THE 4-RANK OF $K_{2}(O)$

P. E. CONNER AND JURGEN HURRELBRINK

1. Introduction. Let O_{F} denote the integers of an algebraic number field F. Classically the Dirichlet Units Theorem gives us the structure of the $K-$ group $K_{1}\left(O_{F}\right)$. Then recently the structure of the K-group $K_{3}\left(O_{F}\right)$ was found by Merkurjev and Suslin, [11]. But as of now we have only limited information about the structure of the tame kernel $K_{2}\left(O_{F}\right)$.

For special classes of number fields, the following rank formulas are known. Fix a rational prime number p, let S denote the set of infinite and p-adic places of the number field $F, g_{p}(F)$ the number of p-adic places of F, and $C(F)$ the S-ideal class group of F. Under the assumption that the group $\mu_{p^{n}}$ of p^{n}-th roots of unity is contained in F, we obtain from Tate [14], the exact sequence

$$
\begin{equation*}
1 \rightarrow C(F) / C(F)^{p^{n}} \rightarrow K_{2}\left(O_{F}\right) / K_{2}\left(O_{F}\right)^{p^{n}} \rightarrow \coprod \mu_{p^{n}} \rightarrow 1 \tag{1.1}
\end{equation*}
$$

where the product is taken over $r_{1}(F)+g_{p}(F)-1$ copies of $\mu_{p^{n}}$. This yields immediately, for arbitrary number fields F, the well known 2-rank formula

$$
\begin{equation*}
2-\mathrm{rk} K_{2}\left(O_{F}\right)=r_{1}(F)+g_{2}(F)-1+2-\mathrm{rk} C(F) \tag{1.2}
\end{equation*}
$$

and, for number fields F containing a primitive fourth root of unity, the 4 -rank formula

$$
\begin{equation*}
\text { If } \sqrt{-1} \in F \text {, then 4-rk } K_{2}\left(O_{F}\right)=g_{2}(F)-1+4-\mathrm{rk} C(F) \text {. } \tag{1.3}
\end{equation*}
$$

Let $M=F(\sqrt{-1})$, consider the norm $N: C(M) \rightarrow C(F)$ and the natural homomorphism $i_{*}: C(F) \rightarrow C(M)$. We denote by ${ }_{2} C(F)$ the subgroup of $C(F)$ of ideal classes of order at most 2 . Under the assumption that M contains a primitive 2^{n}-th root of unity and F is totally real, we know from Kolster, [8], for $n \geqq 2$:

$$
\begin{equation*}
2^{n} \text {-rk } K_{2}\left(O_{F}\right)=g_{2}(M)-g_{2}(F)+2^{n-1} \text {-rk ker } N / i_{*}\left({ }_{2} C(F)\right) . \tag{1.4}
\end{equation*}
$$

This yields, for totally real number fields F, a 4-rank formula for $K_{2}\left(O_{F}\right)$. During the preparation of these notes, it was Kolster himself who noticed that the same 4-rank formula can be proved whenever F does not contain a fourth root of unity; that is,

$$
\begin{align*}
& \text { If } \sqrt{-1} \notin F \text {, then } \tag{1.5}\\
& \text { 4-rk } K_{2}\left(O_{F}\right)=g_{2}(M)-g_{2}(F)+2-\mathrm{rk} \operatorname{ker} N / i_{*}\left({ }_{2} C(F)\right) .
\end{align*}
$$

In this paper we concentrate on the structure of the 2-primary subgroup of $K_{2}\left(O_{F}\right)$ and present a unified approach for deducing 4-rank formulas for $K_{2}\left(O_{F}\right)$ for arbitrary number fields F. The intimate connection between the structure of 2prim $K_{2}\left(O_{F}\right)$ and classical issues of Algebraic Number Theory involving S-units and S-ideal class groups will be emphasized. Having a variety of applications in mind, we are aiming for various 4 -rank formulas in computable terms, see (4.9), (5.2), (5.4), (5.5). This approach yields, as a special case, the above formula (1.3), and also the general form of (1.5) appears as a natural reformulation.

Our main tools are the decomposition, Section 3, and the factorization, Section 4, of the crucial homomorphism χ that takes values in the square class group of $C(F)$.

In the applications, Section 5, extreme cases become explicit. We have made an effort to include examples, Section 6, mainly of imaginary quadratic number fields. The appendix on S-class groups makes our results readily applicable to quadratic number fields.

Based on this approach the deduction of higher rank formulas for $K_{2}\left(O_{F}\right)$ for arbitrary number fields F is in fact conceivable. We would like to point out recent related papers [3], [7], [9].
2. Preliminaries. For a group X, let ${ }_{2} X=\left\{a \in X: a^{2}=1\right\}$. In order to determine the 4 -rank of $K_{2}\left(O_{F}\right)$, we will count the number of elements in ${ }_{2} X \cap X^{2}$ for $X=K_{2}\left(O_{F}\right)$. For a number field F, the standard notation will be:
S set of infinite and dyadic places of F
$g_{2}(F)$ number of dyadic places of F
$\# S=r_{1}(F)+r_{2}(F)+g_{2}(F)$
R_{F} ring of S-integers of F
U_{F} group of S-units of F
$C(F) S$-ideal class group of F.
Let $M=F(\sqrt{-1})$ and consider the following groups of square classes

$$
\begin{aligned}
G_{F} & =\left\{c l(b) \in F^{*} / F^{* 2}: \nu_{p}(b) \equiv 0 \bmod 2 \text { for all } p \notin S\right\} \\
H_{F} & =\left\{c l(b) \in G_{F}: b \in N_{M / F}\left(M^{*}\right)\right\} .
\end{aligned}
$$

An element of $K_{2}(F)$ lies in ${ }_{2} K_{2}(F)$ if and only if it is a Steinberg symbol of the form $\{-1, b\}$ for some $b \in F^{*},[14]$. Now, $K_{2}\left(O_{F}\right)$ is the intersection of the kernels of the tame symbols

$$
\begin{aligned}
\tau_{p}: & K_{2}(F) \\
& \rightarrow\left(O_{F} / p\right)^{*} \\
& \{a, b\} \longrightarrow c l\left((-1)^{\nu_{p}(a) \nu_{p}(b)} \cdot a^{\nu_{p}(b)} \cdot b^{-\nu_{p}(a)}\right)
\end{aligned}
$$

for all finite places p of F, while $K_{2}\left(R_{F}\right)$ is the intersection of the kernels of the τ_{p} for all $p \notin S$. For a dyadic place p, the order of $\left(O_{F} / p\right)^{*}$ is odd, hence

$$
\text { 2-prim } \begin{aligned}
K_{2}\left(O_{F}\right) & =2 \text {-prim } K_{2}\left(R_{F}\right) \quad \text { and } \\
{ }_{2} K_{2}\left(O_{F}\right) & =\left\{\{-1, b\}: c l(b) \in G_{F}\right\} .
\end{aligned}
$$

The symbol $\{-1, b\}$ is a square in $K_{2}(F)$ if and only if the element $b \in F^{*}$ is a norm from $M / F,[12]$. Hence

$$
{ }_{2} K_{2}\left(O_{F}\right) \cap K_{2}(F)^{2}=\left\{\{-1, b\}: c l(b) \in H_{F}\right\} .
$$

Let $c l(b) \in H_{F}$, thus $\{-1, b\}=y^{2}$ for some $y \in K_{2}(F)$ with $\tau_{p}(y)= \pm 1$ in $\left(O_{F} / p\right)^{*}$ for all finite places p of F. Choose any fractional R_{F}-ideal A with

$$
\tau_{p}(y)=(-1)^{\nu_{p}(A)} \quad \text { for all } p \notin S
$$

Definition 2.1. Let $\chi: H_{F} \rightarrow C(F) / C(F)^{2}$ be the homomorphism given by $c l(b) \rightarrow c l(A)$.

We check that χ is well-defined: if $\{-1, b\}=y^{2}=y_{1}^{2}$ with $y, y_{1} \in K_{2}(F)$ and, for all $p \notin S$,

$$
\tau_{p}(y)=(-1)^{\nu_{p}(A)}, \quad \tau_{p}\left(y_{1}\right)=(-1)^{\nu_{p}\left(A_{1}\right)}
$$

for some fractional R_{F}-ideals A, A_{1}, then $y_{1}=y \cdot\{-1, c\}$ for some $c \in F^{*}$ and

$$
\begin{aligned}
(-1)^{\nu_{p}\left(A_{1}\right)} & =\tau_{p}\left(y_{1}\right)=\tau_{p}(y) \cdot \tau_{p}\{-1, c\} \\
& =(-1)^{\nu_{p}(A)} \cdot(-1)^{\nu_{p}(c)}=(-1)^{\nu_{p}(c A)} .
\end{aligned}
$$

This shows that

$$
\nu_{p}\left(A_{1}\right) \equiv \nu_{p}(c A) \bmod 2 \text { for all } p \notin S
$$

thus $\operatorname{cl}\left(A_{1}\right)=\operatorname{cl}(c A)=\operatorname{cl}(A)$ in $C(F) / C(F)^{2}$. In fact, χ is a homomorphism.
Just from the definition of χ we obtain: $c l(b) \in \operatorname{ker} \chi$ if and only if there exists a $c \in F^{*}$ with

$$
\nu_{p}(c A) \equiv 0 \bmod 2 \text { for all } p \notin S
$$

where $\{-1, b\}=y^{2}$ and $\tau_{p}(y)=(-1)^{\nu_{p}(A)}$. This means that there exists a $c \in F^{*}$ with

$$
1=(-1)^{\nu_{p}(c A)}=\tau_{p}(y\{-1, c\})
$$

for all finite places p of F; so, $y\{-1, c\} \in K_{2}\left(O_{F}\right)$. This shows that $c l(b)$ is in the kernel of χ if and only if $\{-1, b\}$ is a square element in $K_{2}\left(O_{F}\right)$. So,

$$
\begin{equation*}
{ }_{2} K_{2}\left(O_{F}\right) \cap K_{2}\left(O_{F}\right)^{2}=\{\{-1, b\}: c l(b) \in \operatorname{ker} \chi\} . \tag{2.2}
\end{equation*}
$$

All we have to do in order to find the 4-rank of $K_{2}\left(O_{F}\right)$ is to find the 2-rank of $\{\{-1, b\}: \operatorname{cl}(b) \in \operatorname{ker} \chi\}$. The kernel of the natural homomorphism

$$
\begin{aligned}
\alpha: G_{F} & \rightarrow{ }_{2} K_{2}\left(O_{F}\right) \\
c l(b) & \rightarrow\{-1, b\}
\end{aligned}
$$

has 2 -rank $r_{2}(F)+1,[\mathbf{1 4}]$. The kernel of α is contained in the kernel of χ, hence

$$
\text { 4-rk } K_{2}\left(O_{F}\right)=2-\mathrm{rk} \operatorname{ker} \chi-2-\mathrm{rk} \operatorname{ker} \alpha,
$$

and we have obtained
Proposition 2.3. For any number field F,

$$
4-\text { rk } K_{2}\left(O_{F}\right)=2-\mathrm{rk} \operatorname{ker} \chi-r_{2}(F)-1
$$

From here on, our purpose will be to make 2 -rk ker χ more explicit. This can be treated as a problem from the Algebraic Number Theory, which divides up naturally into an S-unit part and an S-ideal class group part. Consider the epimorphism

$$
\begin{aligned}
\chi_{0}: G_{F} & \rightarrow{ }_{2} C(F) \\
c l(b) & \rightarrow \operatorname{cl}(B),
\end{aligned}
$$

where B is the fractional R_{F}-ideal satisfying

$$
b R_{F}=B^{2} .
$$

The kernel of χ_{0} is U_{F} / U_{F}^{2}, whose 2-rank is $r_{1}(F)+r_{2}(F)+g_{2}(F)$, by the Dirichlet S-Units Theorem. The exact sequence

$$
1 \rightarrow U_{F} / U_{F}^{2} \rightarrow G_{F} \xrightarrow{\chi_{0}}{ }_{2} C(F) \rightarrow 1
$$

shows
Lemma 2.4. 2-rk $G_{F}=r_{1}(F)+r_{2}(F)+g_{2}(F)+2$-rk $C(F)$.
We restrict χ_{0} to H_{F} and consider the composition

$$
\chi_{1}: H_{F} \xrightarrow{\chi_{0}} C(F) \rightarrow C(F) / C(F)^{2} ;
$$

that is, in terms of $b R_{F}=B^{2}$, the resulting homomorphism χ_{1} is defined by
Definition 2.5. Let $\chi_{1}: H_{F} \rightarrow C(F) / C(F)^{2}$ be the homomorphism given by $c l(b) \rightarrow c l(B)$.

Already now we can determine the 4 -rank of $K_{2}\left(O_{F}\right)$ under the simplifying assumption that F contains a primitive fourth root of unity. Namely, if $i=$ $\sqrt{-1} \in F$ and $c l(b) \in H_{F}$, then $\{-1, b\}=\{i, b\}^{2}$ in $K_{2}(F)$ and

$$
\tau_{p}\{i, b\}=i^{\nu_{p}(b)}=(-1)^{\nu_{p}(b) / 2} \quad \text { in }\left(O_{F} / p\right)^{*}
$$

This shows

$$
\tau_{p}\{i, b\}=(-1)^{\nu_{p}(A)} \quad \text { for all } p \notin S
$$

where $b R_{F}=A^{2}$. So, by definitions (2.1) and (2.5):

$$
\chi=\chi_{1} \quad \text { if } \sqrt{-1} \in F
$$

Hence, (2.3) simplifies to

$$
\text { 4-rk } K_{2}\left(O_{F}\right)=2 \text {-rk ker } \chi_{1}-r_{2}(F)-1 .
$$

Moreover, the assumption $\sqrt{-1} \in F$ yields $H_{F}=G_{F}$. From the short exact sequence and the commutative triangle

$$
\begin{gathered}
1 \longrightarrow U_{F} / U_{F}^{2} \longrightarrow H_{F} \xrightarrow{\chi_{0}}{ }_{2} C(F) \longrightarrow 1 \\
\chi_{1} \downarrow \\
C(F) / C(F)^{2}
\end{gathered}
$$

we conclude

$$
\begin{aligned}
2 \text {-rk ker } \chi_{1} & =2 \text {-rk ker } \chi_{0}+4 \text {-rk } C(F) \\
& =r_{2}(F)+g_{2}(F)+4 \text {-rk } C(F) .
\end{aligned}
$$

Thus we have proved
Proposition 2.6. If $\sqrt{-1} \in F$, then $H_{F}=G_{F}, \chi=\chi_{1}$ and

$$
\text { 4-rk } K_{2}\left(O_{F}\right)=g_{2}(F)-1+4-\mathrm{rk} C(F) .
$$

This is the result (1.3), quoted above.
3. Decomposition. In the preceding section we have seen that $\chi=\chi_{1}$ if $\sqrt{-1} \in F$. However, in general, this simple equality is no longer valid. In this section we will exhibit another homomorphism

$$
\chi_{2}: H_{F} \rightarrow C(F) / C(F)^{2}
$$

such that χ decomposes into the product $\chi=\chi_{1} \cdot \chi_{2}$.
For $c l(b) \in H_{F}$ put $E=F(\sqrt{b})$, recall $M=F(\sqrt{-1})$. Since $b \in F^{*}$ is a norm from M / F, it follows that -1 is a norm from E / F. So, we can choose an

$$
e \in E \quad \text { with } N_{E / F}(e)=-1 .
$$

Furthermore, for each place $p \notin S$ of F we choose an extension P of p to E. Clearly, such a p is either inert or splits in E / F. If p splits in $E / F, p R_{E}=P \bar{P}$, then

$$
\nu_{P}(e)+\nu_{\bar{P}}(e)=\nu_{p}(N(e))=\nu_{p}(-1)=0 ;
$$

in particular,

$$
\nu_{P}(e) \equiv \nu_{\bar{P}}(e) \bmod 2
$$

Definition 3.1. Let

$$
\chi_{2}: H_{F} \rightarrow C(F) / C(F)^{2}
$$

be the homomorphism given by

$$
c l(b) \rightarrow c l\left(\prod_{p \notin S} p^{\nu_{P}(e)}\right) .
$$

There is no problem in checking that χ_{2} is well-defined. We observe that $\chi_{2}(c l(b))$ is trivial if -1 is the norm of an S-unit e in $E=F(\sqrt{b})$. Clearly, χ_{2} is the trivial map if $\sqrt{-1} \in F$. The fact that χ_{2} is a homomorphism will follow from the Decomposition Theorem:
Theorem 3.2. For any number field F, we have

$$
\chi=\chi_{1} \cdot \chi_{2}
$$

Proof. The identity

$$
\chi(c l(b))=\chi_{1}(c l(b)) \cdot \chi_{2}(c l(b))
$$

in $C(F) / C(F)^{2}$ is clear if $c l(b) \in H_{F}$ is trivial. So, for $c l(b) \in H_{F}$ we may assume that

$$
b=a^{2}+1
$$

for some $a \in F^{*}$ since $b \in F^{*}$ is a norm from M / F. By (2.5),

$$
\chi_{1}(c l(b))=c l\left(\prod_{p \notin S} p^{\nu_{p}(b) / 2}\right) .
$$

The element $e=a+\sqrt{b} \in F(\sqrt{b})=E$ satisfies

$$
N_{E / F}(e)=a^{2}-b \cdot 1^{2}=-1
$$

Hence, by (3.1) with an extension $P \mid p$,

$$
\chi_{2}(c l(b))=c l\left(\prod_{p \notin S} p^{\nu_{P}(a+\sqrt{b})}\right) .
$$

The proof of this decomposition formula amounts to showing

$$
\chi(c l(b))=c l\left(\prod_{p \notin S} p^{\nu_{p}(b) / 2+\nu_{p}(a+\sqrt{b})}\right) .
$$

Now,

$$
\{-1, b\}=\{-1, b\}\{1-b, b\}=\{b-1, b\}=\left\{a^{2}, b\right\}=\{a, b\}^{2}
$$

in $K_{2}(F)$ and, by (2.1), it is only left to prove that for each $p \notin S$ we have

$$
\tau_{p}\{a, b\}=(-1)^{\nu_{p}(b) / 2+\nu_{p}(a+\sqrt{b})} \quad \text { in }\left(O_{F} / p\right)^{*}
$$

This will follow directly from the next two lemmas (3.3) and (3.4). We notice that the above formula shows $\tau_{p}\{a, b\}=1$ for p dyadic.

Lemма 3.3. If $\nu_{p}(b) \geqq 0$ then $\tau_{p}\{a, b\}=(-1)^{\nu_{p}(b) / 2}:$ If $\nu_{p}(b)<0$, then $\tau_{p}\{a, b\}=1$.
Proof. If $\nu_{p}\left(a^{2}+1\right)>0$, then a is a p-adic unit and

$$
\tau_{p}\{a, b\}=(-1)^{\circ} \cdot a^{\nu_{p}(b)} \cdot b^{\circ}=\left(a^{2}\right)^{\nu_{p}(b) / 2}=(-1)^{\nu_{p}(b) / 2} \quad \text { in }\left(O_{F} / p\right)^{*} \text {. }
$$

If $\nu_{p}\left(a^{2}+1\right)=0$, then $\nu_{p}(a) \geqq 0$. If a is also a p-adic unit, we have

$$
\tau_{p}\{a, b\}=(-1)^{\circ} \cdot a^{\circ} \cdot b^{\circ}=1=(-1)^{\nu_{p}(b) / 2} \quad \text { in }\left(O_{F} / p\right)^{*}
$$

If $\nu_{p}(a)>0$, we have as well that

$$
\tau_{p}\{a, b\}=(-1)^{\circ} \cdot a^{\circ} \cdot\left(a^{2}+1\right)^{-\nu_{p}(a)}=1=(-1)^{\nu_{p}(b) / 2} \quad \text { in }\left(O_{F} / p\right)^{*} .
$$

If $\nu_{p}\left(a^{2}+1\right)<0$, then $\nu_{p}(a)<0$. More precisely,

$$
a^{-2}\left(1+a^{2}\right)=1+a^{-2} \equiv 1 \bmod p
$$

implies

$$
2 \nu_{p}(a)=\nu_{p}\left(a^{2}+1\right)
$$

We have

$$
\begin{aligned}
\tau_{p}\{a, b\} & =(-1)^{2} \cdot a^{\nu_{p}\left(a^{2}+1\right)} \cdot\left(a^{2}+1\right)^{-\nu_{p}(a)} \\
& =\left(a^{2} / 1+a^{2}\right)^{\nu_{p}(a)}=1 \quad \text { in }\left(O_{F} / p\right)^{*}
\end{aligned}
$$

Essentially, the computations in the proof of (3.3) have been performed before in [6]. Let P denote an extension of the non-dyadic finite place p of F to $E=F(\sqrt{b})$.

Lemma 3.4. If $\nu_{p}(b) \geqq 0$, then $\nu_{P}(a+\sqrt{b})=0$;
If $\nu_{p}(b)<0$, then $\nu_{P}(a+\sqrt{b})= \pm \nu_{p}(b) / 2$.
Proof. If $\nu_{p}\left(a^{2}+1\right) \geqq 0$, then $\nu_{p}(a) \geqq 0$. The minimal polynomial of $a+\sqrt{b}$ over F is $t^{2}-2 a t-1$ and we conclude that, for $P \mid p, a+\sqrt{b}$ is a P-adic unit; that is,

$$
\nu_{P}(a+\sqrt{b})=0
$$

If $\nu_{p}\left(a^{2}+1\right)<0$, then $2 \nu_{p}(a)=\nu_{p}\left(a^{2}+1\right)$ as we have noted in (3.3). If p were inert in E / F, we would have $\nu_{P}(a+\sqrt{b})=0$, contradicting $\nu_{p}(a)<0$. Thus p splits in E / F; that is, b is a local square in the completion of F at p. Putting $a=\epsilon \pi^{-s}$ with ϵ a p-adic unit, $s>0$, we now have $b=\delta^{2} \pi^{-2 s}$ with δ a p-adic unit. From $b=a^{2}+1$ we conclude that

$$
\delta^{2}=\epsilon^{2}+\pi^{2 s}
$$

by replacing δ with $-\delta$, if necessary, we therefore may assume that $\delta \equiv \epsilon \bmod \pi$. Using $p \notin S$, we see that $\delta+\epsilon$ is a p-adic unit and, because

$$
\pi^{2 s}=\delta^{2}-\epsilon^{2}=(\delta+\epsilon)(\delta-\epsilon)
$$

we conclude that $\nu_{p}(\delta-\epsilon)=2 s$. We have

$$
a+\sqrt{b}=\pi^{-s}(\epsilon+\delta) \quad \text { or } \quad a+\sqrt{b}=\pi^{-s}(\epsilon-\delta),
$$

so

$$
\nu_{P}(a+\sqrt{b})=-s=\nu_{p}(b) / 2 \quad \text { or } \nu_{P}(a+\sqrt{b})=-s+2 s=s=-\nu_{p}(b) / 2
$$

Thus, in either case,

$$
\tau_{p}\{a, b\}=(-1)^{\nu_{p}(b) / 2+\nu_{P}(a+\sqrt{b})}
$$

and we have proved the Decomposition Theorem (3.2).
In order to make the decomposition $\chi=\chi_{1} \cdot \chi_{2}$ more effective, we shall give another description of χ_{2}. For $c l(b) \in H_{F}$ we can choose an

$$
m \in M \quad \text { with } N_{M / F}(m)=b .
$$

For each place $p \notin S$ of F we choose an extension P of p to M.
Proposition 3.5. The homomorphism χ_{2} is also given by

$$
\begin{aligned}
\chi_{2}: H_{F} & \rightarrow C(F) / C(F)^{2} \\
c l(b) & \rightarrow c l\left(\prod_{p \notin S} p^{\nu_{P}(m)}\right) .
\end{aligned}
$$

Proof. Choose $c l(b) \in H_{F}$; clearly the class of $\prod_{p \notin S} p^{\nu_{P}(m)}$ in $C(F) / C(F)^{2}$ is well-defined. Hence, by (3.1), it suffices to show that for a particular choice of

$$
\begin{aligned}
& m \in M=F(\sqrt{-1}) \quad \text { with } N_{M / F}(m)=b, \\
& e \in E=F(\sqrt{b}) \quad \text { with } N_{E / F}(e)=-1,
\end{aligned}
$$

and a pair P_{1}, P_{2} of extensions of any place $p \notin S$ to M and E, respectively, we have

$$
\nu_{P_{1}}(m) \equiv \nu_{P_{2}}(e) \bmod 2
$$

This is clear if $c l(b)$ is trivial or $c l(b)=c l(-1)$ in H_{F}. So, we need only concern ourselves with $\operatorname{cl}(b) \neq F^{* 2},-F^{* 2}$. Consider then the composite number field

$$
M \cdot E=F(\sqrt{-1}, \sqrt{b})
$$

the extension $M \cdot E / F$ is relative abelian of degree 4 over F with elementary abelian Galois group. As before, we may choose $b \in F^{*}$ such that

$$
b=a^{2}+1 \quad \text { for some } a \in F^{*} .
$$

Thus $m=1+a i \in M$ satisfies $N_{M / F}(m)=b$, and $e=a+\sqrt{b} \in E$ satisfies $N_{E / F}(e)=-1$. Everything follows now from the identity

$$
(1+a i)(1-i)^{2}=(a+\sqrt{b})(1+(a-\sqrt{b}) i)^{2}
$$

Hence there exists a non-zero $x \in M \cdot E$ with

$$
m=e x^{2} \quad \text { in } M \cdot E
$$

Any $p \notin S$ is unramified in $M \cdot E / F$. Fix an extension P of p to $M \cdot E$. Then P is an extension to $M \cdot E$ of an extension P_{1} of p to M and of an extension P_{2} of p to E. These places P_{1} and P_{2} satisfy

$$
\nu_{P}(m)=\nu_{P_{1}}(m) \quad \text { and } \quad \nu_{P}(e)=\nu_{P_{2}}(e) .
$$

However, we know already that

$$
\nu_{P}(m) \equiv \nu_{P}(e) \bmod 2
$$

thus

$$
\nu_{P_{1}}(m) \equiv \nu_{P_{2}}(e) \bmod 2 .
$$

Using the description (3.5) for the homomorphism χ_{2} will make the decomposition $\chi=\chi_{1} \cdot \chi_{2}$ most useful in determining the 2-rank of the kernel of χ and hence the 4 -rank of $K_{2}\left(O_{F}\right)$. For number fields F with

$$
\sqrt{-1} \notin F
$$

we will now embed χ_{2} in an appropriate exact sequence.
By analogy with G_{F} we have the square class group G_{M} for $M=F(\sqrt{-1})$. Consider the homomorphism $N: G_{M} \rightarrow H_{F}$ induced by the norm $M^{*} \rightarrow F^{*}$ and the homomorphism $j: G_{F} \rightarrow G_{M}$ induced by the inclusion $F^{*} \rightarrow M^{*}$. The image of j is equal to the kernel of N, the kernel of j is the cyclic group C_{2} of order 2 generated by $\operatorname{cl}(-1) \in G_{F}$. So far,

$$
1 \rightarrow C_{2} \rightarrow G_{F} \rightarrow G_{M} \xrightarrow{N} H_{F}
$$

is exact. We are going to extend this sequence.
Lemma 3.6. The image of $N: G_{M} \rightarrow H_{F}$ is equal to the kernel of

$$
\chi_{2}: H_{F} \rightarrow C(F) / C(F)^{2} .
$$

Proof. The containment $\operatorname{im} N \subseteq \operatorname{ker} \chi_{2}$ is immediate. For the reversed containment, suppose $c l(b) \in \operatorname{ker} \chi_{2}$; that is, there is an $m \in M$ with $N_{M / F}(m)=b$ and

$$
c l\left(\prod_{p \notin S} p^{\nu P(m)}\right)=1 \quad \text { in } C(F) / C(F)^{2} .
$$

Hence there is a $y \in F^{*}$ such that

$$
\nu_{p}(y) \equiv \nu_{P}(m) \bmod 2
$$

for every place $p \notin S$ of F with extension $P \mid p$ to M. From

$$
\begin{aligned}
N_{M / F}(y m) & =y^{2} N_{M / F}(m) \quad \text { and } \\
\nu_{P}(y m) & =\nu_{p}(y)+\nu_{p}(m) \equiv 0 \bmod 2
\end{aligned}
$$

we now conclude that $\operatorname{cl}(y m) \in G_{M}$ satisfies

$$
N(c l(y m))=N(c l(m))=c l(b) \quad \text { in } H_{F} .
$$

This shows ker $\chi_{2} \subseteq \operatorname{im} N$.

Let us turn to the S-ideal class group $C(M)$ of M and consider the homomorphism

$$
i: C(F) / C(F)^{2} \rightarrow C(M) / C(M)^{2}
$$

that is induced by the canonical homomorphism $i_{*}: C(F) \longrightarrow C(M)$.
Lemma 3.7. The image of $\chi_{2}: H_{F} \rightarrow C(F) / C(F)^{2}$ is equal to the kernel of

$$
i:(C F) / C(F)^{2} \rightarrow C(M) / C(M)^{2}
$$

Proof. First we prove the containment $\operatorname{im} \chi_{2} \subseteq \operatorname{ker} i$. An element $\chi_{2}(c l(b))$ is a class in $C(F) / C(F)^{2}$ of a fractional R_{F}-ideal of the form

$$
\prod_{p, p s s^{p,(m)}}
$$

where $m \in M, N_{M / F}(m)=b$ with $c l(b) \in H_{F}$ and $P \mid p$. If p is inert in M / F, then

$$
p^{\nu_{P}(m)} \cdot R_{M}=P^{\nu_{P}(m)}
$$

if p splits in $M / F, p R_{M}=P \bar{P}$, then

$$
p^{\nu_{P}(m)} \cdot R_{M}=P^{\nu_{P}(m)} \bar{P}^{\nu_{P}(m)}=P^{\nu_{P}(m)} \bar{P}^{\nu_{\bar{p}}(m)} \bar{P}^{s}
$$

with

$$
s=\nu_{P}(m)-\nu_{\bar{P}}(m) \equiv \nu_{P}(m)+\nu_{\bar{P}}(m)=\nu_{p}(N(m))=\nu_{p}(b) \equiv 0 \bmod 2 .
$$

So, s is even, and the class $i\left(\chi_{2}(c l(b))\right)$ in $C(M) / C(M)^{2}$ is the class of the fractional R_{M}-ideal $m R_{M}$, hence trivial. Thus im $\chi_{2} \subseteq \operatorname{ker} i$.

Next we prove the containment $\operatorname{ker} i \subseteq \operatorname{im} \chi_{2}$. Consider a fractional R_{F}-ideal A with $\operatorname{cl}(A) \in \operatorname{ker} i$; that is,

$$
A R_{M}=m B^{2}
$$

for some $m \in M$ and some fractional R_{M}-ideal B. Put $b=N_{M / F}(m)$. Then $\nu_{p}(b) \equiv 0 \bmod 2$ for all $p \notin S$, so $c l(b) \in H_{F}$ and, in $C(M) / C(M)^{2}$,

$$
\chi_{2}(c l(b))=c l\left(\prod_{p \notin S} p^{\nu_{p}(m)}\right)=c l\left(\prod_{p \nless S} p^{\nu_{p}(A)}\right)=c l(A)
$$

since $\nu_{P}(m) \equiv \nu_{P}\left(A R_{M}\right) \equiv \nu_{p}(A) \bmod 2$. Thus ker $i \subseteq \operatorname{im} \chi_{2}$.

These two lemmas add two more terms to the above exact sequence and place the homomorphism χ_{2} in proper context. We have obtained

Proposition 3.8. For a number field F with $\sqrt{-1} \notin F$, we have an exact sequence

$$
1 \rightarrow C_{2} \rightarrow G_{F} \rightarrow G_{M} \xrightarrow{N} H_{F} \xrightarrow{\chi_{2}} C(F) / C(F)^{2} \rightarrow C(M) / C(M)^{2} .
$$

Corollary 3.9. If $\sqrt{-1} \notin F$, then

$$
\text { 2-rk ker } \chi_{2}=r_{2}(F)+1+g_{2}(M)-g_{2}(F)+2 \text {-rk } C(M)-2 \text {-rk } C(F) .
$$

Proof. By (3.8) we have an exact sequence

$$
1 \rightarrow C_{2} \rightarrow G_{F} \rightarrow G_{M} \rightarrow \operatorname{ker} \chi_{2} \rightarrow 1 .
$$

Now, by (2.4),

$$
\begin{aligned}
2-\mathrm{rk} G_{F} & =r_{1}(F)+r_{2}(F)+g_{2}(F)+2 \text {-rk } C(F) \\
2 \text {-rk } G_{M} & =r_{1}(F)+2 r_{2}(F)+g_{2}(M)+2 \text {-rk } C(M) .
\end{aligned}
$$

The assertion follows by considering the alternating sum of 2-ranks.
4. Factorization. We continue to assume that F is a number field with $\sqrt{-1} \notin F$. In view of (2.3), our objective is to find the 2-rank of the kernel of

$$
\chi: H_{F} \rightarrow C(F) / C(F)^{2}
$$

for all such number fields F.
The first part of this section consists of unit considerations. We are motivated by the following observation. Let U_{M} be the group of S-units of $M=F(\sqrt{-1})$ and, for $m \in U_{M}$, put $b=N_{M / F}(m)$. Then clearly $c l(b) \in H_{F}$. Moreover, we notice:

$$
\begin{aligned}
& c l(b) \in \operatorname{ker} \chi_{1}, \text { by }(3.1), \text { since } b \in U_{F} \\
& c l(b) \in \operatorname{ker} \chi_{2}, \text { by }(3.5), \text { since } b \in N_{M / F}\left(U_{M}\right) .
\end{aligned}
$$

Hence, $c l(b) \in \operatorname{ker} \chi$, by (3.2), and we have seen that

$$
N\left(U_{M} / U_{M}^{2}\right) \subseteq \operatorname{ker} \chi,
$$

where

$$
N: U_{M} / U_{M}^{2} \rightarrow U_{F} / U_{F}^{2}
$$

is the homomorphism induced by the norm $M^{*} \rightarrow F^{*}$.
Now we are going to exhibit a natural group H_{0} with

$$
N\left(U_{M} / U_{M}^{2}\right) \subseteq H_{0} \subseteq \operatorname{ker} \chi
$$

satisfying

$$
2 \text {-rk } H_{0}=g_{2}(M)-g_{2}(F)+r_{2}(F)+1
$$

This will yield

$$
\text { 2-rk ker } \chi \geqq g_{2}(M)-g_{2}(F)+r_{2}(F)+1
$$

and hence, by (2.3),

$$
\text { 4-rk } K_{2}\left(O_{F}\right) \geqq g_{2}(M)-g_{2}(F) ;
$$

that is, for all number fields F, a lower bound for the 4-rank of $K_{2}\left(O_{F}\right)$ is given by the number of dyadic primes of F that split in M / F.

Definition 4.1. Let $\operatorname{cl}(b) \in H_{F}$; then $c l(b)$ lies in H_{0} if and only if there is an $m \in M$ and a fractional R_{F}-ideal B satisfying

$$
N_{M / F}(m)=b \text { and } m R_{m}=B R_{M}
$$

It is clear that H_{0} is a subgroup of H_{F} that contains $N\left(U_{M} / U_{M}^{2}\right)$; in fact, $H_{0} \subset \operatorname{ker} \chi$. This containment will also follow directly from the Factorization Theorem (4.8).

Recall, from section 2, the epimorphism

$$
\chi_{0}: G_{F} \rightarrow{ }_{2} C(F) .
$$

Suppose $c l(b) \in H_{0}$ with $N_{M / F}(m)=b$ and $m R_{M}=B R_{M}$; taking norms yields $b R_{F}=B^{2}$, thus, by definition,

$$
\chi_{0}(c l(b))=c l(B) \text { in } C(F)
$$

for this R_{F}-ideal B, which lies in the kernel of

$$
i_{*}: C(F) \rightarrow C(M)
$$

So, the restriction of χ_{0} to H_{0} yields a homomorphism

$$
\chi_{0}: H_{0} \rightarrow \operatorname{ker} i_{*}
$$

which is clearly surjective. We put

$$
N_{0}=\operatorname{ker}\left(N: U_{M} / U_{M}^{2} \rightarrow U_{F} / U_{F}^{2}\right) .
$$

Lemma 4.2. There is an exact sequence

$$
1 \rightarrow N_{0} \rightarrow U_{M} / U_{M}^{2} \xrightarrow{N} H_{0} \xrightarrow{\chi_{0}} \operatorname{ker} i_{*} \rightarrow 1 .
$$

Proof. All that is left to show is the exactness at H_{0}. The containment

$$
N\left(U_{M} / U_{M}^{2}\right) \subseteq \operatorname{ker} \chi_{0}
$$

is immediate.
Now suppose $c l(b) \in H_{0}$ lies in $\operatorname{ker} \chi_{0}$. Then we have an $m \in M$ with $N_{M / F}(m)=b$ and a principal fractional R_{F}-ideal B with $m R_{M}=B R_{M}$; so,

$$
B=a R_{F} \quad \text { for some } a \in F^{*} .
$$

But this means $m=a \cdot u$ for some S-unit $u \in U_{M}$. We conclude

$$
c l(b)=c l\left(N_{M / F}(m)\right)=c l\left(a^{2} N_{M / F}(u)\right)=c l\left(N_{M / F}(u)\right) ;
$$

that is, $c l(b)$ is the class of the norm of an S-unit in U_{M}. Thus

$$
\operatorname{ker} \chi_{0} \subseteq N\left(U_{M} / U_{M}^{2}\right)
$$

The 2-ranks of N_{0} and $\operatorname{ker} i_{*}$ are not easily accessible. The idea is now to produce a second exact sequence involving N_{0} and $\operatorname{ker} i_{*}$ such that 2 -rk H_{0} drops out explicitly.

Let $u \in U_{M}$ with $c l(u) \in N_{0}$; then $N_{M / F}(u)$ is a square in F^{*}, actually in U_{F}. Thus u and \bar{u} differ only by a square in M^{*}. Therefore, for some $b \in F^{*}$ and some $m \in M^{*}$, we can write

$$
b=u m^{2} \quad \text { in } M^{*} .
$$

In particular, $c l(b) \in G_{F}$. Then consider

$$
\begin{aligned}
\mu: N_{0} & \rightarrow{ }_{2} C(F) \\
c l(u) & \rightarrow \chi_{0}(c l(b))
\end{aligned}
$$

and check that μ is well-defined. In fact, μ is a homomorphism with image

$$
\mu\left(N_{0}\right)=\operatorname{ker} i_{*} .
$$

The kernel of the natural homomorphism

$$
\nu: U_{F} / U_{F}^{2} \rightarrow U_{M} / U_{M}^{2}
$$

is cyclic of order 2 , generated by the class of -1 , and it is immediate that

$$
\nu\left(U_{F} / U_{F}^{2}\right) \subseteq N_{0}
$$

So far, we have

$$
1 \rightarrow C_{2} \rightarrow U_{F} / U_{F}^{2} \xrightarrow{\nu} N_{0} \quad \text { and } \quad N_{0} \xrightarrow{\mu} \operatorname{ker} i_{*} \rightarrow 1 .
$$

Lemma 4.3. There is an exact sequence

$$
1 \rightarrow C_{2} \rightarrow U_{F} / U_{F}^{2} \xrightarrow{\nu} N_{0} \xrightarrow{\mu} \operatorname{ker} i_{*} \rightarrow 1 .
$$

Proof. All that is left to show is the exactness at N_{0}. The containment

$$
\nu\left(U_{F} / U_{F}^{2}\right) \subseteq \operatorname{ker} \mu
$$

is immediate.
Now suppose $c l(u) \in N_{0}$ lies in $\operatorname{ker} \mu$. Then we can write $b=u m^{2}$ for some $b \in F^{*}, b R_{M}=B^{2}$ with a principal R_{F}-ideal B. Hence $b=v n^{2}$ for some $v \in U_{F}$ and $v=u\left(m n^{-1}\right)^{2}$. So $m n^{-1} \in U_{M}$ and $c l(u)$ in N_{0} is in the image of ν. Thus

$$
\operatorname{ker} \mu \subseteq \nu\left(U_{F} / U_{F}^{2}\right)
$$

The combination of these two lemmas implies immediately:
Proposition 4.4. For a number field F with $\sqrt{-1} \notin F$, we have

$$
2-\mathrm{rk} H_{0}=g_{2}(M)-g_{2}(F)+r_{2}(F)+1
$$

and hence

$$
\text { 4-rk } K_{2}\left(O_{F}\right) \geqq g_{2}(M)-g_{2}(F)
$$

Proof. By (4.2) and (4.3) we know
$2-\mathrm{rk} \operatorname{ker} i_{*}-2-\mathrm{rk} N_{0}=2-\mathrm{rk} H_{0}-2-\mathrm{rk} U_{M} / U_{M}^{2} \quad$ and
2 -rk ker $i_{*}-2-\mathrm{rk} N_{0}=1-2-\mathrm{rk} U_{F} / U_{F}^{2}$;
hence

$$
\text { 2-rk } \begin{aligned}
H_{0} & =1+2-\mathrm{rk} U_{M} / U_{M}^{2}-2-\mathrm{rk} U_{F} / I_{F}^{2} \\
& =1+\left(r_{1}(F)+2 r_{2}(F)+g_{2}(M)\right)-\left(r_{1}(F)+r_{2}(F)+g_{2}(F)\right) \\
& =g_{2}(M)-g_{2}(F)+r_{2}(F)+1 .
\end{aligned}
$$

Since $H_{0} \subseteq \operatorname{ker} \chi$, this shows, in view of (2.3),

$$
4-\operatorname{rk} K_{2}\left(O_{F}\right) \geqq g_{2}(M)-g_{2}(F) .
$$

We are going to relate the subgroup H_{0} of $\operatorname{ker} \chi$ of the kernel of the epimorphism

$$
\begin{aligned}
\alpha: G_{F} & \rightarrow{ }_{2} K_{2}\left(O_{F}\right) \\
\operatorname{cl}(b) & \rightarrow\{-1, b\} .
\end{aligned}
$$

Corollary 4.5. If F is a number field with $\sqrt{-1} \notin F$ for which 2-prim $K_{2}\left(O_{F}\right)$ is elementary abelian, then

$$
H_{0}=\operatorname{ker} \alpha .
$$

Proof. If 2-prim $K_{2}\left(O_{F}\right)$ is elementary abelian, then 2-rk ker $\chi=r_{2}(F)+1$, by (2.3). Since $\operatorname{ker} \alpha \subseteq \operatorname{ker} \chi$ and 2 -rk $\operatorname{ker} \alpha=r_{2}(F)+1$ we obtain

$$
\operatorname{ker} \alpha=\operatorname{ker} \chi
$$

Moreover, by (4.4), we conclude that $g_{2}(M)=g_{2}(F)$ and hence $2-\mathrm{rk} H_{0}=$ $r_{2}(F)+1$. Since $H_{0} \subseteq \operatorname{ker} \chi$ we obtain

$$
H_{0}=\operatorname{ker} \chi ;
$$

so, the kernel of α is equal to H_{0}.
This is the one case in which we have the opportunity of determining effectively the Tate kernel, $\operatorname{ker} \alpha$.

The second part of this section consists of class group considerations. The Factorization Theorem (4.8) will identify the difference between 4-rk $K_{2}\left(O_{F}\right)$ and $g_{2}(M)-g_{2}(F)$ as the 2-rank of the kernel of a natural norm homomorphism defined on class groups.

We denote the subgroup of elements of order at most 2 of the quotient of $C(M)$ modulo the image of $i_{*}: C(F) \rightarrow C(M)$ by $\Lambda(F)$; that is,

$$
\Lambda(F)={ }_{2}\left(C(M) / i_{*} C(F)\right) .
$$

Suppose $c l(b) \in H_{F}$ and $N_{M / F}(m)=b$. For each $p \notin S$ choose an extension $P \mid p$ to M and define a fractional R_{F}-ideal B by $\nu_{p}(B)=\nu_{P}(m)$ for $p \notin S$. Then $m B^{-1}$ has even order at every prime ideal of R_{M}. Thus, there exists a fractional R_{M}-ideal C such that

$$
m R_{M}=B C^{2} .
$$

Definition 4.6. Let $\lambda: H_{F} \rightarrow \Lambda(F)$ be the homomorphism given by $c l(b) \rightarrow$ $c l(C)$.

It may be routinely verified that λ is well-defined, hence a homomorphism. Just by comparing $m R_{M}=B R_{M}$ with $m R_{M}=B C^{2}$ in the definitions (4.1) and (4.6), we notice that

$$
\operatorname{ker} \lambda=H_{0} .
$$

Moreover, λ is surjective. Namely, let $\operatorname{cl}(C) \in \Lambda(F)$; then $B C^{2}$ is principal for some fractional R_{F}-ideal $B, B C^{2}=m R_{M}$ with $m \in M$, say. Put $b=N_{M / F}(m)$; so,

$$
b R_{F}=\left(B \cdot N_{M / F}(C)\right)^{2} .
$$

This shows that $c l(b) \in H_{F}$ and $\lambda(c l(b))=c l(C)$. Hence

$$
\operatorname{im} \lambda=\Lambda(F),
$$

and we have proved
Lemma 4.7. There is a short exact sequence

$$
1 \rightarrow H_{0} \rightarrow H_{F} \xrightarrow{\lambda} \Lambda(F) \rightarrow 1 .
$$

The missing link is now provided by the homomorphism

$$
n_{M / F}: \Lambda(F) \rightarrow C(F) / C(F)^{2}
$$

that is induced by the norm

$$
N: C(M) \rightarrow C(F)
$$

As a consequence of the decomposition (3.2) we prove the following factorization for χ.

Theorem 4.8. For a number field F with $\sqrt{-1} \notin F$, there is a commutative diagram

Proof. Suppose $c l(b) \in H_{F}, m \in M$ with $N_{M / F}(m)=b$. Write $m R_{M}=B C^{2}$ with fractional R_{F}, R_{M}-ideals B, C, respectively. From

$$
b R_{F}=\left(B N_{M / F}(C)\right)^{2}
$$

we see immediately, by (2.5), that

$$
\chi_{1}(c l(b))=\operatorname{cl}(B) \operatorname{cl}\left(N_{M / F}(C)\right) \quad \text { in } C(F) / C(F)^{2} .
$$

Now, by (3.5),

$$
\chi_{2}(c l(b))=c l\left(\prod_{p \nless S} p^{\nu_{P}(m)}\right)
$$

where, for $P \mid p$, we have

$$
\nu_{P}(m)=\nu_{P}\left(B R_{M}\right)+2 \nu_{P}(C)=\nu_{p}(B)+2 \nu_{P}(C) \equiv \nu_{p}(B) \bmod 2 .
$$

Therefore,

$$
\chi_{2}(c l(b))=c l(B) \quad \text { in } C(F) / C(F)^{2} .
$$

Then, by (3.2),

$$
\begin{aligned}
\chi(c l(b)) & =\chi_{1}(c l(b)) \cdot \chi_{2}(c l(b))=c l(B)^{2} \cdot c l\left(N_{M / F}(C)\right) \\
& =c l\left(N_{M / F}(C)\right)=n_{M / F} \circ \lambda(c l(b)) \quad \text { in } C(F) / C(F)^{2}
\end{aligned}
$$

since $\lambda(c l(b))=c l(C)$ in $\Lambda(F)$, by (4.6). The factorization formula is established.
Once again we see that $H_{0}=\operatorname{ker} \lambda$ is a subgroup of $\operatorname{ker} \chi$. The consequence we are interested in is the 4-rank formula:

Corollary 4.9. For a number field F with $\sqrt{-1} \notin F$, we have

$$
\text { 4-rk } K_{2}\left(O_{F}\right)=g_{2}(M)-g_{2}(F)+2 \text {-rk } \operatorname{ker} n_{M / F} .
$$

Proof. From the short exact sequence (4.7) and the commutative triangle (4.8) we have the diagram

$$
\begin{aligned}
& 1 \longrightarrow H_{0} \longrightarrow H_{F} \xrightarrow{\lambda} \Lambda(F) \longrightarrow 1 \\
& \chi \downarrow \swarrow n_{M / F} \\
& C(F) / C(F)^{2}
\end{aligned}
$$

and conclude

$$
2-\mathrm{rk} \operatorname{ker} \chi=2-\mathrm{rk} H_{0}+2-\mathrm{rk} \operatorname{ker} n_{M / F} .
$$

In (4.4) we have computed the 2 -rank of H_{0}, hence

$$
2-\mathrm{rk} \operatorname{ker} \chi=g_{2}(M)-g_{2}(F)+r_{2}(F)+1+2-\mathrm{rk} \operatorname{ker} n_{M / F},
$$

which, in view of (2.3), yields our claim.
For applications we refer to the next section. Let us notice that for

$$
N: C(M) \rightarrow C(F) \quad \text { and } \quad n_{M / F}: \Lambda(F) \rightarrow C(F) / C(F)^{2}
$$

we have a natural isomorphism

$$
\operatorname{ker} n_{M / F}={ }_{2}\left(\operatorname{ker} N / i_{*}\left({ }_{2} C(F)\right)\right) ;
$$

in particular,

$$
2-\mathrm{rk} \operatorname{ker} n_{M / F}=2-\mathrm{rk} \operatorname{ker} N / i_{*}\left({ }_{2} C(F)\right),
$$

which yields the reformulation:
Corollary 4.10. For a number field F with $\sqrt{-1} \notin F$, we have

$$
4 \text {-rk } K_{2}\left(O_{F}\right)=g_{2}(M)-g_{2}(F)+2 \text {-rk } \operatorname{ker} N / i_{*}\left({ }_{2} C(F)\right) .
$$

This is the 4 -rank formula as stated in (1.5).

5. Applications.

Elementary abelian 2-prim $K_{2}\left(O_{F}\right)$. Let us apply the 4-rank formulas (2.6) and (4.10) in order to obtain a characterization of all number fields F for which the 2-primary subgroup of $K_{2}\left(O_{F}\right)$ is elementary abelian. We will denote by $h(M / F)$ the relative S-class number of M / F; that is,

$$
h(M / F)=\# \operatorname{ker}(N: C(M) \rightarrow C(F)) .
$$

If $\sqrt{-1} \in F$, then 4-rk $K_{2}\left(O_{F}\right)=0$ if and only if $g_{2}(F)=1$ and 4-rk $C(F)=$ 0 , by (2.6).

If $\sqrt{-1} \notin F$ then $4-\mathrm{rk} K_{2}\left(O_{F}\right)=0$ if and only if $g_{2}(M)=g_{2}(F)$ and the 2-primary subgroup of the kernel of $N: C(M) \rightarrow C(F)$ is equal to $i_{*}\left({ }_{2} C(F)\right.$), by (4.10). The kernel of $i_{*}: C(F) \rightarrow C(M)$ is contained in ${ }_{2} C(F)$, hence

$$
2^{2-\mathrm{rk} C(F)}=\# i_{*}\left({ }_{2} C(F)\right) \cdot \# \operatorname{ker} i_{*} .
$$

So, the condition that 2-prim $\operatorname{ker} N=i_{*}\left({ }_{2} C(F)\right)$ means that $2^{2-\mathrm{rk} C(F)}$ is the exact 2-power dividing $h(M / F) \cdot \# \operatorname{ker} i_{*}$. We have obtained

Proposition 5.1. For a numbered field F with $\sqrt{-1} \in F$, we have: 2-prim $K_{2}\left(O_{F}\right)$ is elementary abelian if and only if F has only one dyadic prime and 2-prim $C(F)$ is elementary abelian.
For a number field F with $\sqrt{-1} \notin F$, we have: 2-prim $K_{2}\left(O_{F}\right)$ is elementary abelian if and only if no dyadic prime splits in M / F and $2^{2-\mathrm{rkC}(F)} \| h(M / F)$. \# ker i_{*}.

How explicit is this divisibility condition? The relative S-class number $h(M / F)$ can be expressed in terms of S-class numbers

$$
h(F)=\# C(F) \text { and } \quad h(M)=\# C(M)
$$

in the following way:

$$
h(M / F)=\left\{\begin{array}{lc}
h(M) / h(F) & \text { if there is a place in } S \text { that } \\
& \text { does not split in } M / F \\
2 h(M) / h(F) & \text { if all places in } S \text { split in } M / F .
\end{array}\right.
$$

Namely, the norm $N: C(M) \rightarrow C(F)$ is surjective unless $r_{1}(F)=0$ and all dyadic primes of F split in M / F, however the index of $N(C(M))$ in $C(F)$ is 2 in the exceptional case. In particular, in (5.1) we can replace the condition $2^{2-\mathrm{rk} C(F)} \| h(M / F) \cdot \# \operatorname{ker} i_{*}$ by

$$
2^{2-\mathrm{rkC} C(F)} \|(h(M) / h(F)) \cdot \# \operatorname{ker} i_{*} .
$$

For totally real number fields F this simplifies further, since $\operatorname{ker} i_{*}$ is trivial if $r_{2}(F)=0$ and $g_{2}(M)=g_{2}(F),[8]$. A determination of all real quadratic number fields F with 2-prim $K_{2}\left(O_{F}\right)$ elementary abelian has been given in [1].

However, if F is not totally real, then $\operatorname{ker} i_{*}$ might be non-trivial even if $g_{2}(M)=g_{2}(F)$. This feature makes the application of (5.1) more delicate. We have been informed about research in progress concerning the determination of all imaginary quadratic number fields F with 2-prim $K_{2}\left(O_{F}\right)$ elementary abelian. For examples we refer to Section 6.

Extreme cases. Using the decomposition $\chi=\chi_{1} \cdot \chi_{2}$, we would like to produce more explicit 4 -rank formulas for $K_{2}\left(O_{F}\right)$ in the extreme cases when $\chi=\chi_{1}$ or $\chi=\chi_{2}$.

Proposition 5.2. If $H_{F}=G_{F}$, then χ_{2} is trivial if and only if either $\sqrt{-1} \in F$ or

$$
1+g_{2}(M)+2-\mathrm{rk} C(M)=2\left(g_{2}(F)+2-\mathrm{rk} C(F)\right)
$$

In that case

$$
4-\mathrm{rk} K_{2}\left(O_{F}\right)=g_{2}(F)-1+4 \text {-rk } C(F) .
$$

Proof. If $\sqrt{-1} \in F$, then everything is clear, by (2.6). We now consider the case $\sqrt{-1} \notin F$. Since by assumption $H_{F}=G_{F}$ it follows that -1 is a norm from M / F and hence F is totally complex. Then, by (2.4),

$$
2 \text {-rk } H_{F}=2-\mathrm{rk} G_{F}=r_{2}(F)+g_{2}(F)+2-\mathrm{rk} C(F)
$$

and, by (3.9),

$$
\text { 2-rk ker } \chi_{2}=r_{2}(F)+1+g_{2}(M)-g_{2}(F)+2 \text {-rk } C(M)-2-\text { rk } C(F) .
$$

We equate

$$
2-\mathrm{rk} H_{F}=2-\mathrm{rk} \operatorname{ker} \chi_{2}
$$

and the first assertion follows.
Next, if we assume χ_{2} is trivial, then we have $\chi=\chi_{1}$, by (3.2), and since $G_{F}=H_{F}$ we have an exact sequence together with a commutative triangle

$$
\begin{gathered}
1 \longrightarrow U_{F} / U_{F}^{2} \longrightarrow H_{F} \xrightarrow{\chi_{0}} C(F) \longrightarrow 1 \\
\chi_{1} \downarrow \\
C(F) / C(F)^{2}
\end{gathered}
$$

Hence

$$
2 \text {-rk ker } \chi=2 \text {-rk ker } \chi_{1}=2 \text {-rk } U_{F} / U_{F}^{2}+4-\mathrm{rk} C(F)
$$

Since

$$
2-\mathrm{rk} U_{F} / U_{F}^{2}=\left(r_{2}(F)+1\right)+g_{2}(F)-1,
$$

application of (2.3) finishes the proof.

The reader will notice that (5.2) generalizes the old result (2.6), for the assumptions in (5.2) apply to a wider class of number fields F than just the ones with $\sqrt{-1} \in F$.

Corollary 5.3. Suppose F is a totally complex number field with $\sqrt{-1} \notin F$. If $g_{2}(F)=1$, then $H_{F}=G_{F}$ and χ_{2} is trivial if and only if either
i) $\quad g_{2}(M)=1 \quad$ and $\quad 2-\mathrm{rk} C(M)=2(2-\mathrm{rk} C(F))$
or
ii) $\quad g_{2}(M)=2$ and $1+2-\mathrm{rk} C(M)=2(2-\mathrm{rk} C(F))$.

Proof. If $r_{1}(F)=0$ and $g_{2}(F)=1$, then $H_{F}=G_{F}$; namely: if $c l(b) \in G_{F}$, then $\nu_{p}(b) \equiv 0 \bmod 2$ and hence $(-1, b)_{p}=+1$ for every finite non-dyadic place p of F. By assumption, F has no real infinite places, and so by reciprocity

$$
(-1, b)_{p}=+1
$$

also for the unique dyadic place p of F. Hence b is a norm from M / F and $c l(b) \in H_{F}$. Now apply (5.2).

We shall remind the reader of this in a later example (6.6) and the concluding exercise (7.3). For the other extreme we have

Proposition 5.4. If χ_{1} is trivial and $\sqrt{-1} \notin F$, then

$$
4-\mathrm{rk} K_{2}\left(O_{F}\right)=g_{2}(M)-g_{2}(F)+2-\mathrm{rk} C(M)-2-\mathrm{rk} C(F) .
$$

Proof. By (3.2) and (3.9) we have

$$
\begin{aligned}
2 \text {-rk ker } \chi & =2 \text {-rk ker } \chi_{2} \\
& =r_{2}(F)+1+g_{2}(M)-g_{2}(F)+2-\mathrm{rk} C(M)-2-\mathrm{rk} C(F) .
\end{aligned}
$$

Then (2.3) finishes the proof.
Clearly

$$
\chi_{1}: H_{F} \rightarrow{ }_{2} C(F) \rightarrow C(F) / C(F)^{2}
$$

is trivial if 4-rk $C(F)=2-\mathrm{rk} C(F)$.
Corollary 5.5. Let F be a number field with $4-\mathrm{rk} C(F)=2-\mathrm{rk} C(F)$ and $\sqrt{-1} \notin F$. Then

$$
\text { 4-rk } K_{2}\left(O_{F}\right)=g_{2}(M)-g_{2}(F)+2 \text {-rk } C(M)-2 \text {-rk } C(F) .
$$

We point out a special case
Corollary 5.6. Let F be a number field with odd S-class number $h(F)$ and $\sqrt{-1} \notin F$. Then

$$
\text { 4-rk } K_{2}\left(O_{F}\right)=g_{2}(M)-g_{2}(F)+2 \text {-rk } C(M) .
$$

In particular then 2-prim $K_{2}\left(O_{F}\right)$ is elementary abelian if and only if no dyadic prime splits in M / F and the S-class number $h(M)$ is also odd.

Examples illustrating these assertions are quite common. For the convenience of the reader we will provide in the appendix the explicit determination of 2-rk $C(F)$ and 2 -rk $C(M)$ in case of all quadratic number fields F.

Furthermore, computations of ker χ involving χ_{1} and χ_{2} can be carried out in many examples which do not fall into either of the two extremes; an illustration is the proof of (6.4).
6. Examples. Due to the lack of 4 -rank formulas for number fields F that are neither totally real nor contain $\sqrt{-1}$, so far information about 2-prim $K_{2}\left(O_{F}\right)$ for imaginary quadratic number fields F has been limited. For several imaginary quadratic number fields F of small discriminant, in absolute value, the whole group $K_{2}\left(O_{F}\right)$ has been computed in [13]. We put

$$
\begin{aligned}
& F=\mathbf{Q}(\sqrt{d}) \quad \text { with } d<0, \text { squarefree } \\
& h(F)=\# C(F) \quad S \text {-class number of } F .
\end{aligned}
$$

If $d \neq-1$, then $M=F(\sqrt{-1})$ is an abelian extension of \mathbf{Q} with degree 4 and Galois group $C_{2} \times C_{2}$. The 2-ranks of the S-class groups $C(F)$ and $C(M)$ have been listed in the appendix.

The wild kernel wild (O_{F}) (Hilbert Kernel) is a subgroup of the tame kernel $K_{2}\left(O_{F}\right)$ whose 2-rank was determined in [2] for all quadratic fields F. This allows us to describe the quadratic number fields F whose wild kernel has a trivial 2-primary subgroup; that is, for which \# wild $\left(O_{F}\right)$ is odd. The complete list of such imaginary quadratic number fields F was given in [5]:
Let $F=\mathbf{Q}(\sqrt{d})$ be imaginary quadratic. Then \# wild $\left(O_{F}\right)$ is odd if and only if

$$
\begin{array}{ll}
d=-1,-2,-p,-2 p & \text { with a prime } p \equiv \pm 3 \bmod 8 \text { or } \tag{6.1}\\
d=-p q & \text { with primes } p \equiv 3 \bmod 8, q \equiv 5 \bmod 8 \text { or } \\
d=-p & \text { with a prime } p \equiv 7 \bmod 8 .
\end{array}
$$

This leads to the following simple characterization of all imaginary quadratic number fields with a wild kernel of odd order.

Proposition 6.2. Let $F=\mathbf{Q}(\sqrt{d})$ be imaginary quadratic. Then:

$$
\text { \# wild }\left(O_{F}\right) \text { is odd if and only if }
$$

$h(F)$ is odd if and only if

2-prim $K_{2}\left(O_{F}\right)$ is elementary abelian of rank $g_{2}(F)-1$.
Proof. For $F=\mathbf{Q}(\sqrt{-1})$ the tame kernel $K_{2}\left(O_{F}\right)$ is trivial, hence all three properties hold for F. We will assume that $d<-1$.

We check (7.1) and find out that $F=\mathbf{Q}(\sqrt{d})$ occurs in the list (6.1) if and only if $2-\mathrm{rk} C(F)=0$; hence the first two properties are equivalent.

The condition that 2 -rk $K_{2}\left(O_{F}\right)=g_{2}(F)-1$ means that $h(F)$ is odd, by (1.2). Thus (5.6) applies and yields:

2-prim $K_{2}\left(O_{F}\right)$ is elementary abelian of rank $g_{2}(F)-1$ if and only if $g_{2}(M)=$ $g_{2}(F)$ and $h(M)$ is odd;
that is, if and only if $d \not \equiv 7 \bmod 8$ and $h(M)$ is odd. Now compare (7.1) and (7.2) and notice that

$$
\text { 2-rk } C(F)=0 \text { if and only if } d \not \equiv 7 \bmod 8 \text { and 2-rk } C(M)=0 .
$$

Hence the last two properties are equivalent.
Let us investigate 2-prim $K_{2}\left(O_{F}\right)$ for the fields $F=\mathbf{Q}(\sqrt{-p})$, where p denotes a rational prime number.

For $p \not \equiv 1 \bmod 8$ we conclude that 2 -rk $C(F)=0$, by (7.1), hence the structure of 2-prim $K_{2}\left(O_{F}\right)$ is known by (6.2).

For $p \equiv 1 \bmod 8$ we conclude that 2 -rk $C(F)=1$, by (7.1). Since $g_{2}(F)=1$, $g_{2}(M)=2$ we obtain $2-\mathrm{rk} K_{2}\left(O_{F}\right)=1$, by (1.2), and 4-rk $K_{2}\left(O_{F}\right) \geqq 1$, by (4.4). This yields

Example (6.3) Let $F=\mathbf{Q}(\sqrt{-p})$ with a prime p. Then

```
2-prim \(K_{2}\left(O_{F}\right)=\{1\} \quad\) if \(p=2\) or \(p \equiv 3,5 \bmod 8\)
2-prim \(K_{2}\left(O_{F}\right)=C_{2} \quad\) if \(p \equiv 7 \bmod 8\)
2-prim \(K_{2}\left(O_{F}\right)\) is cyclic of order divisible by \(4 \quad\) if \(p \equiv 1 \bmod 8\).
```

The imaginary quadratic number field F with smallest discriminant, in absolute value, for which 2-prim $K_{2}\left(O_{F}\right)$ was not determined in [13], is $F=$ $\mathbf{Q}(\sqrt{-35})$. In this regard, we deduce

Example 6.4. Let $F=\mathbf{Q}(\sqrt{-p q})$ with primes $p \equiv 7 \bmod 8$ and $q \equiv 5 \bmod 8$. Then:

$$
\text { 2-prim } K_{2}\left(O_{F}\right)=C_{2}, \text { generated by }\{-1,-1\} .
$$

Proof. From $g_{2}(F)=1$ and, by (7.1), 2 -rk $C(F)=1$ we see in view of (1.2) that

$$
2-\mathrm{rk} K_{2}\left(O_{F}\right)=1
$$

Now, 2-rk $G_{F}=3$, by (2.4), and hence the classes of $-1,2, q$ form a basis for G_{F}. Clearly the classes of 2 and q belong to H_{F}; namely

$$
2=N_{M / F}(1+i) \quad \text { and } \quad q=N_{M / F}(a+b i),
$$

where $q=a^{2}+b^{2}$ for some $a, b \in \mathbf{Z}$. However, also -1 is a norm from M / F since the level of F is 2 , compare [10]. So, $G_{F}=H_{F}$,

$$
2-\mathrm{rk} H_{F}=3,
$$

and the classes of $-1,2, q$ form a basis for H_{F}.
From (3.9) we conclude that

$$
2-r k \operatorname{ker} \chi_{2}=2
$$

since $g_{2}(M)=1$ and 2 -rk $C(M)=1$, by (7.2). As noted above, 2 is the norm of the S-unit $1+i$ from M / F; so, $c l(2) \in H_{F}$ is a norm from G_{M} and hence, by (3.5),

$$
\chi_{2}(c l(2))=1 \quad \text { in } C(F) / C(F)^{2} .
$$

To see that $\chi_{2}(c l(q))$ is also trivial we refer to our comment after the original definition (3.1) of χ_{2}. It is enough to show that there exists an $e \in F(\sqrt{q})=$ $\mathbf{Q}(\sqrt{-p q}, \sqrt{q})$ with $N_{E / F}(e)=-1$. We can make the choice $e=\epsilon$, the fundamental unit of $\mathbf{Q}(\sqrt{q})$. Then

$$
N_{E / F}(\epsilon)=N_{\mathbf{Q}(\sqrt{q}) / \mathbf{Q}}(\epsilon)=-1
$$

in view of $q \equiv 1 \bmod 4$. Hence

$$
\chi_{2}(c l(q))=1 \quad \text { in } C(F) / C(F)^{2} .
$$

This implies that

$$
\chi_{2}(c l(-1)) \neq 1 \quad \text { in } C(F) / C(F)^{2} .
$$

Since, see (2.5), $\chi_{1}(c l(-1))$ is trivial the decomposition $\chi=\chi_{1} \cdot \chi_{2}$, (3.2), tells us that

$$
\chi(c l(-1)) \neq 1 \quad \text { in } C(F) / C(F)^{2} .
$$

Hence, $c l(-1) \notin \operatorname{ker} \chi$; so, by (2.2), the Steinberg symbol $\{-1,-1\}$ is not a square in $K_{2}\left(O_{F}\right)$. Thus we have exhibited, in the cyclic group 2-prim $K_{2}\left(O_{F}\right)$, an element of order 2 that is not a square; that is, 2-prim $K_{2}\left(O_{F}\right)$ is cyclic of order 2 , and $\{-1,-1\}$ is the generator.

In this example it can be shown that the kernel of

$$
i_{*}: C(F) \rightarrow C(M)
$$

is non-trivial even though 2-prim $K_{2}\left(O_{F}\right)$ is elementary abelian. In a similar way, we can determine all fields $F=\mathbf{Q}(\sqrt{-p q})$ with primes p, q, for which the 2-primary subgroup of $K_{2}\left(O_{F}\right)$ is elementary abelian.

We state the following example without proof
Example 6.5. Let $E=\mathbf{Q}(\sqrt{p q r})$, with primes $p, q, r \equiv 3 \bmod 8$ satisfying $\binom{p}{q}=\left(\frac{q}{r}\right)=\left(\frac{r}{p}\right)=+1$. Then 2-prim $K_{2}\left(O_{E}\right)$ is elementary abelian of rank 4, while 2-prim $K_{2}\left(O_{F}\right)$ is elementary abelian of rank 2.

To illustrate (6.5) the choices $p=3, q=11, r=19$ may be used. Our final example will appeal to both (5.3), in which case χ_{2} is trivial, and (5.5), in which case χ_{1} is trivial.
Example 6.6. Let $F=\mathbf{Q}(\sqrt{-2 p})$ with a prime $p \equiv 9 \bmod 16$. Then

$$
2 \text {-prim } K_{2}\left(O_{F}\right)=C_{2}
$$

Proof. We note that $g_{2}(F)=g_{2}(M)=1$ and, by (7.1), 2-rk $C(F)=1$. This tells us, by (1.2), that 2-rk $K_{2}\left(O_{F}\right)=1$.

First suppose that p cannot be written as $x^{2}+32 y^{2}$ with $x, y \in \mathbf{Z}$. Then $2-\mathrm{rk} C(M)=1$, by (7.2), since p is in A^{-}. Now from (24.6) in [4] it will follow that 8 divides the ordinary class number of F, and hence the order of the S-class group $C(F)$ is divisible by 4 . Thus 2 -rk $C(F)=4$-rk $C(F)$ and (5.5) applies. We conclude that

$$
4-\operatorname{rk} K_{2}\left(O_{F}\right)=0
$$

Next suppose that p can be written as $x^{2}+32 y^{2}$ for some $x, y \in \mathbf{Z}$. Then 2-rk $C(M)=2$, by (7.2), since p is in A^{+}. We deduce from (5.3) that $H_{F}=G_{F}$ and χ_{2} is trivial. Thus, by (5.2),

$$
4-\mathrm{rk} K_{2}\left(O_{F}\right)=4 \text {-rk } C(F)
$$

Now it will follow from (24.6) in [4] that 4 is the exact 2-power dividing the ordinary class number of F.

It may be seen as follows that the dyadic prime of F is not principal. If it were then it would have a generator which is in $O_{F}=\mathbf{Z}[\sqrt{-2 p}]$ and has norm 2. This implies that $2=a^{2}+2 p b^{2}$ has a solution in rational integers, which it obviously does not.

We conclude that the order of the S-class group $C(F)$ is congruent to $2 \bmod 4$; hence 4 -rk $C(F)=0$. Again we obtain that

$$
4-\mathrm{rk} K_{2}\left(O_{F}\right)=0
$$

Thus, in any case, 2-prim $K_{2}\left(O_{F}\right)$ is elementary abelian of rank 1.
To illustrate (6.6) the primes $73 \in A^{-}$and $41 \in A^{+}$may be chosen. In a similar way, we can determine all fields $F=\mathbf{Q}(\sqrt{-2 p})$ with a prime p for which the 2-primary subgroup of $K_{2}\left(O_{F}\right)$ is elementary abelian.
7. Appendix. The objective is to make the determination of the 4 - rank of $K_{2}\left(O_{F}\right)$ explicit for the quadratic number fields F. We put

$$
F=\mathbf{Q}(\sqrt{d}), \quad M=\mathbf{Q}(\sqrt{d}, \sqrt{-1})
$$

with $d \in \mathbf{Z},|d|>1$, square free. As before S is the set of infinite and dyadic primes, $C(F)$ and $C(M)$ are the S-ideal class groups of F and M, respectively. Let

$$
\begin{aligned}
2^{s} & =\# \text { of elements in }\{1,-1,2,-1\} \text { that are norms from } F / \mathbf{Q} \\
t & =\# \text { of odd prime divisors of } d \\
t_{1} & =\# \text { of prime divisors } p \text { of } d \text { with } p \equiv 1 \bmod 4 .
\end{aligned}
$$

Lemma 7.1. The 2-rank of the S-class group $C(F)$ is given by

$$
2-\mathrm{rk} C(F)= \begin{cases}s+t-1 & \text { if } d \not \equiv 1 \bmod 8, d<0 \\ s+t-2 & \text { if } d \equiv 1 \bmod 8, d<0 \\ s+t-2 & \text { if } d \not \equiv 1 \bmod 8, d>0 \\ s+t-3 & \text { if } d \equiv 1 \bmod 8, d>0\end{cases}
$$

Proof. This determination can be performed in terms of genus theory, dating back to Gauss. Explicitly, the above list has been given in [1].

For rational primes $p \equiv 1 \bmod 8$, we let

$$
\begin{array}{llll}
p \in A^{+} & \text {if and only if } & p=x^{2}+32 y^{2} & \text { for some } \\
p \in A^{-} & \text {if and only if } & p \neq x^{2}+32 y^{2} & \text { for all } \\
& x, y \in \mathbf{Z}
\end{array}
$$

Lemma 7.2. The 2 -rank of the S-class group $C(M)$ is given by

This lemma can be established by appeal to the S-version of the exact hexagon associated with $M / \mathbf{Q}(\sqrt{-1})$. The reader is referred to [4], particularly Section 6.

We would like to finish by suggesting an exercise that makes use of the above two lists. Consider the imaginary quadratic fields $F=\mathbf{Q}(\sqrt{d})$ with

$$
d<-1 \text { square free }, \quad d \not \equiv 1 \bmod 8
$$

Then (5.3) applies to these fields F.
Exercise 7.3. Using (7.1), (7.2), and (5.3) determine those d for which χ_{2} is trivial.

For such d it will follow by (5.2) that

$$
\text { 4-rk } K_{2}\left(O_{F}\right)=4-\mathrm{rk} C(F)
$$

In particular, χ_{2} is trivial for $d=-p_{1} p_{2} \cdot \ldots \cdot p_{t}$ with $t \geqq 1$ primes $p_{1}, p_{2}, \ldots, p_{t}$ in A^{+}. For those d we may add, by (4.4), in view of $g_{2}(F)=1, g_{2}(M)=2$ that

$$
\text { 4-rk } K_{2}\left(O_{F}\right)=4-\mathrm{rk} C(F) \geqq 1 .
$$

References

1. B. Brauckmann, Die 2-Sylowgruppe des zahmen Kerns total-reeller Zahlkörper, Thesis, Münster (1987).
2. J. Browkin and A. Schinzel, On Sylow 2-subgroups of $K_{2}\left(O_{F}\right)$ for quadratic number fields F, J. reine angew. Math 331 (1982), 104-113.
3. A. Candiotti and K. Kramer, On the 2-Sylow subgroup of the Hilbert kernel of K_{2} of number fields, preprint (1987).
4. P. E. Conner and J. Hurrelbrink, Class number parity, Series Pure Math. 8 (World Scientific Publ. Co., Singapore, 1988).
5. J. Hurrelbrink, Class numbers, units, and K_{2}, to appear in Proc. Alg. K-Th. Conf. Lake Louise, Canada (1987), NATO ASI Series.
6. J. Hurrelbrink and M. Kolster, On the 2-primary part of the Birch-Tate conjecture for cyclotomic fields, Contemp. Math. 55 (1986), 519-528.
7. F. Keune, On the structure of K_{2} of the ring of integers in a number field, preprint (1987).
8. M. Kolster, The structure of the 2-Sylow subgroup of $K_{2}(O), I$, Comment. Math. Helvetici 61 (1986), 376-388.
9. -The structure of the 2-Sylow subgroup of $K_{2}(O)$, II, K-Theory 1 (1987), 467-479.
10. T. Y. Lam, The algebraic theory of quadratic forms (Reading, Mass, 1973).
11. A. S. Merkurjev and A. A. Suslin, On the K_{3} of fields, preprint (1987).
12. J. Milnor, Introduction to algebraic K-theory, Annals Math. Stud. 72 (Princeton, NJ, 1971).
13. J. Tate, Appendix to: The Milnor ring of a global field, SLNM 342 (1973), 429-446.
14. Relations between K_{2} and Galois cohomology, Inventiones math. 36 (1976), 257-274.

Lousiana State University,
Baton Rouge, Louisiana

