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Abstract

We construct global-in-time singular dynamics for the (renormalized) cubic fourth-order nonlinear Schrödinger
equation on the circle, having the white noise measure as an invariant measure. For this purpose, we introduce the
‘random-resonant / nonlinear decomposition’, which allows us to single out the singular component of the solution.
Unlike the classical McKean, Bourgain, Da Prato-Debussche type argument, this singular component is nonlinear,
consisting of arbitrarily high powers of the random initial data. We also employ a random gauge transform, leading
to random Fourier restriction norm spaces. For this problem, a contraction argument does not work, and we instead
establish the convergence of smooth approximating solutions by studying the partially iterated Duhamel formulation
under the random gauge transform. We reduce the crucial nonlinear estimates to boundedness properties of certain
random multilinear functionals of the white noise.

Contents

1 Introduction 2

1.1 White noise on the circle and Hamiltonian partial differential equations . . . . . . . . 2
1.2 The cubic fourth-order nonlinear Schrödinger equation and a soft formulation of the

main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Renormalized equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Statements of the well-posedness results . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Outline of the well-posedness argument . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 The U > 0 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 The U = 0 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Notations and preliminaries 16

2.1 Deterministic tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Probabilistic estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Local theory, Part 1: 0 < U ≤ 1
2 21

© The Author(s) 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2020.51 Published online by Cambridge University Press

doi:10.1017/fms.2020.51
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2020.51&domain=pdf
https://doi.org/10.1017/fms.2020.51


2 T. Oh et al.

3.1 Resonant part N2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Non-resonant part N1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Local theory, Part 2: U = 0 30

4.1 Partially iterated Duhamel formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Proof of Theorem 2: the U = 0 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Global well-posedness and invariance of the white noise measure 38

5.1 Invariance of the white noise measure under the truncated 4NLS . . . . . . . . . . . . 38
5.2 Almost sure global well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Invariance of the white noise measure . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Nonlinear estimate I: non-resonant part 41

6.1 Probabilistic estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Nonlinear estimate II: resonant part 47

Appendix A Further probabilistic estimates 52

A.1 Random -B,1-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 Key tail estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.3 Proof of Lemma 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1. Introduction

1.1. White noise on the circle and Hamiltonian partial differential equations

A white noise on the circle T = R/(2cZ) is defined as the following infinite-dimensional random
variable:1

Dl (G) =
∑

=∈Z
6= (l)48=G , (1.1)

where {6=}=∈Z is a family of independent standard complex-valued Gaussian random variables. On the
other hand, using the representation of the !2 (T)-norm in terms of the Fourier coefficients, one may
formally define the white noise measure induced by (1.1) as

‘/−14
− 1

2 ‖D ‖2
!2 (T) 3D’.

There are many important Hamiltonian PDEs such as the Korteweg-de Vries equation (KdV) and the
nonlinear Schrödinger equations (NLS), under which the !2-norm of a solution is conserved. Therefore,
for this type of equations, thanks to the general globalization argument introduced by Bourgain in [6, 7],
if one can solve the equation locally in time with data distributed according to (1.1), then one can almost
surely extend the solutions for all times, and the white noise would be an invariant measure of the
resulting flow.

It is easy to check that the white noise measure induced by (1.1) is supported in the space of

distributions �B (T) \ �− 1
2 (T), B < − 1

2 . It is this low regularity that makes it very difficult to solve
locally in time a Hamiltonian PDE with the white noise initial data defined in (1.1). It is remarkable
that this severe difficulty was overcome in the context of the KdV equation; see [63, 49, 50, 51, 52]. An
important property of the KdV equation that is heavily exploited in these works is the absence of resonant

interactions when restricted to solutions with a fixed zero Fourier mode (which is a conserved quantity
for the KdV equation). As we shall see below, in the case of NLS-type equations, one may remove a part
of the resonant interactions by a gauge transform. Even after such a transformation, however, there are
remaining resonant interactions. The main goal of this work is to show how, by exploiting an intricate
mixture of probabilistic and deterministic analysis, one may deal with such resonant interactions in the

1By convention, we endow T with the normalized Lebesgue measure (2c)−13G.
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context of the cubic fourth-order nonlinear Schrödinger equation on the circle with the white noise initial
data (1.1). In our construction, the main random part of the solutions will be a nonlinear object (in fact,
of infinite degree), which is in sharp contrast with the simple random linear evolution appearing in the
previous random data well-posedness results such as [7, 15]. This difference between our main result
and [7, 15] is similar in spirit to the difference between ‘scattering’ and ‘modified scattering’ appearing
in the analysis of dispersive PDEs posed on the Euclidean space. See Remarks 1.5 and 4.3 below.

We succeeded in making our method work only for an NLS equation with a sufficiently strong
dispersion. The generalization of our result to the more standard (in particular because of its integrability)
NLS with second-order dispersion remains as a challenging open problem.

1.2. The cubic fourth-order nonlinear Schrödinger equation and a soft formulation of the main result

In this work, we consider the cubic fourth-order nonlinear Schrödinger equation (4NLS) on the circle T:
{
8mCD = m4

GD + |D |2D
D |C=0 = D0,

(G, C) ∈ T × R, (1.2)

where D is complex-valued. The equation (1.2) is also called the biharmonic NLS; it was studied, for
instance, in [38, 70] in the context of stability of solitons in magnetic materials. The !2-norm is formally
conserved by the dynamics of (1.2), and therefore, as discussed in the previous subsection, one may
hope to construct global dynamics of (1.2) with data given by (1.1). This is a delicate problem for many
reasons, the most basic being that it is not clear how to interpret the nonlinearity for such low-regularity
solutions.

Let us now briefly go over the deterministic well-posedness theory of (1.2). A simple fixed-point
argument via the Fourier restriction norm method introduced by Bourgain [5] yields local well-posedness
of (1.2) in �B (T), B ≥ 0. The main ingredient is the following !4-Strichartz estimate:

‖D‖!4 (T×R) . ‖D‖
-

0, 5
16
, (1.3)

where -B,1 denotes the Fourier restriction norm space adapted to (1.2). See [57] for the proof of (1.3).
Thanks to the !2-conservation law, this local result immediately implies global well-posedness of (1.2)
in �B (T), B ≥ 0. Equation (1.2) is known to be ill-posed in negative Sobolev spaces in the sense of
non-existence of solutions [33, 59]. See also [58, 18] for ill-posedness by norm inflation. We point out
that the ill-posedness results in [58, 18] also apply to the renormalized equation (1.6) below.

Taking into account that we have a well-defined flow of (1.2) for smooth initial data, one may
formulate the problem of solving (1.2) with the white noise initial data (1.1) as that of studying the
limiting behavior of smooth solutions to (1.2) with initial data given by suitable regularizations of (1.1).
We do not know the answer to this question in full generality, but we can answer it in a satisfactory
manner for the natural regularizations by mollification.

Let {Dl0,<}
∞
<=1 be a sequence of random smooth functions defined as the regularization of Dl in (1.1)

by mollification; that is,

Dl0,< = Dl ∗ d< =

∑

=∈Z
d̂< (=)6= (l)48=G , (1.4)

where d̂<(=) = \ (=/<) with a bump function \ on R, which equals one near the origin.2 Denote by D<
the smooth solution to (1.2) with smooth initial data D< |C=0 = Dl0,< constructed in [57]. If we could solve
the equation (1.2) with data given by (1.1), then the sequence {D<}∞<=1 would converge to the solution
in an appropriate sense. The ill-posedness result in [33, 59], however, implies that there is no hope to

2We also allow \ to be a sharp cutoff function 1[−1,1] (=) , in which case the resulting Dl
0,< corresponds to the frequency-

truncated version of the white noise onto the frequencies { |= | ≤ <}.
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make {D<}∞<=1 converge in any Sobolev space of negative regularity. It turns out that a ‘renormalization’
of D< is convergent. Here is a precise statement.

Theorem 1. The sequence
{

exp
(
28C‖D< (C)‖2

!2

)
D<(C)

}∞
<=1

almost surely converges in3 � (R;�B (T)),
B < − 1

2 . If we denote the limit by D, then we have

D =

∑

=∈Z
6= (C, l)48=G ,

where for every C ∈ R, {6= (C, l)}=∈Z is a family of independent standard complex-valued Gaussian

random variables. Furthermore, the limit D does not depend on the choice of the bump function \.

Theorem 1 is a satisfactory qualitative statement. However, it does not explain in which sense the
obtained limit D satisfies a limit equation, and it does not give any description of the obtained limit. This
will be the purpose of the next two subsections.

Remark 1.1. It is worthwhile to note that in a similar discussion for the KdV equation, one can show

convergence of the sequence of regularized solutions for any regularization of the white noise initial

data. This is because the local well-posedness analysis in [39, 50] is purely deterministic. Furthermore,

renormalization is not necessary for the KdV equation. It would be of interest to investigate whether the

result of Theorem 1 holds for a more general class of regularizations of the white noise than those given

by mollification (1.4). See Remark 1.2 for a discussion in case of smoother random initial data.

1.3. Renormalized equation

We now derive the equation satisfied by the limiting distribution derived in Theorem 1. Given a global
solution D ∈ � (R; !2 (T)) to (1.2), we define the following invertible gauge transform:

D(C) ↦−→ G(D) (C) := 428C
⨏

|D (G,C) |23GD(C), (1.5)

where
⨏
5 (G)3G := 1

2c

∫
T
5 (G)3G denotes integration with respect to the normalized Lebesgue measure

(2c)−13G on T. A direct computation with the mass conservation shows that the gauged function, which
we still denote by D, solves the following renormalized 4NLS:

8mCD = m4
GD +

(
|D |2 − 2

⨏
|D |23G

)
D. (1.6)

Note that the gauge transform G is invertible. In particular, we can freely convert solutions to (1.2) into
solutions to (1.6) and vice versa as long as they are in� (R; !2 (T)). Clearly, the definition (1.5) does not
make sense outside !2 (T) (in space), and hence the original 4NLS (1.2) and the renormalized 4NLS
(1.6) are no longer equivalent outside !2 (T). As it turns out, the renormalized equation (1.6) is the one
satisfied by the limiting distribution D appearing in the statement of Theorem 1.

Just like the original 4NLS (1.2), the !4-Strichartz estimate (1.3) along with the mass conservation
yields global well-posedness of the renormalized 4NLS (1.6) in !2 (T). The important point is that
the renormalization removes a certain singular component from the cubic nonlinearity; see (1.18)
and (1.19) below. This allows us to study well-posedness of the renormalized 4NLS (1.6) in negative
Sobolev spaces. In recent papers [41, 59], the renormalized 4NLS (1.6) was shown to be locally well-
posed in �B (T) for B ≥ − 1

3 and globally well-posed for B > − 1
3 . Note that the white noise in (1.1) lies

almost surely in �B (T) \ �− 1
2 (T), B < − 1

2 , which is beyond the scope of the known deterministic well-
posedness results in [41, 59]. For this reason, the main part of our analysis is devoted to the probabilistic

construction of local-in-time and global-in-time solutions to (1.6) with the white noise as initial data.

3Here, we endow � (R;� B (T)) with the compact-open topology in time.
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Note that the renormalization of the nonlinearity in (1.6) is canonical in Euclidean quantum field
theory (see, for example, [66]).4 This formulation first appeared in the work of Bourgain [7] for studying
the invariant Gibbs measure for the defocusing cubic NLS onT2. See [21, 54, 33, 55] for more discussion
in the context of the (usual) nonlinear Schrödinger equations. See also Remark 1.6 below.

1.4. Statements of the well-posedness results

In the following, we consider the Cauchy problem for the renormalized 4NLS (1.6) with Gaussian
random data in a more general form than (1.1). For this purpose, we introduce a family of mean-zero
Gaussian measures on periodic distributions on T. Given U ∈ R, consider the Gaussian measure `U
with formal density:

3`U = /−1
U 4

− 1
2 ‖D ‖2

�U 3D = /−1
U

∏

=∈Z
4−

1
2 〈=〉2U |D̂= |23D̂=. (1.7)

We can indeed view `U as the induced probability measure under the map ΞU given by

ΞU : l ∈ Ω ↦−→ ΞU (l) (G) :=
∑

=∈Z

6= (l)
〈=〉U 48=G ∈ D′(T), (1.8)

where 〈 · 〉 = (1 + | · |2) 1
2 and {6=}=∈Z is a sequence of independent standard5 complex-valued Gaussian

random variables on a probability space (Ω,F, %). An easy computation shows that ΞU in (1.8) lies in
�B (T) for

B < U − 1

2
(1.9)

but almost surely not in �U−
1
2 (T). In particular, `U is a Gaussian measure on �B (T), and the triplet

(�U, �B , `U) forms an abstract Wiener space, provided that (U, B) satisfies (1.9). For more details, see
[28, 40]. When U = 0, the random Fourier series (1.8) reduces to that in (1.1), and hence the Gaussian
measure `0 in (1.7) corresponds to the white noise measure.

Our first step is to construct local-in-time dynamics for the renormalized 4NLS (1.6) almost surely
with respect to the random initial data of the form

Dl0 (G) =
∑

=∈Z

6= (l)
〈=〉U 48=G (1.10)

with U ≥ 0. For this purpose, we first introduce the following nonlinear operator / (of infinite degree)
by setting

/ ( 5 ) (C) :=
∑

=∈Z
48 (=G−=

4C)
∞∑

:=0

(8C):
:!

| 5̂ (=) |2: 5̂ (=), (1.11)

a priori defined for smooth functions 5 =
∑
=∈Z 5̂ (=)48=G on T. The following theorem addresses almost

sure local well-posedness of the renormalized 4NLS (1.6) for U ≥ 0.

Theorem 2 (Almost sure local well-posedness). Let U ≥ 0. Then the renormalized cubic 4NLS (1.6)
on T is locally well-posed almost surely with respect to the Gaussian measure `U. More precisely, there

exist �, 2 > 0 such that for each sufficiently small X > 0, there exists a set ΩX ⊂ Ω with the following

properties:

4To be precise, it is an equivalent formulation to the Wick renormalization in handling rough Gaussian initial data.
5By convention, we set Var(6=) = 1.
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(i) %(Ω2
X
) = `U ◦ ΞU (Ω2X) < �4

− 1
X2 , where `U and ΞU are as in (1.7) and (1.8).

(ii) For each l ∈ ΩX , there exists a (unique) solution D to (1.6) with D |C=0 = Dl0 given by the random

Fourier series (1.10) in the class

Il + � ([−X, X]; !2 (T)) ⊂ � ([−X, X];�B (T)), (1.12)

where Il = / (Dl0 ) is as in (1.11) and (i) B = 0 if U > 1
2 and (ii) B = U− 1

2 −Y for any Y > 0, if U ≤ 1
2 .

In the next subsections, we discuss an outline of the proof of Theorem 2.

Remark 1.2. (i) When U > 1
2 , the random initial data Dl0 in (1.10) almost surely belongs to !2 (T), and

hence the deterministic uniqueness statements apply. In particular, when U > 2
3 , one can easily modify

the argument in [32] to conclude that the solution to (1.6) is almost surely unconditionally unique:

namely, uniqueness holds in the entire � ([−X, X];� 1
6 (T)). For 1

2 < U ≤ 2
3 , the solution is almost surely

conditionally unique. Namely, uniqueness holds in an auxiliary function space (the -0,1-space for some

1 > 1
2 , in this case) contained in � ([−X, X]; !2 (T)). As for the uniqueness statements for 0 ≤ U ≤ 1

2 ,

see Remark 1.10 for 0 < U ≤ 1
2 and Remark 4.4 for U = 0.

(ii) Given B ∈ R and 1 ≤ ? ≤ ∞, define the Fourier-Lebesgue space F!B, ? (T) by the norm

‖ 5 ‖F!B,? (T) := ‖〈=〉B 5̂ (=)‖ℓ?= (Z) . (1.13)

Then, given U ∈ R, it is easy to see that the random initial data Dl0 = Dl0 (U) in (1.10) almost surely

belongs to the Fourier-Lebesgue space F!B, ? (T) defined in (1.13) if and only if (B − U)? < 1: namely,

B < U − 1
?

. See [1], for example. In particular, given U > 0, we can take B ≥ 0 by choosing sufficiently

large ? = ?(U) ≫ 1. Then, as already pointed out in [21], by adapting deterministic local well-

posedness results [19, 29, 60] of the renormalized cubic NLS (with the second-order dispersion) in the

Fourier-Lebesgue space F!B, ? (T) with B ≥ 0 and 1 ≤ ? < ∞ to the renormalized 4NLS (1.6), we can

prove almost sure local well-posedness of (1.6) with the random initial data Dl0 = Dl0 (U) in (1.10) (via

the deterministic method), provided that U > 0. As in the case of KdV discussed in Remark 1.1, we then

have convergence of the sequence of regularized solutions for any regularization of the initial data in the

appropriate Fourier-Lebesgue space when U > 0. See also [25] for an analogous local well-posedness

result in the context of the stochastic cubic NLS on T with almost space-time white noise.

When U = 0, however, the white noise defined in (1.1) almost surely belongs to F!B, ? (T) only for

B < − 1
?

, and thus the deterministic argument in [19, 29, 60] is no longer applicable to our problem.

In fact, our main goal in this paper is to prove Theorem 2 when U = 0, which requires a new idea. See

Sections 4 and 6.

Lastly, we point out that the construction of a solution in Theorem 2 is done in the more canonical

Sobolev space �B (T) (rather than the Fourier-Lebesgue space F!B, ? (T)), and this presents a challenge

even for U > 0, as observed in the paper by Colliander and Oh [21] in the case of the standard

(renormalized) cubic NLS with random initial data of the form (1.10). See Section 3.

Theorem 2 with U = 0 shows that the renormalized 4NLS (1.6) is almost surely locally well-posed
with the white noise in (1.1) as initial data. In constructing almost sure global-in-time dynamics, we
adapt Bourgain’s invariant measure argument [6, 7] to our setting. More precisely, we use invariance
of the white noise measure under the finite-dimensional approximation of the 4NLS flow to obtain a
uniform control on the solutions, and then we apply a PDE approximation argument to extend the local
solutions to (1.6) obtained from Theorem 2 to global ones. As a byproduct, we also obtain invariance
of the white noise under the resulting global flow of the renormalized 4NLS (1.6).

Theorem 3 (Almost sure global well-posedness and invariance of the white noise). Let U = 0. Then

the renormalized 4NLS (1.6) on T is almost surely globally well-posed with the random initial data Dl0
given by (1.10). More precisely, for almost every l ∈ Ω, there exists a unique solution D to (1.6) with
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D |C=0 = Dl0 , satisfying

D ∈ Il + � (R; !2 (T)) ⊂ � (R;�− 1
2−Y (T))

for any Y > 0, where Il = / (Dl0 ). Furthermore, the white noise measure `0 is invariant under the flow.

Remark 1.3. When U > 1
6 , the deterministic global well-posedness [59] of the renormalized 4NLS (1.6)

in �B (T), B > − 1
3 , implies almost sure global well-posedness of (1.6) with the random initial data Dl0

in (1.10) since the random initial data Dl0 almost surely belongs to �B (T) for some B > − 1
3 .

The proof of Theorem 3 depends heavily on the (formal) invariance of the white noise measure and

hence is not applicable for the case U ∈ (0, 1
6 ]. In [21], Colliander and Oh adapted Bourgain’s high-low

decomposition method [9] to prove almost sure global well-posedness of the renormalized NLS (with

the second-order dispersion) with random initial data of the form (1.10) below !2 (T) (without relying

on any invariant measure). The same approach is expected to yield almost sure global well-posedness

of the renormalized 4NLS (1.6) for some range of U ∈ (0, 1
6 ]. We do not pursue this analysis here.

Remark 1.4. The solution D constructed in Theorems 2 and 3 has a structure

D = random nonlinear term + smoother term.

See (1.38). This is quite different from the standard probabilistic well-posedness results as in [7, 15],

where a solution D has the structure

D = random linear term + smoother term. (1.14)

In the field of stochastic PDEs, a well-posedness argument based on the decomposition (1.14) is usually

referred to as the Da Prato-Debussche trick. When the decomposition (1.14) is not sufficient, one may

try to write a solution as the sum of finitely many stochastic terms plus a smoother remainder. See, for

example, [30, 34].

In the context of nonlinear dispersive PDEs, there are recent works [3, 53], where a solution theory

was built based on the decomposition of a solution as the sum of finitely many stochastic terms plus a

smoother remainder. A remarkable new feature of the decomposition used in Theorems 2 and 3 is that

the series expansion (1.11) for / (Dl0 ) consists not only of the free solution (that is, : = 0 in (1.11)) but

also of infinitely many higher-order correction terms : ≥ 1. As a consequence, Il = / (Dl0 ) depends on

arbitrarily high powers of Gaussian random variables, and hence it does not belong to Wiener chaoses

H≤: , defined in (2.10), of any finite order. See also Remark 1.11.

Remark 1.5. A decomposition such as (1.14) not only is useful in establishing well-posedness of a

given equation, but also provides a finer regularity description of a solution thus obtained. For example,

the decomposition (1.14) states that in the high-frequency regime (that is, at small spatial scales on

the physical side), the dynamics is essentially governed by that of the random linear solution. See

also Remark 1.11 (ii). In [10, page 62], Bourgain made an ‘analogy’ of the decomposition (1.14) to

scattering (that is, a nonlinear solution behaving like a linear solution asymptotically as C → ±∞) by

saying, ‘This property [namely the decomposition (1.14)] reminds of “scattering” occurring in certain

dispersive models’ in the sense that in both the decomposition (1.14) and scattering, the dominant part

of dynamics is given by the linear dynamics.

In our solution theory, we have the decomposition

D = Il+ smoother term,

where Il = / (Dl0 ). Namely, the dominant part is nonlinear (with an explicit structure). In this context,

one may wish to say that the results of Theorems 2 and 3 remind of modified scattering occurring in
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certain dispersive models [61, 37, 36], where the asymptotic dominant dynamics is given not by a linear

dynamics but by a certain nonlinear dynamics. See Remark 4.3 below for more details on this analogy.

Remark 1.6. Instead of the renormalized 4NLS (1.6), one may work with the Wick renormalization to

study the same problem. The disadvantage for this approach is that there is no equation for the limiting

dynamics. The limit D of smooth approximating solutions would formally ‘satisfy’

8mCD = m4
GD + |D |2D −∞ · D. (1.15)

This is in sharp contrast with the case of the renormalized 4NLS (1.6), where the renormalized nonlinear-

ity has a well-defined meaning as a cubic operator, defined a priori on smooth functions. See (1.18) and

(1.19). Lastly, we point out that if the Gaussian measure `U in (1.7) were invariant, then one could show

that the renormalized 4NLS (1.6) is equivalent to the Wick-ordered 4NLS (1.15) in a suitable limiting

sense, provided that U > 1
4 . See Section 3 in [54]. Unfortunately, such invariance is true only for U = 0.

1.5. Outline of the well-posedness argument

When U > 1
2 , it follows from (1.9) that our random initial data Dl0 defined in (1.10) almost surely

belongs to !2 (T). Hence, the aforementioned deterministic global well-posedness of (1.6) in !2 (T)
implies Theorem 2 in this case. Therefore, we focus on the case 0 ≤ U ≤ 1

2 in the following.
When 0 ≤ U ≤ 1

2 , the random initial data Dl0 in (1.10) almost surely lies strictly in negative Sobolev
spaces. In view of the failure of the local uniform continuity of the solution map in these spaces (see
[21, 57]), it is non-trivial to construct solutions to (1.6) in negative Sobolev spaces since a straightforward
contraction argument fails in this regime. For U > 1

6 , the random initial data Dl0 in (1.10) almost surely

belongs to �B (T) for some B > − 1
3 , and hence the global well-posedness in [59] based on a more robust

energy method is applicable to conclude Theorem 2. In the following, however, we present a uniform
approach to construct local-in-time solutions in a probabilistic manner for 0 ≤ U ≤ 1

2 by making use of
the randomness of the initial data Dl0 in (1.10).

By writing (1.6) in the Duhamel formulation, we have

D(C) = ((C)Dl0 − 8
∫ C

0
((C − C ′)N(D) (C ′)3C ′, (1.16)

where ((C) = 4−8Cm4
G denotes the linear propagator and

N(D) =
(
|D |2 − 2

⨏
|D |23G

)
D. (1.17)

Next, we make an important decomposition of the nonlinearity N(D) into resonant and non-resonant
parts. Namely, define trilinear operators N1 and N2 by setting

N1 (D1, D2, D3) (G, C) :=
∑

=∈Z

∑

Γ(=)
D̂1(=1, C)D̂2(=2, C)D̂3(=3, C)48 (=1−=2+=3)G , (1.18)

N2 (D1, D2, D3) (G, C) := −
∑

=

D̂1(=, C)D̂2(=, C)D̂3 (=, C)48=G , (1.19)

where Γ(=) denotes the hyperplane:

Γ(=) :=
{
(=1, =2, =3) ∈ Z3 : = = =1 − =2 + =3 and =1, =3 ≠ =

}
. (1.20)

When all the arguments coincide, we simply write N: (D) = N: (D, D, D), : = 1, 2. The term N1(D)
denotes the non-resonant part of the renormalized nonlinearity N(D), while N2 (D) denotes the resonant
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part. Then the renormalized nonlinearity N(D) can be written as

N(D) = N1(D) +N2(D).

Let us first go over the basic idea of probabilistic local well-posedness, as developed, for instance, in
[7, 15, 68, 21, 45]. See also [42]. This argument is based on the following first-order expansion:

D = Il1 + E, (1.21)

where Il1 denotes the random linear solution defined by

Il1 (C) := ((C)Dl0 . (1.22)

By rewriting (1.16) as a fixed-point problem for the residual term E := D − Il1 , we obtain the following
perturbed renormalized 4NLS:

E(C) = −8
∫ C

0
((C − C ′)N(E + Il1 ) (C ′)3C ′. (1.23)

Then the main aim is to solve this fixed-point problem for E in !2 (T),6 where the unperturbed equation
(1.6) is deterministically well-posed by a simple contraction argument. In particular, it is crucial to
make use of probabilistic tools (for example, see Subsection 2.2) and show that the perturbation
N(E + Il1 ) − N(E) is smoother than the random linear solution Il1 and lies in !2 (T) for each C. When

U > 1
6 , this can indeed be achieved, and we can show that for each small X > 0, there exists ΩX ⊂ Ω

with %(Ω2
X
) < �4− 1

X2 such that for each l ∈ ΩX , there exists a solution D = Il1 + E to the renormalized
4NLS (1.6) in the class:

Il1 + � ([−X, X]; !2 (T)) ⊂ � ([−X, X];�B (T)),

for B < U − 1
2 . The most singular contribution on the right-hand side of (1.23) is given by

Il3 (C) := −8
∫ C

0
((C − C ′)N2(Il1 ) (C ′)3C ′ = 8C

∑

=∈Z

|6= |26=
〈=〉3U

48 (=G−=
4C) (1.24)

where N2 is as in (1.19), denoting the resonant interaction. This resonant cubic7 term is responsible for

the restriction U > 1
6 . It is easy to see that Il3 (C) almost surely lies in �B (T) \ �3U− 1

2 (T) for

B < 3U − 1

2
.

In particular, when U > 1
6 , the !2-deterministic well-posedness theory (via a contraction argument)

becomes available for solving the perturbed equation (1.23). As mentioned above, the case U > 1
6 is

also covered by the deterministic well-posedness in [41, 59] (based on a more robust energy method),
and thus our main goal in the following is to treat lower values of U.

Remark 1.7. This argument is basically the Da Prato-Debussche trick in the context of stochastic PDEs

[22, 23], where the random linear solution is replaced by the solution to a linear stochastic PDE. See

6Strictly speaking, we need to consider the fixed-point problem (1.23) in some appropriate function space -X ⊂
� ( [−X, X ]; !2 (T)) . For simplicity, however, we only discuss the spatial regularity and suppress its time dependence. A similar
comment applies in the following. In particular, in discussing the spatial regularity of a space-time distribution, we may suppress
its time dependence.

7Namely, Il3 in (1.24) is trilinear in the random initial data.
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[35] for a concise discussion of the Da Prato-Debussche trick. It is worthwhile to point out that the

paper [42, 7] by McKean and Bourgain precedes [22, 23].

According to the discussion above, the basic probabilistic argument based on the first-order expansion
(1.21) does not work for our problem when U ≤ 1

6 because the second-order term Il3 almost surely does

not belong to !2 (T) if U ≤ 1
6 . See also Case (b) in Subsection 4.2 of [21]. This shows that we cannot

solve the fixed-point problem (1.23) in !2 (T) when U ≤ 1
6 .

A natural next step would be to consider the following second-order expansion

D = Il1 + Il3 + E

for a solution D to (1.6) and study the equation satisfied by the residual term E := D − Il1 − Il3 :

{
8mCE = m

4
GE +

[
N(E + Il1 + Il3 ) −N2(Il1 )

]

E |C=0 = 0.

Namely, we consider the following fixed-point problem:

E(C) = −8
∫ C

0
((C − C ′)

[
N(E + Il1 + Il3 ) −N2(Il1 )

]
(C ′)3C ′. (1.25)

Note that the worst contribution Il3 in the first step coming from the resonant interaction N2(Il1 ) is
now eliminated. We can then perform a case-by-case nonlinear analysis on N: (D1, D2, D3), : = 1, 2, in
the spirit of [7, 21], where each D 9 can be Il1 , Il3 , or the smoother unknown function E except for the
case D1 = D2 = D3 = Il1 with : = 2. This allows us to show that the fixed-point problem (1.25) for

the residual term E is almost surely locally well-posed in !2 (T), provided that U > 1
10 . Recalling that

Il1 , I
l
3 ∈ � (R;�B (T)) for B satisfying (1.9), we obtain a solution D = I1 + I3 + E to the renormalized

4NLS (1.6) in the class:

Il1 + Il3 + � ([−X, X]; !2 (T)) ⊂ � ([−X, X];�B (T))

almost surely, for B < U − 1
2 .

In this second step, the restriction U > 1
10 comes from the following resonant quintic term in (1.25):

Il5 (C) := −8
∑

91 , 92 , 93∈2N−1
91+ 92+ 93=5

∫ C

0
((C − C ′)N2(Il91 , I

l
92
, Il93 ) (C

′)3C ′

= − C
2

2

∑

=∈Z

|6= |46=
〈=〉5U

48 (=G−=
4C) . (1.26)

Given C ∈ R, it is easy to see that Il5 (C) almost surely lies in �B (T) \ �5U− 1
2 (T) for

B < 5U − 1

2
.

In particular, Il5 (C) almost surely does not lie in !2 (T) if U ≤ 1
10 .

One can repeat this process in an obvious manner. Namely, consider the following third-order
expansion

D = Il1 + Il3 + Il5 + E
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for a solution D to (1.16), and study the fixed-point problem for E = D−Il1 −Il3 −Il5 . From the discussion

above, we see that the limitation comes from the resonant septic term, yielding the restriction of U > 1
14 .

In general, in the :th step, we could write a solution D to (1.16) as

D = E +
:∑

9=1

Il2 9−1 (1.27)

and consider the fixed-point problem for E = D −∑:
9=1 I

l
2 9−1. Here, I2 9−1 denotes the following resonant

(2 9 − 1)-linear term (in the random initial data):

Il2 9−1(C) := −8
∑

91 , 92 , 93∈2N−1
91+ 92+ 93=2 9−1

∫ C

0
((C − C ′)N2(Il91 , I

l
92
, Il93 ) (C

′)3C ′. (1.28)

Proceeding as before, it is easy to see that the limitation in this :th step comes from Il2:+1 yielding the
restriction of

U >
1

2(2: + 1) , (1.29)

which is needed to guarantee that Il2:+1(C) almost surely belongs to !2 (T).
The restriction (1.29) shows that, to treat the U = 0 case, we at least need an infinite iteration of this

procedure. Furthermore, the argument based on the :th-order expansion (1.27) leads to the following
equation for the the residual term E = D − ∑:

9=1 I
l
2 9−1:




8mCE = m
4
GE +N

(
E +

:∑

9=1

Il2 9−1

)
−

∑

91+ 92+ 93∈{3,5,...,2:−1}
91 , 92 , 93∈{1,3,...,2:−3}

N2 (Il91 , I
l
92
, Il93 )

E |C=0 = 0.

In particular, we need to carry out the following case-by-case nonlinear analysis on

Nℓ (D1, D2, D3), ℓ = 1, 2,

where each D8 , 8 = 1, 2, 3 can be either the smoother unknown function E or Il
9

for some
9 ∈ {1, 3, . . . , 2:−1} such that it is not of the formN2(I 91 , I 92 , I 93 ) with 91+ 92+ 93 ∈ {3, 5, . . . , 2:−1}.
In general, it could be a cumbersome task to carry out this case-by-case analysis due to the increasing
number of combinations. In the next subsection, we will describe an approach to overcome this issue.

Remark 1.8. In [3], Oh with Bényi and Pocovnicu studied the cubic NLS on R3 with random initial

data based on a higher-order expansion (of order :), analogous to (1.27). To avoid a combinatorial

nightmare in the relevant case-by-case analysis for high values of : , the authors introduced a modified

expansion of order : , which simplified the relevant analysis significantly. We point out that the analysis

in [3] is significantly simpler than that in the current paper, since (i) the random data considered in

[3] are of positive regularities, and (ii) the refinement of the bilinear Strichartz estimates [9, 62] are

available on the Euclidean space. We also mention a recent work [53] on the probabilistic local well-

posedness of the three-dimensional cubic nonlinear wave equation in negative Sobolev spaces, where

the main analysis is based on the second-order expansion.
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1.6. The U > 0 case

In this subsection, we describe an outline of the proof of Theorem 2 for the U > 0 case. In the next
subsection, we discuss additional ingredients required to treat the U = 0 case.

In view of the restriction (1.29), we need to iterate indefinitely the procedure described above to treat
arbitrary U > 0. For this purpose, we define Il by

Il =

∞∑

9=1

Il2 9−1. (1.30)

Then from (1.22), (1.24), (1.26), and (1.28), we see that Il defined in (1.30) is nothing but a power
series expansion of a solution to the following resonant 4NLS:

{
8mC I

l = m4
G I
l +N2(Il)

Il |C=0 = Dl0 ,
(1.31)

where Dl0 is the random initial data defined in (1.10). By letting z(C) = ((−C)Il (C), we see that
ẑ= (C) = ẑ(=, C) satisfies the following ODE

{
8mC ẑ= = −|̂z= |2̂z=

ẑ= |C=0 =
6=
〈=〉U ,

(1.32)

for each = ∈ Z. By the explicit formula of solutions to (1.32), we have

ẑ= (C) = 48C |̂z= (0) |
2
ẑ= (0). (1.33)

Hence, we can express Il as

Il (C) =
∑

=∈Z
48 (=G−=

4C)4
8C

|6= |2
〈=〉2U

6=

〈=〉U . (1.34)

By expanding in a power series, we obtain

Il (C) =
∑

=∈Z
48 (=G−=

4C)
∞∑

:=0

(8C):
:!

|6= |2:6=
〈=〉 (2:+1)U . (1.35)

By comparing (1.11) and (1.35) with (1.10), we obtain

Il = / (Dl0 ).

Note that, unlike the random linear solution Il1 in (1.22) and other lower-order terms Il2 9−1 in (1.28),
the random resonant solution Il depends on arbitrarily high powers of Gaussian random variables and
hence it does not belong to Wiener chaoses of any finite order. Nonetheless, the formula (1.34) shows
that Il has a particular simple structure, allowing us to study its regularity properties; see Lemmas 1.9
and 2.10 below. In carrying out analysis on the random resonant solution Il involving the -B,1-spaces,
we instead need to make use of the series expansion (1.35) and apply Lemma 2.11 below for each : .

Lemma 1.9. Given U ∈ R, let Il be as in (1.34). Then Il almost surely belongs to � (R;�B (T)),
provided that B < U − 1

2 .

Proof. Fix Y > 0 sufficiently small such that

B + Y < U − 1
2 . (1.36)
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Lemma 2.7 below states that we have

sup
=∈Z

|6= (l) | ≤ � (l)〈=〉Y (1.37)

for some almost surely finite constant � (l) > 0.
For fixed C ∈ R, let {C 9 }∞9=1 be a sequence converging to C. Then, for each = ∈ Z, it follows from (1.33)

that Îl (=, C 9 ) converges to Îl (=, C) almost surely as 9 → ∞. Furthermore, from (1.33) and (1.37), we
have

sup
9∈N

〈=〉B | Îl (=, C 9 ) | + 〈=〉B | Îl (=, C) | ≤ 2� (l)〈=〉B−U+Y ,

where the right-hand side belongs to ℓ2(Z) in view of (1.36). Hence, the claim follows from the
dominated convergence theorem. �

Now, express a solution D to (1.6) in the following random-resonant / nonlinear decomposition:

D = Il + E. (1.38)

Then the residual term E = D − Il satisfies

{
8mCE = m

4
GE +

[
N(E + Il) −N2(Il)

]

E |C=0 = 0.
(1.39)

By writing (1.39) in the Duhamel formulation, we consider the following fixed-point problem:

E(C) = Γ
lE(C) := −8

∫ C

0
((C − C ′)

[
N(E + Il) −N2(Il)

]
(C ′)3C ′. (1.40)

In this formulation, we successfully reduced the number of combinations; we only need to study
N: (D1, D2, D3), : = 1, 2, where each D 9 can be either the random resonant solution Il or the smoother
unknown function E, except for the case D1 = D2 = D3 = Il with : = 2. In Section 3, we perform the
case-by-case nonlinear analysis and show that the fixed-point problem (1.40) is almost surely locally
well-posed in !2 (T) via the standard Fourier restriction norm method, provided that U > 0.

Lastly, Lemma 1.9 allows us to conclude that the solution D = Il + E to the renormalized 4NLS (1.6)
lies in the class

Il + � ([−X, X]; !2 (T)) ⊂ � ([−X, X];�B (T))

almost surely.

Remark 1.10. The probabilistic local well-posedness argument in [7, 15, 68, 21] yields uniqueness of

solutions in a ball of radius $ (1) in a suitable (local-in-time) function space (such as the Strichartz

spaces or the -B,1-spaces) centered at the random linear solution. When U > 0, the proof of Theorem

2 yields uniqueness of solutions in the ball of radius 1 in -0, 1
2+, X centered at the random resonant

solution Il .

Remark 1.11. (i) When U > 0, the terms Il2 9−1 appearing in (1.27) get smoother as 9 increases, and

hence only a finite number of expansion are needed. Nonetheless, the random-resonant / nonlinear

decomposition (1.38) allows us to avoid a number of combinations in the relevant case-by-case analysis

when : ≫ 1. When U = 0, the terms Il2 9−1 in (1.30) do not get smoother, and hence the infinite-order

expansion in (1.30) is necessary in this case.
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(ii) Let U > 0. In this case, the random-resonant / nonlinear decomposition (1.38) with (1.30) allows us

to write the solution D as

D = Il1 + Il3 + · · · + Il2:+1 + E (1.41)

for some E ∈ � ([−X, X]; !2 (T)), where : is the smallest non-negative integer such that (1.29) holds.

The expansion (1.41) provides a finer regularity description8 of the solution D than the random-

linear / nonlinear decomposition (1.21). As mentioned above, the terms in (1.30) do not get smoother

when U = 0. In this case, the solution D can be written as

D = Il + E

for some E ∈ � ([−X, X]; !2 (T)). Namely, the dominant part of the dynamics in small scales is indeed

given by the random resonant solution Il defined in (1.34).

1.7. The U = 0 case

Next, let us discuss the U = 0 case. Namely, we consider the white noise initial data (1.1). Unfortunately,
the argument described above breaks down in this case. As we see in Section 3, the worst interaction
comes from the following resonant nonlinear terms on the right-hand side of (1.39):

N2(E, Il , Il) +N2 (Il , Il , E) = −2F−1
[
|6= |2Ê(=)

]

and

N2 (Il , E, Il) = −F−1
[
4−28=4C428C |6= |262

= Ê(=)
]
.

To weaken the effect of these terms, we introduce the following random gauge transform:

Jl (D) (G, C) =
∑

=∈Z
48=G−8C |6= (l) |2 D̂(=, C). (1.42)

When U = 0, the solution Il to the resonant 4NLS (1.31) reads as

Il (G, C) =
∑

=∈Z
48 (=G−=

4C)48C |6= |
2
D̂l0 (=). (1.43)

The random gauge transform Jl in (1.42) allows us to filter out the random phase oscillations appearing
in (1.43). This gauge transform is clearly invertible and leaves the �B-norm invariant. If D is a solution
to the renormalized 4NLS (1.6), then the gauged function F := Jl (D) satisfies the following random
equation: {

8mCF = m4
GF +Nl

1 (F) +Nl
2 (F)

F |C =0 = Dl0 .
(1.44)

Here, the first nonlinearity Nl
1 (F) is defined by

Nl
1 (F) (G, C) :=

∑

=∈Z
48=G

∑

Γ(=)
48CΨ

l (=̄) F̂(=1, C)F̂(=2, C)F̂(=3, C), (1.45)

8This regularity description can also be understood as the ‘local’ (in space) description of the solution since the singular
components of the solution become dominant in small scales.
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where Γ(=) is as in (1.20), and Ψl (=̄) denotes the random phase function:

Ψ
l (=̄) := Ψ

l (=1, =2, =3, =) = |6=1 (l) |2 − |6=2 (l) |2 + |6=3 (l) |2 − |6= (l) |2. (1.46)

The second nonlinearity Nl
2 (F) is defined by

Nl
2 (F) (G, C) := −

∑

=∈Z
48=G

[
|F̂(=, C) |2 − |6= (l) |2

]
F̂(=, C) . (1.47)

As we can see, (1.45) and (1.47) are random versions of (1.18) and (1.19). The main advantage of
working with this gauged version of the renormalized 4NLS (1.6) lies in the weaker resonant nonlinearity[
|F̂(=) |2 − |6= (l) |2

]
F̂(=), which would be eliminated if F̂(=) = 6=. This observation turns out to be

crucial in our later analysis.
The Duhamel formulation for the gauged solution F is given by

F(C) = ((C)Dl0 − 8
∫ C

0
((C − C ′)

[
Nl

1 (F) +Nl
2 (F)

]
(C ′)3C ′. (1.48)

Now, by setting Il1 = ((C)Dl0 , we see that the residual term

E = F − Il1 ,

satisfies the following Duhamel formulation:

E(C) = −8
∫ C

0
((C − C ′)

[
Nl

1 (E + Il1 ) +Nl
2 (E + Il1 )

]
(C ′)3C ′. (1.49)

A naive approach would be to try to solve the fixed-point problem (1.49) by a contraction argument
(namely, by the Picard iteration scheme) for E in !2 (T), exploiting randomness. It turns out, however,
that this naive approach via a contraction argument does not work for our problem. In the following, by
partially iterating the Duhamel formulation, we prove convergence in !2 (T) of approximating smooth so-
lutions and construct a solution to (1.49) and hence to (1.44). See Section 4 for more details. We establish
the crucial nonlinear estimates (Propositions 4.1 and 4.2) by reducing them to boundedness properties of
certain random multilinear functionals of the white noise, whose tail estimates are proved in Appendix A.

Remark 1.12. As will become clear from the analysis below, there is room to extend our analysis to

the fractional NLS with dispersion weaker than the fourth-order dispersion. However, this would not

introduce any new qualitative phenomenon as compared to the case of the fourth-order dispersion,

and hence we only consider the fourth-order NLS in this paper. We also point out that the case of the

standard NLS (with the second-order dispersion) is out of reach at this point. See the introduction in

[25] for a discussion on the criticality of this problem (in the context of the stochastic NLS with additive

space-time white noise forcing).

Remark 1.13. (i) In the deterministic setting, Takaoka-Tsutsumi [67] implicitly used a gauge trans-

form analogous to (1.43) in the low-regularity study of the modified KdV equation to weaken the resonant

interaction. This led them to work in the modified -B,1-spaces. See also [44]. In our case, the gauge

transform Jl is random, and hence it leads to the random -B,1-spaces. See A.1. We also point out the

work [56] on the use of a gauge transform in the probabilistic context.

(ii) To construct the dynamics for the U = 0 case, we partially iterate the Duhamel formulation

(of the gauged equation) and establish convergence property of smooth approximating solutions.

See Section 4. This strategy is close in spirit to the work [52, 65]. In the context of stochastic

PDEs, such iteration of a Duhamel formulation appears in the dispersive setting [50, 31] and in

the parabolic setting [34, 17, 43]. We also mention [8, 11, 12, 13] on the probabilistic construction

of solutions by establishing convergence of smooth solutions. In particular, the recent approach by

https://doi.org/10.1017/fms.2020.51 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.51


16 T. Oh et al.

Bourgain-Bulut [11, 12] relying on the invariance of the truncated Gibbs measures even in the con-

struction of local solutions works well for a power-type nonlinearity with positive regularity but is not

suitable to our problem at hand. See [4] for a survey of this method.

1.8. Organization of the paper

In Section 2, we introduce the basic notations and list some basic deterministic and probabilistic lemmas.
In Section 3, we present the proof of Theorem 2 for U > 0. The remaining part of the paper is devoted
to handling the U = 0 case. In Section 4, we prove Theorem 2 by assuming two key nonlinear estimates
(Propositions 4.1 and 4.2). In Section 5, we prove Theorem 3 and then Theorem 1. We present the proofs
of Propositions 4.1 and 4.2 in Sections 6 and 7. Appendix A contains the proofs of some probabilistic
lemmas.

2. Notations and preliminaries

As in the usual low-regularity analysis of dispersive PDEs, an important ingredient will be the Fourier
restriction norm method introduced in [5]. Given B, 1 ∈ R, define -B,1 (T × R) as a completion of the
test functions under the following norm:

‖D‖-B,1 (T×R) = ‖〈=〉B 〈g + =4〉1D̂(=, g)‖ℓ2
=!

2
g
, (2.1)

where 〈 · 〉 = (1 + | · |2) 1
2 . Recall that -B,1 embeds into � (R;�B (T)) for 1 > 1

2 . Given a time interval

� = [0, 1], we define the local-in-time version -B,1
�

= -B,1 ([0, 1]) by setting

‖D‖
-

B,1
�

= inf
{
‖E‖-B,1 (T×R) : E |� = D

}
. (2.2)

Note that -B,1
�

is a Banach space. When � = [−X, X], we simply set -B,1, X = -
B,1
�

. The local-in-time
versions of other function spaces are defined analogously.

For simplicity, we often drop 2c in dealing with the Fourier transforms. If a function 5 is random,
we may use the superscript 5 l to show the dependence on l ∈ Ω.

Let [ ∈ �∞
2 (R) be a smooth non-negative cutoff function supported on [−2, 2] with [ ≡ 1 on [−1, 1],

and set

[
X
(C) = [(X−1C) (2.3)

for X > 0. We also denote by j = j[−1,1] the characteristic function of the interval [−1, 1] and let
j

X
(C) = j(X−1C) = j[−X, X ] (C).
Let Z≥0 := Z ∩ [0,∞). Given a dyadic number # ∈ 2Z≥0 , let P# be the (non-homogeneous)

Littlewood-Paley projector onto the (spatial) frequencies {= ∈ Z : |=| ∼ #} such that

5 =

∞∑

# ≥1
dyadic

P# 5 .

Given a non-negative integer # ∈ Z≥0, we also define the Dirichlet projector c# onto the frequencies
{|=| ≤ #} by setting

c# 5 (G) =
∑

|= | ≤#
5̂ (=)48=G . (2.4)
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Moreover, we set

c⊥# = Id−c# . (2.5)

By convention, we also set c⊥−1 = Id.
We use 2, � to denote various constants, usually depending only on U and B. If a constant depends

on other quantities, we will make it explicit. For two quantities � and �, we use � . � to denote an
estimate of the form � ≤ ��, where � is a universal constant, independent of the particular realization
of � or �. Similarly, we use � ∼ � to denote � . � and � . �. The notation � ≪ � means � ≤ 2�

for some sufficiently small constant 2. We also use the notation 0+ (and 0−) to denote 0 + Y (and 0 − Y,
respectively) for arbitrarily small Y > 0 (this notation is often used when an implicit constant diverges
in the limit Y → 0).

2.1. Deterministic tools

Define the phase function Φ(=̄) by

Φ(=̄) = Φ(=1, =2, =3, =) = =4
1 − =4

2 + =4
3 − =4. (2.6)

Then the phase function Φ(=̄) admits the following factorization. See [57] for the proof.

Lemma 2.1. Let = = =1 − =2 + =3. Then we have

Φ(=̄) = (=1 − =2) (=1 − =)
(
=2

1 + =2
2 + =2

3 + =2 + 2(=1 + =3)2) .

Recall that by restricting the -B,1-spaces onto a small time interval [−X, X], we can gain a small
power of X (at a slight loss in the modulation).

Lemma 2.2. Let B ∈ R and 1 < 1
2 . Then there exists � = � (1) > 0 such that

‖[
X
(C) · D‖-B,1 + ‖j

X
(C) · D‖-B,1 ≤ �X 1

2−1−‖D‖
-

B, 1
2 − .

The proof of Lemma 2.2 is based on the following scaling property: [̂
X
(g) = X[̂(Xg), yielding

‖[̂
X
‖!@

g
∼ X

@−1
@ ‖[̂‖!@

g
. X

@−1
@ (2.7)

for @ ≥ 1. See [21] for details.
Next, we collect the basic linear estimates (see [26]).

Lemma 2.3. Let B ∈ R.

(i) Given 1 ∈ R, there exists � = � (1) > 0 such that

‖((C)D0‖-B,1, X ≤ �‖D0‖� B

for any 0 < X ≤ 1.

(ii) Given 1 > 1
2 , there exists � = � (1) > 0 such that


∫ C

0
((C − C ′)� (G, C ′)3C ′


-B,1, X

. ‖�‖-B,1−1, X

for any X > 0.
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The following periodic !4-Strichartz estimate from [57] also plays an important role:

‖D‖!4
G,C
. ‖D‖

-
0, 5

16
. (2.8)

Interpolating (2.8) with ‖D‖!2
G,C

= ‖D‖-0,0 , we have

‖D‖!3+
G,C
. ‖D‖

-
0, 5

24 + and ‖D‖!2+
G,C
. ‖D‖-0,0+ . (2.9)

We also recall the following lemma on convolutions. See [26] for a proof.

Lemma 2.4. Let U > V ≥ 0 with U + V > 1. Then there exists � > 0 such that

∫

R

1

〈G − H〉U〈H〉V 3H ≤
�

〈G〉W

for any G ∈ R, where W is given by

W =




U + V − 1, if U < 1,

V − Y, if U = 1,

V, if U > 1

for any small Y > 0.

Lastly, we state two lemmas related to boundedness properties of products in Sobolev spaces.

Lemma 2.5. Let Y > 0. Then there exists � = � (Y) > 0 such that

‖ 5 6‖
�

1
2 −Y (R)

≤ �‖ 5 ‖
�

1
2 +Y (R)

‖6‖
�

1
2 − Y

2 (R)
.

Lemma 2.5 easily follows from standard analysis with Littlewood-Paley decompositions and Bern-
stein’s inequality. We omit details.

Lemma 2.6. Let 0 ≤ 1 < 1
2 . Then we have

‖1[0,) ] · 5 ‖�1 (R) . ‖ 5 ‖�1 (R) ,

uniformly in ) ≥ 0.

See [24] for a classical proof via an interpolation argument. By Plancherel’s identity, Lemma 2.6 also
follows from the boundedness of the Hilbert transform (on the Fourier side) with an �2-weight 〈g〉21 ,
0 ≤ 1 < 1

2 . See [27].

2.2. Probabilistic estimates

Next, we state several probabilistic lemmas related to Gaussian random variables. See also Appendix A
for further lemmas. In the following, {6=}=∈Z denotes a family of independent standard complex-valued
Gaussian random variables on a probability space (Ω,F, %).

We first start with a well-known fact (see, for example, [48, 21]).

Lemma 2.7. Let Y > 0. Then there exist 2, � > 0 such that

%
(
sup
=∈Z

〈=〉−Y |6= (l) | >  
)
< �4−2 

2
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for any  > 0. In particular, given V > 0, by choosing  = X−
V

2 , we have

%
(
sup
=∈Z

〈=〉−Y |6= (l) | > X−
V

2

)
< �4−

1
X2

for any X > 0.

Next, we recall the Wiener chaos estimates. Let {6=}=∈N be a sequence of independent standard
Gaussian random variables defined on a probability space (Ω,F, %), where F is the f-algebra generated
by this sequence. Given : ∈ Z≥0, we define the homogeneous Wiener chaoses H: to be the closure
(under !2 (Ω)) of the span of Fourier-Hermite polynomials

∏∞
==1 �:= (6=), where � 9 is the Hermite

polynomial of degree 9 and : =
∑∞
==1 :=.9 Then we have the following Ito-Wiener decomposition:

!2 (Ω,F, %) =
∞⊕

:=0

H: .

See Theorem 1.1.1 in [47]. We also set

H≤: =
:⊕

9=0

H 9 (2.10)

for : ∈ N. For example, the random linear solution Il1 defined in (1.22) belongs to H1 (for each fixed
C ∈ R), while Il3 in (1.24) belongs to H≤3. As pointed out above, the random resonant solution Il

defined in (1.34) does not belong to H≤: for any finite : ∈ N.
In this setting, we have the following Wiener chaos estimate [66, Theorem I.22]. See also [69,

Proposition 2.4].

Lemma 2.8. Let : ∈ N. Then we have

‖- ‖!? (Ω) ≤ (? − 1) :
2 ‖- ‖!2 (Ω)

for any finite ? ≥ 2 and any - ∈ H≤: .

We also recall the following lemma, which is a consequence of Chebyshev’s inequality. See, for
example, Lemma 4.5 in [71] and the proof of Lemma 3 in [2].10

Lemma 2.9. Let : ≥ 1. Suppose that there exists �0 > 0 such that a random variable - satisfies

‖- ‖!? (Ω) ≤ �0?
:
2 for any finite ? ≥ 2. Then there exist 2, � > 0 such that

%
(
|- | > _

)
≤ �4−2 �

− 2
:

0 _
2
:

for any _ > 0.

In probabilistic well-posedness theory, a probabilistic improvement of Strichartz estimates for random
linear solutions plays an important role. The following lemma states that a similar estimate also holds
for the random resonant solution Il defined in (1.34).

Lemma 2.10. Given U ≥ 0, let Il be the solution to the resonant 4NLS (1.31) given by (1.34). Then,

given ? ≥ 2 and Y > 0, there exist 2, � > 0 such that

%
(
‖P# Il ‖!?

G,C (T×[−X, X ]) > #
1
2−U+Y

)
< �4−

#2Y

X2 (2.11)

for any X > 0 and dyadic # ≥ 1.

9This implies that := = 0 except for finitely many =’s.
10This corresponds to Lemma 2.3 in the arXiv version.
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One way to prove Lemma 2.10 would be to directly apply the Wiener chaos estimate (Lemma
2.8) to the (2: + 1)-fold products of Gaussian random variables in the series expansion (1.35). See
Lemma 2.11 for such a direct approach. In the particular case of Lemma 2.10, we can give a shorter
proof by exploiting the invariance of a complex-valued mean-zero Gaussian random variable under the
transformation 6 ↦→ 48C |6 |

2
6; see Lemma 4.2 in [57]. This allows us to avoid higher-order products of

Gaussian random variables.

Proof of Lemma 2.10. Given = ∈ Z and (G, C) ∈ T × R, define ℎ= (G, C) by

ℎ= (G, C) := 48 (=G−=
4C)4

8C
|6= |2
〈=〉2U

6=

〈=〉U .

Then it follows from the rotational invariance of complex-valued Gaussian random variables and Lemma
4.2 in [57] that ℎ= (G, C) ∼ NC (0, 〈=〉−2U) for each fixed (G, C) ∈ T × R.

By Minkowski’s integral inequality and Lemma 2.8, we have

(
E

[
‖P# Il ‖A!?

G,C (T×[−X, X ])

] ) 1
A

≤



∑

|= |∼#
ℎ= (G, C)


!A (Ω)


!
?

G,X

.
√
A




∑

|= |∼#
ℎ= (G, C)


!2 (Ω)


!
?

G,X

.
√
A X

1
? #

1
2−U

for any A ≥ ?. Then the desired estimate (2.11) follows from Lemma 2.9. �

Finally, we conclude this section by stating a crucial lemma in studying powers of the random resonant
solution Il in the multilinear -B,1-analysis. This lemma also plays an important role in establishing
boundedness properties of certain random multilinear functionals of the white noise (see Lemma 6.1
below), which is a key ingredient for the proof of Theorem 2 when U = 0. We present the proof of this
lemma in Appendix A.

Lemma 2.11. Fix a non-empty set A ⊂ {1, 2, 3} and :, : 9 ∈ Z≥0, 9 ∈ A, such that

: =

∑

9∈A
: 9 . (2.12)

Given a (deterministic) sequence
{
2 :̄=1 ,=2 ,=3

}
=1 ,=2 ,=3∈Z with :̄ = {: 9 } 9∈A, define a sequence {Σ=}=∈Z by

setting

Σ= = Σ= ( :̄) =
1∏

9∈A : 9 !

∑

(=1 ,=2 ,=3) ∈Γ(=)
2 :̄=1 ,=2 ,=3

∏

9∈A
|6= 9

|2: 96∗= 9
(2.13)

for = ∈ Z, where Γ(=) is as in (1.20) and 6∗= 9
is defined by

6∗= 9
=

{
6= 9

, when 9 = 1 or 3,

6= 9
, when 9 = 2.

(2.14)

Then there exists � > 0, independent of : and : 9 ∈ Z≥0, 9 ∈ A, such that
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‖Σ=‖!? (Ω) ≤ �: (? − 1):+
|A|
2

( ∑

(=1 ,=2 ,=3) ∈Γ(=)
|2 :̄=1 ,=2 ,=3

|2
) 1

2

(2.15)

for all ? ≥ 2 and = ∈ Z.

3. Local theory, Part 1: 0 < U ≤ 1
2

In this section, we present the proof of Theorem 2 when 0 < U ≤ 1
2 . In particular, we show that the

Cauchy problem (1.39) for E is almost surely locally well-posed. More precisely, we show that for each

small X > 0, there exists ΩX with %(Ω2
X
) < �4− 1

X2 such that, for each l ∈ ΩX , the map Γl defined in

(1.40) is a contraction on �(1), where �(1) denotes the ball of radius 1 in -0, 1
2+, X centered at the origin.

Given E on T× [−X, X], let Ẽ be an extension of E onto T×R. By the non-homogeneous linear estimate
(Lemma 2.3), we have


∫ C

0
((C − C ′)Nl (E) (C ′)3C ′


-

0, 1
2 +, X

≤
[X

(C)
∫ C

0
((C − C ′)Nl (Ẽ) (C ′)3C ′


-

0, 1
2 +

. ‖Nl (Ẽ)‖
-

0,− 1
2 + ,

where [
X

is a smooth cutoff on [−2X, 2X] as in (2.3) and

N
l (E) := j

X
·
(
N(E + Ĩl) −N2( Ĩl)

)
(3.1)

with an extension Ĩl of the truncated random linear solution j
X
· Il from [−X, X] to R. Then our main

goal is to prove that there exists ΩX ⊂ Ω and \ > 0 with %(Ω2
X
) < �4− 1

X2 such that

‖Nl (Ẽ)‖
-

0,− 1
2 + . X

\
(
1 + ‖Ẽ‖

-
0, 1

2 +

)3
(3.2)

for all l ∈ ΩX and for any extension Ẽ of E. By the definition (2.2) of the local-in-time norm, we then
conclude from (3.1) and (3.2) that


∫ C

0
((C − C ′)Nl (E) (C ′)3C ′


-

0, 1
2 +, X
. X\

(
1 + ‖E‖

-
0, 1

2 +, X

)3
.

By the trilinear structure of the nonlinearity, a similar estimate holds for the difference ΓlE1 − ΓlE2,

allowing us to conclude that Γl is a contraction on �(1) ⊂ -0, 1
2+, X for l ∈ ΩX . Note that the claim

(1.12) follows from the embedding -0, 1
2+, X ⊂ � ([−X, X]; !2 (T)) and Lemma 1.9.

In view of (3.1), to prove (3.2), we need to carry out a case-by-case analysis on

‖j
X
· N: (D1, D2, D3)‖

-
B,− 1

2 + , : = 1, 2, (3.3)

where D 9 is taken to be either of type

(I) Rough random resonant part:

D 9 = Ĩ
l , where Ĩl is some extension of j

X
· Il ,

where Il denotes the random resonant solution defined in (1.34)

https://doi.org/10.1017/fms.2020.51 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.51


22 T. Oh et al.

(II) Smoother ‘deterministic’ nonlinear part:

D 9 = Ẽ 9 , where Ẽ 9 is any extension of E,

except for D1 = D2 = D3 = Ĩl when : = 2 (thanks to the subtraction of N2 ( Ĩl) in (3.1)).
In the following, we take Ĩl = [

X
Il . It follows from (1.34) that

F([
X
Il) (=, g) = [̂

X

(
g + =4 − |6= |2

〈=〉2U

)
· 6=

〈=〉U . (3.4)

Thanks to the sharp cutoff function in (3.3), we may take

D 9 = jX
· Ẽ 9 (3.5)

in (3.3) when D 9 is of type (II). We use the expressions D 9 ( I ) (and D 9 (II), respectively) to mean that D 9
is of type (I) (and of type (II), respectively) in the following. We point out that the most intricate case
appears when all D 9 ’s are of type (I) in estimating the non-resonant contribution. In this case, a simple
application of the Wiener chaos estimate (Lemma 2.8) is no longer applicable, and we need to carefully
estimate the contribution from the sum of the products of the (2: 9 +1)-linear term, : 9 ∈ N0, 9 = 1, 2, 3,
in (1.35), using Lemma 2.11. See Case (D) in Subsection 3.2.

3.1. Resonant part N2

In this subsection, we estimate the resonant part of the nonlinear estimate (3.2). In particular, we prove

‖jX · N2(D1, D2, D3)‖
-

0,− 1
2 + . X

\
∏

9∈I
‖Ẽ 9 ‖

-
0, 1

2 + (3.6)

for some \ > 0, outside an exceptional set of probability < �4−
1
X2 , where N2 is the resonant part of the

nonlinearity defined in (1.19), D 9 is either of type (I) or (II), except for the case when all D 9 ’s are of
type (I), and the index set I is defined by

I =
{
9 ∈ {1, 2, 3} : D 9 is of type (II)

}
. (3.7)

We have

LHS of (3.6) =


1

〈g + =4〉 1
2−

∫

g=g1−g2+g3

D̂1(=, g1)D̂2(=, g2)D̂3(=, g3)3g13g2

ℓ2
=!

2
g

. (3.8)

◦ Case (a): D 9 of type (II), 9 = 1, 2, 3.
By Hölder’s inequality with ? large ( 1

2 =
1

2+ + 1
?

), we have

(3.8) . sup
=

‖〈g + =4〉− 1
2+‖!2+

g


∫

g=g1−g2+g3

D̂1(=, g1)D̂2(=, g2)D̂3(=, g3)3g13g2

ℓ2
=!

?
g

.

By Young’s and Hölder’s inequalities, ℓ2
= ⊂ ℓ6

=, and Lemma 2.2 with (3.5),

.

3∏

9=1

‖D̂ 9 (=, g)‖
ℓ6
=!

3
2 −
g

.

3∏

9=1

‖〈g + =4〉 1
6+D̂ 9 (=, g)‖ℓ6

=!
2
g
≤

3∏

9=1

‖D 9 ‖
-

0, 1
6 +

. X1−
3∏

9=1

‖Ẽ 9 ‖
-

0, 1
2 + .
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◦ Case (b): Exactly one D 9 of type (I). Say D1( I ), D2(II), and D3(II).
By Hölder’s inequality (with ? ≫ 1 as before), (3.4), and a change of variables, we have

(3.8) . sup
=

‖〈g + =4〉− 1
2+‖!2+

g

×
〈=〉

−U |6= |
∫

g=g1−g2+g3

[̂
X

(
g1 + =4 − |6= |2

〈=〉2U

)
D̂2(=, g2)D̂3 (=, g3)3g13g2


ℓ2
=!

?
g

.
(
sup
=
〈=〉−U |6= |

)
∫

g=Z1−g2+g3−� (=,l)

[̂
X
(Z1)D̂2(=, g2)D̂3(=, g3)3Z13g2


ℓ2
=!

?
g

,

where � (=, l) is defined by

� (=, l) := =4 − |6= |2
〈=〉2U . (3.9)

Note that for fixed = ∈ Z and l ∈ Ω, � (=, l) is a fixed number. Hence, we can apply Young’s
inequality (in g, Z1, g2, and g3), Lemma 2.7 with V = 0+, (2.7), and Lemma 2.2 with (3.5) as above
and obtain

(3.8) . X
1
2−

(
sup
=
〈=〉−U |6= |

) 3∏

9=2

‖D̂ 9 (=, g)‖
ℓ4
=!

4
3
g

. X
1
2−

3∏

9=2

‖〈g + =4〉 1
4+D̂ 9 (=, g)‖ℓ4

=!
2
g
≤ X 1

2−
3∏

9=2

‖D 9 ‖
-

0, 1
4 +

. X1−
3∏

9=2

‖Ẽ 9 ‖
-

0, 1
4 +

for any U > 0, outside an exceptional set of probability < �4−
1
X2 .

◦ Case (c): Exactly two D 9 ’s of type (I).
First, consider the case D1( I ), D2( I ), and D3(II). Proceeding as before with ? ≫ 1 and a change of
variables, we have

(3.8) .

〈=〉
−2U |6= |2

∫

g=g1−g2+g3

[̂
X

(
g1 + =4 − |6= |2

〈=〉2U

)

× [̂
X

(
g2 + =4 − |6= |2

〈=〉2U

)
D̂3 (=, g3)3g13g2


ℓ2
=!

?
g

≤
(
sup
=
〈=〉−2U |6= |2

)
∫

g=Z1−Z2+g3

[̂
X
(Z1)[̂X

(Z2)D̂3 (=, g3)3Z13Z2


ℓ2
=!

?
g

By Lemma 2.7, (2.7), and Lemma 2.2 with (3.5),

. X
1
2−

(
sup
=
〈=〉−2U |6= |2

)
‖D̂3 (=, g)‖ℓ2

=!
2
g
. X

1
2−‖D3‖-0,0

. X1−‖Ẽ3‖
-

0, 1
2 +

for U > 0, outside an exceptional set of probability < �4−
1
X2 .
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Next, consider the case D1( I ), D2(II), and D3( I ). Proceeding in a similar manner (with ? ≫ 1 and a
change of variables with � (=, l) as in (3.9)), we have

(3.8) .

〈=〉
−2U |6= |2

∫

g=g1−g2+g3

[̂
X

(
g1 + =4 − |6= |2

〈=〉2U

)

× D̂2(=, g2)[̂X

(
g3 + =4 − |6= |2

〈=〉2U

)
3g13g2


ℓ2
=!

?
g

.
(
sup
=
〈=〉−2U |6= |2

)
∫

g=Z1−g2+Z3−2� (=,l)

[̂
X
(Z1)D̂2(=, g2)[̂X

(Z3)3Z13Z3


ℓ2
=!

?
g

. X
1
2−

(
sup
=
〈=〉−2U |6= |2

)
‖D̂2 (=, g)‖ℓ2

=!
2
g
. X

1
2−‖D2‖-0,0

. X1−‖Ẽ2‖
-

0, 1
2 +

for U > 0, outside an exceptional set of probability < �4−
1
X2 .

3.2. Non-resonant part N1

In this subsection, we evaluate the non-resonant part of the nonlinearity Nl (E). In particular, we prove

‖j
X
· N1(D1, D2, D3)‖

-
0,− 1

2 + . X
\
∏

9∈I
‖Ẽ 9 ‖

-
0, 1

2 + (3.10)

for some \ > 0, outside an exceptional set of probability < �4−
1
X2 , where N1 is the non-resonant part

of the nonlinearity defined in (1.18), D 9 is of type (I) or (II), and the index set I is as in (3.7). Set

f := 〈g + =4〉 and f9 := 〈g9 + =4
9〉, 9 = 1, 2, 3,

and

fmax := max(f, f1, f2, f3) and =max := max
(
|=|, |=1 |, |=2 |, |=3 |

)
+ 1. (3.11)

Given dyadic numbers #, #1, #2, #3 ≥ 1, we also set

#max := max(#, #1, #2, #3).

By duality, we can estimate the left-hand side of (3.10) by

sup
‖F ‖

-
0, 1

2 − ≤1

����
∫ X

−X

∫

T

N1(D1, D2, D3) · F 3G3C
����. (3.12)

Without loss of generality, we may assume that F = j
X
· F.

◦ Case (A): D 9 of type (II), 9 = 1, 2, 3.
By Hölder’s inequality, (2.8), and Lemma 2.2 with (3.5), we have

(3.12) .
3∏

9=1

‖D 9 ‖!4
G,C
‖F‖!4

G,C
. X

3
4−

3∏

9=1

‖Ẽ 9 ‖
-

0, 1
2 + ‖F‖

-
0, 1

2 − .

◦ Case (B): Exactly one D 9 of type (I). Say D1( I ), D2(II), and D3(II).
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First, suppose that max(f2, f3, f) ∼ fmax. Then it follows from Lemma 2.1 that

max(f2, f3, f)
7
24− ∼ f

7
24−

max & #
7
12−
max . (3.13)

By ! ?G,C!
3+
G,C!

3+
G,C!

3+
G,C -Hölder’s inequality with ? large, (2.9), Lemma 2.10, Lemma 2.2, and (3.13),

we have

(3.12) .
∑

# ,#1 ,#2 ,#3
dyadic

‖P#1D1‖!?
G,C
‖P#2D2‖

-
0, 5

24 + ‖P#3D3‖
-

0, 5
24 + ‖P#F‖

-
0, 5

24 +

.

∑

# ,#1 ,#2 ,#3
dyadic

#
1
2−U+
1 ‖P#2D2‖

-
0, 5

24 + ‖P#3D3‖
-

0, 5
24 + ‖P#F‖

-
0, 5

24 +

. X
7
12−

∑

# ,#1 ,#2 ,#3
dyadic

#
− 1

12+
max ‖P#2 Ẽ2‖

-
0, 1

2 + ‖P#3 Ẽ3‖
-

0, 1
2 + ‖P#F‖

-
0, 1

2 −

. X
7
12−

3∏

9=2

‖Ẽ 9 ‖
-

0, 1
2 + (3.14)

for U ≥ 0, outside an exceptional set of probability

<
∑

#1≥1
dyadic

�4−
# Y

1
X2 . 4−

1
X2 .

Next, suppose that max(f2, f3, f) ≪ fmax, namely f1 ∼ fmax. We first consider the case XV ≫
#−2+2Y

max for some small V, Y > 0. It follows from Lemmas 2.1 and 2.7 that there exists a set ΩV,Y ⊂
Ω with %(Ω2

V,Y
) < �4− 1

X2 such that

|6=1 |2

〈=1〉2U
. X−V 〈=1〉Y ≪ #2−Y

max ≪ fmax

on ΩV,Y , uniformly in =1 ∈ Z, as long as U ≥ 0. Hence, we have

���[̂X

(
g1 + =4

1 −
|6=1 |

2

〈=1 〉2U

)��� . 1

f1
.

1

#2
max | (= − =1) (= − =3) |

(3.15)

on ΩV,Y . Then, by Hölder’s inequality (with ? ≫ 1 as in Case (a)), (3.4), (3.15), Young’s inequality,
and Lemma 2.7 (with V ≪ 1), the contribution to (3.12) in this case is bounded by

.

∑

# ,#1 ,#2 ,#3 ,dyadic
XV≫# −2+2Y

max


∑

(=1 ,=2 ,=3) ∈Γ(=)
|= |∼# , |= 9 |∼# 9

|6=1 |
〈=1〉U

1
{
#2

max | (= − =1) (= − =3) |
} 1

2+Y

×
∫

g=g1−g2+g3

���[̂X

(
g1 + =4

1 −
|6=1 |

2

〈=1 〉2U

)���
1
2−Y |�P#2D2(=2, g2) | |�P#3D3(=3, g3) |3g13g2


ℓ2
=!

?
g
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.
(
sup
=1

〈=1〉−U−Y |6=1 |
) ∑

# ,#1 ,#2 ,#3 ,dyadic
XV≫# −2+2Y

max


∑

(=1 ,=2 ,=3) ∈Γ(=)
|= |∼# , |= 9 |∼# 9

1
{
#2

max | (= − =1) (= − =3) |
} 1

2+
Y
2

×
|[̂

X
| 1

2−Y

!

?
3
g

3∏

9=2

‖�P# 9
D
9
(= 9 , g9 )‖

!

?
?−1
g9


ℓ2
=

. X
1
2−Y−

3
?
− V

2

∑

# ,#1 ,#2 ,#3 ,dyadic
XV≫# −2+2Y

max

#0−
max

3∏

9=2

‖�P# 9
D
9
(= 9 , g9 )‖

ℓ2
=9
!

?
?−1
g9

. X
1
2−Y−

3
?
− V

2

3∏

9=2

‖Ẽ 9 ‖
-

0, 1
2 +

for U ≥ 0, outside an exceptional set of probability < �4−
1
X2 .

Lastly, we consider the case XV . #−2+2Y
max . Proceeding as in (3.14), we bound the contribution of

this case to (3.12) by

. X
21
24−

∑

# ,#1 ,#2 ,#3
dyadic

#
1
2−U+
1 ‖P#2 Ẽ2‖

-
0, 1

2 + ‖P#3 Ẽ3‖
-

0, 1
2 + ‖P#F‖

-
0, 1

2 −

. X
21
24−V−

∑

# ,#1 ,#2 ,#3
dyadic

#
− 3

2+
max ‖P#2 Ẽ2‖

-
0, 1

2 + ‖P#3 Ẽ3‖
-

0, 1
2 +

. X
21
24−V−

3∏

9=2

‖Ẽ 9 ‖
-

0, 1
2 +

for U ≥ 0, outside an exceptional set of probability < �4−
1
X2 .

◦ Case (C): Exactly two D 9 ’s of type (I). Say D1( I ), D2( I ), and D3(II).
First, suppose that max(f3, f) ∼ fmax. Then it follows from Lemma 2.1 that

max(f3, f)
1
2− ∼ f

1
2−

max & #
1−
max. (3.16)

Suppose that f ∼ fmax. Then, by ! ?G,C!
?
G,C!

2+
G,C!

2
G,C -Hölder’s inequality with ? large, (2.9), Lemma

2.10, Lemma 2.2, and (3.16), we have

(3.12) .
∑

# ,#1 ,#2 ,#3
dyadic

‖P#1D1‖!?
G,C
‖P#2D2‖!?

G,C
‖P#3D3‖-0,0+ ‖P#F‖-0,0

.

∑

# ,#1 ,#2 ,#3
dyadic

#
1
2−U+
1 #

1
2−U+
2 ‖P#3D3‖-0,0+ ‖P#F‖-0,0

. X
1
2−

∑

# ,#1 ,#2 ,#3
dyadic

#−2U+
max ‖P#3 Ẽ3‖

-
0, 1

2 + ‖P#F‖
-

0, 1
2 −

. X
1
2−‖Ẽ3‖

-
0, 1

2 +
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for U > 0, outside an exceptional set of probability

<
∑

#1≥1
dyadic

�4−
# Y

1
X2 +

∑

#2≥1
dyadic

�4−
# Y

2
X2 . 4−

1
X2 .

A similar argument holds when f3 ∼ fmax.
Next, suppose that max(f3, f) ≪ fmax, namely max(f1, f2) ∼ fmax. Without loss of generality,

suppose that f1 ∼ fmax. We first consider the case XV ≫ #−2+2Y
max for some small V, Y > 0.

Proceeding as in Case (B) above, the contribution to (3.12) is bounded by

.

∑

# ,#1 ,#2 ,#3 ,dyadic
XV≫# −2+2Y

max


∑

(=1 ,=2 ,=3) ∈Γ(=)
|= |∼# , |=1 |∼#1

( 2∏

9=1

|6= 9
|

〈= 9〉U

)
1

{
#2

max | (= − =1) (= − =3) |
} 1

2+Y
.

×
∫

g=g1−g2+g3

���[̂X

(
g1 + =4

1 −
|6=1 |

2

〈=1 〉2U

)���
1
2−Y

���[̂X

(
g2 + =4

2 −
|6=2 |

2

〈=2 〉2U

)���|�P#3D3(=3, g3) |3g13g2

ℓ2
=!

?
g

.

( 2∏

9=1

sup
= 9

〈= 9〉−U−
Y
2 |6= 9

|
) ∑

# ,#1 ,#2 ,#3 ,dyadic
XV≫# −2+2Y

max


∑

(=1 ,=2 ,=3) ∈Γ(=)
|= |∼# , |=1 |∼#1

1
{
#2

max | (= − =1) (= − =3) |
} 1

2+
Y
2

×
|[̂

X
| 1

2−Y

!

?
2
g

‖[̂
X
‖!1

g
‖�P#3D3(=3, g3)‖

!

?
?−1
g3


ℓ2
=

. X
1
2−Y−

2
?
−V

∑

# ,#1 ,#2 ,#3 ,dyadic
XV≫# −2+2Y

max

#0−
max‖�P#3D3(=3, g3)‖

ℓ2
=!

?
?−1
g3

. X
1
2−Y−

2
?
−V ‖Ẽ3‖

-
0, 1

2

for U ≥ 0, outside an exceptional set of probability < �4−
1
X2 .

Lastly, we consider the case XV . #−2+2Y
max . Proceeding as in (3.14) but with

!
?
G,C!

?
G,C!

2+
G,C!

2
G,C -Hölder’s inequality, the contribution of this case to (3.12)

.

∑

# ,#1 ,#2 ,#3
dyadic

#1−2U+
max ‖P#3D3‖-0,0+ ‖P#F‖-0,0

. X1−V−
∑

# ,#1 ,#2 ,#3
dyadic

#−1−2U+
max ‖P#3 Ẽ3‖

-
0, 1

2 + ‖P#F‖
-

0, 1
2 −

. X1−V−‖Ẽ3‖
-

0, 1
2 +

for U ≥ 0, outside an exceptional set of probability < �4−
1
X2 .

◦ Case (D): D 9 of type (I), 9 = 1, 2, 3.
Fix small X > 0 (to be chosen later). From (1.35) and (2.3), we have

F([
X
Il) (=, g) = X

∞∑

:=0

(−X):
:!

(m: [̂) (X(g + =4)) |6= |2:6=
〈=〉 (2:+1)U .
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Then we have

‖N1([X
Il)‖

-
0,− 1

2 + =


1

〈g + =4〉 1
2−

∞∑

:=0

∞∑

:1 ,:2 ,:3=0
:=:1+:2+:3

(−X):
:1!:2!:3!

×
∑

(=1 ,=2 ,=3) ∈Γ(=)
2
:1 ,:2 ,:3
=1 ,=2 ,=3

(g, X)
3∏

9=1

|6= 9
|2: 96∗= 9


ℓ2
=!

2
g

, (3.17)

where 6∗= 9
is as in (2.14) and 2:1 ,:2 ,:3

=1 ,=2 ,=3
(g, X) is defined by

2
:1 ,:2 ,:3
=1 ,=2 ,=3

(g, X) = X3
∫

g=g1−g2+g3

3∏

9=1

(m: 9 [̂ 9 ) (X(g9 + =4
9 ))

〈= 9〉 (2: 9+1)U 3g13g2

with the convention that [̂ 9 = [̂ when 9 = 1 or 3 and [̂ 9 = [̂ when 9 = 2. Then, by Minkowski’s
integral inequality and Lemma 2.11, there exists � > 0 such that

‖N1 ([X
Il)‖

-
0,− 1

2 +


!? (Ω)

≤ ?
3
2

∞∑

:=0

∞∑

:1 ,:2 ,:3=0
:=:1+:2+:3

(�?X):

×
( ∫

R

∑

=∈Z

∑

(=1 ,=2 ,=3) ∈Γ(=)

1

〈g + =4〉1− |2
:1 ,:2 ,:3
=1 ,=2 ,=3

(g, X) |23g
) 1

2

(3.18)

for any ? ≥ 2. In the following, we estimate (3.18) with

? = X−\ ≫ 1 (3.19)

for some sufficiently small \ > 0. Note that, from Lemma 2.1 and = ≠ =1, =3, we have

fmax & =
2
max | (= − =1) (= − =3) | ≥ =2

max. (3.20)

◦ Subcase (D.1): f ∼ fmax. First, note that, in view of supp [ ⊂ [−2, 2], we have

|F−1(m: 9 [̂) (C) | = | (−8C): 9[(C) | ≤ �: 9[(C) . (3.21)

Then, by a change of variables— Z = Xg + =4
1 − =4

2 + =4
3 and Z 9 = X(g9 + =4

9 ), 9 = 1, 2, 3—

Plancherel’s identity, Hölder’s inequality (in C) with (3.21), and : = :1 + :2 + :3, we have

‖2:1 ,:2 ,:3
=1 ,=2 ,=3

(g, X)‖!2
g
= X

1
2



∫

Z=Z1−Z2+Z3

3∏

9=1

m: 9 [̂ 9 (Z 9 )
〈= 9〉 (2: 9+1)U 3Z13Z2


!2
Z

= X
1
2


3∏

9=1

F−1(m: 9 [̂ 9 )
〈= 9〉 (2: 9+1)U


!2
C

≤ �:X 1
2

3∏

9=1

1

〈= 9〉 (2: 9+1)U . (3.22)

https://doi.org/10.1017/fms.2020.51 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.51


Forum of Mathematics, Sigma 29

From (3.18), (3.20), and (3.22), we bound the contribution to

‖N1([X
Il)‖

-
0,− 1

2 +


!? (Ω)

in this case by

?
3
2 X

1
2

∞∑

:1 ,:2 ,:3=0

(�?X):1 (�?X):2 (�?X):3

×
( ∑

=∈Z

∑

(=1 ,=2 ,=3) ∈Γ(=)

1
{
=2

max (= − =1) (= − =3)
}1−

3∏

9=1

1

〈= 9〉 (2: 9+1)U

) 1
2

By choosing small X = X(�) > 0 such that �?X = �X1−\ < 1,

. ?
3
2 X

1
2 (3.23)

for U ≥ 0.

◦ Subcase (D.2): f ≪ fmax. Assume that f1 ∼ fmax. A similar argument holds when f2 ∼ fmax or

f3 ∼ fmax.

From (3.17), Hölder’s inequality with @ large
( 1

2 =
1

2+ + 1
@

)
, Minkowski’s integral inequality, and

Lemma 2.11, we have

‖N1([X
Il)‖

-
0,− 1

2 +


!? (Ω)

. ?
3
2

∞∑

:=0

∞∑

:1 ,:2 ,:3=0
:=:1+:2+:3

(�?X):
( ∑

=∈Z

∑

===1−=2+=3
=2≠=1 ,=3

‖2:1 ,:2 ,:3
=1 ,=2 ,=3

(g, X)‖2
!
@
g

) 1
2

(3.24)

for any ? ≥ @. By integration by parts, we have

|m:1 [̂(g) | =
����

1

|g |V
∫

3V

3CV

(
C:1[(C)

)
48C g3C

����

for g ≠ 0. In particular, with V = 1, we have

‖m:1 [̂1(g)‖
!

2@
@+2
g ( |g |& )

.
�:1

 
1− @+2

2@

. (3.25)

By a change of variables (as in (3.22)) and Young’s inequality, (3.25) with  ∼ Xf1, (3.20), and

(3.21), we can bound the contribution to ‖2:1 ,:2 ,:3
=1 ,=2 ,=3

(g, X)‖!@
g

in this case by

X
1− 1

@

( 3∏

9=1

1

〈= 9〉 (2: 9+1)U

)
‖m:1 [̂1 (g)‖

!

2@
@+2
g ( |g |& )

F−1(m:2 [̂2)F−1(m:3 [̂3)

!2
C

≤ �:X 1
2

3∏

9=1

1

〈= 9〉 (2: 9+1)U
1

{
=2

max(= − =1) (= − =3)
}1− @+2

2@

. (3.26)

Hence, by choosing @ ≫ 1 and proceeding as in (3.23), we conclude from (3.24) and (3.26) that the

contribution to
‖N1 ([X

Il)‖
-

0,− 1
2 +


!? (Ω) in this case is also bounded by

. ?
3
2 X

1
2 . (3.27)
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Finally, by Chebyshev’s inequality with (3.23) and (3.27), we have

%
(
‖N1 ([X

Il)‖
-

0,− 1
2 + > _

)
≤ � ?_−?? 3

2 ?X
?
2

for any _ > 0. Letting _ = �?2X
1
2 and ? = X−\ as in (3.19), we have

%
(
‖N1 ([X

Il)‖
-

0,− 1
2 + > �X

1
2−2\

)
≤ 4−? ln

√
? ≤ 4−

1
X2

for all U ≥ 0. In other words, we have

‖N1([X
Il)‖

-
0,− 1

2 + ≤ �X 1
2−

for U ≥ 0, outside an exceptional set of probability . 4−
1
X2 .

This completes the proof of the nonlinear estimate (3.2) and hence the proof of Theorem 2 for

0 < U ≤ 1
2 .

4. Local theory, Part 2: U = 0

The remaining part of this paper is devoted to the U = 0 case. Namely, we consider the white noise

initial data. In this section, we present the proof of almost sure local well-posedness (Theorem 2) by

establishing convergence of smooth approximating solutions. The key ingredients are Propositions 4.1

and 4.2, whose proofs will be presented in Sections 6 and 7, respectively.

4.1. Partially iterated Duhamel formulation

In Section 1, we introduced the random gauge transform Jl in (1.42) and converted the renormalized

4NLS (1.6) into the random equation (1.44) for F = Jl (D). In the following, we study the Duhamel

formulation (1.48) for this random equation. Define

I1(F1, F2, F3) (C) := −8
∫ C

0
((C − C ′)Nl

1 (F1, F2, F3) (C ′)3C ′,

I2(F) (C) := −8
∫ C

0
((C − C ′)Nl

2 (F) (C ′)3C ′, (4.1)

where Nl
1 (F1, F2, F3) is defined by

Nl
1 (F1, F2, F3) (G, C) :=

∑

=∈Z
48=G

∑

Γ(=)
48CΨ

l (=̄) F̂1 (=1, C)F̂2(=2, C)F̂3 (=3, C)

with the random phase function Ψl defined in (1.46) and Nl
2 (F) is as in (1.47). By setting I1(F) :=

I1 (F, F, F), we define I(F) := I1 (F) + I2(F). Then we can write the Duhamel formulation (1.48) for

F = Jl (D) as

F = ((C)Dl0 + I(F), (4.2)

If we were to apply the strategy for the U > 0 case discussed in Section 3, then by noting that

Jl (Il) = ((C)Dl0 , we would write E = F − ((C)Dl0 and try to solve the fixed-point problem for E

E = I1(E + ((C)Dl0 ) + I2(E + ((C)Dl0 ) (4.3)
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by a contraction argument. As mentioned in Section 1, however, we are not able to solve the fixed-point

problem (4.3) by a contraction argument. In the following, we reformulate the equation by assuming

that F is a solution to (4.2) and study the reformulated problem. Recalling that F̂(=, 0) = 6= and that F

satisfies the equation (1.44), we formally have

|F̂(=, C) |2 − |6= |2 =

∫ C

0

3

3C
|F(=, C ′) |23C ′

= −2 Re 8

∫ C

0

∑

Γ(=)
48CΨ

l (=̄) F̂(=1, C
′)F̂(=2, C ′)F̂(=3, C

′)F̂(=, C ′)3C ′

=: E= (F, F, F, F) (C). (4.4)

In view of (1.47), (4.1), and (4.4), we then have

I2 (F) = 8
∫ C

0
((C − C ′)

∑

=∈Z
48=GE= (F, F, F, F) (C ′)F̂(=, C ′)3C ′

for a solution F to (1.44). We denote by Ĩ2(F) the quintilinear operator Ĩl2 (F, F, F, F, F) given by

Ĩl2 (F1, F2, F3, F4, F5) (G, C) :=

∫ C

0
((C − C ′)

∑

=∈Z
48=GE= (F1, F2, F3, F4) (C ′)F̂5(=, C ′)3C ′.

Then, for a solution F to (1.44), the equality

I2 (F) = Ĩ2(F) (4.5)

formally holds. As a result, we can rewrite (4.2) as the following partially iterated Duhamel formulation

with cubic and quintic nonlinearities:

F = ((C)Dl0 + I1 (F) + Ĩ2(F). (4.6)

We then obtain the following fixed-point problem for E = F − ((C)Dl0 :

E = I1(E + ((C)Dl0 ) + Ĩ2 (E + ((C)Dl0 ). (4.7)

It turns out that the quintic term Ĩ2(E + ((C)Dl0 ) has a better regularity property than the original cubic

resonant nonlinearity I2 (E + ((C)Dl0 ), which enables us to solve the fixed-point problem (4.7) for E by

a contraction argument. See Remark 4.4 below. Note, however, that in deriving the equation (4.7), we

used the a priori equality (4.5), which only holds for a solution F = ((C)Dl0 + E to (4.2).

To overcome this issue, we use an approximation method to construct a solution to (1.6). To be more

precise, we construct a local solution D to (1.6) as a limit of a sequence {D# }# ∈N of smooth solutions

with smooth initial data Dl0,# . For simplicity of the presentation, we only consider the following

frequency-truncated data

Dl0,# := c# D
l
0 =

∑

|= | ≤#
6= (l)48=G

in the following. Here, c# is the Dirichlet frequency projection onto the frequencies {|=| ≤ #} defined

in (2.4). See Remark 4.4 (ii) for the case of smooth initial data given by mollification as in (1.4).
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Letting

6#= := 1 |= | ≤# · 6= =
{
6=, if |=| ≤ #,

0, if |=| > #,
(4.8)

we have

Dl0,# (G) =
∑

=∈Z
6#= (l)48=G .

Define a truncated version of the random phase function Ψl in (1.46) by setting

Ψ
l
# := |6#=1

(l) |2 − |6#=2
(l) |2 + |6#=3

(l) |2 − |6#= (l) |2. (4.9)

We also set Ψl
∞ = Ψl .

Let # ∈ N. Then we have Dl0,# ∈ �∞ (T) almost surely. Hence, by Proposition 1.1 in [57], there

exists a unique global-in-time solution D# to (1.6) with D# |C=0 = Dl0,# . Furthermore, by introducing the

truncated random gauge transform

F# (G, C) = Jl# (D# ) :=
∑

=∈Z
48=G−8C |6

#
= (l) |2 D̂# (=, C) (4.10)

with 6#= in (4.8), we see that F# satisfies a modified version of the random equation (1.44):

{
8mCF

# = m4
GF

# +Nl
1,# (F# ) +Nl

2,# (F# )
F |C=0 = Dl0,# ,

(4.11)

where Nl
1,# (F) = Nl

1,# (F, F, F) and Nl
2,# (F) are defined by

Nl
1,# (F1, F2, F3) (G, C) :=

∑

=∈Z
48=G

∑

Γ(=)
48CΨ

l
#
(=̄) F̂1 (=1, C)F̂2(=2, C)F̂3 (=3, C), (4.12)

Nl
2,# (F) (G, C) := −

∑

=∈Z
48=G

[
|F̂(=, C) |2 − |6#= (l) |2

]
F̂(=, C).

By writing (4.11) in the Duhamel formulation, we have

F# = ((C)Dl0,# + Il1,# (F# ) + Il2,# (F# ), (4.13)

where Il1,# (F) := Il1,# (F, F, F) and Il2,# (F) are defined by

Il1,# (F1, F2, F3) := −8
∫ C

0
((C − C ′)Nl

1,# (F1, F2, F3) (C ′)3C ′, (4.14)

Il2,# (F) := −8
∫ C

0
((C − C ′)Nl

2,# (F) (C ′)3C ′. (4.15)
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Noting that F# is almost surely a smooth solution to (4.11) with the truncated random initial data Dl0,# ,

we have

|F̂# (=, C) |2 − |6#= |2 =

∫ C

0

3

3C
|F̂# (=, C ′) |23C ′

= −2 Re 8

∫ C

0

∑

Γ(=)
48C

′Ψl
#
(=̄) F̂# (=1, C

′)F̂# (=2, C ′)F̂# (=3, C
′)F̂# (=, C ′)3C ′

=: E#= (F# , F# , F# , F# ) (C). (4.16)

This motivates us to define a truncated version of Ĩ2 by

Ĩl2,# (F1, F2,F3, F4, F5) (G, C)

:=

∫ C

0
((C − C ′)

∑

=∈Z
48=GE#= (F1, F2, F3, F4) (C ′)F̂5(=, C ′)3C ′. (4.17)

We also set Ĩl2,# (F# ) = Ĩl2,# (F# , F# , F# , F# , F# ). Then we can rewrite (4.13) as the following

partially iterated Duhamel formulation:

F# = ((C)Dl0,# + Il1,# (F# ) + Ĩl2,# (F# ). (4.18)

Note that while Il2,# (F) in (4.15) corresponds to the resonant part of the nonlinearity, only the non-

resonant contribution survives in (4.16) after substituting the equation, thus yielding a non-resonant

structure in the quintic term Ĩl2,# (F# ).
To prove Theorem 2, we need to show that {F# }# ∈N converges in some function space and that

the limit F = lim#→∞ F# is a distributional solution to (1.44). We now state the crucial nonlinear

estimates in our analysis. Recall from (2.5) that given # ∈ Z≥−1 = Z∩[−1,∞), c⊥
#

denotes the frequency

projection operator onto the (spatial) frequencies {|=| > #}, with the understanding that c⊥−1 = Id .

Proposition 4.1. Let 0 < V, W ≪ 1 and 1 > 1
2 be sufficiently close to 1

2 . Then there exist 2, \ > 0 and

small X0 > 0 with the following property. For each 0 < X < X0, there exists ΩX ⊂ Ω with %(Ω2
X
) < 4− 1

X2

such that for each l ∈ ΩX , we have

‖Il1,# (F1, F2, F3)‖-0,1, X ≤ �X\
3∏

9=1

(
〈# 9〉−V + ‖F 9 − ((C)c⊥# 9

(Dl0 )‖-−W,1,X

)
, (4.19)

uniformly in # 9 ∈ Z≥−1, 9 = 1, 2, 3, and # ≥ #0 (l, X) for some #0 (l, X) ∈ N. Here, we allow # = ∞
as well.

Proposition 4.2. Let 0 < V, W ≪ 1 and 1 > 1
2 be sufficiently close to 1

2 . Then there exist 2, \ > 0 and

small X0 > 0 with the following property. For each 0 < X < X0, there exists ΩX ⊂ Ω with %(Ω2
X
) < 4− 1

X2

such that for each l ∈ ΩX , we have

‖Ĩl2,# (F1, F2, F3, F4, F5)‖-0,1, X

≤ �X\
5∏

9=1

(
〈# 9〉−V + ‖F 9 − ((C)c⊥# 9

(Dl0 )‖-−W,1,X

)
, (4.20)

uniformly in # 9 ∈ Z≥−1, 9 = 1, . . . , 5, and # ≥ #0 (l, X) for some #0 (l, X) ∈ N. Here, we allow

# = ∞ as well.
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We remark that both estimates (4.19) and (4.20) exhibit some smoothing effect. The main reason is

that both nonlinearities Il1,# (F1, F2, F3) and Ĩl2,# (F1, F2, F3, F4, F5) possess non-resonant structures.

In the next subsection, we present the proof of Theorem 2 by assuming Propositions 4.1 and 4.2. We

present the proofs of these propositions in Sections 6 and 7. By careful analysis, we reduce these

nonlinear estimates to boundedness properties of certain random multilinear functionals of the white

noise.

Remark 4.3. In deriving E= (F, F, F, F) in (4.4), we made use of a key cancellation:

Re
(
8F

(
Nl

2 (F)
)
(=)F̂(=)

)
= 0. (4.21)

That is, the resonant part of the nonlinearity disappears in (4.4). Interestingly, a similar cancellation

is used in the context of the modified scattering analysis of the one-dimensional cubic nonlinear

Schrödinger equation on the real line

8mCD = m2
GD + |D |2D (4.22)

with localized initial data. More precisely, if we set E(C) = 48Cm
2
GD(C), then by a stationary phase

argument, (4.22) can be rewritten as

mC Ê(b, C) = 28C−1 |Ê(b, C) |2Ê(b, C) + '(b, C), b ∈ R, (4.23)

where 2 is a real constant and Ê denotes the Fourier transform of E on the real line. The trilinear

remainder term '(b, C) decays (in a suitable functional framework) faster than C−1, and therefore the

principal part of the nonlinearity for analyzing long-time behavior is given by 28C−1 |Ê(b, C) |2Ê(b, C),
which is the analogue of the resonant part of the nonlinearity Nl

2 (F) in our problem. Note that the key

cancellation in the context of (4.23) is

Re
(
8C−1 |Ê(b, C) |2Ê(b, C)Ê(b, C)

)
= 0. (4.24)

The cancellation (4.24) appears in computing mC |Ê(b, C) |2, which is the analogue of the computation

(4.4) in the context of (4.23). We point out the strong similarity between (4.21) and (4.24).

4.2. Proof of Theorem 2: the U = 0 case

In this subsection, we present the proof of Theorem 2 for U = 0. More precisely, by applying Proposi-

tions 4.1 and 4.2 to the iterated Duhamel formulation (4.18), we prove that, for each 0 < X ≪ 1, there

exists ΩX ⊂ Ω with %(Ω2
X
) ≤ 4−

1
X2 such that for l ∈ ΩX , the following statements hold:

(i) The sequence {F# − ((C)Dl0,# }# ∈N is Cauchy in -0, 1
2+, X .

(ii) The limit F of F# satisfies the equation (1.44) in the distributional sense with the white noise

initial data Dl0 .

(iii) The solution F is unique in the class: ((C)Dl0 + �1, where �1 denotes the ball of radius 1 in

-0, 1
2+, X centered at the origin.

Given 0 < V, W ≪ 1 and 1 > 1
2 sufficiently close to 1

2 , apply Propositions 4.1 and 4.2 and construct a

set ΩX ⊂ Ω with %(Ω2
X
) < 4− 1

X2 for each 0 < X ≪ 1 such that the conclusions of both Propositions 4.1

and 4.2 hold. In the following, we fix l ∈ ΩX , and hence the parameter #0 (l, X) in Propositions 4.1

and 4.2 is a fixed number. In what follows, unless otherwise stated, the numbers # and " are always

assumed to be greater than #0 (l, X).
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(i) By setting E# = F# − ((C)Dl0,# , it follows from (4.13) and (4.18) that E# satisfies

E# = Il1,# (E# + ((C)Dl0,# ) + Il2,# (E# + ((C)Dl0,# )

= Il1,# (E# + ((C)Dl0,# ) + Ĩl2,# (E# + ((C)Dl0,# ), (4.25)

where Il1,# , Il2,# , and Ĩl2,# are as in (4.14), (4.15), and (4.17). Note that the second equality holds

since F# is a classical solution to (4.11).

We first claim that

‖E# ‖
-

0, 1
2 +, X ≤ 1 (4.26)

by choosing X > 0 sufficiently small. Indeed, by applying (4.19) and (4.20) in Propositions 4.1

and 4.2 (with # 9 = −1; that is, c⊥
# 9

= Id) to (4.25), we have

‖E# ‖
-

0, 1
2 +, X . X

\ (1 + ‖E# ‖
-

−W, 1
2 +, X )3 + X\ (1 + ‖E# ‖

-
−W, 1

2 +, X )5

≤ X\ (1 + ‖E# ‖
-

0, 1
2 +, X )3 + X\ (1 + ‖E# ‖

-
0, 1

2 +, X )5. (4.27)

Then by choosing X > 0 sufficiently small, the bound (4.26) follows from (4.27) and a standard

continuity argument.

Next, we show that the sequence {E# }# ∈N is a Cauchy sequence in -0, 1
2+, X . By possibly

restricting to smaller X > 0, we prove

‖E" − E# ‖
-

0, 1
2 +, X . #

−min(V,W) (4.28)

for any l ∈ ΩX and " ≥ # ≥ #0 (l, X). The bound (4.28) shows that E# converge in -0, 1
2+, X for

each l ∈ ΩX , and thus F# = E# + ((C)Dl0,# converge to F = E + ((C)Dl0 in � ([−X, X];�B (T)),
B < − 1

2 .

We now prove (4.28). From (4.25), we have

‖E" − E# ‖
-

0, 1
2 +, X ≤ ‖Il1," (E" + ((C)Dl0," ) − Il1,# (E# + ((C)Dl0,# )‖-0, 1

2 +, X

+ ‖Ĩl2," (E" + ((C)Dl0," ) − Ĩl2,# (E# + ((C)Dl0,# )‖-0, 1
2 +, X . (4.29)

We first estimate the first term on the right-hand side of (4.29). From (4.12) and (4.14), with

F# = E# + ((C)Dl0,# , we have

‖Il1," (F" ) − Il1,# (F# )‖
-

0, 1
2 +, X

≤ ‖Il1," (F" ) − Il1,# (F" )‖
-

0, 1
2 +, X + ‖Il1,# (F" ) − Il1,# (F# )‖

-
0, 1

2 +, X

≤ ‖Il1," (F" ) − Il1,# (F" )‖
-

0, 1
2 +, X + ‖Il1,# (F" − F# , F" , F" )‖

-
0, 1

2 +, X

+ ‖Il1,# (F# , F" − F# , F" )‖
-

0, 1
2 +, X + ‖Il1,# (F# , F# , F" − F# )‖

-
0, 1

2 +, X . (4.30)

In the following, we treat only the first two terms since the other two terms can be treated in a

similar manner. Using the trilinear structure of Il1,! for ! ∈ {", #}, we have

Il1,! (F
" ) = Il1,! (c

⊥
#
3
F" , F" , F" ) + Il1,! (c #

3
F" , c⊥#

3
F" , F" )

+ Il1,! (c #
3
F" , c #

3
F" , c⊥#

3
F" ) + Il1,! (c #

3
F" , c #

3
F" , c #

3
F" ).
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The key point is to observe that it follows directly from the definitions (4.12) and (4.14) with (4.9)

that for " ≥ # ,

Il1," (c #
3
F" , c #

3
F" , c #

3
F" ) − Il1,# (c #

3
F" , c #

3
F" , c #

3
F" ) = 0.

Therefore, to control

‖Il1," (F" ) − Il1,# (F" )‖
-

0, 1
2 +, X ,

we only need to bound

‖Il1,! (c
⊥
#
3
F" , F" , F" )‖

-
0, 1

2 +, X ,

‖Il1,! (c #
3
F" , c⊥#

3
F" , F" )‖

-
0, 1

2 +, X ,

‖Il1,! (c #
3
F" , c #

3
F" , c⊥#

3
F" )‖

-
0, 1

2 +, X

for ! = " and # . We consider only the first one, since the others can be treated similarly. From

Proposition 4.1 and (4.26), we have

‖Il1,! (c
⊥
#
3
F" , F" , F" )‖

-
0, 1

2 +, X . X
\
(
#−V + ‖c⊥#

3
E" ‖

-
−W, 1

2 +, X

) (
1 + ‖E" ‖

-
−W, 1

2 +, X

)2

. X\
(
#−V + #−W ‖E" ‖

-
0, 1

2 +, X

)

. X\#−min(V,W) ,

where we used the fact that F# = E# + ((C)Dl0,# . Therefore, we obtain

‖Il1," (F" ) − Il1,# (F" )‖
-

0, 1
2 +, X . X

\#−min(V,W) .

Next, we proceed with estimating the second term on the right-hand side of (4.30):

‖Il1,# (F" − F# , F" , F" )‖
-

0, 1
2 +, X

≤ ‖Il1,# (E" − E# + ((C)c⊥# Dl0 , E# + ((C)Dl0,# , E# + ((C)Dl0,# )‖-0, 1
2 +, X

+ ‖Il1,# (((C)c⊥"Dl0 , E# + ((C)Dl0,# , E# + ((C)Dl0,# )‖-0, 1
2 +, X . (4.31)

By applying Proposition 4.1 to (4.31) with #1 = # or " and #2 = #3 = −1, we obtain

‖Il1,# (F" − F# , F" , F" )‖
-

0, 1
2 +, X

. X\
(
#−V + ‖E" − E# ‖

-
−W, 1

2 +, X

) (
1 + ‖E" ‖

-
−W, 1

2 +, X

)2

. X\
(
#−V + ‖E" − E# ‖

-
−W, 1

2 +, X

)
. (4.32)

Similarly, we can estimate the second term on the right-hand side of (4.29) by applying Proposition

4.2 and obtain

‖Ĩl2," (F" ) − Ĩl2,# (F# )‖
-

0, 1
2 +, X

. X\
(
#−min(V,W) + ‖E" − E# ‖

-
0, 1

2 +, X

)
. (4.33)

Putting (4.29), (4.32), and (4.33) together, we obtain

‖E" − E# ‖
-

0, 1
2 +, X ≤ �X\#−min(V,W) + �X\ ‖E# − E" ‖

-
0, 1

2 +, X .
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Therefore, by choosing X > 0 sufficiently small, we obtain (4.28).

(ii) Next, we show that the limit F = E + ((C)Dl0 satisfies the Duhamel formulation (4.2)

F = ((C)Dl0 + I1(F) + I2 (F) (4.34)

in the distributional sense, locally in time.

Given 0 < X ≪ 1, let l ∈ ΩX . Then it follows from Lemma 2.711 that the truncated random

linear solution ((C)Dl0,# converges to ((C)Dl0 in� ([−X, X];F!−Y,∞ (T)) for any Y > 0. The residual

part E# converges to E in -0, 1
2+, X , and hence in � ([−X, X]; !2 (T)). Putting this together, we see

that F# converges to F in � ([−X, X];F!−Y,∞ (T)). Hence, from the definitions (4.1) and (4.15) of

I2 and I2,# , we conclude that I2,# (F# ) converges to I2(F) in � ([−X, X];F!−3Y,∞ (T)). On the

other hand, from (4.30), we see that I1,# (F# ) converges to I1 (F) in -0, 1
2+, X . Together with the

convergence ofF# toF, we have shown that each term in the truncated Duhamel formulation (4.13)

converges to the corresponding term in (4.34). Recalling that F# satisfies (4.13), we conclude that

F is a solution to the Duhamel formulation (4.34) in the distributional sense.

In Step (i), we already showed thatF satisfies the iterated formulation (4.5). Thus, as a byproduct,

we have verified that

I2 (F) = Ĩ2(F)

for the solution F constructed in Step (i).

(iii) Lastly, we turn to the uniqueness issue. Given 0 < X ≪ 1, fix l ∈ ΩX . Let F = ((C)Dl0 + E be the

solution to (4.2) with the white noise initial data Dl0 constructed in Steps (i) and (ii). Suppose that

there exists another solution F̃ to (4.2) of the form F̃ = ((C)Dl0 + Ẽ for some Ẽ ∈ �1 ⊂ -0, 1
2+, X .

Since such F̃ is also a solution to (1.44), by repeating the argument in Subsection 4.1, we see that

F̃ satisfies the iterated Duhamel formulation (4.6):

F̃ = ((C)Dl0 + I1 (F̃) + Ĩ2(F̃).

Then, by repeating the argument in Step (i) with Propositions 4.1 and 4.2, we obtain

‖E − Ẽ‖
-

0, 1
2 +, X ≤ �X\ ‖E − Ẽ‖

-
0, 1

2 +, X ≤ 1

2
‖E − Ẽ‖

-
0, 1

2 +, X

for X > 0 sufficiently small, yielding E = Ẽ in -0, 1
2+, X . This proves uniqueness in the class

((C)Dl0 + �1.

This completes the proof of Theorem 2 when U = 0.

Remark 4.4. (i) By a continuity argument, we can easily upgrade the uniqueness of F in ((C)Dl0 + �1

to uniqueness of F in the class

((C)Dl0 + -0, 1
2+, X .

See Remark 2.9 in [20]. By inverting the random gauge transform Jl in (1.42), we then obtain

uniqueness of D in the class

/ (Dl0 ) + -0, 1
2+, X

−,l

where / is as in (1.11) and -
0, 1

2+, X
−,l is the local-in-time version of the random Fourier restriction

norm space -
0, 1

2+
−,l defined in (A.2).

11Note that Lemma 2.7 appears in the proof of Propositions 4.1 and 4.2 (see also Lemma A.3), and thus we may assume that
the conclusion of Lemma 2.7 holds on the set ΩX constructed in Step (i).
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(ii) Let Dl0,< = Dl0 ∗ d< be the regularization of the white noise Dl0 by mollification via a mollification

kernel d< in (1.4). Denote by F< the solution to the gauged equation (1.44) with F< |C=0 = Dl0,<.

Then, by proceeding as above,12 one can easily establish convergence of F< to F̃ in the class

((C)Dl0 + �1, satisfying (4.2). Then, by the uniqueness proved in Step (iii) above, we conclude that

F = F̃. This proves independence of the mollification kernel.

5. Global well-posedness and invariance of the white noise measure

In this section, we extend the local solutions constructed in Theorem 2 to global solutions and prove

invariance of the white noise measure (1.7) with U = 0 under the flow of the renormalized 4NLS (1.6).

The main ingredient is Bourgain’s invariant measure argument [6, 7].

5.1. Invariance of the white noise measure under the truncated 4NLS

In this section, we will denote the white noise measure by `. For fixed Y > 0, ` is a measure on

�− 1
2−Y (T), defined as the pushforward of % under the map from (Ω,F, %) to �− 1

2−Y (T) (equipped with

the Borel f-algebra) given by

l ↦−→ Dl0 =

∑

=∈Z
6= (l)48=G .

Given # ∈ N, we also define the finite-dimensional white noise measure `# on �# = span
{
48=G , |=| ≤

#
}

as the pushforward of % under the map from (Ω,F, %) to �# given by l ↦→ c# D
l
0 , where c# is

the Dirichlet projector onto the frequencies {|=| ≤ #} defined in (2.4).

Consider the frequency-truncated version of the renormalized 4NLS (1.6)

{
8mCD

# = m4
GD
# + c# (N(D# ))

D# (G, 0) = c# D0(G) ∈ �# ,
(5.1)

whereN(D) denotes the renormalized nonlinearity in (1.17). It is easy to see that the solution D# to (5.1)

exists globally in time. Let Θ̃# (C) denote the flow map for (5.1). By the Liouville theorem, we see that

the truncated white noise measure `# is invariant under Θ̃# (C). Following [14], we also consider the

extension of (5.1) to infinite dimensions, where the higher modes evolve according to linear dynamics:

{
8mCD

# = m4
GD
# + c# (N(c# D# ))

D# (G, 0) = D0(G) ∈ �− 1
2−Y (T).

(5.2)

Let Θ# (C) denote the flow map for (5.2). Then we have

Θ
# (C) = Θ̃

# (C)c# + ((C)c⊥# ,

where c⊥
#

= Id−c# . Denoting by �⊥
#

the orthogonal complement of �# in �− 1
2−Y (T), let `⊥

#
be the

white noise measure on �⊥
#

(that is, the image measure under the map: l ↦→ c⊥
#
Dl0 ). Note that `⊥

#

is invariant along the linear flow on �⊥
#

(this is a consequence of the invariance of complex-valued

Gaussians under rotations). Therefore, by writing

3` = 3`# ⊗ 3`⊥# ,

we conclude the following invariance of ` under Θ# (C).

12Here, our assumption that the symbol d̂< ≡ 1 on [−20<, 20<] for some 20 > 0, independent of < ∈ N, provides a
simplification of the argument as compared to a general mollification kernel.
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Lemma 5.1. For each C ∈ R, the white noise measure ` is invariant under the flow map Θ# (C) on

�− 1
2−Y (T).

5.2. Almost sure global well-posedness

By using the invariance of the white noise measure for (5.2) (Lemma 5.1) and a PDE approximation

argument, we have the following lemma, guaranteeing long-time existence with large probability for the

renormalized 4NLS (1.6).

Lemma 5.2. There exist small 0 < Y < Y1 ≪ 1 and V > 0 such that given any small ^ > 0 and ) > 0,

there exists a measurable set Σ^,) ⊂ �− 1
2−Y (T) such that

(i) `(Σ2
^,)

) < ^ and (ii) for any D0 ∈ Σ^,) , there exists a (unique) solution

D ∈ / (D0) + � ([−), )]; !2 (T)) ⊂ � ([−), )];�− 1
2−Y (T))

to the renormalized 4NLS (1.6) with D |C=0 = D0, where / is defined in (1.11). Furthermore, given

any large # ≫ 1, we have

D(C) − Θ
# (C) (D0)


� ( [−) ,) ]:�− 1

2 −Y1 (T))
. � (^, ))#−V ,

where Θ# (C) denotes the flow map for (5.2).

For the uniqueness statement, see Remark 4.4 (i).

Proof. Once we have almost sure local well-posedness (Theorem 2), the proof of Lemma 5.2 is by now

standard. In the following, we sketch only key parts of the argument and refer to [6, 7, 16, 64, 65] for

further details.

Given a solution D# to (5.2), we define F# = Jl
#
(D# ) as in the proof of Theorem 2, where Jl

#

denotes the truncated random gauge transform in (4.10). Namely, we have

F# (G, C) =
∑

=∈Z
48=G−8C |6

#
= (l) |2 D̂# (=, C),

where 6#= is as in (4.8). The key observation is that convergence properties of F# in a Fourier lattice13

can be directly converted to convergence properties of D# . For " > # ≥ 1, write

F" − F# =
(
c"F

" − c#F#
)
+ c⊥"F" − c⊥#F# .

The convergence of (c"F" − ((C)Dl0," ) − (c#F# − ((C)Dl0,# ) can be shown exactly as in the proof

of Theorem 2, locally in time: that is, in -0, 1
2+, X ⊂ � ([−X, X]; !2 (T)), which yields convergence of

c"F
" − c#F# in � ([−X, X];�− 1

2−Y (T)). On the other hand, the second and third terms decay like

#−V for some V > 0, thanks to the high-frequency projections. The remaining part of the argument

leading to the proof of Lemma 5.2 is contained in [6, 7, 16, 64, 65]. In particular, see the proof of

Proposition 3.5 in [64] for details in a setting analogous to our work. �

Once we have Lemma 5.2, the desired almost sure global well-posedness follows from the Borel-

Cantelli lemma. Given ^ > 0, let )9 = 2 9 and ^ 9 =
^
2 9 , 9 ∈ N. By applying Lemma 5.2, construct a set

13Namely, in a space where a norm depends only on the sizes of the Fourier coefficients: for example, � B (T) and F!B,? (T) .
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Σ^ 9 ,)9 , and set

Σ^ :=
∞⋂

9=1

Σ^ 9 ,)9 . (5.3)

Then we have `(Σ2^ ) < ^, and for any D0 ∈ Σ^ , there exists a unique global-in-time solution to the

renormalized 4NLS (1.6) with D |C=0 = D0. Finally, set

Σ :=
∞⋃

==1

Σ 1
=
.

Then we have `(Σ2) = 0, and for any D0 ∈ Σ, there exists a unique global-in-time solution to the

renormalized 4NLS (1.6) with D |C=0 = D0. This proves almost sure global well-posedness.

5.3. Invariance of the white noise measure

Let Θ(C) be the flow map for the renormalized 4NLS (1.6) defined on the set Σ of full probability

constructed above. Our goal here is to show that

∫

Σ

�
(
Θ(C) (D)

)
3`(D) =

∫

Σ

� (D)3`(D) (5.4)

for any � ∈ !1 (�− 1
2−Y (T), 3`) and any C ∈ R. By a density argument, it suffices to prove (5.4) for

continuous and bounded �.

Fix C ∈ R. By Lemma 5.1, we have

∫

Σ

�
(
Θ
# (C) (D)

)
3`(D) =

∫

Σ

� (D)3`(D). (5.5)

Fix small X > 0. The boundedness of � implies that for any sufficiently small ^ > 0, we have

�����

∫

Σ2
^

�
(
Θ(C) (D)

)
3`(D)

����� +
�����

∫

Σ2
^

�
(
Θ
# (C) (D)

)
3`(D)

����� < X, (5.6)

where Σ^ is as in (5.3). Fix one such ^ > 0. Then, by Lemma 5.2, we have

‖Θ(C) (D) − Θ
# (C) (D)‖

�
− 1

2 −Y ≤ � (^, C)#−V

for any D ∈ Σ^ and sufficiently large # ≫ 1. Hence, by continuity of �, we have

�����

∫

Σ^

�
(
Θ(C) (D)

)
3`(D) −

∫

Σ^

�
(
Θ
# (C) (D)

)
3`(D)

����� < X, (5.7)

for any sufficiently large # ≫ 1. Combining (5.5), (5.6), and (5.7) and taking X → 0, we obtain (5.4).

5.4. Proof of Theorem 1

The proof of Theorem 1 follows from the arguments presented in the proofs of Theorems 2 and 3.
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6. Nonlinear estimate I: non-resonant part

In this section, we present the proof of Proposition 4.1.

6.1. Probabilistic estimates

We begin by presenting several probabilistic estimates that will be used to prove Proposition 4.1. The

proofs of these lemmas are presented in Appendix A.

We first recall some notations. Let [ ∈ �∞
2 (R) be a smooth non-negative cutoff function supported

on [−2, 2] with [ ≡ 1 on [−1, 1]. Recall from (1.20), (2.6), and (4.9) that

Γ(=) = {(=1, =2, =3) ∈ Z3 : = = =1 − =2 + =3 and =1, =3 ≠ =},
Φ(=̄) = Φ(=1, =2, =3, =) = =4

1 − =4
2 + =4

3 − =4,

Ψ
l
# (=̄) = |6#=1

(l) |2 − |6#=2
(l) |2 + |6#=3

(l) |2 − |6#= (l) |2 (6.1)

where 6#= is as in (4.8). Given B, 1 ∈ R and X > 0, the following random functionals (
B,1, X
9,#

, 9 = 1, 2, 3
play an important role in the proof of Proposition 4.1 (and also in the proof of Proposition 4.2 presented

in Section 7):

(
B,1, X

1,# ( 5 ) =


∑

=1∈Z
(=1 ,=2 ,=3) ∈Γ(=)

5̂ (=1)
[̂

X
(g +Φ(=̄) − |6#=1

|2)
〈=2〉B 〈=3〉B 〈=〉2B 〈g〉1


ℓ2
=,=2 ,=3

!2
g

(6.2)

(observe that there is at most one term in the =1 summation),

(
B,1, X

2,# ( 51, 52) =


∑

=1 ,=2∈Z
(=1 ,=2 ,=3) ∈Γ(=)

5̂1(=1) 5̂2(=2)

×
[̂

X
(g +Φ(=̄) − |6#=1

|2 + |6#=2
|2)

〈=3〉B 〈=〉2B 〈g〉1


ℓ2
=,=3

!2
g

, (6.3)

(
B,1, X

3,# ( 51, 52, 53) =

∑

Γ(=)
5̂1(=1) 5̂2(=2) 5̂3(=3)

×
[̂

X
(g +Φ(=̄) − |6#=1

|2 + |6#=2
|2 − |6#=3

|2)
〈=〉2B 〈g〉1


ℓ2
=!

2
g

. (6.4)

In the following, we will take 51, 52, 53 as the white noise

51 = 52 = 53 = Dl0 =

∑

=∈Z
6= (l)48=G , (6.5)

or its frequency truncated version (projected onto high frequencies)

c⊥# 9
(Dl0 ) =

∑

|= |># 9

6= (l)48=G .
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For simplicity of notation, we set14

(
B,1, X

1,# (l) := (B,1, X1,# (c⊥#1
(Dl0 )), (6.6)

(
B,1, X

2,# (l) := (B,1, X2,# (c⊥#1
(Dl0 ), c⊥#2

(Dl0 )), (6.7)

(
B,1, X

3,# (l) := (B,1, X3,# (c⊥#1
(Dl0 ), c⊥#2

(Dl0 ), c⊥#3
(Dl0 )) (6.8)

for #1, #2, #3 ∈ Z≥−1 (recall our convention: c⊥−1 = Id). With the notations defined above, we have the

following tail estimates for these random functionals.

Lemma 6.1. Let B < 0, 1 < 1
2 , and V > 0 such that B and V are sufficiently close to 0 and 1 is sufficiently

close to 1
2 . Then there exist 2, ^ > 0 and small X0 > 0 such that the following statements holds.

(i) We have

%

({
l ∈ Ω : sup

# ∈N
sup

#1∈Z≥−1

〈#1〉V |(B,1, X1,# (l) | > X^
})
< 4−

1
X2

for any 0 < X < X0.

(ii) Let : = 2, 3. Given 0 < X < X0, define the sets A: by

A: :=

{
l ∈ Ω : there exists #0 = #0 (l, X) ∈ N such that

sup
# ≥#0

sup
# 9 ∈Z≥−1
9=1, · · · ,:

( :∏

9=1

〈# 9〉V
)
|(B,1, X
:,#

(l) | ≤ X^
}
.

Then we have

%(A2: ) < 4
− 1

X2

for any 0 < X < X0.

Given # ∈ N ∪ {∞}, we introduce a random version -
B,1
+ (l, #) of the -B,1-space:

‖D‖
-

B,1
+ (l,# ) = ‖〈=〉B 〈g + =4 + |6#= (l) |2〉1D̂(=, g)‖ℓ2

=!
2
g

with the understanding that 6∞= = 6=. By slightly losing spatial regularity, we can control the random

-B,1-norm by the standard -f,1-norm (with f > B) uniformly in D ∈ -f,1 .

Lemma 6.2. Let f > B and 1 > 0. Then for each  > 0, there exists a set Ω ⊂ Ω with %(Ω2
 
) <

�4−2 
1
1 such that

sup
# ∈N∪{∞}

‖D‖
-

B,1
+ (l,# ) . (1 +  )‖D‖-f,1 .

In particular, by choosing = X−Y for some small Y > 0, there exists a setΩX ⊂ Ωwith%(Ω2
 
) < �4− 1

X2

such that

sup
# ∈N∪{∞}

‖D‖
-

B,1
+ (l,# ) . X

−Y ‖D‖-f,1

uniformly in D ∈ -f,1 for any 0 < X ≪ 1.

14Strictly speaking, we should denote the dependence of (B,1, X
9,#

(l) on the parameters #1 , #2, and #3. For simplicity of the

presentation, however, we suppress such dependence unless it plays an important role.
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For the proofs of Lemmas 6.1 and 6.2, see Appendix A. In the next subsection, we prove Proposition

4.1, assuming these lemmas.

6.2. Proof of Proposition 4.1

For 9 = 1, 2, 3, let I 9 = ((C)c⊥# 9
(Dl0 ), and set E 9 = F 9 − I 9 . Then, by the linear estimate (Lemma 2.3),

it suffices to construct ΩX ⊂ Ω with %(Ω2
X
) < 4− 1

X2 such that for each l ∈ ΩX , we have, for some B < 0
sufficiently close to 0,

‖Nl
1,# (E1 + I1, E2 + I2, E3 + I3)‖

-
0,− 1

2 +, X ≤ �X\
3∏

9=1

(
〈# 9〉−V + ‖E 9 ‖

-
B
2 , 1

2 +, X

)
(6.9)

uniformly in # 9 ∈ Z≥−1, 9 = 1, 2, 3, and # ≥ #0 (l, X) for some #0 (l, X) ∈ N. By the definition (2.2)

of the local-in-time space, the estimate (6.9) follows once we prove

‖[
X
(C) · Nl

1,# (Ẽ1 + I1, Ẽ2 + I2, Ẽ3 + I3)‖
-

0,− 1
2 + ≤ �X\

3∏

9=1

(
〈# 9〉−V + ‖Ẽ 9 ‖

-
B
2 , 1

2 +

)
(6.10)

for any extension Ẽ 9 of E 9 (restricted to the time interval [−X, X]) onto R, 9 = 1, 2, 3. For simplicity of

notation, we denote the extension Ẽ 9 by E 9 in the following.

By duality, we have

LHS of (6.10) = sup
‖0 ‖

-
0, 1

2 − ≤1

����
∫

T×R
[

X
(C) · Nl

1,# (E1 + I1, E2 + I2, E3 + I3)0(G, C)3G3C
����, (6.11)

where [
X

is as in (2.3). By (4.12) and expanding the product, we write the double integral in (6.11) as15

∫

R

[
X
(C)

∑

=

∑

Γ(=)
48CΨ

l
#
(=̄)

[
Ê1 (=1)Ê2(=2)Ê3 (=3)0̂(=)

+ 1 |=1 |>#1 (=1)4−8C=
4
16=1 Ê2(=2)Ê3 (=3)0̂(=) + similar terms

+
( 2∏

9=1

1 |= 9 |># 9

)
4−8C (=

4
1−=

4
2)6=16=2 Ê3(=3)0̂(=) + similar terms

+
( 3∏

9=1

1 |= 9 |># 9

)
4−8C (=

4
1−=

4
2+=

4
3)6=16=26=3 0̂(=)

]
3C

=: I + II + III + IV,

where the term I consists of the term with all three factors given by E 9 ’s, II consists of the terms with

one factor of I 9 and two factors of E 9 ’s, III consists of the terms with two factors of I 9 ’s and one factor

of E 9 , and IV consists of the term with all three factors given by I 9 ’s.

◦ Estimate on I . Define

1
( 9)
= = 48C=

4+8C |6#= |2 〈=〉B Ê 9 (=) and 0= = 4
8C=4+8C |6#= |2 〈=〉2B 0̂(=), (6.12)

essentially representing the Fourier transforms of the ungauged interaction representations of E 9

15Here and in the following, we suppress the time dependence.
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and 0. Then we have

I =

∫

R

[
X
(C)

∑

=

∑

Γ(=)
48CΨ

l
#
(=̄) Ê1 (=1)Ê2(=2)Ê3 (=3)0̂(=) 3C

=

∑

=

∑

Γ(=)

1

〈=1〉B 〈=2〉B 〈=3〉B 〈=〉2B

∫

R

(
[

X
(C)4−8CΦ(=̄) ) 1 (1)=1

1
(2)
=2
1
(3)
=3
0= 3C.

By Parseval’s identity in the C variable, we have

I =

∑

=

∑

Γ(=)

1

〈=1〉B 〈=2〉B 〈=3〉B 〈=〉2B

∫

R

[̂
X
(g +Φ(=̄))F(1 (1)=1

1
(2)
=2
1
(3)
=3
0=) (−g)3g.

By Cauchy-Schwarz inequality, we have

I .

(∑

=

∑

Γ(=)

1

〈=1〉2B 〈=2〉2B 〈=3〉2B 〈=〉4B


[̂

X
(g +Φ(=̄))
〈g〉 1

2−


2

!2
g

) 1
2

×
(∑

=

∑

Γ(=)

〈g〉 1
2−F(1 (1)=1

1
(2)
=2
1
(3)
=3
0=) (g)


2

!2
g

) 1
2

. (6.13)

By Lemma 2.4 with (2.3), we have


[̂

X
(g −Φ(=̄))
〈g〉 1

2−Y


!2
g

.

( ∫
X2

〈g〉1−2YX〈g −Φ(=̄)〉
3g

) 1
2

.
X

1
2

〈Φ(=̄)〉 1
2−2Y

(6.14)

for any small Y > 0. Then, by (6.14) and Lemma 2.1, we can bound the first factor of (6.13) by

(∑

=

∑

Γ(=)

1

〈=1〉2B 〈=2〉2B 〈=3〉2B 〈=〉4B

X

〈Φ(=̄)〉1−

) 1
2

. X
1
2 , (6.15)

provided that B < 0 is sufficiently close to 0. Next, we consider the second factor of (6.13). By

Lemma 2.5, we have

∑

=

∑

Γ(=)

〈g〉 1
2−F(1 (1)=1

1
(2)
=2
1
(3)
=3
0=) (g)


2

!2
g

=

∑

=

∑

Γ(=)

1 (1)=1
1
(2)
=2
1
(3)
=3
0=


2

�
1
2 −

.

∑

=

∑

=1 ,=2 ,=3

1 (1)=1

2

�
1
2 +

1 (2)=2

2

�
1
2 +

1 (3)=3

2

�
1
2 +

0=
2

�
1
2 −

=

(∑

=

0=
2

�
1
2 −

) 3∏

9=1

(∑

= 9

1 ( 9)= 9

2

�
1
2 +

)
. (6.16)

By (6.12), Plancherel’s identity, and Lemma 6.2, we have that

∑

=

1 ( 9)=
2

�
1
2 + =

∑

=

〈=〉B48C=4+8C |6#= |2 Ê 9 (=)
2

�
1
2 +

=

∑

=

〈=〉2B
〈g + =4 + |6#= |2〉 1

2+Ê 9 (=, g)
2
!2
g

= ‖E 9 ‖2

-
B, 1

2 +
+ (l,# )

. X−Y ‖E 9 ‖2

-
B
2 , 1

2 +
(6.17)
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and

∑

=

0=
2

�
1
2 − = ‖0‖2

-
2B, 1

2 +
+ (l,# )

. X−Y ‖0‖2

-
0, 1

2 +

for small Y > 0, outside an exceptional set of probability < �4−
1
X2 . Collecting estimates (6.13),

(6.15), (6.16), and (6.17), we obtain

I (l) . X 1
2−

3∏

9=1

‖E 9 ‖
-

B
2 , 1

2 +

outside an exceptional set of probability < �4−
1
X2 .

◦ Estimate on II. Without loss of generality, we may assume II has only one term:

II =

∫

R

[
X
(C)

∑

=

∑

Γ(=)
48CΨ

l
#
(=̄)

[
1|=1 |>#1

4−8C=
4
16=1 Ê2 (=2)Ê3 (=3)0̂(=)

]
3C.

With 1
( 9)
= and 0= as in (6.12), Parseval’s identity yields

II =
∑

=

∑

Γ(=)

1|=1 |>#1
6=1

〈=2〉B 〈=3〉B 〈=〉2B

∫

R

[̂
X
(g +Φ(=̄) − |6#=1

|2)F(1 (2)=2
1
(3)
=3
0=) (−g)3g.

By Cauchy-Schwarz inequality in g and then in =, =2, =3, we have

II ≤


∑

=1
(=1 ,=2 ,=3) ∈Γ(=)

1|=1 |>#1
6=1

〈=2〉B 〈=3〉B 〈=〉2B

[̂
X
(g +Φ(=̄) − |6#=1

|2)
〈g〉 1

2−


ℓ2
=,=2 ,=3

!2
g

×
〈g〉 1

2−F(1 (2)=2
1
(3)
=3
0=) (g)


ℓ2
=,=2 ,=3

!2
g

. (
B, 1

2−, X
1,# (l)


1 (2)=2

1
(3)
=3
0=


�

1
2 −
g


ℓ2
=,=2 ,=3

,

where (
B,1, X

1,# (l) is defined in (6.6). Proceeding as in (6.16) and (6.17), we arrive at

II ≤ (
B, 1

2−, X
1,# (l)‖E2‖

-
B, 1

2 +
+ (l,# )

‖E3‖
-

B, 1
2 +

+ (l,# )
‖0‖

-
2B, 1

2 −
+ (l,# )

.

Then, by applying Lemmas 6.1 and 6.2, we conclude that there exist small \, V > 0 and B < 0 close

to 0 such that

II(l) . X\ 〈#1〉−V
3∏

9=2

‖E 9 ‖
-

B
2 , 1

2 +

outside an exceptional set of probability < �4−
1
X2 .

◦ Estimate on III. Without loss of generality, we assume that III has the following form:

III =

∫

R

[
X
(C)

∑

=

∑

Γ(=)
48CΨ

l
#
(=̄)4−8C (=

4
1−=

4
2) j1,2 · 6=16=2 Ê3(=3)0̂(=)3C,
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where j1,2 :=
∏2
9=1 1|=9 |>#9

. By Parseval’s identity, as before, we have

III =
∑

=

∑

Γ(=)

j1,2 · 6=16=2

〈=3〉B 〈=〉2B

∫

R

[̂
X
(g +Φ(=̄) − |6#=1

|2 + |6#=2
|2)

〈g〉 1
2−

(
〈g〉 1

2−F(1 (3)=3
0=) (−g)

)
3g,

where 1
(3)
= and 0= are as in (6.12). By Cauchy-Schwarz inequality and proceeding as before, we obtain

III ≤


∑

=1 ,=2
(=1 ,=2 ,=3) ∈Γ(=)

j1,2 · 6=16=2

[̂
X
(g +Φ(=̄) − |6#=1

|2 + |6#=2
|2)

〈=3〉B 〈=〉2B 〈g〉 1
2−


ℓ2
=,=3

!2
g

×
〈g〉 1

2−F(1 (3)=3
0=) (g)


ℓ2
=,=3

!2
g

. (
B, 1

2−, X
2,# (l)‖E3‖

-
B, 1

2 +
+ (l,# )

‖0‖
-

2B, 1
2 −

+ (l,# )

where (
B,1, X

2,# (l) is defined in (6.7). Then, by applying Lemmas 6.1 and 6.2, we conclude that there

exist small \, V > 0 and B < 0 close to 0 such that

III(l) . X\
( 2∏

9=1

〈#1〉−V
)
‖E3‖

-
B
2 , 1

2 +

outside an exceptional set of probability < �4−
1
X2 .

◦ Estimate on IV. Lastly, we consider IV. We have

IV =

∫

R

[
X
(C)

∑

=

∑

Γ(=)
48CΨ

l
#
(=̄)4−8C (=

4
1−=

4
2+=

4
3) j1,2,3 · 6=16=26=3 0̂(=)3C

=

∑

=

∑

Γ(=)

j1,2,3 · 6=16=26=3

〈=〉2B

∫

R

[
X
(C)48C (Ψ

l
3,# (=̄)−Φ(=̄))

0=3C,

where j1,2,3 :=
∏3
9=1 1|=9 |>#9

, Ψl
#

is as in (4.9), and Ψ3,# := |6#=1
|2 − |6#=2

|2 + |6#=3
|2. By applying

Parseval’s identity and Cauchy-Schwarz inequality as before, we have

IV =

∑

=

∑

Γ(=)

j1,2,3 · 6=16=26=3

〈=〉2B

∫

R

[̂
X
(g +Φ(=̄) − Ψ

l
3,# (=̄))0̂= (g)3g

≤

∑

Γ(=)
j1,2,3 · 6=16=26=3

[̂
X
(g +Φ(=̄) − Ψl

3,# (=̄))

〈=〉2B 〈g〉 1
2−


ℓ2
=!

2
g

‖0=‖
�

1
2 −


ℓ2
=

≤ (
B, 1

2−, X
3,# (l)‖0‖

-
2B, 1

2 −
+ (l,# )

,

where (
B,1, X

3,# (l) is defined in (6.8). Then, by applying Lemmas 6.1 and 6.2, we conclude that there

exist small \, V > 0 and B < 0 close to 0 such that

IV(l) . X\
3∏

9=1

〈#1〉−V

outside an exceptional set of probability < �4−
1
X2 .
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This completes the proof of Proposition 4.1.

7. Nonlinear estimate II: resonant part

This section is devoted to the proof of Proposition 4.2. Recall from (4.16) and (4.17) that

Ĩl2,# (F1, F2, F3, F4, F5) (G, C) =
∫ C

0
((C − C ′)

∑

=∈Z
48=GE#= (F1, F2, F3, F4) (C ′)F̂5(=, C ′)3C ′,

where

E#= (F1, F2, F3, F4) (C) = −2 Re 8

∫ C

0

∑

Γ(=)
48C

′Ψl
#
(=̄) F̂1 (=1, C

′)F̂2(=2, C ′)F̂3 (=3, C
′)F̂4(=, C ′)3C ′.

Given F 9 , let E 9 = F 9 −((C)c⊥# 9
(Dl0 ). Then we denote by Ẽ 9 an extension of E 9 (viewed as a function

on the time interval [−X, X]) and set

F̃ 9 = ((C)c⊥# 9
(Dl0 ) + Ẽ 9 .

Let B < 0 < V be sufficiently close to 0. By the linear estimate (Lemma 2.3) and the definition (2.2) of

the local-in-time space, it suffices to construct ΩX ⊂ Ω with %(Ω2
X
) < 4− 1

X2 such that for each l ∈ ΩX ,

we have
jX

(C)
∑

=∈Z
48=GE#= (F̃1, F̃2, F̃3, F̃4) (C)̂̃F5(=, C)


-

0,− 1
2 +

≤ �X\
5∏

9=1

(
〈# 9〉−V + ‖Ẽ 9 ‖

-
B
2 , 1

2 +

)
(7.1)

for any extension Ẽ 9 of E 9 , 9 = 1, . . . , 5, uniformly in # 9 ∈ Z≥−1, 9 = 1, . . . , 5, and # ≥ #0 (l, X) for

some #0 (l, X) ∈ N. For simplicity of notation, we denote Ẽ 9 (and F̃ 9 , respectively) by E 9 (and F 9 ,

respectively) in the following. We also suppress the time dependence when it is clear from the context.

By the (continuous) trivial embedding !2 (T×R) = -0,0 ⊂ -0,− 1
2+ and Hölder’s inequality, we have

LHS of (7.1) .

jX
(C)

( ∑

=∈Z
|E#= (F1, F2, F3, F4) (C)F̂5(=, C) |2

) 1
2

!2
C

. X
1
2 sup
C ∈[−X, X ]

( ∑

=∈Z
|E#= (F1, F2, F3, F4) (C)F̂5(=, C) |2

) 1
2

.

Therefore, to prove Proposition 4.2, it suffices to prove

sup
C ∈[−X, X ]

( ∑

=∈Z
|E#= (F1, F2, F3, F4) (C)F̂5(=, C) |2

) 1
2

≤ �X− 1
2+

5∏

9=1

(
〈# 9〉−V + ‖E 9 ‖

-
B
2 , 1

2 +

)
(7.2)

with large probability, where E 9 is given by

E 9 = F 9 − ((C)c⊥# 9
(Dl0 ).
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Step (i): Elimination of F5. With B < 0 close to 0, we have

( ∑

=∈Z
|E#= (F1, F2, F3, F4)F̂5(=) |2

) 1
2

≤
( ∑

=∈Z
〈=〉−2B |E#= (F1, F2, F3, F4) |2

) 1
2

· sup
=

��〈=〉B1 |= |>#56= (l)
��

+
( ∑

=∈Z
〈=〉−2B |E#= (F1, F2, F3, F4) |2

) 1
2

· sup
=

|〈=〉B Ê5(=) |. (7.3)

By applying Lemma 2.7 with Y = − B2 > 0, we conclude that

sup
=

��〈=〉B1 |= |>#56= (l)
�� ≤ 〈#5〉

B
2 X0−, (7.4)

outside an exceptional set of probability < �4−
1
X2 . We also have

sup
C ∈[−X, X ]

sup
=

|〈=〉B Ê5(=, C) | . ‖E5‖
-

B, 1
2 + . (7.5)

Therefore, we conclude from (7.3), (7.4), and (7.5) that, to prove (7.2), it suffices to show the following

estimate:

sup
C ∈[−X, X ]

( ∑

=∈Z
〈=〉−2B |E#= (F1, F2, F3, F4) |2

) 1
2

≤ �X− 1
2+

4∏

9=1

(
〈# 9〉−V + ‖E 9 ‖

-
B
2 , 1

2 +

)
(7.6)

outside an exceptional set of probability < �4−
1
X2 , uniformly in # 9 ∈ Z≥−1, 9 = 1, . . . , 5, and # ≥

#0 (l, X) for some #0 (l, X) ∈ N.

Step (ii) Smoothing effect. In the remaining part of this section, we present the proof of (7.6). By

expanding the product of

F̂ 9 (= 9 , C) = Ê 9 (= 9 , C) + 4−8C=
4
91 |= 9 |># 9

6= 9
,

we can bound the left-hand side of (7.6) (without the supremum in time) by

〈=〉
−B

∫ C

0

∑

Γ(=)
48C

′Ψl
#
(=̄) F̂1 (=1, C

′)F̂2(=2, C ′)F̂3 (=3, C
′)F̂4(=, C ′)3C ′


ℓ2
=

. � + � + � + � + �, (7.7)
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where �, �, �, �, and � are given by

� :=

〈=〉
−B

∫ C

0

∑

Γ(=)
48C

′ (Ψl
#
(=̄)−Φ(=̄)) j1,2,3.4 · 6=16=26=36=3C

′

ℓ2
=

,

� :=

〈=〉
−2B

∫ C

0

∑

Γ(=)
4
8C′ (Ψl

3,# (=̄)−Φ(=̄))
j1,2,3 · 6=16=26=31

(4)
= 3C ′


ℓ2
=

+ similar terms,

� :=



∫ C

0

∑

Γ(=)

4
8C′ (Ψl

2,# (=̄)−Φ(=̄))

〈=3〉B 〈=〉2B
j1,2 · 6=16=21

(3)
=3
1
(4)
= 3C ′


ℓ2
=

+ similar terms,

� :=



∫ C

0

∑

Γ(=)

4
8C′ ( |6#=1

|2−Φ(=̄))

〈=2〉B 〈=3〉B 〈=〉2B
j1 · 6=11

(2)
=2
1
(3)
=3
1
(4)
= 3C ′


ℓ2
=

+ similar terms,

� :=



∫ C

0

∑

Γ(=)

4−8C
′Φ(=̄)

〈=1〉B 〈=2〉B 〈=3〉B 〈=〉2B
1
(1)
=1
1
(2)
=2
1
(3)
=3
1
(4)
= 3C ′


ℓ2
=

.

Here, 1
( 9)
= is as in (6.12),

j1,...,: =

:∏

9=1

1 |= 9 |># 9
, : = 1, . . . , 4,

and

Ψ
l
:,# (=̄) =

:∑

9=1

(−1) 9+1 |6#= 9
|2, : = 2, 3.

In view of the restriction of the time variable onto [−X, X], we may freely insert the cutoff functions

j
X
(C) and [

X
(C) in evaluating the terms �, �,�, �, and � . In the following, we prove (7.6) by estimating

each term on the right-hand side of (7.7).

(ii.1) Estimate on �. Fix ^, Y > 0 small. By applying Lemma 2.7, we have

|6= (l) | . X−
^
2 〈=〉Y (7.8)

outside an exceptional set of probability < �4−
1
X2 . Then, for such l, we split �(l) into two parts:

�(l) = �1(l) + �2(l),

where �1 (l) denotes the contribution from the case =max . X
−^ . Namely, we have

�1(l) :=

〈=〉
−Bj

X
(C)

∫ C

0

∑

Γ(=)
1=max.X−^ 4

8C′ (Ψl
#
(=̄)−Φ(=̄)) j1,2,3.4 · 6=16=26=36=3C

′

ℓ2
=

.

Note that if max(#1, #2, #3, #4) ≫ X−^ , then we have �1(l) = 0. Otherwise, using (7.8), we have

�1(l) . X1+B^−�^
4∏

9=1

〈# 9〉−1

for some � > 0. This yields (7.6).
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Next, we consider �2(l). Since =max ≫ X−^ , we have |6= (l) | . X−
^
2 〈=〉Y ≪ =

1
2+Y
max . Then it follows

from Lemma 2.1 and (6.1) that we have

|Ψl
# (=̄) −Φ(=̄) | ∼ 〈Φ(=̄)〉 (7.9)

for (=1, =2, =3) ∈ Γ(=). Thus, from (7.8), (7.9), and Lemma 2.1, we obtain

�2 (l) =
〈=〉

−B
∑

Γ(=)

48C (Ψ
l
#
(=̄)−Φ(=̄)) − 1

Ψl
#
(=̄) −Φ(=̄) j1,2,3.4 · 6=16=26=36=


ℓ2
=

. X−2^

( 4∏

9=1

〈# 9〉−V
)

∑

Γ(=)

=
4V+4Y−B
max

〈Φ(=̄)〉 j1,2,3.4


ℓ2
=

. X−2^

( 4∏

9=1

〈# 9〉−V
)

∑

Γ(=)

1

=
2−4V−4Y+B
max (= − =1) (= − =3)


ℓ2
=

. X−2^
4∏

9=1

〈# 9〉−V ,

provided that Y, V,−B > 0 are sufficiently small. This yields (7.6).

(ii.2) Estimate on �. Without loss of generality, we may assume that � consists of only one term:

� =

〈=〉
−2B

∫ C

0

∑

Γ(=)
4
8C′ (Ψl

3,# (=̄)−Φ(=̄))
j1,2,3 · 6=16=26=31

(4)
= 3C ′


ℓ2
=

.

To exploit the oscillatory nature of the time integral, we rewrite the above integral as

∫

R

[
X
(C ′)

∑

Γ(=)
4
8C′ (Ψl

3,# (=̄)−Φ(=̄))
j1,2,3 · 6=16=26=3

(
1[0,C ] (C ′)1 (4)= (C ′)

)
3C ′,

where [
X

is as in (2.3). Then, by Parseval’s identity, the above expression is

∑

Γ(=)
j1,2,3 · 6=16=26=3

∫

R

[̂
X
(g +Φ(=̄) − Ψ

l
3,# (=̄))FC (1[0,C ]1

(4)
= ) (−g)3g

=

∑

Γ(=)
j1,2,3 · 6=16=26=3

∫

R

[̂
X
(g +Φ(=̄) − Ψl

3,# (=̄))

〈g〉 1
2−

×
(
〈g〉 1

2−FC (1[0,C ]1
(4)
= ) (−g)

)
3g.

Therefore, by Cauchy-Schwarz inequality in the g variable and Lemma 2.6, we have

� ≤

∑

Γ(=)
j1,2,3 · 6=16=26=3

[̂
X
(g +Φ(=̄) − Ψl

3,# (=̄))

〈=〉2B 〈g〉 1
2−


ℓ2
=!

2
g

‖1[0,C ] (C ′)1 (4)= (C ′)‖
�

1
2 −
C′


ℓ∞=

. (
B, 1

2−, X
3,# (l)

‖1 (4)= ‖
�

1
2 −
C


ℓ∞=
,

where (
B,1, X

3,# (l) is defined in (6.8). Then, proceeding as in (6.17), we obtain

�(l) . (B,
1
2−, X

3,# (l)‖E4‖
-

B, 1
2 −

+ (l,# )
. (7.10)
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Finally, by applying Lemmas 6.1 and 6.2 to (7.10), we obtain the desired estimate (7.6) for the term �

outside an exceptional set of probability < �4−
1
X2 .

(ii.3) Estimate on �. Without loss of generality, we assume that � consists of only one term:

� =



∫

R

∑

Γ(=)
[

X
(C ′) 4

8C′ (Ψl
2,# (=̄)−Φ(=̄))

〈=3〉B 〈=〉2B
j1,2 · 6=16=2

(
1[0,C ] (C ′)1 (3)=3

(C ′)1 (4)= (C ′)
)
3C ′


ℓ2
=

.

By Parseval’s identity, we have

� =


∑

Γ(=)
j1,2 · 6=16=2

∫

R

[̂
X
(g +Φ(=̄) − Ψl

2,# (=̄))

〈=3〉B 〈=〉2B 〈g〉 1
2−

×
(
〈g〉 1

2−FC (1[0,C ]1
(3)
=3
1
(4)
= ) (−g)

)
3g


ℓ2
=

.

By Cauchy-Schwarz inequality in g and =3 followed by Hölder’s inequality in =, we have

� ≤


∑

=1 ,=2
(=1 ,=2 ,=3) ∈Γ(=)

j1,2 · 6=16=2

[̂
X
(g +Φ(=̄) − Ψl

2,# (=̄))

〈=3〉B 〈=〉2B 〈g〉 1
2−


ℓ2
=,=3

!2
g

× sup
=∈Z

‖1[0,C ] (C ′)1 (3)=3
(C ′)1 (4)= (C ′)‖

�
1
2 −
C′


ℓ2
=3

. (7.11)

As for the second factor of (7.11), by applying Lemma 2.6 and then Lemma 2.5 and proceeding as

in (6.17), we have

sup
=∈Z

‖1[0,C ] (C ′)1 (3)=3
(C ′)1 (4)= (C ′)‖

�
1
2 −
C′


ℓ2
=3

.

‖1 (3)=3
‖
�

1
2 + ‖1

(4)
= ‖

�
1
2 +


ℓ2
=,=3

. ‖E3‖
-

B, 1
2 +

+ (l,# )
‖E4‖

-
B, 1

2 +
+ (l,# )

. (7.12)

Therefore, from (7.11) and (7.12), we obtain

� (l) . (B,
1
2−, X

2,# (l)‖E3‖
-

B, 1
2 +

+ (l,# )
‖E4‖

-
B, 1

2 +
+ (l,# )

, (7.13)

where (
B,1, X

2,# (l) is defined in (6.7). Finally, by applying Lemmas 6.1 and 6.2 to (7.13), we obtain the

desired estimate (7.6) for the term � outside an exceptional set of probability < �4−
1
X2 .

(ii.4) Estimate on �. Without loss of generality, we assume that � has only one term:

� =



∫ C

0

∑

Γ(=)
[

X
(C ′) 4

8C′ ( |6#=1
|2−Φ(=̄))

〈=2〉B 〈=3〉B 〈=〉2B
j1 · 6=1

(
1[0,C ] (C ′)1 (2)=2

(C ′)1 (3)=3
(C ′)1 (4)= (C ′)

)
3C ′


ℓ2
=

.

Proceeding as before with Parseval’s identity and Hölder’s inequality, we have

� ≤


∑

=1∈Z
(=1 ,=2 ,=3) ∈Γ(=)

j1 · 6=1

[̂
X
(g +Φ(=̄) − |6#=1

|2)
〈=2〉B 〈=3〉B 〈=〉2B 〈g〉 1

2−


ℓ2
=,=2 ,=3

!2
g

× sup
=∈Z

‖1[0,C ] (C ′)1 (2)=2
(C ′)1 (3)=3

(C ′)1 (4)= (C ′)‖
�

1
2 −
C′


ℓ2
=2 ,=3

.
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Then, by estimating the the second factor as in (7.12) with Lemmas 2.5 and 2.6, we obtain

� (l) . (B,
1
2−, X

1,# (l)
4∏

9=2

‖E 9 ‖
-

B, 1
2 +

+ (l,# )
, (7.14)

where (
B,1, X

1,# (l) is defined in (6.6). Finally, by applying Lemmas 6.1 and 6.2 to (7.14), we obtain the

desired estimate (7.6) for the term � outside an exceptional set of probability < �4−
1
X2 .

(ii.5) Estimate on � . We have

� =



∫ C

0

∑

Γ(=)
[

X
(C ′) 4−8C

′Φ(=̄)

〈=1〉B 〈=2〉B 〈=3〉B 〈=〉2B

(
1[0,1] (C ′)1 (1)=1

(C ′)1 (2)=2
(C ′)1 (3)=3

(C ′)1 (4)= (C ′)
)
3C ′


ℓ2
=

.

Proceeding as before with Parseval’s identity and Hölder’s inequality, we have

� ≤ sup
=∈Z


[̂

X
(g +Φ(=̄))

〈=1〉B 〈=2〉B 〈=3〉B 〈=〉2B 〈g〉 1
2−


ℓ2
Γ(=) !

2
g

×
‖1[0,C ] (C ′)1 (1)=1

(C ′)1 (2)=2
(C ′)1 (3)=3

(C ′)1 (4)= (C ′)‖
�

1
2 −
C′


ℓ2
=,Γ(=)

, (7.15)

where the ℓ2
Γ(=) -norm is defined by

‖ 5=1 ,=2 ,=3 ‖ℓ2
Γ(=)

=

( ∑

(=1 ,=2 ,=3) ∈Γ(=)
| 5=1 ,=2 ,=3 |2

) 1
2

.

By Lemma 2.4 followed by Lemma 2.1, we can bound the first factor on the right-hand side of (7.15) by

sup
=∈Z


X[̂(X(g −Φ(=̄)))

〈=1〉B 〈=2〉B 〈=3〉B 〈=〉2B 〈g〉 1
2−


ℓ2
=1 ,=2 ,=3

!2
g

. sup
=∈Z


X

1
2

=5B
max〈g〉

1
2−〈g −Φ(=̄)〉 1

2


ℓ2
Γ(=) !

2
g

∼ X 1
2

( ∑

(=1 ,=2 ,=3) ∈Γ(=)

1

=10B
max〈Φ(=̄)〉1−

) 1
2

. 1,

provided that B < 0 is sufficiently close to 0. The second factor on the right-hand side of (7.15) can be

estimated as in (7.12) with Lemmas 2.5 and 2.6. Therefore, we obtain

� (l) .
4∏

9=1

‖E 9 ‖2

-
B, 1

2 +
+ (l,# )

. (7.16)

Finally, by applying Lemma 6.2 to (7.16), we obtain the desired estimate (7.6) for the term � outside an

exceptional set of probability < �4−
1
X2 .

This completes the proof of Proposition 4.2.

Appendix A. Further probabilistic estimates

In this appendix, we state and prove crucial probabilistic estimates. These probabilistic estimates play

an important role in establishing Propositions 4.1 and 4.2. In A.3, we present the proof of Lemma 2.11.
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In the following, {6=}=∈Z denotes a sequence of independent standard complex-valued Gaussian

random variables. In particular, we have

E
[
6:= 6

ℓ
<

]
= X:ℓX=< · :! (A.1)

for any :, ℓ ∈ Z≥0 and =, < ∈ Z. The identity (A.1) easily follows from a computation with the moment-

generating function for the chi-square distribution of degree 2 (that is, |6= |2 = (Re 6=)2 + (Im 6=)2).

A.1. Random -B,1-space

Given # ∈ N ∪ {∞}, set 6#= = 1 |= | ≤# · 6= as in (4.8), with the understanding that 1 |= | ≤# ≡ 1 when

# = ∞. Then we define random versions -
B,1
+ (l, #) and -B,1− (l, #) of the -B,1-space by the norm

‖D‖
-

B,1
± (l,# ) =

〈=〉B 〈g + =4 ± |6#= (l) |2〉1D̂(=, g)

ℓ2
=!

2
g
. (A.2)

When # = ∞, we simply set -
B,1
±,l = -

B,1
± (l,∞). The following lemma shows that the random -B,1-

norm is controlled by the standard -B,1-norm in (2.1) with large probability.

Lemma A.1. Let [ ∈ S(R) be a Schwartz function in time and D ∈ -B,1 with B ∈ R and 1 > 0. Then

there exists � > 0 such that

 sup
# ∈N∪{∞}

‖[D‖
-

B,1
± (l,# )


!? (Ω)

≤ �?1+2‖D‖-B,1 (A.3)

for all ? ≥ 2, where the constant is independent of D. As a consequence, there exist 2, � > 0 such that

%

(
sup

# ∈N∪{∞}
‖[D‖

-
B,1
± (l,# ) >  ‖D‖-B,1

)
≤ �4− 

1
1+2 ‖D ‖

− 1
1+2

-B,1 (A.4)

for any  > 0.

We present the proof of Lemma A.1 at the end of this subsection. While the tail estimate (A.4) holds

for each fixed D ∈ -B,1 , Lemma A.1 does not provide a uniform control in D ∈ -B,1 and hence is not

useful in the proof of the main nonlinear estimates (Propositions 4.1 and 4.2). By slightly losing spatial

regularity, however, we can control the random -B,1-norm by the standard -f,1-norm (with f > B)

uniformly in D ∈ -f,1 . See Lemma 6.2 above.

Lemma A.2. Let f > B and 1 > 0. Then for each  > 0, there exists a set Ω ⊂ Ω with %(Ω2
 
) <

�4−2 
1
1 such that

sup
# ∈N∪{∞}

‖D‖
-

B,1
± (l,# ) . (1 +  )‖D‖-f,1 (A.5)

uniformly in D ∈ -f,1 .

Proof. Fix Y > 0 sufficiently small such that

f ≥ B + 21Y.

By Lemma 2.7, there exists Ω with %(Ω2
 
) < �4−2 

1
1 such that

〈g + =4 ± |6#= (l) |2〉1 . 〈g + =4〉1 + |6#= (l) |21

. 〈g + =4〉1 +  〈=〉21Y .
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This implies that

sup
# ∈N∪{∞}

‖D‖
-

B,1
± (l,# ) . ‖D‖-B,1 +  ‖D‖-f,0

for eachl ∈ Ω , uniformly in D ∈ -f,1 . Then the desired estimate (A.5) follows from the monotonicity

of the -B,1-norm in B and 1. �

We now present the proof of Lemma A.1.

Proof of Lemma A.1. Trivially, we have

sup
# ∈N∪{∞}

‖[D‖
-

B,1
± (l,# ) ≤ ‖[D‖-B,1 + ‖[D‖

-
B,1
± (l,∞) .

Since the multiplication by a smooth cutoff function [ is bounded in -B,1 , the estimate (A.3) follows

once we prove

‖[D‖-B,1
±,l


!? (Ω)

≤ �?1+2‖D‖-B,1 . (A.6)

The tail estimate (A.4) follows from applying Lemma 2.9 to (A.3).

Let E(C) = ((−C)D(C) denote the interaction representation of D, and set 0= (g) = Ê(=, g). Then we

have

F([D) (=, g) =
∫

R

[̂(g1 + =4)0= (g − g1)3g1. (A.7)

From the definition (A.2), (A.7), and the triangle inequality 〈g〉1 . 〈g1〉1 + 〈g− g1〉1 for 1 ≥ 0, we have

‖[D‖2
-

B,1
±,l

=

∑

=

∫

R

〈=〉2B 〈g〉21 |F([D) (=, g − =4 ∓ |6= |2) |23g

=

∑

=

∫

R

〈=〉2B 〈g〉21

����
∫

R

[̂(g1 ∓ |6= |2)0= (g − g1)3g1
����
2

3g

.

∑

=

∫

R

〈=〉2B

����
∫

R

〈g1〉1 [̂(g1 ∓ |6= |2)0= (g − g1)3g1
����
2

3g

+
∑

=

∫

R

〈=〉2B

����
∫

R

[̂(g1 ∓ |6= |2)〈g − g1〉10= (g − g1)3g1
����
2

3g

=: I + II. (A.8)

Before proceeding further, we claim the following inequality:

�1 (g) :=

(
E

[
〈g〉1? |[̂(g ∓ |6= |2) |?

] ) 1
?

≤ � (1) ?
1+2

〈g〉2
. (A.9)

We first use this estimate to bound I and II in (A.8). We present the proof of (A.9) at the end of this proof.

By Minkowski’s integral inequality, (A.9), and Young’s inequality, we have

E

[
I

?
2

]
≤

(∑

=

∫

R

〈=〉2B

����
∫

R

�1 (g1) |0= (g − g1) |3g1
����
2

3g

) ?
2

. ? (1+2) ?
(∑

=

〈=〉2B
∫

R

|0= (g) |23g
) ?

2

= ? (1+2) ? ‖D‖ ?
-B,0 . (A.10)
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Similarly, we have

E

[
II

?
2

]
≤

(∑

=

∫

R

〈=〉2B

����
∫

R

�0 (g1)〈g − g1〉1 |0= (g − g1) |3g1
����
2

3g

) ?
2

. ?2?

(∑

=

〈=〉2B
∫

R

〈g〉21 |0= (g) |23g
) ?

2

. ?2? ‖D‖-B,1 . (A.11)

Hence, (A.6) follows from (A.8), (A.10), and (A.11).

It remains to prove (A.9). By the triangle inequality:

〈g〉 . 〈g ∓ |6= |2〉 + |6= |2.

And using the rapid decay of [̂ ∈ S(R), we have

〈g〉1 [̂(g ∓ |6= |2) |

!? (Ω) ≤ 〈g〉−2

〈g〉1+2[̂(g ∓ |6= |2)

!? (Ω)

. 〈g〉−2 (1 + ‖6=‖2(1+2)
!2(1+2) ? (Ω)

)
.
?1+2

〈g〉2
,

yielding (A.9). This completes the proof of Lemma A.1. �

A.2. Key tail estimates

In the following, we present the proof of the key tail estimates (Lemma 6.1) in establishing crucial

nonlinear estimates (Propositions 4.1 and 4.2). Given B, 1 ∈ R, X > 0, and # ∈ N, we recall the

definitions of (
B,1, X
9,#

, 9 = 1, 2, 3, from (6.2), (6.3), and (6.4) (expressed in slightly different forms via

Taylor expansions):

(
B,1, X

1,# ( 5 ) =


∑

=1∈Z
(=1 ,=2 ,=3) ∈Γ(=)

5̂ (=1)
[̂

X
(g +Φ(=̄) − |6#=1

|2)
〈=2〉B 〈=3〉B 〈=〉2B 〈g〉1


ℓ2
=,=2 ,=3

!2
g

, (A.12)

(
B,1, X

2,# ( 51, 52) =


∞∑

:1 ,:2=0

∑

=1 ,=2∈Z
(=1 ,=2 ,=3) ∈Γ(=)

5̂1(=1) 5̂2(=2)

×
2∏

9=1

|6#= 9
|2: 9

: 9 !
·
m:1+:2 [̂

X
(g +Φ(=̄))

〈=3〉B 〈=〉2B 〈g〉1


ℓ2
=,=3

!2
g

,

(
B,1, X

3,# ( 51, 52, 53) =


∞∑

:1 ,:2 ,:3=0

∑

Γ(=)
5̂1(=1) 5̂2 (=2) 5̂3(=3)

×
3∏

9=1

|6#= 9
|2: 9

: 9 !
·
m:1+:2+:3 [̂

X
(g +Φ(=̄))

〈=〉2B 〈g〉1


ℓ2
=!

2
g

.

Here, [ ∈ �∞
2 (R) denotes a smooth non-negative cutoff function supported on [−2, 2] with [ ≡ 1 on

[−1, 1], and the notations Γ(=), Φ(=̄), and Ψl
#
(=̄) are as in (1.20), (2.6), and (4.9), respectively. We

also recall that there is only one term in the summation over =1 in (A.12).
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For simplicity of notation, we set

(
B,1, X

1,# (l) := (B,1, X1,# (c⊥#1
(Dl0 )),

(
B,1, X

2,# (l) := (B,1, X2,# (c⊥#1
(Dl0 ), c⊥#2

(Dl0 )),

(
B,1, X

3,# (l) := (B,1, X3,# (c⊥#1
(Dl0 ), c⊥#2

(Dl0 ), c⊥#3
(Dl0 )),

where Dl0 is the white noise in (6.5) and c⊥
# 9

denotes the frequency projection onto the frequencies

{|=| > # 9 } as in (2.5), with the convention that c⊥−1 = Id. With the notations defined above, we have the

following tail estimates for these random functionals (Lemma 6.1).

Lemma A.3. Let B < 0, 1 < 1
2 , and V > 0 such that B and V are sufficiently close to 0 and 1 is sufficiently

close to 1
2 . Then there exist 2, ^ > 0 and small X0 > 0 such that the following statements holds.

(i) We have

%

({
l ∈ Ω : sup

# ∈N
sup

#1∈Z≥−1

〈#1〉V |(B,1, X1,# (l) | > X^
})
< 4−

1
X2 (A.13)

for any 0 < X < X0.

(ii) Let : = 2, 3. Given 0 < X < X0, define the sets A: by

A: :=

{
l ∈ Ω : there exists #0 = #0(l, X) ∈ N such that

sup
# ≥#0

sup
# 9 ∈Z≥−1
9=1, · · · ,:

( :∏

9=1

〈# 9〉V
)
|(B,1, X
:,#

(l) | ≤ X^
}
.

Then we have

%(A2: ) < 4
− 1

X2 (A.14)

for any 0 < X < X0.

Proof. In the following, we take B < 0 and V > 0 both sufficiently close to 0 and 1 < 1
2 sufficiently

close to 1
2 .

We first prove (A.13). Fix  ≫ 1. Given small Y > 0, it follows from Lemma 2.7 that there exists

Ω ⊂ Ω with

%(Ω2 ) ≤ 4−2 
2

(A.15)

such that we have

|6#= (l) | ≤  〈=〉Y (A.16)

for any l ∈ Ω , any = ∈ Z, and any # ∈ N. We separately consider the following two cases:

(i) =
1
2
max .  and (ii) =

1
2
max ≫  ,
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where =max is as in (3.11). Suppose that =
1
2
max .  . By crudely estimating the contribution in this case

with (A.16), #1 < |=1 | .  2, and [̂
X
(g) = X[̂(Xg), we have

sup
# ∈N

sup
#1∈Z≥−1

〈#1〉V |(B,1, X1,# (l) | .  1−8B+2V+2Y

1=max. 

[̂
X
(g +Φ(=̄) − |6#=1

(l) |2)
〈g〉1


ℓ2
=,=2 ,=3

!2
g

.  1−8B+2V+2Y

1=max. 

X

〈g〉1X 1
2−1+Y 〈g +Φ(=̄) − |6#=1

(l) |2〉 1
2−1+Y


ℓ2
=,=2 ,=3

!2
g

. X
1
2+1−Y 4−8B+2V+2Y ≪ X

1
2+1−Y 5, (A.17)

provided that  ≫ 1 and B, V, and Y are all sufficiently close to 0.

Next, we consider the case =
1
2
max ≫  . In this case, we have

��Φ(=̄) − |6#=1
(l) |2

�� ∼ |Φ(=̄) |

uniformly for any l ∈ Ω , =̄ = (=1, =2, =3, =) ∈ Z4, and # ∈ N. Then by Lemma 2.4, we have


[̂

X
(g +Φ(=̄) − |6#=1

(l) |2)
〈g〉1


!2
g

.

( ∫
X2

〈g〉21X21 〈g +Φ(=̄) − |6#=1
(l) |2〉21

3g

) 1
2

.
X1−1

〈Φ(=̄) − |6#=1
(l) |2〉21− 1

2

∼ X1−1

〈Φ(=̄)〉21− 1
2

(A.18)

for 1 < 1
2 sufficiently close to 1

2 . Hence, from (A.18) and Lemma 2.1, we have

sup
# ∈N

sup
#1∈Z≥−1

〈#1〉V |(B,1, X1,# (l) |

. X1−1 

1(=1 ,=2 ,=3) ∈Γ(=) · 1 |=1 | ≥#1

〈=1〉V

=41−1+4B−Y
max 〈= − =1〉21− 1

2 〈= − =3〉21− 1
2


ℓ2
=,=2 ,=3

. X1−1 , (A.19)

provided that B, V, and Y are all sufficiently close to 0 and that 1 < 1
2 is sufficiently close to 1

2 . Hence,

by choosing  = X−
2
2 for some small 2 > 0, the bound (A.13) follows from (A.15), (A.17), and (A.19).

Let us now turn to the proof of (A.14) for : = 2. We have

(
B,1, X

2,# (l) =


∞∑

:1 ,:2=0

∑

=1 ,=2∈Z
(=1 ,=2 ,=3) ∈Γ(=)

j1,2

2∏

9=1

|6#= 9
|2: 96∗= 9

: 9 !

m:1+:2 [̂
X
(g +Φ(=̄))

〈=3〉B 〈=〉2B 〈g〉1


ℓ2
=,=3

!2
g

,

where 6∗= 9
is as in (2.14) and j1,2 =

∏2
9=1 1|=9 |>#9

. By Minkowski’s integral inequality and Lemma 2.11

with (2.3), we have

‖(B,1, X2,# ‖!? (Ω) ≤ ?X

∞∑

:1 ,:2=0

(�?X):1+:2

j1,2

m:1+:2 [̂(X(g +Φ(=̄)))
〈=3〉B 〈=〉2B 〈g〉1


ℓ2
=,Γ(=̄) !

2
g

. (A.20)

We separately consider the following two cases:

(i) 〈g〉 & |Φ(=̄) | and (ii) 〈g〉 ≪ |Φ(=̄) |.
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First, suppose that 〈g〉 & |Φ(=̄) |. By Plancherel’s identity with (3.21), we have

X
1
2
m: [̂(X(g +Φ(=̄)))


!2
g
≤ �: (A.21)

for any : ∈ Z≥0. Then, from (A.20), (A.21), and Lemma 2.1, and choosing ? = X−\ for some \ > 0
such that �?X < 1 as in (3.23), we obtain

‖(B,1, X2,# ‖!? (Ω) ≤ ?X
1
2 〈#1〉−2V 〈#2〉−2V

∞∑

:1 ,:2=0

(�?X):1+:2

×
( ∑

=∈Z

∑

Γ(=)

〈=1〉4V 〈=2〉4V

〈=3〉2B 〈=〉4B=41
max(= − =1)21 (= − =3)21

) 1
2

≤ �?X 1
2 〈#1〉−2V 〈#2〉−2V , (A.22)

provided that B and V are all sufficiently close to 0 and that 1 < 1
2 is sufficiently close to 1

2 .

Next, we consider the case 〈g〉 ≪ |Φ(=̄) |. By Hausdorff-Young’s inequality, we have

m: [̂(X(g +Φ(=̄)))

!∞
g
≤

(−8C):[(C)

!1
C
≤ �: ,

X(g +Φ(=̄))m: [̂(X(g +Φ(=̄)))

!∞
g
≤

mC
(
(−8C):[(C)

)
!1
C
≤ �:

for any : ≥ 0. By interpolating the two estimates above, we have

X 1
2 (g +Φ(=̄)) 1

2 m: [̂(X(g +Φ(=̄)))

!∞
g
≤ �: (A.23)

for any : ≥ 0. Then, from (A.23) and Lemma 2.1, and choosing ? = X−\ as above, we obtain

‖(B,1, X2,# ‖!? (Ω) ≤ ?X
1
2 〈#1〉−2V 〈#2〉−2V

∞∑

:1 ,:2=0

(�?X):1+:2

×
j1,2

〈=1〉4V 〈=2〉4V

〈=3〉B 〈=〉2B |Φ(=̄) | 1
2−Y 〈g〉1+Y


ℓ2
=,Γ(=̄) !

2
g

≤ �?X 1
2 〈#1〉−2V 〈#2〉−2V , (A.24)

provided that B, V, and Y are all sufficiently close to 0 and that 1 < 1
2 is sufficiently close to 1

2 such that

1 + Y > 1
2 . By applying Chebyshev’s inequality with (A.22) and (A.24) and choosing _ = �?2X

1
2 with

? = X−\ , we obtain

%
(
〈#1〉V 〈#2〉V |(B,1, X2,# ,#1 ,#2

| > _
)
≤ 1

〈#1〉V? 〈#2〉V?
� ?_−???X

?
2

=
1

〈#1〉V? 〈#2〉V?
4−? ln ?

=
1

〈#1〉V? 〈#2〉V?
4−

1
X2 . (A.25)

Here, we added subscripts #1 and #2 in (
B,1, X

2,# ,#1 ,#2
to show its dependence on #1 and #2 explicitly.

Now, by summing (A.25) over #1, #2 ∈ Z≥−1, we obtain

%

(
sup

# 9 ∈Z≥−1
9=1,2

〈#1〉V 〈#2〉V |(B,1, X2,# ,#1 ,#2
| > X 1

2−2\

)
≤ �4− 1

X2

for any 0 < X < X0, where X0 > 0 is defined by VX−\0 = 1.
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Let " ≥ # ≥ 1. Then, by slightly modifying the computation above with the definition (4.8) of 6#=
and Minkowski’s inequality (on the ℓ2

=,=3
!2
g-norm), we also have

‖(B,1, X2," ,#1 ,#2
− (B,1, X2,# ,#1 ,#2

‖!? (Ω) ≤ �?X
1
2 #−V 〈#1〉−2V 〈#2〉−2V ,

since we must have =max ≥ # to have a non-zero contribution to the left-hand side above. This shows

that
{
(
B,1, X

2,# ,#1 ,#2

}
# ∈N forms a Cauchy sequence in ! ? (Ω) for any ? ≥ 1 and converges to some limit

(
B,1, X

2,∞,#1 ,#2
, satisfying

‖(B,1, X2,∞,#1 ,#2
− (B,1, X2,# ,#1 ,#2

‖!? (Ω) ≤ �?X
1
2 #−V 〈#1〉−2V 〈#2〉−2V

and

%

(
sup

# 9 ∈Z≥−1
9=1,2

〈#1〉V 〈#2〉V |(B,1, X2,∞,#1 ,#2
| > X 1

2−2\

)
≤ �4− 1

X2 (A.26)

for any 0 < X < X0.

By repeating the computation in (A.25), we then obtain

%

(
sup
# 9 ∈Z≥0
9=1,2

〈#1〉V 〈#2〉V |(B,1, X2,∞,#1 ,#2
− (B,1, X2,# ,#1 ,#2

| > X 1
2−2\

)
≤ �

#V?
4−

1
X2 (A.27)

for any 0 < X < X0 (by possibly making X0 smaller but independent of # ∈ N). Given ℓ ∈ N sufficiently

large, by choosing ℓ = X2\− 1
2 , it follows from (A.27) that

∞∑

#=1

%

(
sup
# 9 ∈Z≥0
9=1,2

〈#1〉V 〈#2〉V |(B,1, X2,∞,#1 ,#2
− (B,1, X2,# ,#1 ,#2

| > 1

ℓ

)

≤
∞∑

#=1

� (ℓ)
#V?

< ∞,

since V? > 1. Therefore, we conclude from the Borel-Cantelli lemma that there existsΩℓ with %(Ωℓ) = 1
such that for each l ∈ Ωℓ , there exists #0 = #0 (l) ∈ N such that

sup
# 9 ∈Z≥0
9=1,2

〈#1〉V 〈#2〉V |(B,1, X2,∞,#1 ,#2
− (B,1, X2,# ,#1 ,#2

| ≤ 1

ℓ

for any # ≥ #0. By setting Σ =
⋂∞
ℓ=1 Ωℓ , we have %(Σ) = 1. This shows that, as # → ∞, (

B,1, X

2,# ,#1 ,#2

almost surely converges to (
B,1, X

2,∞,#1 ,#2
with respect to the metric

3 ( 5#1 ,#2 , 6#1 ,#2) := sup
# 9 ∈Z≥−1
9=1,2

〈#1〉V 〈#2〉V | 5#1 ,#2 − 6#1 ,#2 |.

Combining this almost sure convergence with (A.26), we obtain (A.14) when : = 2.

The proof of (A.14) for : = 3 follows in an analogous manner, and hence we omit details. �
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A.3. Proof of Lemma 2.11

We conclude this appendix by presenting the proof of Lemma 2.11.

First, we consider the case |A| = 1.

By Stirling’s formula: :! ∼
√
:
(
:
4

) :
, there exist �0, � > 0 such that

(2: + 1)!
(:!)2

≤ �:0
√
: ≤ �: (A.28)

for any : ∈ Z≥0. Hence, the desired estimate (2.15) follows from the Wiener chaos estimate (Lemma

2.8), (A.1), and (A.28).

The proof when |A| ≥ 2 follows in a similar manner, using an estimate such as (A.28). In the

following, we only present the proof when |A| = 3: namely, A = {1, 2, 3}, since the proof for the case

|A| = 2 follows in an analogous manner. In this case, by the Wiener chaos estimate (Lemma 2.8) with

(2.12), we have

‖Σ=‖!? (Ω) ≤ (? − 1):+ 3
2 ‖Σ=‖!2 (Ω) . (A.29)

In the following, we estimate ‖Σ=‖!2 (Ω) . From (2.13), we have

‖Σ=‖!2 (Ω) =
1

:1!:2!:3!


∑

(=1 ,=2 ,=3) ∈Γ(=)

∑

(=̃1 ,=̃2 ,=̃3) ∈Γ(=)
2 :̄=1 ,=2 ,=3

2 :̄
=̃1 ,=̃2 ,=̃3

×
3∏

9=1

|6= 9
|2: 96∗= 9

3∏

9̃=1

|6=̃
9̃
|2: 96∗

=̃
9̃


!2 (Ω)

. (A.30)

Recall from (A.1) that under the conditions =2 ≠ =1, =3 and =̃2 ≠ =̃1, =̃3, the right-hand side of (A.30)

yields zero contribution unless =2 = =̃2. Hence, we assume =2 = =̃2 in the following.

◦ Case 1: =1 ≠ =3. Note that we must have =1 = =̃1 ≠ =̃3 or =1 = =̃3 ≠ =̃1 in this case. Otherwise,

the right-hand side of (A.30) yields zero contribution.

We first consider the case =1 = =̃1 ≠ =̃3. In this case, we have =3 = =̃3. Then, from (A.1), we obtain

RHS of (A.30) ≤ 1

:1!:2!:3!

( ∑

Γ(=)
|2 :̄=1 ,=2 ,=3

|2
3∏

9=1

(2: 9 + 1)!
) 1

2

≤ �:
( ∑

Γ(=)
|2 :̄=1 ,=2 ,=3

|2
) 1

2

. (A.31)

Next, we consider the case =1 = =̃3 ≠ =̃1. In this case, we have =3 = =̃1. Then, from (A.1) and (A.28),

we obtain

RHS of (A.30) ≤ 1

:1!:2!:3!

( ∑

Γ(=)
|2 :̄=1 ,=2 ,=3

|2 [(:1 + :3 + 1)!]2(2:2 + 1)!
) 1

2

. (A.32)

We claim that

(:1 + :3 + 1)!
:1!:3!

≤ �:1+:3 (A.33)
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for some � > 0. Hence, from (A.32) with (A.28) and (A.33), we obtain

RHS of (A.30) ≤ �:
( ∑

Γ(=)
|2 :̄=1 ,=2 ,=3

|2
) 1

2

. (A.34)

Hence, it remains to prove (A.32). Without loss of generality, assume :1 ≤ :3. Then, by Stirling’s

formula, we have

(:1 + :3 + 1)!
:1!:3!

≤ �:3
(:1 + :3)

3
2

√
:1:3

(:1 + :3):1

:
:1
1

≤ �:1+:3

[(
1 + :3

:1

) :1
:3

] :3

. (A.35)

Then (A.33) follows from (A.35) once we note that limG→∞ (1 + G) 1
G = 1.

◦ Case 2: =1 = =3. In this case, we must have =1 = =3 = =̃1 = =̃3. Proceeding as before with (A.1),

we have

RHS of (A.30) ≤ 1

:1!:2!:3!

( ∑

Γ(=)
|2 :̄=1 ,=2 ,=3

|2 (2:1 + 2:3 + 2)!(2:2 + 1)!
) 1

2

≤ �:
( ∑

Γ(=)
|2 :̄=1 ,=2 ,=3

|2
) 1

2

, (A.36)

where we used

(2:1 + 2:3 + 2)!
(:1!)2(:3!)2

≤ �:1+:3 (A.37)

in the second inequality. The proof of (A.37) is analogous to that of (A.33), and thus we omit details.

Putting (A.29), (A.31), (A.34), and (A.36) together, we obtain (2.15) when A = {1, 2, 3}. This

completes the proof of Lemma 2.11.

Acknowledgements. T. Oh was supported by the European Research Council (grant no. 637995 ‘ProbDynDispEq’ and grant no.
864138 ‘SingStochDispDyn’). Y. Wang was supported by the European Research Council (grant no. 637995 ‘ProbDynDispEq’).
N. Tzvetkov was supported by the ANR grant ODA (ANR-18-CE40-0020-01).

References

[1] A. Bényi and T. Oh, ‘Modulation spaces, Wiener amalgam spaces, and Brownian motions’, Adv. Math. 228 (2011), no. 5,
2943–2981.

[2] A. Bényi, T. Oh, and O. Pocovnicu, ‘Wiener randomization on unbounded domains and an application to almost sure well-
posedness of NLS’, in Excursions in Harmonic Analysis Vol. 4, Appl. Numer. Harmon. Anal. ( Birkhäuser/Springer, Cham,
2015), 3–25.

[3] Á. Bényi, T. Oh, and O. Pocovnicu, ‘Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear
Schrödinger equation on R3’, Trans. Amer. Math. Soc. Ser. B 6 (2019), 114–160.

[4] Á. Bényi, T. Oh, and O. Pocovnicu, ‘On the probabilistic Cauchy theory for nonlinear dispersive PDEs’, in Landscapes of

Time-Frequency Analysis, Appl. Numer. Harmon. Anal. (Birkhäuser/Springer, Cham, 2019), 1–32.
[5] J. Bourgain, ‘Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution

equations, I: Schrödinger equations’, Geom. Funct. Anal. 3 (1993), 107–156.
[6] J. Bourgain, ‘Periodic nonlinear Schrödinger equation and invariant measures’, Comm. Math. Phys. 166 (1994), no. 1, 1–26.
[7] J. Bourgain, ‘Invariant measures for the 2D-defocusing nonlinear Schrödinger equation’, Comm. Math. Phys. 176 (1996),

no. 2, 421–445.
[8] J. Bourgain, ‘Invariant measures for the Gross-Piatevskii equation’, J. Math. Pures Appl. 76 (1997), no. 8, 649–702.
[9] J. Bourgain, ‘Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity’, Internat. Math.

Res. Notices 1998, no. 5, 253–283.

https://doi.org/10.1017/fms.2020.51 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.51


62 T. Oh et al.

[10] J. Bourgain, ‘Nonlinear Schrödinger equations’, in Hyperbolic Equations and Frequency Interactions (Park City, UT, 1995),
IAS/Park City Math. Ser., 5 (Amer. Math. Soc., Providence, RI, 1999), 3–157.

[11] J. Bourgain and A. Bulut, ‘Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball
I: the 2D case’, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 6, 1267–1288.

[12] J. Bourgain and A. Bulut, ‘Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball
II: the 3D case’, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, 1289–1325.

[13] B. Bringmann, ‘Almost sure local well-posedness for a derivative nonlinear wave equation’, to appear in Int. Math. Res. Not.

[14] N. Burq, L. Thomann, and N. Tzvetkov, ‘Long time dynamics for the one dimensional non linear Schrödinger equation’,
Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2137–2198.

[15] N. Burq and N. Tzvetkov, ‘Random data Cauchy theory for supercritical wave equations. I. Local theory’, Invent. Math. 173

(2008), no. 3, 449–475.
[16] N. Burq and N. Tzvetkov, ‘Random data Cauchy theory for supercritical wave equations. II. A global existence result’,

Invent. Math. 173 (2008), no. 3, 477–496.
[17] R. Catellier and K. Chouk, ‘Paracontrolled distributions and the 3-dimensional stochastic quantization equation’, Ann.

Probab. 46 (2018), no. 5, 2621–2679.
[18] A. Choffrut and O. Pocovnicu, ‘Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real

line’, Int. Math. Res. Not. 2018, no. 3, 699–738.
[19] M. Christ, ‘Power series solution of a nonlinear Schrödinger equation’, in Mathematical aspects of nonlinear dispersive

equations, Ann. of Math. Stud., 163 (Princeton Univ. Press, Princeton, NJ, 2007), 131–155.
[20] J. Chung, Z. Guo, S. Kwon, and T. Oh, ‘Normal form approach to global well-posedness of the quadratic derivative nonlinear

Schrödinger equation on the circle’, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 1273–1297.
[21] J. Colliander, and T. Oh, ‘Almost sure well-posedness of the cubic nonlinear Schrödinger equation below !2 () )’, Duke

Math. J. 161 (2012), no. 3, 367–414.
[22] G. Da Prato and A. Debussche, ‘Two-dimensional Navier-Stokes equations driven by a space-time white noise’, J. Funct.

Anal. 196 (2002), no. 1, 180–210.
[23] G. Da Prato and A. Debussche, ‘Strong solutions to the stochastic quantization equations’, Ann. Probab. 31 (2003), no. 4,

1900–1916.
[24] A. de Bouard and A. Debussche, ‘The Korteweg-de Vries equation with multiplicative homogeneous noise’, in Stochastic

Differential Equations: Theory and Applications, Interdiscip. Math. Sci., 2 (World Sci. Publ., Hackensack, NJ, 2007), 113–
133.

[25] J. Forlano, T. Oh, and Y. Wang, ‘Stochastic cubic nonlinear Schrödinger equation with almost space-time white noise’, J.

Aust. Math. Soc. 1 09 (2020), no. 1, 44–67.
[26] J. Ginibre, Y. Tsutsumi, and G. Velo, ‘On the Cauchy problem for the Zakharov system’, J. Funct. Anal. 151 (1997), no. 2,

384–436.
[27] L. Grafakos, Modern Fourier Analysis, 2e, Graduate Texts in Mathematics, 250 ( Springer, New York, 2009).
[28] L. Gross, ‘Abstract Wiener spaces’, in Proc. 5th Berkeley Sym. Math. Stat. Prob. 2 (1965), 31–42.
[29] A. Grünrock, and S. Herr, ‘Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with

periodic initial data’, SIAM J. Math. Anal. 39 (2008), no. 6, 1890–1920.
[30] M. Gubinelli, P. Imkeller, and P. Perkowski, ‘Paracontrolled distributions and singular PDEs’, Forum Math. Pi 3 (2015), e6,

75 pp.
[31] M. Gubinelli, H. Koch, and T. Oh, ‘Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation

with quadratic nonlinearity’, arXiv:1811.07808 [math.AP].
[32] Z. Guo, S. Kwon, and T. Oh, ‘Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic

NLS’, Comm. Math. Phys. 322 (2013), no. 1, 19–48.
[33] Z. Guo and T. Oh, ‘Non-existence of solutions for the periodic cubic nonlinear Schrödinger equation below !2’, Internat.

Math. Res. Not. 2018, no. 6, 1656–1729.
[34] M. Hairer, ‘A theory of regularity structures’, Invent. Math. 198 (2014), 269–504.
[35] M. Hairer, ‘Singular stochastic PDEs’, in Proceedings of the International Congress of Mathematicians–Seoul 2014, Vol.

IV ( Kyung Moon Sa, Seoul, 2014), 49–73.
[36] Z. Hani, B. Pausader, N. Tzvetkov, and N. Visciglia, ‘Modified scattering for the cubic Schrödinger equation on product

spaces and applications’, Forum Math. Pi 3 (2015), e4.
[37] N. Hayashi and P. Naumkin, ‘Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations’,

Amer. J. Math. 120 (1998), no. 2, 369–389.
[38] B.A. Ivanov and A.M. Kosevich, ‘Stable three-dimensional small-amplitude soliton in magnetic materials’, So. J. Low Temp.

Phys. 9 (1983), 439–442.
[39] T. Kappeler and P. Topalov, ‘Global wellposedness of KdV in �−1 () , ') , Duke Math. J. 135 (2006), no. 2, 327–360.
[40] H. Kuo, ‘Gaussian measures in Banach spaces’, in Lecture Notes in Mathematics, Vol. 463 (Springer-Verlag, Berlin-New

York, 1975).
[41] C. Kwak, ‘Periodic fourth-order cubic NLS: Local well-posedness and Non-squeezing property’, J. Math. Anal. Appl. 461

(2018), no. 2, 1327–1364.

https://doi.org/10.1017/fms.2020.51 Published online by Cambridge University Press

https://arxiv.org/abs/1811.07808
https://doi.org/10.1017/fms.2020.51


Forum of Mathematics, Sigma 63

[42] H.P. McKean, ‘Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger’, Comm. Math. Phys. 168 (1995),
no. 3, 479–491. ‘Erratum: Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger’, Comm. Math. Phys.

173 (1995), no. 3, 675.
[43] J.-C. Mourrat and H. Weber, ‘The dynamic Q4

3model comes down from infinity’, Comm. Math. Phys. 356 (2017), no. 3,
673–753.

[44] K. Nakanishi, H. Takaoka, and Y. Tsutsumi, ‘Local well-posedness in low regularity of the mKdV equation with periodic
boundary condition’, Discrete Contin. Dyn. Syst. 28 (2010), no. 4, 1635–1654.

[45] A. Nahmod and G. Staffilani, ‘Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below
the energy space’, J. Eur. Math. Soc. 17 (2015), 1687–1759.

[46] E. Nelson, ‘A quartic interaction in two dimensions’, in Mathematical Theory of Elementary Particles (Proc. Conf., Dedham,

Mass., 1965) ( M.I.T. Press, Cambridge, Mass., 1966), 69–73.
[47] D. Nualart, The Malliavin Calculus and Related Topics, 2e, Probability and Its Applications (Springer-Verlag, Berlin, 2006).
[48] T. Oh, ‘Invariant Gibbs measures and a.s. global well-posedness for coupled KdV systems’, Differential Integral Equations

22 (2009), no. 7-8, 637–668.
[49] T. Oh, ‘Invariance of the white noise for KdV’, Comm. Math. Phys. 292 (2009), no. 1, 217–236.
[50] T. Oh, ‘Periodic stochastic Korteweg-de Vries equation with additive space-time white noise’, Anal. PDE 2 (2009), no. 3,

281–304.
[51] T. Oh, ‘White noise for KdV and mKdV on the circle’, in Harmonic Analysis and Nonlinear Partial Differential Equations,

RIMS Kôkyûroku Bessatsu, B18 (Res. Inst. Math. Sci. (RIMS), Kyoto, 2010), 99–124.
[52] T. Oh, ‘Remarks on nonlinear smoothing under randomization for the periodic KdV and the cubic Szegö equation’, Funkcial.

Ekvac. 54 (2011), no. 3, 335–365.
[53] T. Oh, O. Pocovnicu, and N. Tzvetkov, ‘Probabilistic local Cauchy theory of the cubic nonlinear wave equation in negative

Sobolev spaces’, to appear in Ann. Inst. Fourier (Grenoble).
[54] T. Oh and C. Sulem, ‘On the one-dimensional cubic nonlinear Schrödinger equation below !2’, Kyoto J. Math. 52 (2012),

no. 1, 99–115.
[55] T. Oh and L. Thomann, ‘A pedestrian approach to the invariant Gibbs measure for the 2- 3 defocusing nonlinear Schrödinger

equations’, Stoch. Partial Differ. Equ. Anal. Comput. 6 (2018), 397–445.
[56] T. Oh, Y. Tsutsumi, and N. Tzvetkov, ‘Quasi-invariant Gaussian measures for the cubic nonlinear Schrödinger equation with

third order dispersion’, C. R. Math. Acad. Sci. Paris 357 (2019), no. 4, 366–381.
[57] T. Oh and N. Tzvetkov, ‘Quasi-invariant Gaussian measures for the cubic fourth-order nonlinear Schrödinger equation’,

Probab. Theory Related Fields 169 (2017), 1121–1168.
[58] T. Oh and Y. Wang, ‘On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle’, An. Ştiinţ. Univ. Al. I.

Cuza Iaşi. Mat. (N.S.) 64 (2018), no. 1, 53–84.
[59] T. Oh and Y. Wang, ‘Global well-posedness of the periodic cubic fourth-order NLS in negative Sobolev spaces’, Forum

Math. Sigma 6 (2018), e5, 80 pp.
[60] T. Oh and Y. Wang, ‘Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger equation in almost

critical Fourier-Lebesgue spaces’, to appear in J. Anal. Math.
[61] T. Ozawa, ‘Long range scattering for nonlinear Schrödinger equations in one space dimension’, Comm. Math. Phys. 139

(1991), no. 3, 479–493.
[62] T. Ozawa and Y. Tsutsumi, ‘Space-time estimates for null gauge forms and nonlinear Schrödinger equations’, Differential

Integral Equations 11 (1998), no. 2, 201–222.
[63] J. Quastel and B. Valkó, ‘KdV preserves white noise’, Comm. Math. Phys. 277 (2008), no. 3, 707–714.
[64] G. Richards, ‘Maximal-in-time behavior of deterministic and stochastic dispersive partial differential equations’, PhD thesis,

University of Toronto (Canada), 2012.
[65] G. Richards, ‘Invariance of the Gibbs measure for the periodic quartic gKdV’, Ann. Inst. H. Poincaré Anal. Non Linéaire 33

(2016), no. 3, 699–766.
[66] B. Simon, The % (i)2Euclidean (Quantum) Field Theory, Princeton Series in Physics ( Princeton University Press, Princeton,

NJ, 1974).
[67] H. Takaoka and Y. Tsutsumi, ‘Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary

condition’, Int. Math. Res. Not. 2004, no. 56, 3009–3040.
[68] L. Thomann, ‘Random data Cauchy problem for supercritical Schrödinger equations’, Ann. Inst. H. Poincaré Anal. Non

Linéaire 26 (2009), no. 6, 2385–2402.
[69] L. Thomann and N. Tzvetkov, ‘Gibbs measure for the periodic derivative nonlinear Schrödinger equation’, Nonlinearity 23

(2010), no. 11, 2771–2791.
[70] S. K. Turitsyn, ‘Three-dimensional dispersion of nonlinearity and stability of multidimensional solitons’, Teoret. Mat. Fiz.

64 (1985), 226–232 (in Russian).
[71] N. Tzvetkov, ‘Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation’, Probab. Theory Related

Fields 146 (2010), no. 3-4, 481–514.

https://doi.org/10.1017/fms.2020.51 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.51

	1 Introduction
	1.1 White noise on the circle and Hamiltonian partial differential equations
	1.2 The cubic fourth-order nonlinear Schrödinger equation and a soft formulation of the main result
	1.3 Renormalized equation
	1.4 Statements of the well-posedness results
	1.5 Outline of the well-posedness argument
	1.6 The α> 0 case
	1.7 The α= 0 case
	1.8 Organization of the paper

	2 Notations and preliminaries
	2.1 Deterministic tools
	2.2 Probabilistic estimates

	3 Local theory, Part 1: 0 < α12
	3.1 Resonant part N2
	3.2 Non-resonant part N1 

	4 Local theory, Part 2: α= 0
	4.1 Partially iterated Duhamel formulation
	4.2 Proof of Theorem 2: the α=0 case

	5 Global well-posedness and invariance of the white noise measure
	5.1 Invariance of the white noise measure under the truncated 4NLS 
	5.2 Almost sure global well-posedness
	5.3 Invariance of the white noise measure
	5.4 Proof of Theorem 1

	6 Nonlinear estimate I: non-resonant part
	6.1 Probabilistic estimates
	6.2 Proof of Proposition 4.1

	7 Nonlinear estimate II: resonant part
	Appendix A  Further probabilistic estimates
	A.1 Random Xs,b-space
	A.2 Key tail estimates
	A.3 Proof of Lemma 2.11


