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THE 4-RANK OF K2(0) 

P. E. CONNER AND JURGEN HURRELBRINK 

1. Introduction. Let 0F denote the integers of an algebraic number field 
F. Classically the Dirichlet Units Theorem gives us the structure of the K-
group K\(Of). Then recently the structure of the ^-group K3 (0F) was found by 
Merkurjev and Suslin, [11]. But as of now we have only limited information 
about the structure of the tame kernel K2(0F). 

For special classes of number fields, the following rank formulas are known. 
Fix a rational prime number p, let S denote the set of infinite and p-adic places 
of the number field F, gp(F) the number of p-adic places of F, and C(F) the 
S -ideal class group of F. Under the assumption that the group \ipn of pn-th roots 
of unity is contained in F, we obtain from Tate [14], the exact sequence 

(1.1) 1 — C(F)/C(Ff — K2(0F)/K2(0Ff — ] J / v — 1 

where the product is taken over n(F) + gp(F) — 1 copies of \xpn. This yields 
immediately, for arbitrary number fields F, the well known 2-rank formula 

(1.2) 2-rk^2(6>F) = rx(F) + g2(F) - 1 + 2-rkC(F) 

and, for number fields F containing a primitive fourth root of unity, the 4-rank 
formula 

(1.3) If y 1 1 ! G F, then 4-rk K2(0F) = g2(F) - 1 + 4-rkC(F). 

Let M = F(v/—T), consider the norm N : C(M) —• C(F) and the natural 
homomorphism /* : C(F) —» C(M). We denote by 2C(F) the subgroup of C(F) 
of ideal classes of order at most 2. Under the assumption that M contains a 
primitive 2n-th root of unity and F is totally real, we know from Kolster, [8], 
for n ^ 2: 

(1.4) 2n-rkK2(0F) = g2(M) - g2(F) + 2"-1-rkker;V//*(2C(F)). 

This yields, for totally real number fields F, a 4-rank formula for K2(0F). 
During the preparation of these notes, it was Kolster himself who noticed that 
the same 4-rank formula can be proved whenever F does not contain a fourth 
root of unity; that is, 

(1.5) If V ^ T ^ F , then 

4-vkK2(0F) - g2(M) - g2(F) + 2-rkkerN//*(2C(F)). 

Recieved March 1, 1989. 
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In this paper we concentrate on the structure of the 2-primary subgroup of 
K2(Op) and present a unified approach for deducing 4-rank formulas for K2(Op) 
for arbitrary number fields F. The intimate connection between the structure of 2-
prim K2(Op) and classical issues of Algebraic Number Theory involving S -units 
and S -ideal class groups will be emphasized. Having a variety of applications in 
mind, we are aiming for various 4-rank formulas in computable terms, see (4.9), 
(5.2), (5.4), (5.5). This approach yields, as a special case, the above formula 
(1.3), and also the general form of (1.5) appears as a natural reformulation. 

Our main tools are the decomposition, Section 3, and the factorization, Section 
4, of the crucial homomorphism \ that takes values in the square class group 
of C(F). 

In the applications, Section 5, extreme cases become explicit. We have made 
an effort to include examples, Section 6, mainly of imaginary quadratic number 
fields. The appendix on S -class groups makes our results readily applicable to 
quadratic number fields. 

Based on this approach the deduction of higher rank formulas for K2(Op) 
for arbitrary number fields F is in fact conceivable. We would like to point out 
recent related papers [3], [7], [9]. 

2. Preliminaries. For a group X, let 2X = {a EX : a2 = 1}. In order 
to determine the 4-rank of K2(Op), we will count the number of elements in 
2X (IX2 for X = K2(OF). For a number field F, the standard notation will be: 

S set of infinite and dyadic places of F 
g2(F) number of dyadic places of F 
#S=rl(F) + r2(F) + g2(F) 
RF ring of S -integers of F 
UF group of S -units of F 
C(F) S -ideal class group of F. 

Let M = F(v/—T) and consider the following groups of square classes 

GF = {cl(b) e F*/F*2 : vp(b) = 0mod2 for all p <£ S} 

HF = {clQ}) EGF:be NM/F(M*)}. 

An element of K2(F) lies in 2K2(F) if and only if it is a Steinberg symbol of 
the form {—1, b} for some b G F*, [14]. Now, K2(OF) is the intersection of the 
kernels of the tame symbols 

rp : K2(F) — (OF/PT 

{a, b} - • cl ( ( - l f i^M*) . cfpib) . £-",(«)) 

for all finite places p of F, while K2(RF) is the intersection of the kernels of the 
TP for all p £ S. For a dyadic place /?, the order of (0F/pT is odd, hence 

2-prim K2 (0F ) = 2-prim K2 (RF ) and 

2K2(0F) = {{-hb}:cl(b)eGF}. 
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The symbol {—1,6} is a square in K2(F) if and only if the element b G F* 
is a norm from M /F, [12]. Hence 

2K2(0F)nK2(F)2 = {{-hb} : cl(b)eHF}. 

Let cl(b) G HF, thus {-l,b} = y2 for some y G £2(F) with rp(y) = dbl in 
(Of/p)* for all finite places p of F. Choose any fractional RF-ideal A with 

T/7(y) = (- l )^ ( A ) f o r a l l p g S . 

Definition 2.1. Let x • FiF —* C(F)/C(F)2 be the homomorphism given by 
c/(6) -* c/(A). 

We check that \ is well-defined: if {—1,Z>} = j 2 = y2 with y,yx G /^(F) 
and, for all/? ^ 5 , 

Tp(y) = (-1)^ (A), rp(y1) = ( - l ) , / ^ ) 

for some fractional /?/r-ideals A, A\, then j i = j • {— 1, c} for some c G F* and 

( - l )^ ( A l ) = Tp(y1) = r p (y ) - r p {- l , c} 

This shows that 

vp(A\) = i/p(cA)mod2 for all /? ^ 5; 

thus cl(A\) = cl(cA) = cl(A) in C(F)/C(F)2. In fact, x is a homomorphism. 
Just from the definition of x we obtain: cl(b) G kerx if and only if there 

exists a c G F* with 

i/p(cA) = 0mod2 for all p £ S, 

where {—1, b} = y2 and rp(y) = (—1)^(A). This means that there exists a c G F* 
with 

l=( - l ) " ' ( c A >=Tp(y{- l , c}) 

for all finite places /J of F; so, y{—l,c} G ̂ (Op) . This shows that cl(b) is in 
the kernel of \ if anc* onty if {— 1, ^} is a square element in A^(OF). So, 

(2.2) 2 t f 2 (0F )nK 2 (0F ) 2 = {{-1,6} : cl{b) G kerX} . 

All we have to do in order to find the 4-rank of A^(£>F) is to find the 2-rank of 
{{—l,b} : cl(b) € kerx} • The kernel of the natural homomorphism 

a:GF-^ 2K2(0F) 

cl(b)-+{-l,b} 
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has 2-rank r2(F) +1, [14]. The kernel of a is contained in the kernel of x, hence 

A-vkK2(0F) = 2-rkkerx - 2-rkkera, 

and we have obtained 

PROPOSITION 2.3. For any number field F', 

4-rk K2(0F) = 2-rkkerx - r2(F) - 1. 

From here on, our purpose will be to make 2-rk ker \ more explicit. This 
can be treated as a problem from the Algebraic Number Theory, which divides 
up naturally into an S -unit part and an S -ideal class group part. Consider the 
epimorphism 

Xo : GF —• 2C(F) 

cl(b) - • cl{B), 

where B is the fractional RF -ideal satisfying 

bRF =B2. 

The kernel of xo is UF/U}, whose 2-rank is ri(F)+r2(F)+g2(F), by the Dirichlet 
S -Units Theorem. The exact sequence 

1 -> I/F/£/2 -+ GF ^ 2C(F) -» 1 

shows 

LEMMA 2.4. 2-rkGF - rY(F) + r2(F) + g2(F) + 2-rk C(F). 

We restrict xo to ///r and consider the composition 

X I : / / F ^ C ( F ) - ^ C ( F ) / C ( F ) 2 ; 

that is, in terms of bRF = #2 , the resulting homomorphism xi is defined by 

Definition 2.5. Let xi • F[F —> C(F)/C(F)2 be the homomorphism given by 
c/(fc) - • c/(£). 

Already now we can determine the 4-rank of K2(0F) under the simplifying 
assumption that F contains a primitive fourth root of unity. Namely, if / = 
\f^\ G F and c/(fc) G i/F , then {-1, fe} = {/, b}2 in #2(F) and 

rp{i,b} = /"><*> = ( - l ) ^ ^ / 2 in (0F/p)\ 

This shows 

Tp{i,b} = (-iy>M for all /?£ S, 
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where bRF = A2. So, by definitions (2.1) and (2.5): 

Hence, (2.3) simplifies to 

4-rkK2(0F) = 2-rk ker xi - r2(F) - 1. 

Moreover, the assumption \ /^T G F yields HF — GF. From the short exact 
sequence and the commutative triangle 

1 —+UF/U2
F-+HF - * ° * 2 c ( F ) — M 

*{ / 
C(F)/C(F)2 

we conclude 

2-rk ker \ \ — 2-rk ker xo + 4-rk C (F) 

= r2(F) + £2(F) + 4-rkC(F). 

Thus we have proved 

PROPOSITION 2.6. //yf^-i G F', then HF = GF, \ = xi #«d 

4-rk£2(0F) = g2(F) - 1 +4-rkC(F). 

This is the result (1.3), quoted above. 

3. Decomposition. In the preceding section we have seen that x — Xi if 
\f—i G F. However, in general, this simple equality is no longer valid. In this 
section we will exhibit another homomorphism 

X2:HF-+C(F)/C(F)2 

such that x decomposes into the product x = Xi * X2-
For cl(b) G HF put E = F(y/b\ recall M = F(\Z-T). Since b G F* is a norm 

from M/F, it follows that —1 is a norm from E/F. So, we can choose an 

e EE with NE/F(e) — — 1. 

Furthermore, for each place p ^ S of F we choose an extension F of p to F. 
Clearly, such a p is either inert or splits in E/F. If p splits in E/F, pRE — PP, 
then 

Me) + Me) = M# (*» = M"1) = 0; 
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in particular, 

i/p(e) = i/p(e)mod2. 

Definition 3.1. Let 

X2'-HF-> C(F)/C(F)2 

be the homomorphism given by 

cl(b) -+ cl ( Y[pup(e) ) . 

There is no problem in checking that \2 is well-defined. We observe that 
Xi(cl(b)) is trivial if —1 is the norm of an S-unit e in E = F(y/b). Clearly, xi 
is the trivial map if yf—ï G F. The fact that \2 *s a homomorphism will follow 
from the Decomposition Theorem: 

THEOREM 3.2. For any number field F, we have 

X = Xi -X2-

Proof. The identity 

X(cl(b)) = Xi(cl(b)) - xi(cl(b)) 

in C(F)/C(F)2 is clear if cl(b) G HF is trivial. So, for cl(b) G //^ we may 
assume that 

b = a2 + \ 

for some a G F* since Z? G F* is a norm from M /F. By (2.5), 

xiicim = ci mP^b)A. 
W / 

The element £ — a + \fb G F(y/b) — E satisfies 

NE/F(e) = a2-b' l2 = - 1 . 

Hence, by (3.1) with an extension P\p, 
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The proof of this decomposition formula amounts to showing 

X(cl(b)) = cl I [Jp^W/2^(«+^) J m 

Now, 

{-l,b} = {-l,ft}{l -b,b} = {b- l,b} = {a\b} = {a,b}2 

in KiiF) and, by (2.1), it is only left to prove that for each p £ S we have 

rp{a, b} = (_1)*P<*>/2+MW5) i n (oF/p)\ 

This will follow directly from the next two lemmas (3.3) and (3.4). We notice 
that the above formula shows rp{a,b} — 1 for/7 dyadic. 

LEMMA 3.3. Ifi/P(b) ^ 0 then rp{a,b} = ( - l ) ^ V 2 : 
tfvp(b) < 0, fAen Tp{a,6} = 1. 

Proof. If i/p(a
2 + 1) > 0, then a is a /7-adic unit and 

T/?{tf7 £} = (_i)° . av^b) • b° = (JypW/2 = ( - l ) ^ V 2 in (0F/p)\ 

If i/p(a
2 + 1) = 0, then i/p(a) ^ 0. If a is also a /7-adic unit, we have 

rp{a, b} = (-l)°-a0'b° = l = (-1)M*>/2 in (0F//?)*. 

If vp(a) > 0, we have as well that 

rp{a,b} = (-1)° • a° • (a2 + \)-^{a) = 1 - (-l)M*)/2 i n (<9F//?)*. 

If i/p(a
2 + 1) < 0, then i/p(a) < 0. More precisely, 

cT2{\ + a2) = 1 + a"2 = 1 mod/? 

implies 

2i/p(a) = vp(a
2 + 1). 

We have 

rp{a, b} = (-1)2 • a^(a2+l) • (a2 + l ) -^ ( a ) 

= (a2 / l + a2fp(a) = 1 in (0F/p)\ 

Essentially, the computations in the proof of (3.3) have been performed before 
in [6]. Let P denote an extension of the non-dyadic finite place p of F to 
E = F(Vb). 
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LEMMA 3.4. Ifvp(b) ^ 0, then vP(a + yfb) = 0; 
IfvpQ)) < 0, f/w?/i i/P(a + y/b) = ±vp(b)/2. 

Proof. If i/p(a
2 + 1) ^ 0, then i/p(a) ^ 0. The minimal polynomial of a + >/& 

over F is J2 — 2ûtf — 1 and we conclude that, for P\p, a + yfb is a P-adic unit; 
that is, 

i/P(a + y/b) = 0. 

If i/p(«
2 + 1) < 0, then 2i/p(a) = vp(a

2 + 1) as we have noted in (3.3). If p 
were inert in E/F, we would have i/p(a + yfb) = 0, contradicting vp{d) < 0. 
Thus p splits in E/F; that is, b is a local square in the completion of F at p. 
Putting a = en~s with e a /?-adic unit, s > 0, we now have b = 62TT~2S with 6 a 
p-adic unit. From fr = a2 + 1 we conclude that 

62 = e2 + 7r2s; 

by replacing 5 with —6, if necessary, we therefore may assume that 6 = e mod n. 
Using p £ S, we see that £ + e is a /?-adic unit and, because 

TP =82-e2 = (6 + e)Q5-e), 

we conclude that i/p(£ — e) = 2s. We have 

a + yfb = 7r~s(e +6) or a + yfb— 7r_5(e — £), 

so 

i//>(<2 + yfb) = —s = i/p(b)/2 or *//>(<z + yfb) = — s + 2s = 5 = —i/p(b)/2. 

Thus, in either case, 

and we have proved the Decomposition Theorem (3.2). 

In order to make the decomposition X — Xi ' X2 more effective, we shall give 
another description of \2- For cl(b) € HF we can choose an 

m £ M with NM/F(^) = £• 

For each place /? ^ 5 of F we choose an extension P of/? to M. 

PROPOSITION 3.5. The homomorphism \2 is also given by 

X2:HF-+C(F)/C(F)2 

ci(b)^d m ^ M m ) ) • 

W / 
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Proof. Choose cl(b) E HF\ clearly the class of Y\^sPVp{m) i n C(F)/C(F)2 is 
well-defined. Hence, by (3.1), it suffices to show that for a particular choice of 

me M = F(V^Ï ) with NM/F(m) = b, 

e e E = F(Vb) with NE/F(e) = - 1 , 

and a pair Pi, P2 of extensions of any place p $ S to M and F, respectively, we 
have 

vpx (m) = vp2 (e) mod 2. 

This is clear if cl(b) is trivial or cl(b) — cl{— 1) in ///?. So, we need only concern 
ourselves with cl(b) ^ F*2, —F*2. Consider then the composite number field 

M • E = F{yf-i, y/b)\ 

the extension M • E/F is relative abelian of degree 4 over F with elementary 
abelian Galois group. As before, we may choose b E F* such that 

& = a2 + 1 for some a E F*. 

Thus m = 1 + ai E M satisfies NM/F(^) = &, and e = a + i/Z? E F satisfies 
NE/F(C) — —1. Everything follows now from the identity 

(1 + ai){\ - if = (a + Vb) (l + (a - >/fe)/) . 

Hence there exists a non-zero x E M F with 

m = ex2 in M • F . 

Any p £ S is unramified in M • F / F . Fix an extension F of p to M • F. Then 
F is an extension to M • F of an extension P\ of p to M and of an extension P2 

of p to F. These places Fi and P2 satisfy 

i/p(m) = i/Pl(m) and vp{e) — vPl{e). 

However, we know already that 

vp{m) = i/p(e)mod2, 

thus 

vpx(m) = vp2(e) mod 2. 

https://doi.org/10.4153/CJM-1989-043-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-043-0


THE 4-RANK OF K2(0) 941 

Using the description (3.5) for the homomorphism %2 will make the decom
position x = Xi * X2 most useful in determining the 2-rank of the kernel of \ 
and hence the 4-rank of K.2(0F). For number fields F with 

we will now embed \2 in an appropriate exact sequence. 
By analogy with GF we have the square class group GM for M — F{\f-i). 

Consider the homomorphism N : G M —+ Hp induced by the norm M* —• F* 
and the homomorphism j : Gp —» G M induced by the inclusion F* —• M*. The 
image of j is equal to the kernel of N, the kernel of j is the cyclic group Ci of 
order 2 generated by cl{— 1) GGf. So far, 

TV 

1 —• C2 —• G F —• G M —* tip 

is exact. We are going to extend this sequence. 

LEMMA 3.6. The image of N : G M —* HF is equal to the kernel of 

X2:HF-+C(F)/C(F)2. 

Proof The containment imiV Ç ker%2 is immediate. For the reversed con
tainment, suppose cl(b) G ker%2» that is, there is an m G M with NM/F^) — b 
and 

cl I Y[pvp{m) ) = 1 in C(F)/C(F)2. 

Hence there is a y G F* such that 

i/piy) = vp(m)moà2 

for every place p £ S of F with extension P\p to M. From 

NM/F(ym) = y2NM/F(m) and 

i/piym) = i/p(y) + ̂ (m) = 0mod2 

we now conclude that cliym) G GM satisfies 

N(cl(ym)) = N(cl(m)) = clib) in # F . 

This shows ker%2 Q imN. 
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Let us turn to the S -ideal class group C(M) of M and consider the homomor-
phism 

/ : C(F)/C(F)2 -> C(M)/C(M)2 

that is induced by the canonical homomorphism /* : C(F) —• C(M). 

LEMMA 3.7. The image of xi : Hf —• C{F)jC(F)2 is equal to the kernel of 

i : (CF)/C(F)2 - * C(M)/C(M)2. 

Proof. First we prove the containment imxi Q ker/. An element X2(d(b)) is 
a class in C(F)/C(F)2 of a fractional Rp -ideal of the form 

P*S 

where m G M, NM/F(m) — b with c7(fr) G # F and P\p. If p is inert in Af/F, 
then 

vp(m) m n _ pvP(m). 

if p splits in M /F, pRM = PP, then 

vp(m) m p _ pvp(m)pvp(m) _ puP(m)pVp(m)ps 

with 

s — vp(m) — vp(m) = z/p(m) + i/p(w) = i/p(N(m)) — vp(b) = 0mod2. 

So, 5 is even, and the class i(xi(cl(b))) in C(M)/C(M)2 is the class of the 
fractional /?Af -ideal mRM, hence trivial. Thus imx2 Q ker/. 

Next we prove the containment ker/ Ç imx2- Consider a fractional 7?^-ideal 
A with c/(A) G ker/; that is, 

ARM = mB2 

for some m G M and some fractional 7?M-ideal #. Put b = NM/F(m). Then 
Vp{b) = 0mod2 for all p £ 5, so c/(&) G / /F and, in C(M)/C(M)2, 

X2(ci(b))=d ( fi^<"> ) = c/ ( n^ p ( A ) ) = ^w> 
since i//>(ra) = VP(ARM) = vp(A)mod2. Thus ker/ Ç im%2-
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These two lemmas add two more terms to the above exact sequence and place 
the homomorphism \2 m proper context. We have obtained 

PROPOSITION 3.8. For a number field F with >/—Ï £ F, we have an exact 
sequence 

\->C2-*GF-^GM^HF^ C(F)/C(F)2 — C(M)/C(M)2. 

COROLLARY 3.9. / / yf-i g F, then 

2-rkkerX2 = r2(F) + 1 + g2(M) - g2(F) + 2-rkC(M) - 2-rk C(F). 

Proof. By (3.8) we have an exact sequence 

1 --• C2 —• GF —> GM —• kerx2 —* 1. 

Now, by (2.4), 

2-rkGF = n(F) + r2(F) + g2(F) + 2-rkC(F) 

2-rk GM = n(F) + 2r2(F) + g2(M) + 2-rk C(M). 

The assertion follows by considering the alternating sum of 2-ranks. 

4. Factorization. We continue to assume that F is a number field with 
V^T ^ F. In view of (2.3), our objective is to find the 2-rank of the kernel of 

X:HF-+C(F)/C(F)2 

for all such number fields F. 
The first part of this section consists of unit considerations. We are motivated 

by the following observation. Let UM be the group of S -units of M = F(\ /^4) 
and, for m G UM, put b = NM/F(m)> Then clearly cl(b) G HF. Moreover, we 
notice: 

cl(b) G kerxi, by (3.1), since b G UF 

cl(b) G kerx2, by (3.5), since b G NM/F(UM)-

Hence, cl(b) G kerx, by (3.2), and we have seen that 

N(UM/UM) Çkerx, 

where 

N:UM/UM^UF/U2
F 
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is the homomorphism induced by the norm M* —> F*. 
Now we are going to exhibit a natural group Ho with 

N(UM/U*)C HO Çker X 

satisfying 

2-ikffo - gi(M) - g2(F) + r2(F) + 1. 

This will yield 

2-rkker x ^ gi{M) - g2{F) + r2(F) + 1 

and hence, by (2.3), 

4-±K2(0F)^g2(M)-g2(Fy, 

that is, for all number fields F, a lower bound for the 4-rank of K2(Of) is given 
by the number of dyadic primes of F that split in M /F. 

Definition 4.1. Let cl{b) € Hp\ then cl(b) lies in Ho if and only if there is an 
m £ M and a fractional Rf -ideal B satisfying 

NM/F(m) — b and mRm = BRM> 

It is clear that Ho is a subgroup of Hf that contains N(UM/U^); in fact, 
HQ C kerx- This containment will also follow directly from the Factorization 
Theorem (4.8). 

Recall, from section 2, the epimorphism 

Xo : GF-+2C(F). 

Suppose cl(b) G Ho with NM/F^) — b and mRM — BRM\ taking norms yields 
bRf = B2, thus, by definition, 

Xo(cl(b)) = cl(B) in C(F) 

for this RF -ideal B, which lies in the kernel of 

/* : C(F) - • C(M). 

So, the restriction of xo to ^o yields a homomorphism 

Xo 'H0—^ker/* 
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which is clearly surjective. We put 

N0 - ker(7V : UM/U2
M — UF/UJ). 

LEMMA 4.2. There is an exact sequence 

1 — N0 — VM IUM ^H0^ keri» — 1. 

Proof. All that is left to show is the exactness at Ho. The containment 

N(UM/UM) Çkerxo 

is immediate. 
Now suppose c/(Z?) G //o lies in kerxo- Then we have an m G M with 

NM/F(^) = £ and a principal fractional /?/r-ideal # with m/?M = # ^ M ; SO, 

B — aRf for some a G F*. 

But this means m = a • u for some S -unit « G £/M- We conclude 

cl(b) = cl(NM/F(m)) = cl(a2NM/F(u)) = cl(NM/F(u)); 

that is, cl(b) is the class of the norm of an S -unit in UM- Thus 

kerxo ÇN(UM/Ui). 

The 2-ranks of No and ker /* are not easily accessible. The idea is now to 
produce a second exact sequence involving No and ker/; such that 2-rk Ho 
drops out explicitly. 

Let u G UM with cl(u) G No; then NM/F(U) is a square in F*, actually in £//r. 
Thus u and « differ only by a square in M*. Therefore, for some b G F* and 
some m G M*, we can write 

/? = um2 in M *. 

In particular, cl(b) G G/7. Then consider 

li:No-^2C(F) 

cm — xo(rf(*)> 
and check that /i is well-defined. In fact, /x is a homomorphism with image 

/i(/Vo) = ker/*. 
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The kernel of the natural homomorphism 

V.UF/UJ-^UMIUI 

is cyclic of order 2, generated by the class of —1, and it is immediate that 

HUF/U2
F)CN0. 

So far, we have 

l-+C2-+UF/UJ-^No and N0 A ken* -> 1. 

LEMMA 4.3. There is an exact sequence 

1 -+ C2 - • UF/U2 - ^ N0 A kerf* -> 1. 

Froo/. All that is left to show is the exactness at NQ. The containment 

i/(UF/UJ)ÇkQVfi 

is immediate. 
Now suppose cl{u) G No lies in ker/x. Then we can write b — um2 for some 

b G F*, bRju —B1 with a principal RF-ideal 5 . Hence b — vn2 for some v € UF 

and i? = u(mn~{)2. So mrc-1 G £/M and cl{u) in No is in the image of v. Thus 

ker/xCi/(£/F/£/;5). 

The combination of these two lemmas implies immediately: 

PROPOSITION 4.4. For a number field F with v̂ —T £ F, we have 

2-rk//0 - g2(M) - g2(F) + r2(F) + 1 

arcd hence 

4-rkK2(0F)^g2(M)-g2(F). 

Proof. By (4.2) and (4.3) we know 

2-rk ker /* - 2-rkN0 = 2-rkH0 - 2-rk UM/U^ and 

2-rk ken* - 2-rkN0 - 1 - 2-îkUp/UJ; 

https://doi.org/10.4153/CJM-1989-043-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-043-0


THE 4-RANK OF K2(0) 947 

hence 

2-rk//o = 1 + 2-rk UM/U2
M - 2-rk f/̂ //* 

= 1 + (n(F) + 2r2(F) + g2(A#)) - (n(F) + r2(F) + g2(F)) 

= gi(M) - g2{F) + r2(F) + 1. 

Since Ho Ç kerx, this shows, in view of (2.3), 

4-rkK2(0F)^g2(M)-g2(F). 

We are going to relate the subgroup HQ of ker \ of the kernel of the epimor-
phism 

« : Gf —• 2K2(OF) 

cl(b)-+{-l,b}. 

COROLLARY 4.5. If F is a number field with >/—"Ï ^ ^ /<^ w/z/c/z 2-prim 
K2(Of) is elementary abelian, then 

Ho = ker a. 

Proof If 2-prim K2(Op) is elementary abelian, then 2-rk ker \ — r2(F) + 1, 
by (2.3). Since ker a Ç kerx and 2-rk ker a = r2(F) + 1 we obtain 

ker a = kerx-

Moreover, by (4.4), we conclude that g2(M) — g2(F) and hence 2-rk//o = 
r2(F) + 1. Since HQ Q kerx we obtain 

H0 = kerx; 

so, the kernel of a is equal to Ho. 

This is the one case in which we have the opportunity of determining effec
tively the Tate kernel, ker a. 

The second part of this section consists of class group considerations. The 
Factorization Theorem (4.8) will identify the difference between 4-rkK2(Op) 
and g2(M) — g2(F) as the 2-rank of the kernel of a natural norm homomorphism 
defined on class groups. 

We denote the subgroup of elements of order at most 2 of the quotient of 
C(M) modulo the image of /* : C(F) —• C(M) by A(F); that is, 

A(F) - 2(C(A#)/i;C(F)). 
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Suppose cl(b) E HF and NM/F(m) = b. For each p £ S choose an extension 
P\p to M and define a fractional Rp-ideal B by vp(B) = i/P(m) for p £ S. Then 
m#_ 1 has even order at every prime ideal of RM. Thus, there exists a fractional 
RM -ideal C such that 

m/?M = BC2. 

Definition 4.6. Let A : HF —• A(F) be the homomorphism given by cl(b) —» 
d(C). 

It may be routinely verified that A is well-defined, hence a homomorphism. 
Just by comparing mRM — BRM with mR/y = BC2 in the definitions (4.1) and 
(4.6), we notice that 

kerA = Ho. 

Moreover, A is surjective. Namely, let cl(C) G A(F); then BC2 is principal for 
some fractional /?/7-ideal B, BC2 = m/?M with m G M, say. Put fr = NM/F{rn)\ 
so, 

^ F = (^.NM / F(C))2 . 

This shows that c/(Z?) G HF and X(cl(b)) = cl(C). Hence 

imA = A(F), 

and we have proved 

LEMMA 4.7. There is a short exact sequence 

The missing link is now provided by the homomorphism 

nM/F:A(F)-+C(F)/C(F)2 

that is induced by the norm 

N : C(M) -+ C(F). 

As a consequence of the decomposition (3.2) we prove the following factoriza
tion for x-

https://doi.org/10.4153/CJM-1989-043-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-043-0


THE 4-RANK OF K2(0) 949 

THEOREM 4.8. For a number field F with \J— 1 0 F, there is a commutative 
diagram 

HF - * - • A(F) 

\ )/
nM/F 

C(F)/C(F) 2 

Proof. Suppose cl(b) G HF, m G M with NM/F(m) = b. Write mRM = BC2 

with fractional RF, RM -ideals #, C, respectively. From 

bRF = (BNM/F(C))2 

we see immediately, by (2.5), that 

Xi(cl(b)) = cl(B)cl(NM/F(C)) in C(F)/C(F)2. 

Now, by (3.5), 

X 2 ( c / ( Z 7 ) ) - c / ( n P M w ) ) 

where, for P|p, we have 

z/F(m) = vP(BRM) + 2z//>(C) = ^(B) + 2i/P(C) = z/p(£)mod2. 

Therefore, 

X2(c/(6)) = c/(£) in C(F)/C(F)2. 

Then, by (3.2), 

X(c/(ft)) = *i(c/(*)) • XiicKb)) = c/(£)2 • cl(NM/F(C)) 

= cl(NM/F(C)) = nM/F o A(c/(ft)) in C(F)/C(F)2 

since X(cl(b)) = cl(C) in A(F), by (4.6). The factorization formula is established. 

Once again we see that Ho — kerA is a subgroup of kerx- The consequence 
we are interested in is the 4-rank formula: 

COROLLARY 4.9. For a number field F with v —1 £F ,we have 

A-vkK2{0F) = g2(M) - g2(F) + 2-rkkernM/F. 
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Proof. From the short exact sequence (4.7) and the commutative triangle (4.8) 
we have the diagram 

1 —> H0—+HF >A(F) —* 1 

I /nMIF 

C(F)/C(F)2 

and conclude 

2-rk ker \ — 2-rk H$ + 2-rk ker YIMJF • 

In (4.4) we have computed the 2-rank of HQ, hence 

2-rkkerx = gi(M) - g2(F) + r2(F) + 1 + 2-rkkernM/Fl 

which, in view of (2.3), yields our claim. 
For applications we refer to the next section. Let us notice that for 

AT : C(M) -» C(F) and nM/F : A(F) -> C(F)/C(F)2 

we have a natural isomorphism 

kernM/F = 2(kerN//*(2C(F))); 

in particular, 

2-rk ker nM/F = 2-rkkerN//*(2C(F)), 

which yields the reformulation: 

COROLLARY 4.10. For a number field F with y/—ï ^ F, we have 

4-vkK2(0F) = g2(M) - g2(F) + 2-tkkGTN/U(2C(F)). 

This is the 4-rank formula as stated in (1.5). 

5. Applications. 

Elementary abelian 2-prim K2(0F). Let us apply the 4-rank formulas (2.6) 
and (4.10) in order to obtain a characterization of all number fields F for which 
the 2-primary subgroup of K2(OF) is elementary abelian. We will denote by 
h(M /F) the relative S -class number of M jF\ that is, 

h(M/F) = #ker(N : C(M) -+ C(F)). 
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If V ^ e F, then 4-rkK2(0F) = 0 if and only if g2(F) = 1 and 4-rkC(F) = 
0, by (2.6). 

If \ / r T i F then 4-rk/^2(0F) = 0 if and only if g2(M) = g2(F) and the 
2-primary subgroup of the kernel of N : C(M) —+ C(F) is equal to /*(2C(F)), 
by (4.10). The kernel of /* : C(F) —> C(M) is contained in 2C(F), hence 

22-rkC(F) = #i^2c(F)) • #ker/*. 

So, the condition that 2-prim ktvN = i*(2C(F)) means that 22rkC(F) is the exact 
2-power dividing h(M /F) • #ker/#. We have obtained 

PROPOSITION 5.1. For a numbered field F with \/—T G F, we /îave: 2-prim 
K2(Op) is elementary abelian if and only if F has only one dyadic prime and 
2-prim C(F) is elementary abelian. 

For a number field F with \/—T 0 F, we have: 2-prim K2(Op) is elementary 
abelian if and only if no dyadic prime splits in M/F and 22~rkC(/r)||/*(M/F) • 
# ker /*. 

How explicit is this divisibility condition? The relative S -class number 
h(M /F) can be expressed in terms of S -class numbers 

h(F) = #C(F) and h(M ) = #C(M) 

in the following way: 

( h(M)/h(F) if there is a place in S that 
does not split in M/F; 

2h(M)/h(F) if all places in S split in M/F. 

Namely, the norm N : C(M) —->• C(F) is surjective unless n(F) = 0 and all 
dyadic primes of F split in M/F, however the index of N(C(M)) in C(F) is 
2 in the exceptional case. In particular, in (5.1) we can replace the condition 
22'rkC(F)||/z(M/F)-#ker/* by 

22"rkC(F)||(/z(M)//z(F)) • #ken*. 

For totally real number fields F this simplifies further, since ker /* is trivial if 
r2{F) — 0 and g2(M) — g2(F), [8]. A determination of all real quadratic number 
fields F with 2-primK2(Op) elementary abelian has been given in [1]. 

However, if F is not totally real, then ker/* might be non-trivial even if 
g2(M) = g2(F). This feature makes the application of (5.1) more delicate. We 
have been informed about research in progress concerning the determination of 
all imaginary quadratic number fields F with 2-primK2(Of) elementary abelian. 
For examples we refer to Section 6. 

Extreme cases. Using the decomposition \ — \\ ' X2> we would like to 
produce more explicit 4-rank formulas for K2(Of) in the extreme cases when 
X = Xi or X = X2. 
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PROPOSITION 5.2. lfHF = GFf then \2 is trivial if and only if either y—T G F 
or 

1 +g2(M) + 2-rk C{M) = 2(g2(F) + 2-xkC{F)). 

In that case 

A-xkK2{0F) = g2(F) - 1 +4-rkC(F). 

Proof If \P-i G F, then everything is clear, by (2.6). We now consider the 
case \/—Ï & F. Since by assumption ///7 = GF it follows that —1 is a norm 
from MjF and hence F is totally complex. Then, by (2.4), 

2-rk//F = 2-rkGF = r2(F) + g2(F) + 2-rkC(F) 

and, by (3.9), 

2-rkkerx2 = r2(F) + 1 + g2(M) - g2(F) + 2-rk C(M) - 2-rkC(F). 

We equate 

2-rk H f = 2-rkkerx2 

and the first assertion follows. 
Next, if we assume %2 is trivial, then we have % = Xi> ^y (3.2), and since 

Gp = Hf we have an exact sequence together with a commutative triangle 

1 —• UF/UF —• HF ~^+2C(F) — • 1 

4 / 
C(F)/C(F)2 

Hence 

2-rkkerx = 2-rkkerxi = 2-xkUp/UJ + 4-rkC(F). 

Since 

2-rk UF/Uj = (r2(F) + 1) + g2(F) - 1, 

application of (2.3) finishes the proof. 
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The reader will notice that (5.2) generalizes the old result (2.6), for the as
sumptions in (5.2) apply to a wider class of number fields F than just the ones 
with > / - ï G F. 

COROLLARY 5.3. Suppose F is a totally complex number field with y — 1 0 F. 
Jf 82(F) = 1, then Hf = Gp and \2 is trivial if and only if either 

i) g2(M)=l and 2-rk C(M) = 2(2-rkC(F)) 

or 

ii) g2(M) = 2 and 1 + 2-rk C(M) = 2(2-rkC(F)). 

/V00/. If rx(F) = 0 and g2(F) = 1, then # F = GF; namely: if c/(fc) G GF, 
then i/p(fr) = 0mod2 and hence (— 1, b)p — +1 for every finite non-dyadic place 
p of F. By assumption, F has no real infinite places, and so by reciprocity 

( - l , f c ) p =+l 

also for the unique dyadic place p of F. Hence b is a norm from M/F and 
cl(b) G ///r. Now apply (5.2). 

We shall remind the reader of this in a later example (6.6) and the concluding 
exercise (7.3). For the other extreme we have 

PROPOSITION 5.4. If \\ is trivial and y/^-ï ^ F, then 

4-rkK2(0F) = g2(M) - g2(F) + 2-rkC(M) - 2-rkC(F). 

Proof By (3.2) and (3.9) we have 

2-rkkerx = 2-rkkerx2 
= r2(F) + 1 + g2(M) - g2(F) + 2-rk C(M) - 2-rk C(F). 

Then (2.3) finishes the proof. 

Clearly 

Xi:HF^2C(F)^C(F)/C(F)2 

is trivial if 4-rkC(F) = 2-rkC(F). 

COROLLARY 5.5. Let F be a number field with 4-rkC(F) = 2-rkC(F) and 
A/^T £ F. Then 

4-rkK2(0F) = g2(M) - g2(F) + 2-rkC(M) - 2-rkC(F). 
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We point out a special case 

COROLLARY 5.6. Let F be a number field with odd S-class number h(F) and 
\f~~i g F. Then 

4-rkK2(0F) = g2(M) - g2(F) + 2-rkC(M). 

In particular then 2-pnm K2(Of) is elementary abelian if and only if no dyadic 
prime splits in M /F and the S-class number h(M) is also odd. 

Examples illustrating these assertions are quite common. For the convenience 
of the reader we will provide in the appendix the explicit determination of 
2-rk C(F) and 2-rkC(M) in case of all quadratic number fields F. 

Furthermore, computations of ker% involving %i and \2 can be carried out in 
many examples which do not fall into either of the two extremes; an illustration 
is the proof of (6.4). 

6. Examples. Due to the lack of 4-rank formulas for number fields F that are 
neither totally real nor contain y/--\, so far information about 2-prim K2(Of) 
for imaginary quadratic number fields F has been limited. For several imaginary 
quadratic number fields F of small discriminant, in absolute value, the whole 
group K2(Of) has been computed in [13]. We put 

F — Q(vd) with d < 0, squarefree 

h(F) = #C(F) S -class number of F. 

If d ^ —1, then M — F(\/—Î) is an abelian extension of Q with degree 4 and 
Galois group C2 x C2. The 2-ranks of the S -class groups C(F) and C(M) have 
been listed in the appendix. 

The wild kernel wild {Of ) (Hilbert Kernel) is a subgroup of the tame kernel 
K2(0F) whose 2-rank was determined in [2] for all quadratic fields F. This 
allows us to describe the quadratic number fields F whose wild kernel has a 
trivial 2-primary subgroup; that is, for which #wild(6V) is odd. The complete 
list of such imaginary quadratic number fields F was given in [5]: 

Let F = Q(vw) be imaginary quadratic. Then #wild(CV) is odd if and only 

if 

(6.1 ) d — — 1, —2, —/?, — 2p with a prime p = ±3 mod 8 or 
d — —pq with primes p = 3 mod 8, g = 5 mod 8 or 
d = —p with a prime p = 7 mod 8. 

This leads to the following simple characterization of all imaginary quadratic 
number fields with a wild kernel of odd order. 

PROPOSITION 6.2. Let F = Q(Vd) be imaginary quadratic. Then: 

#wild(6V) is odd if and only if 
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h(F) is odd if and only if 

2-prim K2(0F) is elementary abelian of rank g2(F) — 1. 

Proof. For F = Q(A/—Ï) the tame kernel K2(0F) is trivial, hence all three 
properties hold for F. We will assume that d < — 1. 

We check (7.1) and find out that F = Q(Vd) occurs in the list (6.1) if and 
only if 2-rkC(F) = 0; hence the first two properties are equivalent. 

The condition that 2-rkK2(0F) = g2(F) - 1 means that h(F) is odd, by (1.2). 
Thus (5.6) applies and yields: 

2-prim K2(0F) is elementary abelian of rank g2(F) — 1 if and only if g2(M) = 
g2(F) and h(M) is odd; 

that is, if and only if d ^ 7 mod 8 and h(M) is odd. Now compare (7.1) and 
(7.2) and notice that 

2-rkC(F) = 0 if and only if d ^ 7 mod 8 and 2-rkC(M) = 0. 

Hence the last two properties are equivalent. 

Let us investigate 2-prim K2 (0F) for the fields F — Q(y/=/?), where p denotes 
a rational prime number. 

For/? ^ 1 mod8 we conclude that 2-rkC(F) = 0, by (7.1), hence the structure 
of 2-prim K2(Of) is known by (6.2). 

For p = 1 mod 8 we conclude that 2-rkC(F) = 1, by (7.1). Since g2(F) — 1, 
g2(M) = 2 we obtain 2-rkK2(0F) = 1, by (1.2), and 4-rk^2(0F) ^ 1, by (4.4). 
This yields 

Example (6.3) Let F = Q(v^=p) with a prime p. Then 

2-prim K2(0F) = {1} if/7 = 2 o r p = 3,5mod8 
2-prim K2 (0F) = C2 if p = 1 mod 8 
2-prim K2 (0/7 ) is cyclic of order divisible by 4 if p = 1 mod 8. 

The imaginary quadratic number field F with smallest discriminant, in ab
solute value, for which 2-prim K2(0F) was not determined in [13], is F — 
Q(V—35). In this regard, we deduce 

Example 6.4. Let F = Q(y/—pq) with primes p = 1 mod 8 and q = 5 mod 8. 
Then: 

2-prim K2 (0F ) = C2, generated by {—1,-1}. 

Proof From ^ ( ^ ) = 1 and, by (7.1), 2-rkC(F) = 1 we see in view of (1.2) 
that 

2-rk^2(^F) = 1. 
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Now, 2-rkG/r = 3, by (2.4), and hence the classes of —1,2, q form a basis for 
Gf. Clearly the classes of 2 and q belong to Hp\ namely 

2 = NM/F(\ + /) and q = NM/F(^ + bi), 

where q = a2 + b2 for some a, b G Z. However, also —1 is a norm from M JF 
since the level of F is 2, compare [10]. So, Gf = Hf, 

2-rkHF = 3, 

and the classes of — 1,2, q form a basis for ///,. 
From (3.9) we conclude that 

2-rkkerx2 = 2, 

since g2(M) — 1 and 2-rkC(M) = 1, by (7.2). As noted above, 2 is the norm 
of the S -unit 1 + / from M jF\ so, cl(2) G ///r is a norm from GM and hence, by 
(3.5), 

X2(c/(2)) = 1 in C(F)/C(F)2. 

To see that XiicKq)) is also trivial we refer to our comment after the original 
definition (3.1) of \2- It is enough to show that there exists an e G F(y/q) = 
Q(\/—pqi y/q) with NE/F(e) = —1. We can make the choice e = e, the funda
mental unit of Q(y/q). Then 

W£/F(e) = 7VQ(vWQ(e) = - l 

in view of q = 1 mod 4. Hence 

X2(c/(?)) = 1 in C(F)/C(F)2. 

This implies that 

X2(c / ( - l ) )^ l in C{F)/C{Ff. 

Since, see (2.5), \\(cl{— 1)) is trivial the decomposition x = Xi * X2> (3.2), tells 
us that 

X ( c / ( - l ) ) ^ l in C(F)/C{Ff. 

Hence, c/(—1) ^ kerx; so, by (2.2), the Steinberg symbol {—1,-1} is not a 
square in ^(^V)- Thus we have exhibited, in the cyclic group 2-prim#2(£VX 
an element of order 2 that is not a square; that is, 2-prim^2(^F) is cyclic of 
order 2, and {—1,-1} is the generator. 
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In this example it can be shown that the kernel of 

/* :C(F)-»C(M) 

is non-trivial even though 2-primAr2(0F) is elementary abelian. In a similar 
way, we can determine all fields F = Q(\/—pq) with primes p, q, for which the 
2-primary subgroup of K2(0F) is elementary abelian. 

We state the following example without proof 

Example 6.5. Let E = Q(y/pqr), with primes p,q,r = 3mod8 satisfying 
( p = (f) = ( p = +1. Then 2-primK2(0E) is elementary abelian of rank 4, 
while 2-prim^2(£V) is elementary abelian of rank 2. 

To illustrate (6.5) the choices p = 3, q — 11, r — 19 may be used. Our final 
example will appeal to both (5.3), in which case \2 is trivial, and (5.5), in which 
case xi is trivial. 

Example 6.6. Let F = Q(y/~2p) with a prime p = 9 mod 16. Then 

2-pnmK2(0F) = C2. 

Proof. We note that g2(F) = g2(M) = 1 and, by (7.1), 2-rkC(F) = 1. This 
tells us, by (L2), that 2-rkK2(0F) = 1. 

First suppose that p cannot be written as x2 + 32y2 with jc,y € Z. Then 
2-rkC(M) = 1, by (7.2), since p is in A~. Now from (24.6) in [4] it will follow 
that 8 divides the ordinary class number of F, and hence the order of the S- class 
group C(F) is divisible by 4. Thus 2-rkC(F) = 4-rkC(F) and (5.5) applies. We 
conclude that 

4-rkK2(OF) = 0. 

Next suppose that p can be written as x2 + 32y2 for some x,y G Z. Then 
2-rk C(M) = 2, by (7.2), since p is in A+. We deduce from (5.3) that HF = GF 

and X2 is trivial. Thus, by (5.2), 

4-rk£2(0F) = 4-rkC(F). 

Now it will follow from (24.6) in [4] that 4 is the exact 2-power dividing the 
ordinary class number of F. 

It may be seen as follows that the dyadic prime of F is not principal. If it 
were then it would have a generator which is in 0F — Z[\/—2p] and has norm 
2. This implies that 2 = a2 + 2pb2 has a solution in rational integers, which it 
obviously does not. 

We conclude that the order of the S -class group C(F) is congruent to 2 mod 4; 
hence 4-rk C(F) — 0. Again we obtain that 

4-rk K2(0F) = 0. 
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Thus, in any case, 2-primA^(6V) is elementary abelian of rank 1. 

To illustrate (6.6) the primes 73 G A~ and 41 G v4+ may be chosen. In a 
similar way, we can determine all fields F — Q(V—2p) with a prime p for 
which the 2-primary subgroup of Ki{Of) is elementary abelian. 

7. Appendix. The objective is to make the determination of the 4- rank of 
#2(OF) explicit for the quadratic number fields F. We put 

F = Q(V^), M = Q(Vd, V^T) 

with d G Z, |d| > 1, square free. As before S is the set of infinite and dyadic 
primes, C(F) and C{M) are the S-ideal class groups of F and M, respectively. 
Let 

2s = # of elements in {1, —1,2, — 1} that are norms from F / Q 

r = # of odd prime divisors of d 

t\ — #of prime divisors p of d with /? = 1 mod 4. 

LEMMA 7.1. The 2-rank of the S-class group C(F) is given by 

2-rk C(F)= < 

s + t - \ if d^ lmod8, d<0 
s + t-2 ifd= lmod8, d < 0 
s + t-2 ifdjk lmod8, d>0 

L^ + r - 3 ifd= lmod8, d > 0. 

Proof This determination can be performed in terms of genus theory, dating 
back to Gauss. Explicitly, the above list has been given in [1]. 

For rational primes p = 1 mod 8, we let 

p € A+ if and only if p = x2 + 32v2 for some x , j € Z , 
p Ç A " if and only if p^x2 + 32y2 for all x,_y G Z. 
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LEMMA 7.2. The 2-rank of the S-class group C(M) is given by 

ft\+t—l ifd = ± lmod8 and p = 7mod 8 or p e A+ 

for all primes p dividing d 

t\+t — 2 ifd = ±l mod 8 and no prime p = 5 mod 8 divides d, 
but either a prime p = 3 mod 8 or p G A~ 
divides d 

t[ + t — 3 if d = ± 1 mod 8 and there is a prime p = 5 mod 8 
dividing d 

t\ + t — 1 ifd = ±3 mod 8 and no prime p = 5 mod 8 divides d 

t\ + t — 2 if d = ±3 mod 8 and there is a prime p = 5 mod 8 
dividing d 

t\+t if d = 0 mod 2 a«<i /? = 7 mod 8 or /? G A+ 

/or all odd primes p dividing d 

t\ +t — 1 if d = 0 mod 2 <2A/d «6> /?nm^ /? = 5 mod 8 divides d but 
either a prime p = 3 mod 8 or p G A~ divides d 

t\+t — 2 if d = 0 mod 2 a «<i //^r^ /5 a prime p = 5 mod 8 
dividing d. 

This lemma can be established by appeal to the 5 -version of the exact hexagon 
associated with M/Q(v^—Î). The reader is referred to [4], particularly Section 
6. 

We would like to finish by suggesting an exercise that makes use of the above 
two lists. Consider the imaginary quadratic fields F = Q(y/d) with 

d < — 1 square free, d ^ 1 mod 8. 

Then (5.3) applies to these fields F. 

Exercise 7.3. Using (7.1), (7.2), and (5.3) determine those d for which \2 is 
trivial. 

For such d it will follow by (5.2) that 

4-rk K2(0F) = 4-rk C(F). 

In particular, \2 is trivial for d — —p\Pi •... -pt with t ^ 1 primes /?i,/?2? • • • ->Pt 
in A+. For those d we may add, by (4.4), in view of gi(F) — 1, g2{M) — 2 that 

A-rkK2(0F) = 4-rkC(F) S 1. 

https://doi.org/10.4153/CJM-1989-043-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-043-0


960 P. E. CONNER AND J. HURRELBRINK 

REFERENCES 

1. B. Brauckmann, Die 2-Sylowgruppe des zahmen Kerns total-reeller Zahlkôrper, Thesis, Munster 
(1987). 

2. J. Browkin and A. Schinzel, On Sylow 2-subgroups of K2{Op) for quadratic number fields F, 
J. reine angew. Math 331 (1982), 104-113. 

3. A. Candiotti and K. Kramer, On the 2-Sylow subgroup of the Hilbert kernel of K2 of number 
fields, preprint (1987). 

4. P. E. Conner and J. Hurrelbrink, Class number parity, Series Pure Math. 8 (World Scientific 
Publ. Co., Singapore, 1988). 

5. J. Hurrelbrink, Class numbers, units, and K2, to appear in Proc. Alg. K-Th. Conf. Lake Louise, 
Canada (1987), NATO ASI Series. 

6. J. Hurrelbrink and M. Kolster, On the 2-primary part of the Birch-Tate conjecture for cyclotomic 
fields, Contemp. Math. 55 (1986), 519-528. 

7. F. Keune, On the structure of K2 of the ring of integers in a number field, preprint (1987). 
8. M. Kolster, The structure of the 2-Sylow subgroup of K2(0), I, Comment. Math. Helvetici 61 

(1986), 376-388. 
9. The structure of the 2-Sylow subgroup of K2(0), II, K-Theory 1 (1987), 467-479. 

10. T. Y. Lam, The algebraic theory of quadratic forms (Reading, Mass, 1973). 
11. A. S. Merkurjev and A. A. Suslin, On the K^ of fields, preprint (1987). 
12. J. Milnor, Introduction to algebraic K-theory, Annals Math. Stud. 72 (Princeton, NJ, 1971). 
13. J. Tate, Appendix to: The Milnor ring of a global field, SLNM 342 (1973), 429-446. 
14. Relations between K2 and Galois cohomology, Inventiones math. 36 (1976), 257-274. 

Lousiana State University, 
Baton Rouge, Louisiana 

https://doi.org/10.4153/CJM-1989-043-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-043-0

