}, u_{2}}^{\widehat{\widehat{n}}}$ by Lemmas 1.4 and 1.5. Moreover

$$
\ell\left(\left(\nu\left(\left[\widehat{\eta} \mid u_{1}, u_{2}\right]\right), \widehat{\eta}\right)\right) \leqslant \ell\left(\left(\left[\hat{\eta} \mid u_{1}, u_{2}\right], \widehat{\eta}\right)\right),
$$

E. Grosse-Klönne

also by Lemma 1.5. Since $\nu\left(\left[\hat{\eta} \mid u_{1}, u_{2}\right]\right) \neq\left[\widehat{\eta} \mid u_{1}, u_{2}\right]$ this contradicts the definition of $\left[\widehat{\eta} \mid u_{1}, u_{2}\right]$. Hence $i\left(\left[\hat{\eta} \mid u_{1}, u_{2}\right]\right)>i\left(x_{k}\right)$ cannot happen and the proof is finished.
Proof of Theorem 1.2. Given $\eta, \eta^{\prime} \in X^{k-1}$ let x_{1}, \ldots, x_{k}, respectively $x_{1}^{\prime}, \ldots, x_{k}^{\prime}$, be that enumeration of the vertices of η, respectively of η^{\prime}, which satisfies $i\left(x_{1}\right)<\cdots<i\left(x_{k}\right)$, respectively $i\left(x_{1}^{\prime}\right)<\cdots<i\left(x_{k}^{\prime}\right)$. We define

$$
\eta \stackrel{\sim}{<} \eta^{\prime} \Longleftrightarrow\left\{\begin{array}{c}
\text { there is a } 1 \leqslant q \leqslant k \text { such that } \\
i\left(x_{t}\right)=i\left(x_{t}^{\prime}\right) \text { for } 1 \leqslant t \leqslant q-1 \text { and } i\left(x_{q}\right)<i\left(x_{q}^{\prime}\right)
\end{array}\right\} .
$$

We define $\eta \cong \eta^{\prime}$ if $i\left(x_{t}\right)=i\left(x_{t}^{\prime}\right)$ for all $1 \leqslant t \leqslant k$. Let $\nabla: X^{k-1} \longrightarrow \mathbb{N}$ be the surjective map with

$$
\begin{aligned}
& \nabla(\eta)<\nabla\left(\eta^{\prime}\right) \Longleftrightarrow \eta \stackrel{\sim}{<} \eta^{\prime} \\
& \nabla(\eta)=\nabla\left(\eta^{\prime}\right) \Longleftrightarrow \eta \cong \eta^{\prime}
\end{aligned}
$$

For a k-simplex $\sigma \in X^{k}$ let $\sigma^{-} \in X^{k-1}$ be the ($k-1$)-simplex obtained from σ by omitting the vertex $x \in \sigma$ for which $i(x)$ is minimal. We need to show that

$$
\prod_{\eta \in X^{k-1}} \mathcal{F}(\eta) \xrightarrow{\partial^{k}} \prod_{\sigma \in X^{k}} \mathcal{F}(\sigma) \xrightarrow{\partial^{k+1}} \prod_{\tau \in X^{k+1}} \mathcal{F}(\tau)
$$

is exact. So let a k-cocycle $c=\left(c_{\sigma}\right)_{\sigma \in X^{k}} \in \operatorname{Ker}\left(\partial^{k+1}\right)$ be given. It suffices to show that there is a sequence of $(k-1)$-cochains $\left(b_{n}\right)_{n \in \mathbb{N}}=\left(\left(b_{n, \eta}\right)_{\eta \in X^{k-1}}\right)_{n \in \mathbb{N}}$ with $b_{n, \eta} \in \mathcal{F}(\eta)$ satisfying the following properties:
(i) $b_{n, \eta}=b_{\nabla(\eta), \eta}$ for all $n \geqslant \nabla(\eta)$;
(ii) $b_{n, \eta}=0$ for all $\eta \in X^{k-1}$ with $\nabla(\eta)>n$;
(iii) for all $\sigma \in X^{k}$ with $\nabla\left(\sigma^{-}\right) \leqslant n$ we have $\left(\partial^{k} b_{n}-c\right)_{\sigma}=0$.

Then the cochain $b_{\infty}=\left(b_{\infty, \eta}\right)_{\eta \in X^{k-1}}$ defined by $b_{\infty, \eta}=b_{\nabla(\eta), \eta}$ will be a preimage of c, as follows from (i) and (iii).

We construct $\left(b_{n}\right)_{n \in \mathbb{N}}$ inductively. Suppose b_{n-1} has been constructed. We set $b_{n, \eta}=b_{n-1, \eta}$ for all $\eta \in X^{k-1}$ with $\nabla(\eta)<n$, and $b_{n, \eta}=0$ for all $\eta \in X^{k-1}$ with $\nabla(\eta)>n$. Now suppose we have $\eta \in X^{k-1}$ with $\nabla(\eta)=n$. Let x_{1}, \ldots, x_{k} be that enumeration of the vertices of η which satisfies $i\left(x_{1}\right)<\cdots<i\left(x_{k}\right)$. Consider the set

$$
\begin{equation*}
M_{0}=\left\{z \in X^{0} \mid\{z\} \cup \eta \text { is a } k \text {-simplex and } i(z)<i\left(x_{1}\right)\right\} . \tag{1}
\end{equation*}
$$

We know from Lemma 1.4 and Proposition 1.6 that $\hat{\eta}=\left(x_{1}, \ldots, x_{k}\right)$ is a pointed $(k-1)$-simplex and that M_{0} is stable with respect to $\widehat{\eta}$ and contained in $N_{\hat{\eta}}$. If $M_{0}=\emptyset$ we put $b_{n, \eta}=0$. So assume now that $M_{0} \neq \emptyset$. Let $z, z^{\prime} \in M_{0}$ with $\left\{z, z^{\prime}\right\} \in X^{1}$. We compute (with \pm, respectively r, denoting the respective incidence numbers, respectively restriction maps):

$$
\begin{aligned}
& \partial^{k+1}\left(\left(\left(\partial^{k} b_{n-1}-c\right)_{z^{\prime \prime} \cup \eta}\right)_{z^{\prime \prime} \in M_{0}}\right)_{\left.\left\{z, z^{\prime}\right\} \cup \eta\right\}} \\
& \quad= \pm r\left(\left(\partial^{k} b_{n-1}-c\right)_{z \cup \eta}\right)+ \pm r\left(\left(\partial^{k} b_{n-1}-c\right)_{z^{\prime} \cup \eta}\right) \\
& \quad= \pm r\left(\left(\partial^{k} b_{n-1}-c\right)_{z \cup \eta}\right)+ \pm r\left(\left(\partial^{k} b_{n-1}-c\right)_{z^{\prime} \cup \eta}\right)+\sum_{\left\{z, z^{\prime}\right\} \subset \sigma \subset\left\{z, z^{\prime}\right\} \cup \eta} \pm r\left(\left(\partial^{k} b_{n-1}-c\right)_{\sigma}\right) \\
&=\sum_{\sigma \subset\left\{z, z^{\prime}\right\} \cup \eta} \pm r\left(\left(\partial^{k} b_{n-1}-c\right)_{\sigma}\right) \\
&=\left(\partial^{k+1}\left(\partial^{k} b_{n-1}-c\right)\right)_{\left\{z, z^{\prime}\right\} \cup \eta}
\end{aligned}
$$

and this is zero because c is a cocycle. For the second equality note that for all $\sigma \in X^{k}$ with $\left\{z, z^{\prime}\right\} \subset$ $\sigma \subset\left\{z, z^{\prime}\right\} \cup \eta$ we have $\nabla\left(\sigma^{-}\right)<n$ which by the induction hypothesis implies $\left(\partial^{k} b_{n-1}-c\right)_{\sigma}=0$.

We have seen that $\left(\left(\partial^{k} b_{n-1}-c\right)_{\{z\} \cup \eta}\right)_{z \in M_{0}}$ lies in

$$
\operatorname{Ker}\left[\prod_{z \in M_{0}} \mathcal{F}(\{z\} \cup \eta) \xrightarrow{\partial^{k+1}} \prod_{\substack{z, z^{\prime} \in M_{0} \\\left\{z, z^{\prime}\right\} \in X^{1}}} \mathcal{F}\left(\left\{z, z^{\prime}\right\} \cup \eta\right)\right] .
$$

We can therefore define $b_{n, \eta} \in \mathcal{F}(\eta)$ as a preimage of $\left[\sigma: \sigma^{-}\right]\left(\left(c-\partial^{k} b_{n-1}\right)_{\{z\} \cup \eta}\right)_{z \in M_{0}}$, by hypothesis $\mathcal{S}(k)$. To see that b_{n} satisfies (iii) for $\sigma \in X^{k}$ with $\nabla\left(\sigma^{-}\right)=n$ we compute

$$
\begin{aligned}
\left(\partial b_{n}-c\right)_{\sigma} & =\left(\sum_{\eta \subset \sigma}[\sigma: \eta] r_{\sigma}^{\eta}\left(b_{n, \eta}\right)\right)-c_{\sigma} \\
& =\left(\sum_{\substack{ \\
\nabla(\eta)<n}}[\sigma: \eta] r_{\sigma}^{\eta}\left(b_{n, \eta}\right)\right)+\left[\sigma: \sigma^{-}\right] r_{\sigma}^{\sigma^{-}}\left(b_{n, \sigma^{-}}\right)-c_{\sigma} \\
& =\left(\sum_{\eta \subset \sigma}[\sigma: \eta] r_{\sigma}^{\eta}\left(b_{n-1, \eta}\right)\right)+\left(c-\partial^{k} b_{n-1}\right)_{\sigma}-c_{\sigma} \\
& =\left(\sum_{\substack{\eta \subset \sigma \\
\nabla(\eta)<n}}[\sigma: \eta] r_{\sigma}^{\eta}\left(b_{n-1, \eta}\right)\right)-\left(\sum_{\eta \subset \sigma}[\sigma: \eta] r_{\sigma}^{\eta}\left(b_{n-1, \eta}\right)\right)
\end{aligned}
$$

and this is zero because we have $b_{n-1, \sigma^{-}}=0$ by induction hypothesis (ii).
The reader will have observed that any \mathbb{N}-valued function i on X^{0} which takes different values on incident vertices gives rise to a local vanishing criterion like $\mathcal{S}(k)$, by the same formal proof above. However, the applicability of the resulting criterion depends on the control one gets over the corresponding sets M_{0} defined analogously through formula (1). In this optic, the virtue of our particular choice of i lies in the fact that we can control the corresponding sets M_{0} : they satisfy the local (no reference to the global function i) property of being stable with respect to $\widehat{\eta}$; hence our vanishing criterion $\mathcal{S}(k)$, expressed entirely in local terms.

A HCS \mathcal{V} of abelian groups on a building X is the assignment of an abelian group $\mathcal{V}(\tau)$ to every simplex τ of X, and a homomorphism $r_{\sigma}^{\tau}: \mathcal{V}(\tau) \rightarrow \mathcal{V}(\sigma)$ to every face inclusion $\sigma \subset \tau$, such that $r_{\rho}^{\tau} \circ r_{\tau}^{\sigma}=r_{\rho}^{\sigma}$ whenever $\rho \subset \tau \subset \sigma$, and r_{τ}^{τ} is the identity.

The group $C_{k}(X, \mathcal{V})$ of k-chains $(0 \leqslant k \leqslant d)$ consists of all the finitely supported maps c which assign to each k-simplex τ an element $c_{\tau} \in \mathcal{V}(\tau)$. Define

$$
\partial=\partial_{k}: C_{k+1}(X, \mathcal{V}) \longrightarrow C_{k}(X, \mathcal{V})
$$

by the rule

$$
(\partial c)_{\tau}=\sum_{\tau^{\prime} \supset \tau}\left[\tau^{\prime}: \tau\right] r_{\tau}^{\tau^{\prime}}\left(c_{\tau^{\prime}}\right)
$$

Then $(C \cdot(X, \mathcal{V}), \partial)$ is a complex $\left(\partial^{2}=0\right)$, and its homology groups are denoted $H_{k}(X, \mathcal{V})$.
Consider for $1 \leqslant k \leqslant d$ the following condition $\mathcal{S}^{*}(k)$ for a HCS \mathcal{V} on X : for any pointed ($k-1$)-simplex $\hat{\eta}$ with underlying $(k-1)$-simplex η and for any subset M_{0} of $N_{\widehat{\eta}}$ which is stable with respect to $\widehat{\eta}$, the following subquotient complex of $(C \cdot(X, \mathcal{V}), \partial)$ is exact:

$$
\bigoplus_{\substack{z, z^{\prime} \in M_{0} \\\left\{z, z^{\prime}\right\} \in X^{1}}} \mathcal{V}\left(\left\{z, z^{\prime}\right\} \cup \eta\right) \xrightarrow{\partial_{k}} \bigoplus_{z \in M_{0}} \mathcal{V}(\{z\} \cup \eta) \xrightarrow{\partial_{k-1}} \mathcal{V}(\eta)
$$

Theorem 1.7. Let \mathcal{V} be a HCS on X. Let $1 \leqslant k \leqslant d$ and suppose $\mathcal{S}^{*}(k)$ holds true. Then $H_{k}(X, \mathcal{V})=0$.

E. Grosse-Klönne

Proof. We need to show that

$$
\bigoplus_{\tau \in X^{k+1}} \mathcal{V}(\tau) \xrightarrow{\partial_{k}} \bigoplus_{\sigma \in X^{k}} \mathcal{V}(\sigma) \xrightarrow{\partial_{k-1}} \bigoplus_{\eta \in X^{k-1}} \mathcal{V}(\eta)
$$

is exact. We use notations from the proof of Theorem 1.2. For $n \in \mathbb{Z}_{\geqslant 0}$ and elements $c=\left(c_{\sigma}\right)_{\sigma} \in$ $\oplus_{\sigma \in X^{k}} \mathcal{V}(\sigma)$ consider the condition

$$
C(n): \text { for all } \sigma \in X^{k} \text { with } \nabla\left(\sigma^{-}\right) \geqslant n \text { we have } c_{\sigma}=0 .
$$

Similarly as in the proof of Theorem 1.2 one shows by induction on n : all elements $c \in \operatorname{Ker}\left(\partial_{k-1}\right)$ which satisfy $C(n)$ lie in $\operatorname{Im}\left(\partial_{k}\right)$. Indeed, given such an element c one uses $\mathcal{S}^{*}(k)$ in order to modify c by an element of $\operatorname{Im}\left(\partial_{k}\right)$ in such a way that it even satisfies $C(n-1)$, and then the induction hypothesis applies.

2. p-adic hyperplane arrangements

Let K denote a non-archimedean locally compact field, \mathcal{O}_{K} its ring of integers, $\pi \in \mathcal{O}_{K}$ a fixed prime element and k the residue field. Let X be the Bruhat-Tits building of PGL_{d+1} / K; it has Coxeter data of type \widetilde{A}_{d}. A concrete description of X is the following. A lattice in the K-vector space K^{d+1} is a free \mathcal{O}_{K}-submodule of K^{d+1} of rank $d+1$. Two lattices L, L^{\prime} are called homothetic if $L^{\prime}=\lambda L$ for some $\lambda \in K^{\times}$. We denote the homothety class of L by [L]. The set of vertices of X is the set of the homothety classes of lattices (always in K^{d+1}). For a lattice chain

$$
\pi L_{k} \subsetneq L_{0} \subsetneq L_{1} \subsetneq \cdots \subsetneq L_{k}
$$

we declare $\left(\left[L_{0}\right], \ldots,\left[L_{k}\right]\right)$ to be a pointed k-simplex. This defines a simplicial structure with orientation.

The following definitions are due to de Shalit [deS01] (who takes $R=K$, $\operatorname{char}(K)=0$ below). Let \mathcal{A} be a non empty subset of $\mathbb{P}\left(K^{d+1}\right)$. We view \mathcal{A} as a set of lines in K^{d+1}, or hyperplanes in $\left(K^{d+1}\right)^{*}$. We write e_{a} for the line represented by $a \in K^{d+1}-\{0\}$, so that $e_{\lambda a}=e_{a}$ for any $\lambda \in K^{\times}$.

Let R be a commutative ring and let \widetilde{E} be the free exterior algebra over R, on the set \mathcal{A}. It is graded and anti-commutative. There is a unique derivation $\delta: \widetilde{E} \rightarrow \widetilde{E}$, homogeneous of degree -1 , mapping each $e \in \mathcal{A}$ to 1 . It satisfies $\delta^{2}=0$ and

$$
\begin{gathered}
\delta\left(e_{0} \wedge \cdots \wedge e_{k}\right)=\sum_{i=0}^{k}(-1)^{i} e_{0} \wedge \cdots \wedge \widehat{e}_{i} \wedge \cdots \wedge e_{k} \\
\operatorname{Im}(\delta)=\operatorname{Ker}(\delta)
\end{gathered}
$$

The subalgebra $E=\operatorname{Im}(\delta)=\operatorname{Ker}(\delta)$ of \widetilde{E} is generated by all elements $e-e^{\prime}$ for $e, e^{\prime} \in \mathcal{A}$. There is an exact sequence

$$
\begin{equation*}
0 \longrightarrow E \longrightarrow \widetilde{E} \xrightarrow{\delta} E[1] \longrightarrow 0 \tag{2}
\end{equation*}
$$

and any $e \in \mathcal{A}$ supplies a splitting $E[1] \rightarrow \widetilde{E}, x \mapsto e \wedge x$.
Let $x \in X^{0}$ be a vertex. We say that an element $g \in \widetilde{E}$ is a standard generator of $I(x)$ if there are a lattice L_{x} representing x and elements $\left\{a_{0}, \ldots, a_{m}\right\}$ of $\mathcal{A} \cap L_{x}-\pi L_{x}$, linearly dependent modulo πL_{x}, such that $g=\delta\left(e_{a_{0}} \wedge \cdots \wedge e_{a_{m}}\right)$. We define the ideal $I(x)$ in \widetilde{E} as that generated by the standard generators of $I(x)$. For an arbitrary simplex σ we define the ideal $I(\sigma)=\sum_{x \in \sigma} I(x)$. We set

$$
\widetilde{A}(\sigma)=\frac{\widetilde{E}}{I(\sigma)}, \quad A(\sigma)=\frac{E}{E \cap I(\sigma)}
$$

Acyclic coefficient systems on buildings

The split exact sequence (2) provides us with a split exact sequence

$$
\begin{equation*}
0 \longrightarrow A(\sigma) \longrightarrow \widetilde{A}(\sigma) \xrightarrow{\delta} A(\sigma)[1] \longrightarrow 0 . \tag{3}
\end{equation*}
$$

The ideal $I(\sigma)$ is homogeneous, hence there is a natural grading on $\widetilde{A}(\sigma)$ and on $A(\sigma)$. We denote by $\widetilde{A} q(\sigma)$ respectively by $A^{q}(\sigma)$ the q th graded piece. For varying σ the $\widetilde{A}(\sigma)$ and $A(\sigma)$ form CCSs \widetilde{A} and A on X.

Suppose that we are given a lattice chain

$$
\pi L_{k} \subsetneq L_{1} \subsetneq L_{2} \subsetneq \cdots \subsetneq L_{k} .
$$

Let $x_{j} \in X^{0}$ be the vertex defined by L_{j}; then $\hat{\eta}=\left(x_{1}, \ldots, x_{k}\right)$ is a pointed ($k-1$)-simplex; we denote by η the underlying non pointed $(k-1)$-simplex. We write $L_{0}=\pi L_{k}$. As long as L_{k} is fixed we abuse notation in that we identify an element $e \in \mathcal{A}$ with an element $a \in L_{k}-L_{0}$ for which $e=e_{a}$; such an a is unique up to a unit in \mathcal{O}_{K}. Thus we regard \mathcal{A} as a subset of $L_{k}-L_{0}$.

Assume that \mathcal{A} is finite and fix a linear ordering \prec on \mathcal{A} which is adapted to $\widehat{\eta}$. By definition, this means $\max \left(\mathcal{A} \cap L_{j}-L_{j-1}\right) \prec \min \left(\mathcal{A} \cap L_{j+1}-L_{j}\right)$ for all $1 \leqslant j \leqslant k-1$. For $S \subset \mathcal{A}$ and $e \in S$ we define the \mathcal{O}_{K}-submodule $L(\widehat{\eta}, \prec, S, e)$ of K^{d+1} as follows: let $1 \leqslant j \leqslant k$ be the number for which $e \in L_{j}-L_{j-1}$; then

$$
L(\widehat{\eta}, \prec, S, e)=\left\langle L_{j-1},\left\{e^{\prime} \in S \mid e^{\prime} \prec e \text { or } e^{\prime}=e\right\}\right\rangle_{\mathcal{O}_{K}} .
$$

We say that e is $(S, \widehat{\eta})$-special with respect to \prec if

$$
e=\max _{\prec}(\mathcal{A} \cap L(\widehat{\eta}, \prec, S, e)) .
$$

(Here $\max _{\prec}(Q)$ for a subset Q of \mathcal{A} means the maximal element of Q with respect to the fixed ordering \prec. The subscript \prec does not indicate that \prec is a running parameter.)

Fix another linear ordering $<$ on \mathcal{A} and for subsets S of \mathcal{A} let $e_{S}=e_{0} \wedge \cdots \wedge e_{r} \in \widehat{E}$ where $e_{0}<e_{1}<\cdots<e_{r}$ is the increasing enumeration of the elements of S in the ordering $<$. (The ordering $<$ may be taken to be \prec, but the role of these two orderings will be completely unrelated in the following.)

Lemma 2.1. The free R-module $\widetilde{A}(\eta)$ is of finite rank, a basis is the set

$$
\left\{e_{S} \mid S \subset \mathcal{A} \text {, all } e \in S \text { are }(S, \widehat{\eta}) \text {-special with respect to } \prec\right\} \text {. }
$$

Proof. This is [deS01, Theorem 2.5]: the 'broken circuit theorem' (there $R=K$, $\operatorname{char}(K)=0$ and $\prec=<$, but this is irrelevant).

Let $N_{\widehat{\eta}}$ be as in $\S 1$. A subset $M_{0} \subset N_{\widehat{\eta}}$ corresponds to a collection of lattices $\left(L_{z}\right)_{z \in M_{0}}$ with $L_{0} \subsetneq L_{z} \subsetneq L_{1}$ for all $z \in M_{0}$. The following lemma is clear.

Lemma 2.2. We have M_{0} is stable with respect to $\widehat{\eta}$ if and only if for all $z_{1}, z_{2} \in M_{0}$ the lattice $L_{z_{1}} \cap L_{z_{2}}$ represents an element of M_{0}.

Suppose that $M_{0} \subset N_{\widehat{\eta}}$ is stable with respect to $\widehat{\eta}$. In particular there is a $x_{0} \in M_{0}$ with $L_{x_{0}} \subset L_{z}$ for all $z \in M_{0}$. We say that a collection $\left(\prec_{z}\right)_{z \in M_{0}}$, indexed by M_{0}, of linear orderings on \mathcal{A} is adapted to ($M_{0}, \widehat{\eta}$) if the following conditions hold:

- for any $z \in M_{0}$ the ordering \prec_{z} is adapted to the pointed k-simplex $(z, \widehat{\eta})$;
- for any $z_{1}, z_{2} \in M_{0}$ with $L_{z_{1}} \subset L_{z_{2}}$ we have $\left[e \prec_{z_{1}} e^{\prime} \Leftrightarrow e \prec_{z_{2}} e^{\prime}\right]$ for all pairs $e, e^{\prime} \in \mathcal{A} \cap L_{z_{1}}$ and also for all pairs $e, e^{\prime} \in \mathcal{A} \cap L_{z_{2}}-L_{z_{1}}$;
- for any $z \in M_{0}$ we have $\left[e \prec_{x_{0}} e^{\prime} \Leftrightarrow e \prec_{z} e^{\prime}\right]$ for all pairs $e, e^{\prime} \in \mathcal{A} \cap L_{k}-L_{z}$;
- we have $e \prec_{x_{0}} e^{\prime}$ for all pairs $e, e^{\prime} \in \mathcal{A}$ with $e \in \bigcup_{z \in M_{0}} L_{z}$ and $e^{\prime} \notin \bigcup_{z \in M_{0}} L_{z}$.

E. Grosse-Klönne

Lemma 2.3. Collections of linear orderings on \mathcal{A} adapted to $\left(M_{0}, \widehat{\eta}\right)$ exist.
Proof. The referee suggested the following proof (our original was unnecessarily complicated). Let $U=\bigcup_{z \in M_{0}} L_{z}$. Fix a linear ordering \prec on \mathcal{A} adapted to $\widehat{\eta}$ which satisfies $e \prec e^{\prime}$ for all pairs $e, e^{\prime} \in \mathcal{A}$ with $e \in U$ and $e^{\prime} \notin U$. For a $z \in M_{0}$ let \prec_{z} be the ordering which satisfies firstly $e \prec_{z} e^{\prime} \prec_{z} e^{\prime \prime}$ for all triples $e, e^{\prime}, e^{\prime \prime} \in \mathcal{A}$ with $e \in L_{z}$, with $e^{\prime} \in U-L_{z}$ and with $e^{\prime \prime} \in L_{k}-U$, and secondly $\left[e \prec e^{\prime} \Leftrightarrow e \prec_{z} e^{\prime}\right]$ for all pairs $e, e^{\prime} \in \mathcal{A} \cap L_{z}$, for all pairs $e, e^{\prime} \in \mathcal{A} \cap U-L_{z}$ and for all pairs $e, e^{\prime} \in \mathcal{A}-(\mathcal{A} \cap U)$. It is straightforwardly checked that $\left(\prec_{z}\right)_{z \in M_{0}}$ is adapted to ($M_{0}, \widehat{\eta}$).

Fix a collection $\left(\prec_{z}\right)_{z \in M_{0}}$ of linear orderings on \mathcal{A} adapted to $\left(M_{0}, \widehat{\eta}\right)$. Let

$$
G\left(\widehat{\eta} ; M_{0}\right)=\left\{\begin{array}{c|c}
e_{S} & \begin{array}{c}
S \subset \mathcal{A}, \text { for all } e \in S \text { there is a } \\
z \in M_{0} \text { such that } e \text { is }(S,(z, \widehat{\eta})) \text {-special }
\end{array}
\end{array}\right\}
$$

where $(S,(z, \widehat{\eta}))$-speciality is to be understood with respect to \prec_{z}. Let $J\left(\widehat{\eta} ; M_{0}\right) \subset \widetilde{E}$ be the ideal generated by the set

$$
I(\eta) \bigcup\left\{g \in \widetilde{E} \mid g \text { is a standard generator of } I(z) \text { for all } z \in M_{0}\right\}
$$

Proposition 2.4. We have $G\left(\widehat{\eta} ; M_{0}\right)$ is finite and generates $\widetilde{E} / J\left(\widehat{\eta} ; M_{0}\right)$ as an R-module.
Proof. Clearly the set of all e_{S} with $S \subset \mathcal{A}$ is generating. Now suppose that $S \subset \mathcal{A}$ does not satisfy the condition defining $G\left(\widehat{\eta} ; M_{0}\right)$. That is, there exists an $e \in S$ such that for all $z \in M_{0}$ this e is not $(S,(z, \widehat{\eta}))$-special. Fix such an e.

We first claim that there is an $\widehat{e} \in S$ and a subset $\widehat{S} \subset S$ such that for all $z \in M_{0}$ the following statements (1) and (2) are satisfied:
(1) for all $e^{\prime} \in \widehat{S}$ we have $e^{\prime} \prec_{z} e \prec_{z} \widehat{e}$;
(2) The element $\delta\left(e_{\widehat{S} \cup\{e, e \widehat{e}\}}\right)$ belongs to $J\left(\widehat{\eta} ; M_{0}\right)$.

We distinguish three cases. First consider the case $e \in L_{j}-L_{j-1}$ for some $2 \leqslant j \leqslant k$. Then we set $\widehat{S}=\left\{e^{\prime} \in S \mid e^{\prime} \prec_{x_{0}} e\right.$ and $\left.e^{\prime} \notin L_{j-1}\right\}$ and

$$
\widehat{e}=\max _{\prec_{0}}\left(\mathcal{A} \cap L\left(\left(x_{0}, \widehat{\eta}\right), \prec_{x_{0}}, S, e\right)\right) .
$$

The fact that e is not $\left(S,\left(x_{0}, \widehat{\eta}\right)\right)$-special and the properties of the adapted collection $\left(\prec_{z}\right)_{z \in M_{0}}$ give statement (1). Moreover $\widehat{S} \cup\{e, \widehat{e}\}$ is linearly dependent modulo L_{j-1}, hence $\delta\left(e_{\widehat{S} \cup\{e, \widehat{e}\}}\right)$ lies in $I\left(x_{j-1}\right) \subset I(\eta)$ and we get statement (2).

Now consider the case $e \in L_{1}-\bigcup_{z \in M_{0}} L_{z}$. Then we set $\widehat{S}=\left\{e^{\prime} \in S \mid e^{\prime} \prec_{x_{0}} e\right\}$ and $\widehat{e}=$ $\max _{\prec_{x_{0}}}\left(\mathcal{A} \cap L\left(\left(x_{0}, \widehat{\eta}\right), \prec_{x_{0}}, S, e\right)\right)$. Again the fact that e is not $\left(S,\left(x_{0}, \widehat{\eta}\right)\right)$-special and the properties of the adapted collection $\left(\prec_{z}\right)_{z \in M_{0}}$ give statement (1). For $z \in M_{0}$ let $\widehat{S}_{z}=\widehat{S}-\left(\widehat{S} \cap L_{z}\right)$. The fact that e is not $(S,(z, \widehat{\eta}))$-special tells us that $\widehat{S}_{z} \cup\{e, \widehat{e}\}$ is also linearly dependent modulo L_{z}. However then the subset of $\pi^{-1} L_{z}-L_{z}$ which defines the same elements in $\mathbb{P}\left(K^{d+1}\right)$ as does $\widehat{S} \cup\{e, \widehat{e}\}$ is linearly dependent modulo L_{z}, because it contains $\widehat{S}_{z} \cup\{e, \widehat{e}\}$. Therefore, $\delta\left(e_{\widehat{S} \cup\{e, \widehat{e}\}}\right)$ is a standard generator of $I(z)$. We have shown statement (2).

Finally the case $e \in \bigcup_{z \in M_{0}} L_{z}$. Let $z_{e} \in M_{0}$ be such that $e \in L_{z_{e}}$ and $L_{z_{e}}$ is minimal with this property (this z_{e} is unique since M_{0} is stable). We set $\widehat{S}=\left\{e^{\prime} \in S \mid e^{\prime} \prec_{z_{e}} e\right\}$ and $\widehat{e}=$ $\max _{\prec_{z_{e}}}\left(\mathcal{A} \cap L\left(\left(z_{e}, \widehat{\eta}\right), \prec_{z_{e}}, S, e\right)\right)$. The fact that e is not $\left(S,\left(z_{e}, \widehat{\eta}\right)\right)$-special gives statements (1) and (2) in this case (here $\left.\delta\left(e_{\widehat{S} \cup\{e, \widehat{e}\}}\right) \in I\left(x_{k}\right) \subset I(\eta)\right)$. Again this is straightforwardly checked using the properties of the adapted collection $\left(\prec_{z}\right)_{z \in M_{0}}$.

The claim established, statement (2) tells us that we may replace $e_{\widehat{S} \cup\{e\}}$ in $\widetilde{E} / J\left(\widehat{\eta} ; M_{0}\right)$ by a linear combination of elements $e_{S^{\prime}}$ with each S^{\prime} arising from $\widehat{S} \cup\{e, \widehat{e}\}$ by deleting an element of $\widehat{S} \cup\{e\}$.

Acyclic coefficient systems on buildings

By statement (1) of our claim this means that we may replace e_{S} by a linear combination of elements $e_{S^{\prime \prime}}$ with each $S^{\prime \prime}$ satisfying $S \prec_{z} S^{\prime \prime}$ for all $z \in M_{0}$ (for the lexicographic ordering \prec_{z} on the set of subsets of \mathcal{A} of fixed cardinality derived from the ordering \prec_{z} on \mathcal{A}). Repeating the process proves that $G\left(\widehat{\eta} ; M_{0}\right)$ is generating. That it is finite follows from Lemma 2.1. We are done.

We define the complex

$$
K\left(\widehat{\eta}, M_{0}\right)=\left\{\begin{array}{c}
0 \longrightarrow \frac{\tilde{E}}{\bigcap_{z \in M_{0}} I(\eta \cup\{z\})} \longrightarrow \\
\prod_{z \in M_{0}} \widetilde{A}(\eta \cup\{z\}) \longrightarrow \prod_{\substack{z_{1}, z_{2} \in M_{0} \\
\left\{z_{1}, z_{2}\right\} \in X^{1}}} \widetilde{A}\left(\eta \cup\left\{z_{1}, z_{2}\right\}\right) \longrightarrow \cdots
\end{array}\right\} .
$$

Proposition 2.5. For non-empty M_{0} as above the following statements hold:
(a) the complex $K\left(\widehat{\eta}, M_{0}\right)$ is exact;
(b) $J\left(\widehat{\eta} ; M_{0}\right)=\bigcap_{z \in M_{0}} I(\eta \cup\{z\})$;
(c) $\widetilde{E} / \bigcap_{z \in M_{0}} I(\eta \cup\{z\})$ is a free R-module and $G\left(\widehat{\eta} ; M_{0}\right)$ is a basis.

Proof. For $n \geqslant 1$ let $(\mathrm{a})_{n},(\mathrm{~b})_{n}$ and $(\mathrm{c})_{n}$ be the corresponding statements for all M_{0} with $1 \leqslant$ $\left|M_{0}\right| \leqslant n$. We will prove these statements by simultaneous induction on n.

Statements $(a)_{1}$ and $(b)_{1}$ are clear, and $(c)_{1}$ is Lemma 2.1. Now we assume $n>1$. First we prove (a) ${ }_{n}$. Choose a $y \in M_{0}$ for which L_{y} is maximal, i.e. such that there is no $z \in M_{0}$ with $L_{y} \subsetneq L_{z}$. If we set

$$
M_{1}=M_{0}-\{y\}, \quad M_{1}^{\prime}=\left\{z \in M_{1} \mid L_{z} \subset L_{y}\right\}
$$

then M_{1} and M_{1}^{\prime} are stable with respect to $\widehat{\eta}$ respectively $(y, \widehat{\eta})$. We claim

$$
\begin{equation*}
\bigcap_{z^{\prime} \in M_{1}^{\prime}} I\left(\eta \cup\left\{y, z^{\prime}\right\}\right) \subset I(\eta \cup\{y\})+\bigcap_{z \in M_{1}} I(z) . \tag{4}
\end{equation*}
$$

For $x \in M_{0}$ and $S \subset \mathcal{A}$ let S^{x} be the uniquely determined subset of $L_{x}-\pi L_{x}$ which determines the same set of lines in K^{d+1} (or the same subset of $\mathbb{P}\left(K^{d+1}\right)$) as does S (recall that by convention we view S as a subset of $L_{k}-L_{0}$). By induction hypothesis (b) $)_{n-1}$, applied to the pointed k-cell $(y, \widehat{\eta})$ and $M_{1}^{\prime} \subset N_{(y, \widehat{\eta})}$, a typical generator g of the left-hand side of (4) satisfies at least one of the following conditions:
(i) $g \in I(\eta \cup\{y\})$;
(ii) $g=\delta\left(e_{0} \wedge \cdots \wedge e_{r}\right)$ for some $S=\left\{e_{0}, \ldots, e_{r}\right\} \subset \mathcal{A}$ such that $S^{z^{\prime}}$ is linearly dependent modulo $\pi L_{z^{\prime}}$ for all $z^{\prime} \in M_{1}^{\prime}$.

To show that g lies in the right-hand side of (4) is difficult only if (i) does not hold. In that case we claim $g \in \bigcap_{z \in M_{1}} I(z)$. So let S be as in (ii) and let $z \in M_{1}$ be given. Since M_{0} is stable with respect to $\widehat{\eta}$ there exists a $z^{\prime} \in M_{1}^{\prime}$ such that $L_{y} \cap L_{z}=L_{z^{\prime}}$. Now $S^{z^{\prime}}$ is linearly dependent modulo $\pi L_{z^{\prime}}$. If S^{y} was linearly dependent modulo πL_{y} we would have $g \in I(y)$, but then (i) would hold. Hence S^{y} is linearly independent modulo πL_{y}, hence so is $S^{z^{\prime}} \cap S^{y}$, and hence $\widetilde{S}=S^{z^{\prime}}-\left(S^{z^{\prime}} \cap S^{y}\right)$ is linearly dependent modulo πL_{z} (since $S^{z^{\prime}}$ is). On the other hand $\widetilde{S} \subset \pi L_{y}$ and this implies $\widetilde{S} \cap \pi L_{z}=\emptyset$ (since $\pi L_{y} \cap \pi L_{z}=\pi L_{z^{\prime}}$). Thus, \widetilde{S} is a subset of $L_{z}-\pi L_{z}$ which is linearly dependent modulo πL_{z}. In particular, S^{z} is linearly dependent modulo πL_{z} (since $\widetilde{S} \subset S^{z}$), hence $g \in I(z)$.

E. Grosse-Klönne

We have established the claim (4). Next we claim that

$$
\begin{equation*}
\widetilde{E} \longrightarrow \prod_{z \in M_{0}} \widetilde{A}(\eta \cup\{z\}) \longrightarrow \prod_{\substack{z_{1}, z_{2} \in M_{0} \\\left\{z_{1}, z_{2}\right\} \in X^{1}}} \widetilde{A}\left(\eta \cup\left\{z_{1}, z_{2}\right\}\right) \tag{5}
\end{equation*}
$$

is exact; this is equivalent with exactness of $K\left(\widehat{\eta}, M_{0}\right)$ at the first non trivial degree. Let $\left(s_{z}\right)_{z \in M_{0}}$ be an element of the kernel of the second arrow in (5). By induction hypothesis (a) ${ }_{n-1}$ for M_{1} we may assume, after modifying $\left(s_{z}\right)_{z \in M_{0}}$ by the image of an element of \widetilde{E}, that $s_{z}=0$ for all $z \in M_{1}$. Then it follows that

$$
s_{y} \in \operatorname{Ker}\left[\widetilde{A}(\eta \cup\{y\}) \longrightarrow \prod_{z^{\prime} \in M_{1}^{\prime}} \widetilde{A}\left(\eta \cup\left\{z^{\prime}, y\right\}\right)\right] .
$$

This means that s_{y} can be lifted to an element \tilde{s}_{y} of the left-hand side of (4). By (4) there exist $\tilde{b} \in I(\eta \cup\{y\})$ and $\tilde{c} \in \bigcap_{z \in M_{1}} I(\eta \cup\{z\})$ with $\tilde{s}_{y}=\tilde{b}+\tilde{c}$. Thus \tilde{c} is a preimage of $\left(s_{z}\right)_{z \in M_{0}}$ and the exactness of (5) is proven. If we define the complex
then we have a short exact sequence

$$
0 \longrightarrow K\left((y, \widehat{\eta}), M_{1}^{\prime}\right)[-1] \longrightarrow K^{y}\left(\widehat{\eta}, M_{0}\right) \longrightarrow K\left(\widehat{\eta}, M_{1}\right) \longrightarrow 0 .
$$

By induction hypothesis the complexes $K\left((y, \widehat{\eta}), M_{1}^{\prime}\right)$ and $K\left(\widehat{\eta}, M_{1}\right)$ are exact; hence the complex $K^{y}\left(\widehat{\eta}, M_{0}\right)$ is exact. The exactness of $K^{y}\left(\widehat{\eta}, M_{0}\right)$ shows the exactness of $K\left(\widehat{\eta}, M_{0}\right)$ except at the first non-trivial degree, but at the first non-trivial degree we have already seen exactness. Hence $K\left(\widehat{\eta}, M_{0}\right)$ is exact and (a) ${ }_{n}$ is proven.

If we define the complex

$$
N^{y}\left(\widehat{\eta}, M_{0}\right)=\left\{0 \longrightarrow \frac{\bigcap_{z \in M_{1}} I(\eta \cup\{z\})}{\bigcap_{z \in M_{0}} I(\eta \cup\{z\})} \longrightarrow \frac{\bigcap_{z \in M_{1}^{\prime}} I(\eta \cup\{y, z\})}{I(\eta \cup\{y\})} \longrightarrow 0 \longrightarrow \cdots\right\}
$$

then we have a short exact sequence

$$
0 \longrightarrow N^{y}\left(\widehat{\eta}, M_{0}\right) \longrightarrow K\left(\widehat{\eta}, M_{0}\right) \longrightarrow K^{y}\left(\widehat{\eta}, M_{0}\right) \longrightarrow 0
$$

Since we have seen exactness of $K\left(\hat{\eta}, M_{0}\right)$ and of $K^{y}\left(\widehat{\eta}, M_{0}\right)$ we get exactness of $N^{y}\left(\widehat{\eta}, M_{0}\right)$. Now to prove (b) $)_{n}$ and $(\mathrm{c})_{n}$ we first suppose $R=\mathbb{Z}$. By exactness of $N^{y}\left(\widehat{\eta}, M_{0}\right)$ we get

$$
\begin{align*}
& \operatorname{rank}_{\mathbb{Z}}\left(\frac{\widetilde{E}}{\bigcap_{z \in M_{0}} I(\eta \cup\{z\})}\right)-\operatorname{rank}_{\mathbb{Z}}\left(\frac{\widetilde{E}}{\bigcap_{z \in M_{1}} I(\eta \cup\{z\})}\right) \\
&=\operatorname{rank}_{\mathbb{Z}}(\widetilde{A}(\eta \cup\{y\}))-\operatorname{rank}_{\mathbb{Z}}\left(\frac{\widetilde{E}}{\bigcap_{z \in M_{1}^{\prime}} I(\eta \cup\{y, z\})}\right) . \tag{6}
\end{align*}
$$

Observe that the collection $\left(\prec_{z}\right)_{z \in M_{1}}$, respectively $\left(\prec_{z^{\prime}}\right)_{z^{\prime} \in M_{1}^{\prime}}$, respectively \prec_{y} is adapted to $\left(M_{1}, \widehat{\eta}\right)$, respectively to $\left(M_{1}^{\prime},(y, \widehat{\eta})\right)$, respectively $(\{y\}, \widehat{\eta})$. We associate the sets $G\left(\widehat{\eta} ; M_{1}\right)$,

Acyclic coefficient systems on buildings

respectively $G\left((y, \widehat{\eta}) ; M_{1}^{\prime}\right)$, respectively $G(\widehat{\eta} ;\{y\})$ as before and claim

$$
\begin{gather*}
G\left(\widehat{\eta} ; M_{0}\right)=G\left(\widehat{\eta} ; M_{1}\right) \cup G(\widehat{\eta} ;\{y\}) \tag{7}\\
G\left((y, \widehat{\eta}) ; M_{1}^{\prime}\right)=G\left(\widehat{\eta} ; M_{1}\right) \cap G(\widehat{\eta} ;\{y\}) . \tag{8}
\end{gather*}
$$

Here (7) and \subset in (8) are very easy. To prove \supset in (8), let $e_{S} \in G\left(\widehat{\eta} ; M_{1}\right) \bigcap G(\widehat{\eta} ;\{y\})$ and let $e \in S$. Then e is $(S,(y, \widehat{\eta}))$-special and $(S,(z, \widehat{\eta}))$-special for some $z \in M_{1}$. Let $z^{\prime} \in M_{1}^{\prime}$ be the element with $L_{y} \cap L_{z}=L_{z^{\prime}}$. We will show that e is $(S,(z, y, \widehat{\eta}))$-special. If $e \in L_{y}$, then

$$
e=\max _{\prec_{z}}\left(\mathcal{A} \cap L\left((z, \widehat{\eta}), \prec_{z}, S, e\right)\right)=\max _{\prec_{z^{\prime}}}\left(\mathcal{A} \cap L\left(\left(z^{\prime}, y, \widehat{\eta}\right), \prec_{z^{\prime}}, S, e\right)\right)
$$

where the first equality follows from the $\left(S,(z, \widehat{\eta})\right.$)-speciality of e and the second one from $L_{y} \cap L_{z}$ $=L_{z^{\prime}}$. If, however, $e \notin L_{y}$, then

$$
e=\max _{\prec_{y}}\left(\mathcal{A} \cap L\left((y, \widehat{\eta}), \prec_{y}, S, e\right)\right)=\max _{\prec_{z^{\prime}}}\left(\mathcal{A} \cap L\left(\left(z^{\prime}, y, \widehat{\eta}\right), \prec_{z^{\prime}}, S, e\right)\right)
$$

where the first equality follows from the $(S,(y, \widehat{\eta}))$-speciality of e and the second one is clear.
From (7) and (8) we deduce

$$
\begin{equation*}
\left|G\left(\widehat{\eta} ; M_{0}\right)\right|=\left|G\left(\widehat{\eta} ; M_{1}\right)\right|+|G(\widehat{\eta} ;\{y\})|-\left|G\left((y, \widehat{\eta}) ; M_{1}^{\prime}\right)\right| . \tag{9}
\end{equation*}
$$

By induction hypothesis $(\mathrm{c})_{n-1}$ we know

$$
\begin{aligned}
\left|G\left(\widehat{\eta} ; M_{1}\right)\right| & =\operatorname{rank}_{\mathbb{Z}}\left(\frac{\widetilde{E}}{\bigcap_{z \in M_{1}} I(\eta \cup\{z\})}\right) \\
|G(\widehat{\eta} ;\{y\})| & =\operatorname{rank}_{\mathbb{Z}}(\widetilde{A}(\eta \cup\{y\})) \\
\left|G\left((y, \widehat{\eta}) ; M_{1}^{\prime}\right)\right| & =\operatorname{rank}_{\mathbb{Z}}\left(\frac{\widetilde{E}}{\bigcap_{z \in M_{1}^{\prime}} I(\eta \cup\{y, z\})}\right) .
\end{aligned}
$$

Thus we may compare (6) with (9) to obtain

$$
\operatorname{rank}_{\mathbb{Z}}\left(\frac{\widetilde{E}}{\bigcap_{z \in M_{0}} I(\eta \cup\{z\})}\right)=\left|G\left(\widehat{\eta} ; M_{0}\right)\right|
$$

Comparing with Proposition 2.4 we see that source and target of the canonical surjection

$$
\frac{\widetilde{E}}{J\left(\widehat{\eta} ; M_{0}\right)} \longrightarrow \frac{\widetilde{E}}{\bigcap_{z \in M_{0}} I(\eta \cup\{z\})}
$$

have the same finite \mathbb{Z}-rank. However, the source is free over \mathbb{Z} (because the \mathbb{Z}-submodule $J\left(\widehat{\eta} ; M_{0}\right)$ of \widetilde{E} has a set of generators each of which is a linear combination, with coefficients in $\{-1,1\}$, of elements of the obvious (countable) \mathbb{Z}-basis of \widetilde{E}). Hence this surjection is bijective, so (b) ${ }_{n}$ and $(\mathrm{c})_{n}$ follow if $R=\mathbb{Z}$, and then for arbitrary R by base change.
Theorem 2.6. For any $\mathcal{A} \subset \mathbb{P}\left(K^{d+1}\right)$, possibly infinite, the $C C S s \widetilde{A}$ and A satisfy $\mathcal{S}(k)$ for any $1 \leqslant k \leqslant d$.

Proof. The condition $\mathcal{S}(k)$ for \widetilde{A} requires that for any pointed $(k-1)$-simplex $\hat{\eta}$ and any subset $M_{0} \subset N_{\widehat{\eta}}$ which is stable with respect to $\widehat{\eta}$ the sequence

$$
\widetilde{A}(\eta) \longrightarrow \prod_{z \in M_{0}} \widetilde{A}(\eta \cup\{z\}) \longrightarrow \prod_{\substack{z_{1}, z_{2} \in M_{0} \\\left\{z_{1}, z_{2}\right\} \in X^{1}}} \widetilde{A}\left(\eta \cup\left\{z_{1}, z_{2}\right\}\right)
$$

is exact. For fixed $\widehat{\eta}$ we may pass to a suitable finite subset of \mathcal{A} without changing any of the involved groups. Hence we are in the situation considered above and what we need to show is precisely

E. Grosse-Klönne

the exactness of $K\left(\widehat{\eta}, M_{0}\right)$ at its first nontrivial degree. This we did in Proposition 2.5. Hence \widetilde{A} satisfies $\mathcal{S}(k)$. However, then A also satisfies $\mathcal{S}(k)$ because of the split exact sequence (3).
Corollary 2.7. The CCS \widetilde{A} and A on X are acyclic in positive degrees: for any $k \geqslant 1$ we have $H^{k}(X, A)=0$ and $H^{k}(X, \widetilde{A})=0$.

Proof. See Theorems 1.2 and 2.6.
For the rest of this section we assume $\operatorname{char}(K)=0$ and take $\mathcal{A}=\mathbb{P}\left(K^{d+1}\right)$. We write A_{R} instead of A in order to specify the chosen base ring R. Let $\Omega_{K}^{(d+1)}$ be Drinfel'd's symmetric space of dimension d over K. This is the K-rigid space obtained by removing all K-rational hyperplanes from projective d-space \mathbb{P}_{K}^{d}. There is a natural $\mathrm{GL}_{d+1}(K)$-equivariant reduction map

$$
r: \Omega_{K}^{(d+1)} \longrightarrow X
$$

(see, e.g., [deS01] for the precise meaning of r). For a simplex σ of X let $] \sigma\left[=r^{-1}(\operatorname{Star}(\sigma))\right.$, the preimage in $\Omega_{K}^{(d+1)}$ of the star of σ : the star of σ is the union of the open simplices whose closure contains σ. This $] \sigma\left[\right.$ is an admissible open subset of $\Omega_{K}^{(d+1)}$, and the collection of all the $] \sigma[$ forms an admissible open covering of $\Omega_{K}^{(d+1)}$.
Proposition 2.8 (de Shalit) [deS01]. For a simplex σ of X denote by $H_{d R}^{k}(] \sigma[)$ the k th de Rham cohomology group of the K-rigid space $] \sigma[$. There is a natural isomorphism

$$
H_{d R}^{k}(] \sigma[) \cong A_{K}^{k}(\sigma) .
$$

Corollary 2.9.

(1) (Local acyclicity.) Let σ be a simplex. For any $k \geqslant 0$ the sequence

$$
0 \longrightarrow H_{d R}^{k}\left(\bigcup_{x \in \sigma}\right] x[) \longrightarrow \prod_{x \in \sigma} H_{d R}^{k}(] x[) \longrightarrow \prod_{\substack{\tau \in X^{1} \\ \tau \subset \sigma}} H_{d R}^{k}(] \tau[) \longrightarrow \cdots
$$

is exact.
(2) (Global acyclicity, de Shalit.) The sequence

$$
0 \longrightarrow H_{d R}^{k}\left(\Omega_{K}^{(d+1)}\right) \longrightarrow \prod_{x \in X^{0}} H_{d R}^{k}(] x[) \longrightarrow \prod_{\sigma \in X^{1}} H_{d R}^{k}(] \sigma[) \longrightarrow \cdots
$$

is exact.
Proof. (1) Choose a vertex $x \in \sigma$. Then $M_{0}=\sigma-\{x\}$ is (as a set of vertices) stable with respect to x. Since the CCS A_{K} satisfies $\mathcal{S}(k)$ for any k, we derive just as in the proof of Proposition 2.5 that the sequence

$$
\prod_{z \in \sigma} A_{K}(z) \longrightarrow \prod_{\substack{\tau \in X^{1} \\ \tau \subset \sigma}} A_{K}(\tau) \longrightarrow \cdots
$$

is exact. Inserting Proposition 2.8 it becomes the exact sequence

$$
\prod_{x \in \sigma} H_{d R}^{k}(] x[) \longrightarrow \prod_{\substack{\tau \in X^{1} \\ \tau \subset \sigma}} H_{d R}^{k}(] \tau[) \longrightarrow \cdots
$$

On the other hand, we have the spectral sequence

$$
E_{1}^{r s}=\prod_{\substack{\tau \in X^{r} \\ \tau \subset \sigma}} H_{d R}^{s}(] \tau[) \Longrightarrow H_{d R}^{s+r}\left(\bigcup_{x \in \sigma}\right] x[)
$$

ACYCLIC COEFFICIENT SYSTEMS ON BUILDINGS

Together (1) follows. The proof of (2) works the same way, using Corollary 2.7 instead of Theorem 2.6.

Corollary 2.9 gives a precise expression of $H_{d R}^{k}\left(\Omega_{K}^{(d+1)}\right)$ through all the $H_{d R}^{k}(] \sigma[)$. The natural \mathbb{Z}-structures $A_{\mathbb{Z}}^{k}(\sigma)$ in the $A_{K}^{k}(\sigma)$ provide natural \mathbb{Z}-structures $H_{\mathbb{Z}}^{k}(] \sigma[)$ in the $H_{d R}^{k}(] \sigma[)$; hence the $\mathrm{GL}_{d+1}(K)$-stable subgroup

$$
H_{\mathbb{Z}}^{k}\left(\Omega_{K}^{(d+1)}\right)=\operatorname{Ker}\left[\prod_{x \in X^{0}} H_{\mathbb{Z}}^{k}(] x[) \longrightarrow \prod_{\sigma \in X^{1}} H_{\mathbb{Z}}^{k}(] \sigma[)\right]
$$

of $H_{d R}^{k}\left(\Omega_{K}^{(d+1)}\right)$. Now our Corollary 2.7 expresses $H_{\mathbb{Z}}^{k}\left(\Omega_{K}^{(d+1)}\right)$ precisely through the local terms $A_{\mathbb{Z}}^{k}(\sigma)$: it tells us that $H_{\mathbb{Z}}^{k}\left(\Omega_{K}^{(d+1)}\right)$ is quasiisomorphic with the complex

$$
\begin{equation*}
\prod_{x \in X^{0}} H_{\mathbb{Z}}^{k}(] x[) \longrightarrow \prod_{\sigma \in X^{1}} H_{\mathbb{Z}}^{k}(] \sigma[) \longrightarrow \prod_{\sigma \in X^{2}} H_{\mathbb{Z}}^{k}(] \sigma[) \longrightarrow \cdots \tag{10}
\end{equation*}
$$

Let us explain why this should have an application to a challenging problem on p-adic AbelJacobi mappings raised by Raskind and Xarles [RX03]. Let $\Gamma \subset \mathrm{PGL}_{d+1}(K)$ be a cocompact discrete subgroup such that the quotient $Y=\Gamma \backslash \Omega_{K}^{(d+1)}$, a smooth projective K-scheme, has strictly semistable reduction. For $1 \leqslant k \leqslant d$, Raskind and Xarles associate to Y a certain rigid analytic torus $J^{k}(Y)$, a ' p-adic intermediate Jacobian' $\left(J^{1}(Y)\right.$ is the Picard variety of Y and $J^{d}(Y)$ is the Albanese variety of Y). The device for the construction of $J^{k}(Y)$ is a canonical \mathbb{Z}-structure in the graded pieces $\mathrm{Gr}_{*}^{M} H^{k}(Y)$ of the monodromy filtration on the cohomology $H^{k}(Y)$ of Y-both ℓ-adic ($\ell \neq p$) and \log crystalline (\cong de Rham) cohomology. This \mathbb{Z}-structure results from the fact that for any component intersection Z of the reduction of Y (so each Z is a smooth projective k-scheme), the cycle map

$$
C H^{k}\left(Z \times_{k} \bar{k}\right) \otimes W(-k) / \text { tors } \longrightarrow H_{\text {crys }}^{2 k}\left(Z \times_{k} \bar{k} / W\right) / \text { tors }
$$

is bijective (here $W(-k)$ is the ring of Witt vectors W with the action of Frobenius multiplied by p^{k}); similarly for ℓ-adic cohomology, as was recently proved by Ito [Ito03]. That is, the \mathbb{Z}-structure is essentially given by the collection of Chow groups for all Z. Then they define an Abel-Jacobi mapping

$$
C H^{k}(Y)_{\mathrm{hom}} \longrightarrow J^{k}(Y)(K)
$$

with $C H^{k}(Y)_{\text {hom }}$ the group of cycles that are homologically equivalent to zero, using the ℓ-adic $(\ell \neq p$ and $\ell=p)$ Abel-Jabobi mapping which involves the Galois cohomology groups $H_{g}^{1}(K, \cdot)$ defined by Bloch and Kato. As they point out, it would be helpful to define the Abel-Jabobi mapping by analytic means.

We expect that such a definition involves p-adic integration of cycles on the (contractible!) K-rigid space $\Omega_{K}^{(d+1)}$, similar to Besser's p-adic integration on K-varieties with good reduction. The link would be the covering spectral sequence

$$
E_{2}^{r s}=H^{r}\left(\Gamma, H^{s}\left(\Omega_{K}^{(d+1)}\right)\right) \Longrightarrow H^{r+s}(Y)
$$

(which exists for both ℓ-adic $(\ell \neq p)$ and de Rham cohomology). Indeed, we know that the associated filtration on $H^{k}(Y)$ is the monodromy filtration [deS05, Gro, Ito03]), therefore the \mathbb{Z}-structure $H_{\mathbb{Z}}^{k}\left(\Omega_{K}^{(d+1)}\right)$ in $H^{k}\left(\Omega_{K}^{(d+1)}\right)$ gives a \mathbb{Z}-structure in $\mathrm{Gr}_{*}^{M} H^{k}(Y)$. A comparison with that of Raskind and Xarles probably needs the resolution (10): the component intersections Z considered by them correspond precisely to the simplices of the quotient simplicial complex $\Gamma \backslash X$.

E. Grosse-Klönne

3. Local systems arising from representations

Let $K, \mathcal{O}_{K}, \pi, k, X$ and its orientation be as in $\S 2$. We fix a natural number $n \geqslant 1$ and let

$$
U=U^{(n)}=\left\{g \in \mathrm{GL}_{d+1}\left(\mathcal{O}_{K}\right) \mid g \equiv 1 \bmod \pi^{n}\right\}
$$

denote the principal congruence subgroup of level n in G. For a vertex $x \in X^{0}$ we let

$$
U_{x}=U_{x}^{(n)}=g U g^{-1} \quad \text { if } x=g\left(\left[\mathcal{O}_{K}^{d+1}\right]\right) \text { for some } g \in G
$$

and for a simplex $\tau=\left\{x_{1}, \ldots, x_{k}\right\}$ we let

$$
U_{\tau}=\text { the subgroup generated by } U_{x_{1}} \cup \cdots \cup U_{x_{k}} \text {. }
$$

This is a pro- p-group, $p=\operatorname{char}(k)$.
Lemma 3.1. Suppose the lattices $L_{z}, L_{x_{1}}$ and $L_{x_{2}}$ represent vertices z, x_{1} and x_{2} in X^{0} such that both x_{1} and x_{2} are incident to z and such that $L_{z}=L_{x_{1}} \cap L_{x_{2}}$. Then $U_{z} \subset U_{x_{1}} U_{x_{2}}$.

Proof. Applying a suitable $g \in G$ we may assume that $L_{z}=\mathcal{O}_{K}^{d+1}$ and $L_{x_{s}}=t^{s} \mathcal{O}_{K}^{d+1}$ for diagonal matrices id $\neq t^{s}=\left(t_{0}^{s}, \ldots, t_{d}^{s}\right)$ satisfying $\{1\} \subset\left\{t_{j}^{1}, t_{j}^{2}\right\} \subset\left\{1, \pi^{-1}\right\}$ for all $0 \leqslant j \leqslant d$. However, then $U_{z}=U$ as defined above, and $U_{x_{s}}=t^{s} U\left(t^{s}\right)^{-1}$ and an easy matrix argument gives the claim.

Proposition I.3.1 in [SS97] significantly strengthens Lemma 3.1. It is this interpolation property of the groups U_{x} which also underlies the acyclicity proof in $[\mathrm{SS} 93]$ and the much more general theory in [SS97].

Let V be a smooth representation of G on a (not necessarily free) $\mathbb{Z}[1 / p]$-module V which is generated, as a G-representation, by its U-fixed vectors. Because of $U_{\sigma} \subset U_{\tau}$ if $\sigma \subset \tau$ we can form the HCS $\underline{V}=\left(V^{U_{\tau}}\right)$ of subspaces of fixed vectors

$$
V^{U_{\tau}}=\left\{v \in V \mid g v=g \text { for all } g \in U_{\tau}\right\}
$$

with the obvious inclusions as transition maps. In the special case where our V is a G representation on a \mathbb{C}-vector space (not just on a $\mathbb{Z}[1 / p]$-module), the following theorem (and its version for $n=1$) was proved in [SS93].

Theorem 3.2. Suppose $n>1$. Then the chain complex $C .(X, \underline{V})$ is a resolution of V.
Proof. To see $H_{k}(X, \underline{V})=0$ for $k \geqslant 1$ it suffices, by Theorem 1.7, to prove $\mathcal{S}^{*}(k)$, i.e. to prove that for any pointed ($k-1$)-simplex $\widehat{\eta}$ with underlying $(k-1)$-simplex η and for any subset M_{0} of $N_{\widehat{\eta}}$ which is stable with respect to $\widehat{\eta}$, the sequence

$$
\bigoplus_{\substack{z, z^{\prime} \in M_{0} \\\left\{z, z^{\prime}\right\} \in X^{1}}} V^{\left.U_{\left\{z, z^{\prime}\right\}}\right\} \cup \eta} \xrightarrow{\partial_{k}} \bigoplus_{z \in M_{0}} V^{U_{\{z\} \cup \eta}} \xrightarrow{\partial_{k-1}} V^{U_{\eta}}
$$

is exact. We use induction on $\left|M_{0}\right|$. If M_{0} is non-empty choose a $y \in M_{0}$ for which L_{y} is maximal, i.e. there is no $z \in M_{0}$ with $L_{y} \subsetneq L_{z}$. Then $M_{1}=M_{0}-\{y\}$ is stable with respect to $\widehat{\eta}$. Letting

$$
M_{1}^{\prime}=\left\{z^{\prime} \in M_{1} \mid\left\{y, z^{\prime}\right\} \in X^{1}\right\}
$$

we first claim that

$$
\begin{equation*}
\bigoplus_{z^{\prime} \in M_{1}^{\prime}} V^{U_{\left\{y, z^{\prime}\right\} \cup \eta}} \longrightarrow V^{U_{y}} \bigcap \sum_{z \in M_{1}} V^{U_{\{z\} \cup \eta}} \tag{11}
\end{equation*}
$$

is surjective. Let $v=\sum_{z \in M_{1}} v_{z}$ be an element of the right-hand side with $v_{z} \in V^{U_{\{z\} \cup \eta}}$ for all $z \in M_{1}$. Since V is smooth we can find a (finitely generated) submodule V^{\prime} of V containing v which

Acyclic coefficient systems on buildings

is stable under U_{η} and U_{z} for all $z \in M_{0}$. The action of U_{y} on V^{\prime} factors through a finite quotient \bar{U}_{y} of U_{y}. Since v is fixed by \bar{U}_{y} it follows that

$$
v=\frac{1}{\left|\bar{U}_{y}\right|} \sum_{g \in \bar{U}_{y}} g \cdot v=\sum_{z \in M_{1}} \frac{1}{\left|\bar{U}_{y}\right|} \sum_{g \in \bar{U}_{y}} g \cdot v_{z} .
$$

Since M_{0} is stable, there exists for any $z \in M_{1}$ a $z^{\prime} \in M_{1}^{\prime}$ such that $L_{z^{\prime}}=L_{z} \cap L_{y}$. It will be enough to show $\sum_{g \in \bar{U}_{y}} g \cdot v_{z} \in V^{U_{\left\{y, z^{\prime}\right\} \cup \eta}}$. The stability under U_{y} is clear. Now let $h \in U_{z^{\prime}}$. By Lemma 3.1 we may factor h as $h=h_{y} h_{z}$ with $h_{y} \in U_{y}$ and $h_{z} \in U_{z}$. Since $n>1$ and since there is a vertex incident to both z and y we have $g^{-1} U_{z} g=U_{z}$ for any $g \in U_{y}$, hence $h_{z} g=g h_{z}^{g}$ with $h_{z}^{g} \in U_{z}$. Thus

$$
h \sum_{g \in \bar{U}_{y}} g \cdot v_{z}=h_{y} \sum_{g \in \bar{U}_{y}} g h_{z}^{g} \cdot v_{z}=\sum_{g \in \bar{U}_{y}} g \cdot v_{z},
$$

i.e. $\sum_{g \in \bar{U}_{y}} g . v_{z}$ is stable under $U_{z^{\prime}}$. Finally let $h \in U_{x}$ for some $x \in \eta$. Since x and y are incident we have $g^{-1} U_{x} g=U_{x}$, hence there is for any $g \in U_{y}$ a $h^{g} \in U_{x}$ with $h g=g h^{g}$. Then

$$
h \sum_{g \in \bar{U}_{y}} g \cdot v_{z}=\sum_{g \in \bar{U}_{y}} g h^{g} \cdot v_{z}=\sum_{g \in \bar{U}_{y}} g \cdot v_{z}
$$

so we have shown stability under U_{η}. The surjectivity of (11) is proven. Now let $c=\left(c_{z}\right)_{z \in M_{0}}$ be an element of $\operatorname{Ker}\left(\partial_{k-1}\right)$. Then necessarily

$$
c_{y} \in V^{U_{y}} \cap \sum_{z \in M_{1}} V^{U_{\{z\} \cup \eta}} .
$$

By the surjectivity of (11) we may therefore modify c by an element of $\operatorname{Im}\left(\partial_{k}\right)$ such that for the new $c=\left(c_{z}\right)_{z \in M_{0}} \in \operatorname{Ker}\left(\partial_{k-1}\right)$ we have $c_{y}=0$. However, then the induction hypothesis, applied to M_{1}, tells us that after another such modification we can achieve $c=0$. We have shown that $C .(X, \underline{V})$ is exact in positive degrees. It remains to observe that the hypothesis that V is generated by V^{U} is equivalent with the surjectivity of

$$
C_{0}(X, \underline{V})=\bigoplus_{x \in X^{0}} V^{U_{x}} \longrightarrow V
$$

Acknowledgements

I am very grateful to Peter Schneider whose comments helped me to eliminate inaccuracies and to streamline presentation, terminology and notations. I thank Ehud de Shalit and Annette Werner for related discussions. Thanks also go to the referee for his careful reading and for supplying a simple proof for Lemma 2.3.

References

Alo G. Alon, Cohomology of local systems coming from p-adic hyperplane arrangements, Israel J. Math., to appear.
Bro89 K. S. Brown, Buildings (Springer, New York, 1989).
deS01 E. de Shalit, Residues on buildings and de Rham cohomology of p-adic symmetric domains, Duke Math. J. 106 (2001), 123-191.
deS05 E. de Shalit, The p-adic monodromy-weight conjecture for p-adically uniformized varieties, Compositio Math. 141 (2005), 101-120.
Gro E. Grosse-Klönne, Frobenius and monodromy operators in rigid analysis, and Drinfel'd's symmetric space, J. Algebraic Geom., to appear.

Acyclic coefficient systems on buildings

Gro04 E. Grosse-Klönne, Integral structures in the p-adic holomorphic discrete series, Preprint (2004).
Ito03 T. Ito, Weight-monodromy conjecture for p-adically uniformized varieties, Preprint (2003).
RX03 W. Raskind and X. Xarles, On the étale cohomology of algebraic varieties with totally degenerate reduction over p-adic fields, Preprint (2003).
Sch92 P. Schneider, The cohomology of local systems on p-adically uniformized varieties, Math. Ann. 293 (1992), 623-650.

SS93 P. Schneider and U. Stuhler, Resolutions for smooth representations of the general linear group over a local field, J. reine angew. Math. 436 (1993), 19-32.
SS97 P. Schneider and U. Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Publ. Math. Inst. Hautes Études Sci. 85 (1997), 97-191.

Elmar Grosse-Klönne klonne@math.uni-muenster.de
Mathematisches Institut der Universität Münster, Einsteinstrasse 62, D-48149 Münster, Germany

[^0]: Received 14 February 2004, accepted in final form 26 May 2004, published online 21 April 2005. 2000 Mathematics Subject Classification 20E42.
 Keywords: building, Bruhat-Tits building, coefficient system, cohomology, hyperplane arrangement, Orlik-Solomon algebra.
 This journal is (c) Foundation Compositio Mathematica 2005.

