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Modelling and scaling laws of the ion emission
regime in Taylor cones
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This article presents a first-principles model for electrosprays operating in the ion emission
regime. The model considers ion emission from a Taylor cone anchored on a tubular
emitter, including the fluid dynamics as well as the electrostatic interaction between
the liquid, the electrodes and the ion beam. The model accounts for the self-heating
of the liquid due to ohmic and viscous dissipation, and the associated variation of the
viscosity and electrical conductivity with temperature. The numerical solution reproduces
the experimental phenomenology of the ion emission regime (e.g. current levels, the high
sensitivity to the ion solvation energy, the proportionality between the emitted current and
emitter potential, etc.), and other aspects of the underlying physics such as the coupling
between ion emission and self-heating of the liquid. The numerical solution is also used
to validate a simpler analytical model that yields scaling laws for the emitted current, and
for the characteristic length, current density and electric field of the emission region. The
analytical model also provides liquid-dependent criteria for the onset of the ion emission
regime.

Key words: electrohydrodynamic effects, electrokinetic flows

1. Introduction

Electrospray is well known for its ability to produce charged droplets and thin fibres
from liquids. Electrosprays can operate in a variety of regimes depending on the physical
properties of the liquid, its flow rate and the potential difference applied to the emitter
(Cloupeau & Prunet-Foch 1989). The cone-jet regime has been thoroughly studied because
it atomizes liquids into droplets with narrow size distributions and controllable average
diameters down to a few nanometres (Cloupeau & Prunet-Foch 1990; Gañán-Calvo &
Montanero 2009; Gamero-Castaño 2010; Herrada et al. 2012; Gamero-Castaño 2019).
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The meniscus of a cone-jet resembles the ideal Taylor cone (Taylor 1964), except for
the formation of a jet emanating from its vertex and whose natural breakup leads to the
formation of charged droplets. The electric field on the meniscus exhibits a maximum
in the cone-to-jet transition (Gamero-Castaño & Fernández De La Mora 2000). This
maximum is a function of the physical properties of the liquid, namely the surface tension,
density, dielectric constant and most importantly the electrical conductivity. Liquids with
electrical conductivities near 1 S m−1 produce jets and droplets with diameters of a few
tens of nanometres, and electric fields exceeding 1 V nm−1. Ions can be emitted from
surfaces sustaining such electrification levels in a process referred to as ion field emission.
In the case of cone-jets, ion field emission can take place from droplets and from the vertex
of the cone (Gamero-Castaño & Fernández De La Mora 2000). Emission from the vertex
leads to the ion emission regime, i.e. to the liquid being fully electrosprayed into molecular
ions without the formation of charged droplets. The ion emission regime has technological
applications in electric propulsion for spacecraft (Romero-Sanz, de Carcer & de la Mora
2005; Lenguito et al. 2010; Lenguito, de la Mora & Gomez 2011; de la Mora 2010; Hsu
et al. 2019; Kristinsson et al. 2019; Jia-Richards, Corrado & Lozano 2022; Pettersson,
Jia-Richards & Lozano 2022) and compact ion sources (Zorzos & Lozano 2008; Zorzos
2009; Fedkiw & Lozano 2009; Perez-Martinez et al. 2011; Guilet et al. 2011; Xu, Tao
& Lozano 2018). Ion field emission is modelled as a kinetic process in which the ion, in
order to evaporate from the surface, must overcome an energy barrier that depends on the
ion–liquid pair, i.e. on the ion solvation energy, and which is lowered by the electric field.
Müller (1941, 1956) and Iribarne & Thomson (1976) developed expressions for the energy
barrier based on the image charge induced by the ion as it moves away from the surface of
the liquid.

Cone-jets are typically operated from capillary tubes, a configuration that enables
feeding a liquid in a wide range of flow rates by simply imposing a pressure difference.
Although the ion emission regime can also be implemented in capillary tubes (Garoz et al.
2007), it is more often realized in externally wetted emitters (Lozano & Martinez-Sanchez
2005b; Castro et al. 2006). It is not understood why similar liquids operate in either
the cone-jet or the ion emission regimes. A high electrical conductivity, K � 1 S m−1,
is important for operation in the ion emission regime, which is explained by the
scaling of the maximum electric field in cone-jets (Gamero-Castaño & Magnani 2019)
and the electrostatic reduction of the energy barrier. However, at room temperature
an ionic liquid like 1-ethyl-3-methylimidazolium tetrafluoroborate, [C2C1Im][BF4], can
operate in the ion emission regime, while the ionic liquid 1-ethyl-3-methylimidazolium
bis((trifluoromethyl)sulfonyl)imide, [C2C1Im][Tf2N], having a similar conductivity, only
operates in the cone-jet mode. The solvation energy is a key parameter in ion emission, but
this property has not been measured for most ion–liquid pairs and can only be estimated.
Concentrated NaI/formamide solutions electrosprayed from a capillary tube transition
from the cone-jet mode to a mixed droplet/ion emission regime at sufficiently low flow rate
(Gamero-Castaño & Fernández De La Mora 2000). The [C2C1Im][BF4] electrosprayed
from a capillary tube behaves similarly, a combination of droplets and ions are produced
at most flow rates while the ion emission regime occurs at low flow rates (Chiu et al. 2003).
Ionic liquids that operate in the ion emission regime when electrosprayed from externally
wetted emitters also produce charged droplets if the flow rate is sufficiently high (Ticknor,
Miller & Chiu 2009).

The ion emission regime was first modelled by Higuera (2008), who considered
emission from an isolated droplet on a conductive surface. Coffman (2016) expanded
Higuera’s work by adding the dynamics of a feed system that supplies liquid to the
meniscus. This work also considered self-heating of the liquid. Recently, Gallud &
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Figure 1. Sketch of the model domain.

Lozano (2022) developed a model that includes net free charge in the liquid, originated
by conductivity gradients associated with self-heating and temperature variations. Gallud
& Lozano analyse the stability limits of the ion emission regime, identifying two different
upper stability limits related to the maximum current output and the maximum electric
stress a liquid meniscus can withstand. This work also highlights the importance of
dissipation, which increases the maximum electric field at which the ion emission regime
is stable. Gallud & Lozano find that the increase of the temperature does not affect
the ion current when the hydraulic impedance of the system is constant, a result that
may be related to the linear dependence between conductivity and temperature used in
this model. Furthermore, the heat dissipated is efficiently transported to the wall of the
emitter, resulting in a small temperature increase near the tip, approximately 5 %. However,
ionic liquids have an exponential dependence between conductivity and temperature and
this (Okoturo & VanderNoot 2004; Leys et al. 2008), together with the exponential ion
evaporation law, can have significant impacts on the current emitted.

This article develops a steady-state model for ion emission from a meniscus anchored on
a finite, cylindrical emitter. Section 2 describes the first-principles model, and introduces a
simpler analytical model with the goal of deriving the characteristic length of the emission
region. Section 3 explains the numerical methods for solving the system of equations.
Section 4 analyses the numerical solution using [C2C1Im][BF4] as a case study, and
derives the scaling law for the ion current and a criterion for the onset of the ion emission
regime. This criterion depends on the physical properties of the liquid, and correlates well
with experimental observations. A summary of the work is presented in § 5.

2. Model for an ion-emitting Taylor cone

2.1. Computational domain
Figure 1 shows the computational domain. We use cylindrical coordinates {x, r}. The
emitter is modelled as an equipotential cylinder with surfaces Σ1e and Σ2e, supporting a
Taylor cone with a free surface Σ12 ∪ Σ34. Here R(x) is the radius of the cross-section
of the cone. The domain is enclosed by an outer boundary formed by a plane Σ1c
perpendicular to the emitter, and the surface Σ1o placed far enough from the meniscus
so that the particular choice of position does not significantly affect the solution. The bulk
of the Taylor cone is divided into regions 2 and 3: the ion emission regime is characterized
by very small flow rates and the fluid motion and dissipation effects are expected to be
significant only near the tip of the meniscus, region 3. Similarly, the space surrounding the
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Taylor cone is divided into regions 1 and 4 to take advantage of the sharp decrease of the
space charge of the beam away from the emission area (the space charge density is only
retained in region 4). The use of these regions reduces the computational time because
regions 1 and 2 can be resolved with simplified equations and computational grids with
lower resolution than in regions 3 and 4. The model equations are highly nonlinear and
must be solved iteratively. The extent of regions 3 and 4 is determined in each iteration by
monitoring the ion emission area and the volumetric charge density in the beam.

2.2. Governing equations
The model is based on the leaky-dielectric formulation (Melcher & Taylor 1969; Saville
1997), extended to include ion-field emission, dissipation and the ion beam. The velocity
V and pressure P fields in the liquid fulfil the continuity and conservation of momentum
equations,

∇ · V = 0, (2.1)

ρV · ∇V = −∇P + ∇ · τμ, (2.2)

where ρ and μ are the density and viscosity of the liquid and τμ is the viscous stress
tensor,

τμ = μ
(∇V + ∇V T) . (2.3)

Ohmic and viscous dissipation are expected to be important, and the equation of
conservation of energy is used to compute the associated variation in temperature T ,

ρcV · ∇T = k∇2T + τμ : ∇V + Ei · J i, (2.4)

where c and k are the heat capacity and thermal conductivity of the liquid, while E and
J stand for the electric field and the current density. When needed, superscripts i and o
denote inside and outside the Taylor cone, respectively. The electrical conductivity K and
the viscosity are strong functions of temperature, and these dependencies are modelled
with exponential relations valid for ionic liquids (Okoturo & VanderNoot 2004; Leys et al.
2008),

K(T) = YKeBK/(T−TK), (2.5)

μ(T) = YμeBμ/(T−Tμ), (2.6)

where the constants YK , BK , TK , Yμ, Bμ and Tμ are liquid specific. All other
liquid properties are regarded constant, independent of temperature. Following the
leaky-dielectric formulation, the volumetric charge density inside the liquid is assumed
to be negligible and Ohm’s law is used to express the current density, J i = KEi.
Conservation of charge and the irrotational nature of the electric field then provide an
equation for the electric potential Φ i inside the liquid

∇ · (KEi) = 0 and E = −∇Φ → K∇2Φ i + ∇Φ i∇K = 0. (2.7)

Due to the assumption of zero volumetric charge, the model cannot require the fulfilment
of both conservation of charge and Gauss’ law for the electric field. To fulfil both
principles, the model would need to consider a non-zero volumetric charge ρe and a
current density J i = KEi + ρeV . In this case, the Navier–Stokes equation (2.2) would also
include the volumetric force ρeEi. We would like to point out that, similarly to Gallud &
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Modelling and scaling of ion emission in Taylor cones

Lozano (2022), we had also solved the problem including this volumetric force by using a
fictitious volumetric charge density ρe = (εε0∇Φ i∇K)/K. The resulting solution is nearly
identical to that of the present model. However, we have decided not to use this fictitious
volumetric charge because there is no physical or mathematical justification for it.

In the vacuum surrounding the Taylor cone the electric potential Φo fulfils Poisson
equation,

∇2Φo = −χω

ε0
. (2.8)

Here χ is the charge-to-mass ratio of the ions, ω is the ion mass density and ε0 is the
permittivity of vacuum. Following the leaky-dielectric formulation, net charge is only
present on the surface of the Taylor cone, and it is modelled as a surface charge density σ

fulfilling the conservation equation

d
dx

(rσV · t) = R(1 + R
′2

)1/2(KEi
n − Jω), (2.9)

where t is the unit vector tangential to the surface and Jω is the field-emitted ion current
density. Here En is the component of the electric field normal to the surface. Equation (2.9)
balances the charge convected on the surface, the charge injected from the bulk, and the
field-emitted charge. Additional equations that must be fulfilled at the surface Σ12 ∪ Σ34
include the jump of the normal components of the electric field, the balance of normal and
tangential stresses, and the kinematic velocity constraint (the velocity component normal
to the surface is coupled to the emitted current density),

Eo
n − εEi

n = σ

ε0
, (2.10)

t · τμn = t ·
(
τ o

M − τ i
M

)
n, (2.11)

γ n · (∇ · nI) n − P + n · τμn = n ·
(
τ o

M − τ i
M

)
n, (2.12)

V · n = Jω

χρ
. (2.13)

Here ε and n are the dielectric constant of the liquid and the unit vector normal to the
surface, respectively. The Maxwell stress tensor τM is given by

τM = εε0EE − ε0
E · E

2

[
ε − ρ

(
∂ε

∂ρ

)
T

]
, (2.14)

where the term ρ(∂ε/∂ρ)T is zero due to the incompressibility assumption. The emitted
ions are accelerated away from the surface by the electric field. They are modelled as
a continuum where the only significant force is that induced by the average electric
field, i.e. we neglect ion–ion collisions. The continuity and conservation of momentum
equations for the ion density and ion velocity v fields are

∇ · (ωv) = 0, (2.15)

∇ · (ωvv) = χωEo. (2.16)

Ion evaporation is modelled with the kinetic law proposed by Iribarne & Thomson (1976).
This equation relates the ion current density with the energy barrier that emitted ions must
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overcome

Jω = kBT
h

σ exp
(

−�GS − GE

kBT

)
, (2.17)

where kB and h are the Boltzmann and the Planck constants, �GS is the ion solvation
energy and GE is the electrostatic contribution to the energy barrier. A common approach
for determining GE consists of computing the electric field acting on the emitted ion as
the superposition of the fields induced by its image charge and the surface charge (Müller
1941, 1956; Iribarne & Thomson 1976). In this article we use an improved formulation that
takes into account the dielectric properties and the local curvature of the emitting surface
(Magnani & Gamero-Castaño 2022),

GE =
(

1 − Rc

r∗

)
qRcEo

n + q2(ε − 1)

8πε0Rc

∞∑
k=0

1

ε + 1 + 1
k

(
Rc

r∗

)2k+2

, (2.18)

where Rc is the local average curvature of the surface, r∗ is the position of the energy
barrier respect to the surface and q is the charge of the ion, equal to the fundamental charge
e for singly charged ions. Here r∗ is obtained numerically (Magnani & Gamero-Castaño
2022).

2.3. Characteristic scales and dimensionless equations
We estimate the characteristic length Lc of the ion-emitting region with a simplified model
for ion emission from an ideal Taylor cone. The electric field on the surface of the ideal
Taylor cone (Taylor 1964) is given by

ET(r) =
√

2γ

ε0

cos θT

r
, (2.19)

where r is the radial cylindrical coordinate and θT ∼= 49.29◦ is the cone semiangle (Taylor
1964). The electric field is singular at the vertex and will induce ion emission. Our
simplified model uses (2.19) to approximate Eo

n, and combines (2.9), (2.10) and (2.17)
to eliminate Ei

n and σ and obtain an explicit expression for the current density of emitted
ions (we assume negligible surface velocity),

Jω(r) = ET(r)
ε

K
+ h

ε0kBT
exp
(

�GS − GE

kBT

) . (2.20)

This expression resembles Ohms law with two resistances in series and driven by the
electric field: the resistance ε/K is associated with the injection of charge on the surface
from the bulk, and (h/ε0kBT) exp((�GS − GE)/kBT) is associated with the evaporation of
ions from the surface. Thus, the current density exhibits two limiting behaviours depending
on the dominance of each mechanism: far from the vertex the electric field is small, the

972 A34-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.717


Modelling and scaling of ion emission in Taylor cones

100 102

Lc

r (nm)

100

105

1010

1015

Io
n
 c

u
rr

en
t 

d
en

si
ty

 (
A

 m
–
2
)

Current density

r → 0 approximation

r → ∞ approximation

Figure 2. Estimation of the ion current density emitted from a Taylor cone, (2.20), computed with
T = 25 ◦C, ε = 10, �GS = 1.6 eV, γ = 0.05 N m−1 and K = 1 S m−1.

energy barrier is large and ion evaporation restricts the transport

Jω(r → ∞) ∼= ε0kBT
h

exp
(

−�GS − GE

kBT

)
ET , (2.21)

while near the vertex the electric field is large, the energy barrier is negligible, and the
emission is restricted by the availability of charge injected from the bulk

Jω(r → 0) ∼= K
ε

ET . (2.22)

In the first limit the surface charge is in near equipotential balance with the outer
electric field, σ ∼= ε0ET , while in the second limit ion emission depletes the surface
charge exponentially, σ ∼= [(kBε0/hK)εT exp(−((�GS − GE)/kBT))]−1ε0ET . Note also
that rJω(r) tends to zero towards the vertex, and therefore the total emitted current
(2π/sin θT)

∫∞
0 rJω(r) dr remains finite. This result is non-trivial given the exponential

dependence of the ion emission law on the electric field (2.17), and the singular
behaviour of the field at the vertex. However, this analysis comes with the caveat that
our approximation of the electric field, ET , may be inaccurate near the vertex due to the
depletion of the surface charge, and will need to be confirmed with the numerical solution
of the first-principles model. Figure 2 plots (2.20) and its two limiting behaviours. The
current density is largest near the axis and falls sharply soon after, clearly defining a region
from which most of the emission takes place. We define the characteristic length of the
ion-emitting region as the value of the radial coordinate where both limiting behaviours are
equal, which can be written explicitly when using the energy barrier for a planar conductor,
GE = √q3Eo

n/(4πε0) (Iribarne & Thomson 1976),

Lc = cos θTq6γ

8π2ε03�GS
4

[
1 − kBT

�GS
ln
(

εε0kBT
hK

)]−4

= α
cos θTq6γ

8π2ε03�GS
4 , (2.23)

where (kBT/�GS) ln(εε0kBT/hK) 
 1 for typical ion emission conditions, e.g. it has a
value of 0.101 for �GS = 1.6 eV, T = 25 ◦C, ε = 10 and K = 1 S m−1. The size of the
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Characteristic length Lc = cos θTγ q6

8π2ε03�GS
4

[
1 − kBT0

�GS
ln
(

εε0kBT0

hKc

)]−4

Characteristic electric field Ec = √
2γ cos θT/(ε0Lc)

Characteristic electric potential Φc = EcLc
Characteristic current density Jc = KcEc
Characteristic viscosity μc = μ(T0)

Characteristic conductivity Kc = K(T0)

Characteristic pressure Pc = γ /Lc
Characteristic temperature Tc = KcΦc

2/k
Characteristic energy Σc = kBTc
Characteristic ion density ωc = Φcε0/(χLc

2)

Characteristic fluid velocity Vfc = 2KcΦc/(ρχLc)

Characteristic ion velocity Vc = Vfcρ/ωc
Characteristic surface charge σc = KcΦc/Vfc
Characteristic mass mc = 2kBTc/Vc

2

Table 1. Characteristic scales used to non-dimensionalize the equations.

ion-emitting region is a strong function of the ion solvation energy, proportional to the
surface tension, and a weak function of the dielectric constant, the electrical conductivity
and temperature.

Table 1 shows the characteristic scales employed in the non-dimensionalization of the
equations. The characteristic viscosity and conductivity are the values at the upstream
temperature T0. The characteristic electric field is equal to the electric field on the surface
of an ideal Taylor cone at r = Lc. The characteristic fluid velocity is obtained using the
relation between the total emitted current and the flow rate Q, which in the ion emission
regime are proportional,

Q = 2π

χρ

∫
S

Jω dS. (2.24)

From this equation the characteristic flow rate is defined as

Qc = 2πΦcKcLc

χρ
, (2.25)

yielding the characteristic fluid velocity Qc/πLc
2. We list below the governing equations

in dimensionless form, with dimensionless variables written without additional markings,

∇ · V = 0, (2.26)

V · ∇V = − Π2

2 cos θT
∇P + 1

Re

[
μ∇2V + (∇V + ∇V T) · ∇μ

]
, (2.27)

PeV · ∇T − ∇2T = 2Π3

ReΠ2
μ
(∇V + ∇V T) : ∇V + K∇Φ i · ∇Φ i, (2.28)

K∇2Φ i = −∇Φ i · ∇K, (2.29)

∇2Φo = −ω, (2.30)

Eo
n − εEi

n = σ

2Π3
, (2.31)
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Modelling and scaling of ion emission in Taylor cones

ε Π1 = ρχkBEcLc
3/(2hk)

Re = 2KcEcLc/(μcχ) Π2 = ε0ρχ2/(4Kc
2)

Pe = 2cKcEcLc/(kχ) Π3 = ε0Ec/(ρχLc)

ΠG = k�GS/(kBKcEc
2Lc

2) Π4 = ek/(kBKcEcLc)

ΠΦ = ΦE/Φc Π5 = e/(8πε0EcLc
2)

Table 2. Dimensionless numbers parametrizing the solution.

d
dx

(rσV · t) = R(1 + R
′2

)1/2(KEi
n − Jω), (2.32)

Jω = Π1Tσ exp
(

−ΠG − GE

T

)
, (2.33)

GE = Π4

⎡
⎢⎣(1 − R

r∗

)
REo

n + Π5
ε − 1

R

∞∑
k=0

1

ε + 1 + 1
k

(
R
r∗

)2k+2

⎤
⎥⎦ , (2.34)

V · n = Jω

2
, (2.35)

ω∇ · v + v · ∇ω = 0, (2.36)

v · ∇v = −Π2Π3∇Φo, (2.37)

∇ · n − P + 4 cos θT

ReΠ2
μn · ∇V n = cos θT

[
Eo

n
2 − εEi

n
2 + (ε − 1) Et

2
]
, (2.38)

Etσ = 2Π3

ReΠ2
μt · (∇V + ∇V T)n. (2.39)

The equations include the 10 dimensionless numbers shown in table 2.

3. Numerical solution

The system of equations is highly nonlinear and must be solved using an iterative
scheme. Equations (2.26)–(2.39) are separated into groups solved sequentially, yielding
an approximate solution that is iterated until convergence. We next describe these clusters
of equations, relevant numerical methods and the solving scheme.

3.1. Electrostatic solution
The electric field, the surface charge and the flux of field-evaporated ions are computed by
solving (2.29)–(2.33) which, after algebraic manipulations and discretization, are written
as a single linear system of algebraic equations. First, we note that the right-hand sides of
(2.29) and (2.30) are significant only near the tip of the meniscus, i.e. in regions 3 and 4,
respectively. In these regions we solve the equations using finite differences in orthogonal
grids (see Appendix A) using a second-order central difference for the space derivatives. In
regions 1 and 2 these equations are well approximated by the Laplace equation, and solved
using the boundary element method (BEM) (Brebbia & Dominguez 1994; Brebbia, Telles
& Wrobel 2012; Bakr 2013). This method discretizes and solves the Laplace equation only
on the boundary of the domain by converting it into the linear system HΦ = GΦ ′, where
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M. Magnani and M. Gamero-Castaño

the potential and its normal derivative at the nodes of the discretized boundary are related
by the H and G matrices computed with standard BEM techniques. Furthermore, on the
surface of the meniscus we combine (2.31)–(2.33) to eliminate Jω and σ and obtain a
single equation relating the normal components of the electric field on both sides of the
surface, Ei

n and Eo
n, as follows:

Ei
n = Eo

n

ε + K

2Π3

[
Π1T exp

(
GE − ΠG

T

)
+ tr

r
Vt + dVt

dt

]

+
dσ

dt
Vt

K + 2εΠ3

[
Π1T exp

(
GE − ΠG

T

)
+ tr

r
Vt + dVt

dt

] . (3.1)

Here Vt is the surface tangential velocity and tr is the radial component of the tangential
vector. This equation is written for simplicity as

Ei
n = BEEo

n + Bσ , (3.2)

where the coefficients BE and Bσ are evaluated with the solution from the previous
iteration.

The BEM applied to region 1 is written in matrix form as

[
H12 H1o H14 G12 −G1c G14

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ12
Φ1o
Φ14
Eo

n
E1e
E1c
E14

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= − [H1e H1c G1o
]⎡⎣Φ1e

Φ1c
E1o

⎤
⎦ , (3.3)

where the subindexes in all elements refer to the labelling of the boundaries in figure 1.
The Φ1e, Φ1c and E1o vectors are boundary conditions,

Φ1e = ΠΦ, Φ1c = 0, E1o = 0. (3.4a–c)

The BEM applied to region 2 is written in matrix form as

[
H21 H23 G21 −G2e −G23

]
⎡
⎢⎢⎢⎣

Φ21
Φ23
Ei

n
E2e
E23

⎤
⎥⎥⎥⎦ = − [H2e] [Φ2e] , (3.5)

with boundary condition

Φ2e = ΠΦ. (3.6)
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Modelling and scaling of ion emission in Taylor cones

In region 3 equation (2.29) is written in the {ξ3, η3} orthogonal coordinate system using
the relations defined in Appendix A:(

∂ξ3

∂x

2
+ ∂ξ3

∂r

2
)

∂2Φ i

∂ξ3
2 +

(
∂η3

∂x

2
+ ∂η3

∂r

2
)

∂2Φ i

∂η32 +
(

∂2ξ3

∂x2 + ∂2ξ3

∂r2 + 1
r

∂ξ3

∂r

)
∂Φ i

∂ξ3

+
(

∂2η3

∂x2 + ∂2η3

∂r2 + 1
r

∂η3

∂r

)
∂Φ i

∂η3
= − 1

K

[
∂K
∂ξ3

(
∂ξ3

∂x

2
+ ∂ξ3

∂r

2
)

∂Φ i

∂ξ3

+ ∂K
∂η3

(
∂η3

∂x

2
+ ∂η3

∂r

2
)

∂Φ i

∂η3

]
. (3.7)

This equation is discretized using finite differences and written in matrix form

[
M3 B34 B23

]⎡⎣Φ3
Φ34
Φ23

⎤
⎦ = [F 3] , (3.8)

where M3 and F 3 are the matrix and the forcing term resulting from the discretization,
while B23 and B34 are matrices associated with the matching of boundary conditions in
the interfaces with regions 2 and 4, i.e. the electric potential and the normal component
of the electric field are continuous across these interfaces. Matrix M3 also contains the
symmetry condition at the axis,

∂Φ3

∂r
(ξ3, 0) = 0. (3.9)

Similarly, (2.30) is solved in region 4 in an orthogonal grid and, after discretization, written
as

[
M4 B43 B41

]⎡⎣Φ4
Φ34
Φ14

⎤
⎦ = − [ω] , (3.10)

where the matrix M4 contains the discretization of the equation and the boundary condition
at the axis

∂Φ4

∂r
(ξ4, 0) = 0 (3.11)

while matrices B43 and B41 contain the matching of boundary conditions between regions.
Equations (3.2), (3.3), (3.5), (3.8) and (3.10) are merged into a single linear system of

algebraic equations to solve for the electric potential in regions 3 and 4, Φ3 and Φ4, the
electric potential on the surface of the meniscus, Φ12 and Φ34, and the normal components
of the electric field on either side of the surface, Ei

n and Eo
n. With this solution the tangential

component of the electric field is computed by differentiating the electric potential along
the surface, while the surface charge density is obtained from (2.31).

3.2. Fluid dynamic solution
The continuity and momentum equations, (2.26) and (2.27), are solved in the stream
function-vorticity formulation, which in axisymmetric problems reduces the system of
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three coupled equations for the two velocity components and the pressure to a system of
two coupled equations for the stream function Ψ and the vorticity Ω ,

∂2Ψ

∂r2 + ∂2Ψ

∂x2 − 1
r

∂Ψ

∂r
= −rΩ, (3.12)

∂2Ω

∂r2 + ∂2Ω

∂x2 + 1
r

∂Ω

∂r
− Ω

r2 = Re
μr

(
∂Ψ

∂r
∂Ω

∂x
− ∂Ψ

∂x
∂Ω

∂r
+ 1

r
∂Ψ

∂x
Ω

)

− 1
μ

[
1
r

(
∂2Ψ

∂x2 − ∂2Ψ

∂r2 + 1
r

∂Ψ

∂r

)(
∂2μ

∂r2 − ∂2μ

∂x2

)

+ 2
r

(
1
r

∂Ψ

∂x
− 2

∂2Ψ

∂x∂r

)
∂2μ

∂x∂r
+ ∂Ω

∂x
∂μ

∂x
+ ∂Ω

∂r
∂μ

∂r

]
, (3.13)

with

U = 1
r

∂Ψ

∂r
, V = −1

r
∂Ψ

∂x
, (3.14a,b)

Ω = ∇ × V , (3.15)

where U and V are the axial and radial components of the velocity. Equations (3.12) and
(3.15) are solved only in region 3, where the liquid velocity is expected to be significant,
using the {ξ3, η3} orthogonal coordinates defined in Appendix A,

(
∂ξ3

∂x

2
+ ∂ξ3

∂r

2
)

∂2Ψ

∂ξ3
2 +

(
∂η3

∂x

2
+ ∂η3

∂r

2
)

∂2Ψ

∂η32 +
(

∂2ξ3

∂x2 + ∂2ξ3

∂r2 − 1
r

∂ξ3

∂r

)
∂Ψ

∂ξ3

+
(

∂2η3

∂x2 + ∂2η3

∂r2 − 1
r

∂η3

∂r

)
∂Ψ

∂η3
= −rΩ, (3.16)

(
∂ξ3

∂x

2
+ ∂ξ3

∂r

2
)

∂2Ω

∂ξ3
2 +

(
∂η3

∂x

2
+ ∂η3

∂r

2
)

∂2Ω

∂η32 +
(

∂2ξ3

∂x2 + ∂2ξ3

∂r2 + 1
r

∂ξ3

∂r

)
∂Ω

∂ξ3

+
(

∂2η3

∂x2 + ∂2η3

∂r2 + 1
r

∂η3

∂r

)
∂Ω

∂η3
= Re

rμ

[(
∂η3

∂x
∂ξ3

∂r
− ∂ξ3

∂x
∂η3

∂r

)(
∂Ψ

∂ξ3

∂Ω

∂η3
− ∂Ψ

∂η3

∂Ω

∂ξ3

)

+
(

∂ξ3

∂x
∂Ψ

∂ξ3
− ∂η3

∂x
∂Ψ

∂η

)
Ω

r

]
+ 1

μ

[
1
r

(
∂2Ψ

∂x2 − ∂2Ψ

∂r2 + 1
r

∂Ψ

∂r

)(
∂2μ

∂x2 − ∂2μ

∂r2

)

+ 2
r

(
2∂2Ψ

∂x∂r
− 1

r
∂Ψ

∂x

)
∂2μ

∂x∂r
−
(

∂ξ3

∂x

2
+ ∂ξ3

∂r

2
)

∂Ω

∂ξ3

∂μ

∂ξ3
+
(

∂η3

∂x

2
+ ∂η3

∂r

2
)

∂Ω

∂η3

∂μ

∂η3

]
,

(3.17)
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Modelling and scaling of ion emission in Taylor cones

where the last terms are given in {x, r} coordinates for brevity. The equations, discretized
using finite differences, fulfil the boundary conditions

Ψ (ξ3, 0) = 0
∂Ψ

∂ξ3
(ξ3, 1) = −rJω

2

√
∂ξ3

∂x

2
+ ∂ξ3

∂r

2

∂Ψ

∂ξ3
(0, η3) = 0 Ψ (1, η3) = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (3.18)

Ω(ξ3, 0) = 0 Ω(ξ3, 1) = ReΠ2

2Π3

Etσ

μ
− 2

r

[
1
tx

∂tr
∂t

∂Ψ

∂n
− tr

r
∂Ψ

∂t
+ ∂2Ψ

∂t2

]
∂Ω

∂ξ3
(0, η3) = 0 Ω(1, η3) = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (3.19)

The linear systems of algebraic equations for the stream function and the vorticity resulting
from the discretization and application of boundary conditions are solved separately to
improve numerical stability. The boundary condition for the vorticity on the surface of
the meniscus is derived from (2.39), and links the fluid dynamic and the electrostatic
problems. The balance of tangential stresses on the surface is the main driver of the liquid
flow, while the outward velocity due to ion emission has a smaller contribution (the flow
rates of ion-emitting Taylor cones are low).

3.3. Fluid temperature and the variation of physical properties
The temperature can be written as T(x, r) = T0 + T1(x, r), where T0 is the upstream
temperature. We solve (2.28) for T1(x, r) in region 3, using the {ξ3, η3} orthogonal
coordinates(

∂ξ3

∂x

2
+ ∂ξ3

∂r

2
)

∂2T1

∂ξ3
2 +

(
∂η3

∂x

2
+ ∂η3

∂r

2
)

∂2T1

∂η32 +
(

∂2ξ3

∂x2 + ∂2ξ3

∂r2 + 1
r

∂ξ3

∂r

)
∂T1

∂ξ3

+
(

∂2η3

∂x2 + ∂2η3

∂r2 + 1
r

∂η3

∂r

)
∂T1

∂η3
= −Pe

r

(
∂ξ3

∂x
∂η3

∂r
+ ∂η3

∂x
∂ξ3

∂r

)(
∂Ψ

∂ξ

∂T1

∂η
− ∂Ψ

∂η

∂T1

∂ξ

)

− 2Π3

ReΠ2

μ

r2

[
2

∂2Ψ

∂x∂r

2

+
(

∂2Ψ

∂r2 − ∂2Ψ

∂x2 − 1
r

∂Ψ

∂r

)2

+ 2
(

∂2Ψ

∂x∂r
− 1

r
∂Ψ

∂x

)2]

− K

[(
∂ξ3

∂x

2
+ ∂ξ3

∂r

2
)

∂Φ i

∂ξ3

2

+
(

∂η3

∂x

2
+ ∂η3

∂r

2
)

∂Φ i

∂η3

2]
, (3.20)

where several stream function terms in the right-hand side are written in {x, r} coordinates
for brevity. The boundary conditions for the temperature field are

∂T1

∂η3
(ξ3, 0) = 0

∂T1

∂η3
(ξ3, 1) = 0

T1(0, η3) = 0
∂T1

∂ξ3
(1, η3) = 0

⎫⎪⎪⎬
⎪⎪⎭ . (3.21)

The temperature equation (3.20) is discretized using finite differences, resulting in a linear
system of algebraic equations that incorporates the boundary conditions. The solution for
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the temperature field is then used to compute the viscosity and conductivity near the tip of
the meniscus, using (2.5) and (2.6).

3.4. Ion beam
We compute the density and velocity fields of the ion beam by integrating the equations
of conservation of mass (2.36) and momentum (2.37),

u
∂ω

∂x
+ v

∂ω

∂r
+ ω

(
∂u
∂x

+ ∂v

∂r
+ v

r

)
= 0, (3.22)

u
∂u
∂x

+ v
∂u
∂r

= −Π2Π3
∂Φo

∂x
,

u
∂v

∂x
+ v

∂v

∂r
= −Π2Π3

∂Φo

∂r
,

⎫⎪⎪⎬
⎪⎪⎭ (3.23)

using the method of characteristics. The distance along the trajectory of an ion is defined
as the new coordinate of integration,

d
ds

= ∂x
∂s

∂

∂x
+ ∂r

∂s
∂

∂r
, (3.24)

and, using this new coordinate, the equations are rewritten as

du
ds

= −Π2Π3
∂Φo

∂x
dv

ds
= −Π2Π3

∂Φo

∂r
,

dω

ds
= ω

[
Π2Π3

u2 + v2

(
u
∂Φo

∂x
+ v

∂Φo

∂r

)
− 1

u2 + v2

(
u
∂v

∂p
− v

∂u
∂p

)
− v

r

]
,

⎫⎪⎪⎬
⎪⎪⎭ (3.25)

where p is the coordinate normal to s. Characteristic lines are obtained by integrating

∂x
∂s

= u and
∂r
∂s

= v. (3.26a,b)

The initial positions of the characteristic lines coincide with the surface of the meniscus,
while the initial value of the ion density is obtained from the emitted current density and
the initial ion velocity,

ω0 = Jω

χ ‖v0‖ . (3.27)

We estimate the initial ion velocity v0 as the average velocity of the ions that can escape
the energy barrier,

vavg =

∫ ∞

�G
vfM(v) dv∫ ∞

�G
fM(v) dv

, (3.28)

where �G = �GS − GE is the local value of the energy barrier. The ion population
in the meniscus is in thermal equilibrium and therefore characterized by a Maxwellian
distribution fM(v). A good estimate for the initial velocity of the ions is that associated
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Modelling and scaling of ion emission in Taylor cones

with (3.28), reduced by the climb of the energy barrier. In dimensionless quantities, the
resulting initial ion density and velocity are

ω0 = Jω

2χ ‖v0‖ ,

‖v0‖ =

√√√√√√√√T
m

⎡
⎢⎢⎢⎣

2
(

�G
T

+ 1
)

2

√
�G
T

+ √
π exp

(
�G
T

)
erfc

√
�G
T

⎤
⎥⎥⎥⎦

2

− 2�G
m

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.29)

3.5. Pressure in the meniscus
The pressure field in the meniscus is needed to enforce the equilibrium of normal stresses,
(2.38). The pressure along the surface is computed by integrating the momentum equation
using the latest solution for the velocity field. Equation (2.27) is first multiplied by the
vector t tangential to the surface

∂

∂t

(
cos θT

Π2
V · V + P

)
= 2 cos θT

Π2

[
V × Ω + μ∇2V + (∇V + ∇V T) · ∇μ

Re

]
· t.

(3.30)
This equation is then converted into the surface reference frame {t, n} defined in
Appendix A, and integrated. All terms containing ∂μ/∂n are zero due to the boundary
condition for the temperature field on the surface. The final expression for the pressure
along the surface is

P = Ptip + 2 cos θT

Π2

[∫ t

0

∂Ψ

∂t
Ω

r
dt − 1

2r2

(
∂Ψ

∂t

2
+ ∂Ψ

∂n

2
)]

+ 2 cos θT

ReΠ2

∫ t

0
μ

(
∂Ω

∂n
− Ωtx

r

)
+ 2

r
∂μ

∂t

(
1
tx

∂tr
∂t

∂Ψ

∂t
+ tr

r
∂Ψ

∂n
− ∂2Ψ

∂t∂n

)
dt, (3.31)

where Ptip is the pressure at the tip of the meniscus. The surface coordinate t starts at the tip
of the meniscus and progresses along the surface up to the emitter. Once the integration
is performed, Ptip is adjusted so that the pressure at the emitter matches the upstream
condition P = P0 (we set P0 = 0).

3.6. Surface optimization
The position of the surface of the meniscus is computed in each iteration by minimizing
the error in the balance of normal stresses. To do so (2.38) is written as

1√
�2 + �′2

(
��′′ − �′2

�2 + �′2 + �′

� tan θ
− 2

)
= −P − cos θT

[
Eo

n
2 − εEi

n
2 + (ε − 1) Et

2
]

+ 4 cos θT

ReΠ2

μ

r

(
1
nr

∂nr

∂n
∂Ψ

∂n
+ tx

r
∂Ψ

∂t
+ ∂2Ψ

∂t∂n

)
, (3.32)

where the left-hand side is the surface tension stress written in terms of the position of the
surface in polar coordinates � = �(θ). The right-hand side of (3.32) is evaluated with the
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latest solution. This formulation in polar coordinates (originating at the tip of the emitter,
see Appendix B) avoids numerical instabilities both at the vertex of the meniscus (θ = 0)
and at the anchoring point, θ = π/2. The use of Cartesian coordinates would result in
very large or infinite derivatives at these points. The apparent singularity at θ = 0 in the
�′/� tan θ term is resolved with a Taylor expansion of �′ in the vicinity of the vertex, which
shows the term to be finite for a tip with a finite radius of curvature,

lim
θ→0

�′

� tan θ
= lim

θ→0

�′(0) + �′′(0)θ

�θ
= �′′(0)

�(0)
. (3.33)

Equation (3.32) is used to optimize the surface by applying the integral least-square
technique. The residual along the surface is defined as

E = 1
2

∫ π/2

0
f 2(�(θ), y(θ), θ) + (�′ − y

)2 dθ, (3.34)

f (�, y, θ) = �y′ − y2

�2 + y2 + y
� tan θ

− 2 +
√

�2 + y2
{

cos θT

[
Eo

n
2 − εEi

n
2 + (ε − 1) Et

2
]

+ P − 4 cos θT

ReΠ2

μ

r

(
1
nr

∂nr

∂n
∂Ψ

∂n
+ tx

r
∂Ψ

∂t
+ ∂2Ψ

∂t∂n

)}
, (3.35)

where the first derivative �′ has been converted into a second optimization variable y to
improve the stability of the algorithm. To minimize the residual E , the surface is discretized
with the same set of nodes used for the electrostatic problem, and the resulting integration
provides two equations at each point j for the surface position �j and its first derivative yj,∫ π/2

0
f

∂f
∂�j

+ (�′ − y
) ∂�′

∂�j
dθ = 0, (3.36)

∫ π/2

0
f

∂f
∂yi

+ (�′ − y
) ∂�′

∂yj
dθ = 0. (3.37)

This system of algebraic equations is solved using the Newton’s method. Regions 3 and 4
are redefined in each iteration with the updated surface. The transition between regions 2
and 3 is set at the point in the surface where the ion current density drops to 10−12 of its
maximum which, due to the exponential nature of the ion emission law, is always near the
vertex of the meniscus; and the transition between regions 1 and 4 is set at the axial point
where the ion density drops to 10−8 of its maximum.

3.7. Breakdown of the continuum hypothesis near the vertex of the meniscus
Ion emission is localized in a small region surrounding the tip of the meniscus. The
continuum hypothesis breaks down within a distance from the vertex of a few molecular
radii (for the ionic liquids of interest in this study, the molecular radius if approximately
one half of a nanometre), and we do not expect nor require the model equations to be
accurate in this molecular-size region. Instead, we define a Knudsen number in terms of
the distance δ from the vertex of the meniscus

Kn = λm

2δ
= 1

δ

(
3m

4πρ

)1/3

, (3.38)

where the mean free path λm has been expressed in terms of the molecular mass m and the
liquid density, use a critical value of the Knudsen number to define the extent of the region
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Figure 3. Flow chart of the algorithm for solving the system of equations.

where the continuum hypothesis breaks down, and extrapolate the continuum solution into
this region by using a patching function that preserves axial symmetry

F(δ < δK) = F(δK) + F ′(δK)

2

(
δ2

δK
− δK

)
. (3.39)

Here δK is the position on the surface where the Knudsen number reaches the critical
value. We typically adopt a critical value of 0.1 for the Knudsen number, or equivalently
δK = 3.93 nm, and use (3.39) to evaluate the stream function, the vorticity, the pressure
and the viscous stress near the vertex.

3.8. Solving scheme
The input parameters in the model are the radius of the emitter, the distance and the
potential difference between the emitter and the extractor electrode, the physical properties
of the liquid and the upstream temperature. The pressure jump P0 across the surface is
set to zero at the anchor point on the emitter. The solution of the model provides the
shape of the meniscus; the velocity, pressure and temperature fields in the liquid phase;
the electric field and surface charge; and the density and velocity fields of the ion beam.
Figure 3 shows a flow chart of the algorithm used to solve the system of equations. First,
we make a guess for the shape of the meniscus, assume a zero velocity field and a constant
temperature throughout the fluid. With these values we start the iterative procedure: the
sizes of regions 3 and 4 are determined (in the first iteration we use 10 × Lc as initial
guess); the boundaries of the four regions are discretized and the orthogonal grids of
regions 3 and 4 computed. The grid discretizations of regions 3 and 4 have 100 × 50
and 50 × 100 points, respectively, with higher point density near the tip of the meniscus
and close to the surface of the liquid (see Appendix A). The boundary of region 1 is
discretized using 1400 points, while region 2 uses 1100 points. One thousand of these
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Density ρ kg m−3 1278.0
Dielectric constant ε — 13.19
Electrical conductivity K S m−1 187.0569 exp(−752.4895/(T[K] − 144.3610))

Ion mass m amu 111.168
Ion charge-to-mass ratio χ C kg−1 8.6792 × 105

Surface tension γ N m−1 0.0508
Thermal conductivity k W (m K)−1 0.1982
Thermal capacity c J K−1 1552.3
Viscosity μ Pa s 1.5327 × 10−4 exp(848.9648/(T[K] − 144.5266))

Table 3. Physical properties of [C2C1Im][BF4] at 25 ◦C. The electrical conductivity and the viscosity are
given as functions of the temperature.

points are shared between the two regions, and are used to discretize the portion of the
surface not included in the orthogonal grids of regions 3 and 4. The boundary elements of
this portion of the surface have variable size for a smooth transition between the spacing
of the orthogonal grids and the rest of the domain discretization. The electric problem, the
fluid dynamic problem and the temperature equation are solved in this order; the viscosity
and electrical conductivity are updated with the computed temperature field; and the ion
beam is computed. These steps are iterated until convergence of the total ion current.
At this point the residual of the surface normal stresses is evaluated and if it is below a
specified threshold, typically 10−5, the solution is accepted as final, otherwise the surface
is modified using (3.36) and (3.37) and, with the updated shape of the meniscus, a new
iteration is started.

4. Simulation results and discussion

We study ion emission from the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate,
[C2C1Im][BF4], which is known to operate in ion emission regime (Romero-Sanz et al.
2003; Lozano & Martinez-Sanchez 2005a). The physical properties of [C2C1Im][BF4]
are taken from the National Institute of Standards and Technology (NIST) ionic liquid
database (Kazakov et al. 2022), see table 3. The upstream values of the pressure and
temperature are fixed at 0 Pa and 25 ◦C; the diameter of the emitter is 40 μm; the distance
between the emitter and extractor is 1 mm; the potential difference between the emitter
and extractor electrodes is varied between 1600 and 2200 V; and the ion solvation energy is
varied between 1.2 and 1.9 eV. The associated values of the dimensionless numbers, shown
in table 4, illustrate the relative importance of several terms in the governing equations:
the Reynolds number is small, indicating Stokes flow conditions; the small value of
2Π3/(ReΠ2) in (2.28) indicates that viscous dissipation is small compared with ohmic
dissipation; the values of ΠG, increasing of one order of magnitude from �GS = 1.2 eV
to �GS = 1.9 eV, denote the increasing difficulty for the ions to overcome the energy
barrier; and the large value of Π1 denotes the sensibility of ion emission to changes in the
energy barrier and temperature.

Figure 4 shows the velocity field in region 3 and an inset with the overall shape of the
meniscus, for ΦE = 1900 V and �GS = 1.7 eV. The electro-hydrostatic region 2 occupies
most of the meniscus, while dynamical processes associated with ion emission only affect
a small area near the vertex. The module of the velocity is small everywhere in region 3
except near the vertex, where the liquid flows outward and is emitted as ions. Regardless
of the magnitude increase near the tip, the velocity is relatively uniform perpendicularly
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�GS (eV) Re Pe ΠG ΠΦ

1.2 8.403 × 10−4 0.251 19.705 189.831
1.3 6.993 × 10−4 0.209 30.825 228.113
1.4 5.910 × 10−4 0.177 46.475 269.909
1.5 5.060 × 10−4 0.151 67.916 315.219
1.6 4.382 × 10−4 0.131 96.623 364.042
1.7 3.831 × 10−4 0.114 134.303 416.380
1.8 3.378 × 10−4 0.101 182.911 472.231
1.9 3.001 × 10−4 0.090 244.667 531.596

�GS (eV) Π1 Π2 Π3 Π4 Π5

1.2 1.038 × 104 1.086 × 103 4.478 × 10−4 164.354 5.393 × 10−3

1.3 4.142 × 104 1.086 × 103 7.770 × 10−4 197.498 9.358 × 10−3

1.4 1.786 × 104 1.086 × 103 1.287 × 10−3 233.685 1.550 × 10−2

1.5 8.221 × 103 1.086 × 103 2.050 × 10−3 272.913 2.469 × 10−2

1.6 4.001 × 103 1.086 × 103 3.158 × 10−3 315.184 3.803 × 10−2

1.7 2.044 × 103 1.086 × 103 4.725 × 10−3 360.497 5.691 × 10−2

1.8 1.089 × 103 1.086 × 103 6.893 × 10−3 408.853 8.302 × 10−2

1.9 6.027 × 102 1.086 × 103 9.834 × 10−3 460.250 1.184 × 10−1

Table 4. Values of the dimensionless numbers for [C2C1Im][BF4] at T = 25 ◦C and ΦE = 1900 V, and
several values of the ion solvation energy.

to the streamlines and the flow does not have a sharp redirection as it moves towards
the surface. The resulting viscous stresses and viscous dissipation remain small. While the
flow is smooth and uniform near the tip, a flow recirculation zone, also observed by Gallud
& Lozano (2022), extends over most of the meniscus. In the ion emission regime the flow
rate is strongly coupled to the current emitted in the form of ions. In the present model
the ion current and the liquid flow rate are proportional, with a constant of proportionality
fixed by the charge-to-mass ratio of the ion. In a real scenario the ions exhibit a distribution
of solvation states, which may slightly alter the proportionality between the emitted ion
current and the liquid flow rate if the distribution changes with the emitted current.

Figure 5 shows the components of the normal stress on the surface of the meniscus. The
dominant terms are the surface tension and electric stresses, which are in almost complete
balance throughout the surface, while the pressure and viscous stresses become marginally
important only near the vertex, coinciding with the area of significant ion emission. It is
worth noting that the ideal Taylor cone is also characterized by a perfect balance between
surface tension and electric stresses. The balance of normal stresses, i.e. the residual of the
numerical solution, is negligible throughout the surface except very close to the tip, within
a distance from the vertex where the continuum hypothesis breaks down. For example, the
residue is between 5 % and 8 % of the surface tension stress within 3 nm from the vertex.

Figure 6 plots components of the electric field on the surface of the meniscus, together
with the ratio between the current density of emitted ions and the current injected from
the bulk. Here Eo

n is the dominant component everywhere, while the tangential component
Et is at least two orders of magnitude smaller except near the vertex, where Et/Eo

n has
a maximum value between 0.1 and 0.15 for the cases investigated. Thus, the meniscus
is nearly equipotential. Here Ei

n is negligible throughout most of the meniscus, but near
the tip it reaches its maximum possible value, Ei

n
∼= Eo

n/ε, corresponding to the absence
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Figure 4. Shape of the meniscus and magnitude of the liquid velocity and streamlines in region 3, for ΦE =
1900 V and �GS = 1.7 eV. The red line marks Kn = 0.1. The values of the characteristic velocity and length
are Vfc = 4.15 m s−1 and Lc = 2.77 nm.
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Figure 5. Components of the normal stress on the surface of the meniscus for ΦE = 1900 V and
�GS = 1.7 eV (Lc = 2.77 nm).

of surface charge. The ratio Jω/KEi
n is near zero throughout most of the meniscus, and

increases sharply towards one near the vertex, coinciding with the changes in the trends
of the Et and Ei

n components. The two distinct behaviours of Jω/KEi
n confirm the relative

importance of the transport mechanisms described in § 2.3: upstream, far from the vertex,
the smallness of Eo

n and the associated high energy barrier for ion emission is the restrictive
mechanism, and conduction from the bulk supplies current to the surface at rates orders
of magnitude larger than the emitted current; near the vertex, current conduction from the
bulk is the limiting transport mechanism, restricting the emitted current to what is injected
from the bulk.
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ΦE = 1900 V and �GS = 1.7 eV (Lc = 2.77 nm).

Figure 7 shows the ion current density Jω, the accumulated ion current (the integral of
the current density over the surface of the meniscus),

II(x) = 2π

∫ xE

x
R
√

1 + R′2Jωdx, (4.1)

and an estimate of the accumulated ion current based on the value of the outer the electric
field and the assumption of an equipotential meniscus, i.e. σ = Eo

n/ε0,

IIσ (x) = 2πkBε0

h

∫ xE

x
R
√

1 + R′2Eo
nT exp

(
GE − �GS

kBT

)
dx. (4.2)

The current density profiles have the structure predicted by the simple model for the ideal
Taylor cone, (2.20), namely ion emission is negligible throughout most of the meniscus
and increases rapidly towards the vertex, reaching a point where further increase is strongly
limited by bulk conduction. This abrupt change in the growth of the current density profile,
and the similar shape of the associated profile for the accumulated current, show the
presence of a distinct region near the vertex where most of the emission takes place,
and make it possible to define a characteristic length for this region. The prediction of
a characteristic length for the ion emission region is thus qualitatively correct, and we
will show later in this section that the scaling (2.23) for Lc is also quantitatively accurate.
Figure 7 also illustrates the importance of considering the transport mechanisms inside
the meniscus, especially near the vertex, since a simpler estimation of emission using the
equipotential solution overestimates the total ion current by several orders of magnitude.
For the larger value of the ion solvation energy the ion current departs from IIσ at a
position slightly larger than x/Lc = 1. Only for the lowest values of the solvation energy
investigated the curves diverge significantly upstream of x/Lc = 1. We will show that this
is due to large increases of the temperature near the tip, and the inaccurate evaluation of
Lc based on the upstream temperature.

The potential drop along the meniscus is negligible despite intense ion emission. The
small tangential component of the electric field in figure 6 hints at this, and the potential
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Figure 7. Emitted current density Jω, total emitted current II , and estimated total current for an equipotential
meniscus IIσ , for ΦE = 1900 V and two values of the ion solvation energy.
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Figure 8. Variation of the electric potential along the meniscus for several emitter potentials and ion
solvation energies.

profiles in figure 8 explicitly illustrate this point. This figure shows the variation of the
potential along the surface of the meniscus for three different values of the solvation energy
and two values of the emitter potential. In all cases the variation of the potential is small,
it occurs mostly near the vertex and increases at decreasing �GS due to the intensification
of ion emission.

Energy dissipation and the associated increase of the temperature in the meniscus are
important. Figure 9 shows an example of the temperature field in region 3, for �GS =
1.7 eV and ΦE = 1900 V. The temperature at the tip is 21 ◦C higher than at the inlet.
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Figure 9. Temperature increase in region 3 for ΦE = 1900 V and �GS = 1.7 eV. The red line marks
Kn = 0.1.

Dissipation concentrates near the vertex, ohmic dissipation being the main contributor;
this term is proportional to J2, and the current density exhibits a sharp maximum at the tip
due to the emission of ions from this small region. In this particular case the ratio between
ohmic and viscous dissipation near the tip has an average of 86.9, with peaks of over 900.
Ion emission drives the flow field and the electric current in the meniscus, and therefore
the energy dissipation and the increase in temperature. There is positive feedback: ion
emission increases dissipation and the temperature, which increases the conductivity of
the liquid and the availability of ions that can be injected on the surface. The larger
thermal energy of the ions and therefore the larger number of ions that can overcome the
energy barrier impeding emission is a second mechanism for positive feedback. However,
conduction through the bulk is the limiting process for the emission of ions near the
tip, (2.22), and therefore the larger thermal energy is less important than the increased
electrical conductivity. On the other hand, the larger thermal energy of the ions has a
small effect on the size of the emission region through the factor α in (2.23).

Figure 10 shows the effect of the emitter potential on the total emitted current for two
values of the solvation energy. The current increases linearly with the emitter potential,
and exhibits a strong dependence on the solvation energy. The proportionality between
the emitted current and ΦE, reported in experiments by Krpoun & Shea (2008), can be
inferred from (2.22). The current density near the vertex of the meniscus is proportional
to the intensity of the electric field, and therefore to the potential of the emitter in a finite,
physical configuration. Since the size of the emission region is only a function of the
physical properties of the liquid and a weak function of the temperature, (2.23), the total
emitted current must be approximately proportional to ΦE.

Figure 11 shows the effect of the ion solvation energy on both the total ion current and
the temperature near the vertex of the meniscus, for ΦE = 1900 V. Reducing the solvation
energy strongly increases the ion current because of the positive feedback between
emission and temperature, and the expansion of the emission area. The temperature in
the emission region increases rapidly with decreasing solvation energy. Values exceeding
a few hundred centigrade degrees are non-physical, because the model does not take
into account phenomena such as liquid evaporation and degradation which are important
at elevated temperatures. Still, these trends suggest that the rapid temperature increase
and the associated degradation of the liquid prevents steady ion emission for ion–liquid
systems with low solvation energies, e.g. �GS � 1.5–1.4 eV.
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Figure 10. Emitted ion current vs emitter potential for two values of the solvation energy.

1.2 1.4 1.6 1.8
101

102

103

104

105

I 
(n

A
)

Total current

Tip temperature

0

200

400

600

800

1000

1200

1400

1600

T 
(°

C
)

�GS (eV)

Figure 11. Effect of the ion solvation energy on the current of emitted ions and the tip temperature
(ΦE = 1900 V).

The characteristic length of the ion emission area, (2.23), was introduced with the caveat
that the simple model may be inaccurate near the vertex of the meniscus. Thus, although
the existence of this emission region is confirmed by the current density profiles shown
in figure 7, the scaling (2.23) needs to be verified. Figure 12 shows the radius of the base
of the cusp from which 70 % and 95 % of the ion current is emitted, r70 % and r95 %,
respectively, as a function of the solvation energy and for ΦE = 1900 V. The radius of
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Figure 12. Radius of the emission region from which 70 % and 95 % of the ion current is emitted, and ratio
between the characteristic length of the emission region and the computed value.

the region from which most ions are emitted ranges between 2.96 nm for �GS = 1.9 eV,
and 82.0 nm for �GS = 1.2 eV. Figure 12 also shows the ratio Lc/r70 %, where we use
the temperature upstream T0 to evaluate Lc. Here Lc/r70 % is near one for �GS ≥ 1.4 eV
and decreases rapidly for lower solvation energies. Thus, the scaling law (2.23) provides
an accurate estimate of the size of the emission region, except for solvation energies
unphysically low. The ratio Lc/r70 % is smaller than one for low solvation energies because
we use the upstream temperature to evaluate Lc, instead of the temperature at the tip which
is significantly higher than T0 for low solvation energies.

The scaling laws for the current density and the size of the emission region, (2.22) and
(2.23), make it possible to derive a scaling law for the emitted current, Ic ∼= 2πL2

cJω where
we approximate the emission area by a hemisphere of radius Lc,

Ic = cos2 θT

8π

α3/2q9Kγ 2

ε05ε�GS
6 . (4.3)

To estimate the current density, (2.22), we use the electric field of the ideal Taylor cone
evaluated at r = Lc,

Ec =
√

2γ cos θT/(ε0Lc). (4.4)

Note that the scaling law (4.3) does not include the effect of the emitter potential for a
given liquid and electrode geometry illustrated by figure 10. The scaling law (4.3) is an
analytical expression, and including the effect of the emitter potential requires a numerical
calculation. Figure 13 shows the ratio between the scaling law and the current values
obtained in the simulations. When the upstream temperature is used to evaluate (4.3),
the scaling law reproduces the computed current for �GS ≥ 1.6 eV and underestimates
the current at lower solvation energy. The agreement extends to lower solvation energies
when the temperature at the tip is used to evaluate the scaling law (although this defeats
the purpose of the scaling law because the numerical solution is needed to compute the
tip temperature). Overall, the scaling law for the emitted current (4.3) highlights the
importance of the solvation energy, and the lesser but significant roles of the electrical
conductivity and the surface tension.
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Figure 13. Ratio between the emitted current derived from scaling law (4.3) and the current computed with
the simulations, for ΦE = 1900 V. The scaling law is evaluated with the upstream temperature (green), and
with the temperature at the tip of the meniscus (blue).

The electrosprays of some ionic liquids operate in the ion emission regime, while other
ionic liquids with similar physical properties only operate in the cone-jet mode. The
results presented in this article, in particular the finding of a distinct emission region
with characteristic size Lc and electric field Ec, may explain this and provide a criterion
for the onset of the ion emission regime. Electrosprays operating in the cone-jet mode
approximate well the ideal Taylor cone: most of the meniscus of a cone-jet is virtually
electrostatic and hydrostatic (the local angle of the surface may depart from θT due to the
finite size of the emitter and the space charge of the beam), and the main difference occurs
at the tip which transitions into a jet. Here Eo

n departs from the ideal Taylor cone solution
in this transition region, where it exhibits a maximum that is a function of the physical
properties of the liquid and does not depend on the flow rate,

Emax = β
ρ1/6γ 1/3K1/3

πε05/6 . (4.5)

The factor β, of order one, is a function of the dielectric constant. For example, its value
is 2.16 and 1.56 for dielectric constants of 8.91 and 64.9, respectively (Gamero-Castaño
& Magnani 2019). We expect that once Emax is sufficiently high to promote ion emission
the electrospray will switch from cone-jet mode to the ion emission regime, i.e. the ion
emission regime requires Emax � Ec. This can be rewritten as criteria for the characteristic
length and for the ion solvation energy,

Lc � L∗
c = 2π2 cos θTγ 1/3ε0

2/3

β2ρ1/3K2/3 for ion emission regime, (4.6a)

�GS � �G∗
S = q3/2α1/4β1/2ρ1/12γ 1/6K1/6

2πε011/12 for ion emission regime. (4.6b)
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The criterion given by (4.6b) indicates that, in order for an electrospray to operate in
the ion emission regime, the solvation energy of the ion–liquid pair must be smaller
than �G∗

S, which only depends on the physical properties of the liquid and temperature.
Thus, the higher the value of the liquid’s �G∗

S, the more likely it is to operate in the
ion emission regime. This criterion highlights the importance of using a liquid with high
conductivity and surface tension, which was first recognized by Garoz et al. (2007).
Increasing the temperature also increases �G∗

S because the electrical conductivity and
the factor α increase with temperature. The dielectric constant also plays a significant
role through the factor β, which increases with decreasing dielectric constant. Table 5
contains the relevant physical properties of several ionic liquids, a formamide solution
and a propylene carbonate solution, together with the values of α, β, L∗

c and �G∗
S (all are

evaluated at 25 ◦C). We assume a dielectric constant of 10 for several ionic liquids, because
of the similar values for [C2C1Im][Tf2N] and [C2C1Im][BF4]. Because we only have two
values of β, 2.16 for ε = 8.91 and 1.56 for ε = 64.9, we assign the larger β to all ionic
liquids (they have low dielectric constants), and the smaller β to formamide (due to its
high dielectric constant). The electrical conductivity, being the physical property in (4.6b)
exhibiting the wider range and the larger exponent, is the main factor determining the
rankings of L∗

c and �G∗
S, and therefore the ranking of the liquids for operation in the ion

emission regime. Although the unknown solvation energies of the cations of these ionic
liquids must be different, we note that [C2C1Im][N(CN)2] and [C2C1Im][BF4] have the
largest �G∗

S and are indeed the only liquids in this table that operate in the ion emission
regime at ambient temperature. Although the remaining ionic liquids do not operate in the
ion emission regime at ambient temperature, the minimum emitter temperatures at which
the ion emission regime is observed, TE, correlates well with �G∗

S. That is, the lower �G∗
S,

the higher the emitter temperature required for operation in the ion emission regime. The
ion emission regime has not been observed in the ionic liquid [C4C1C1Im][Tf3C], which
has the lowest �G∗

S. The formamide solution has a high �G∗
S, it operates with substantial

ion emission but does not reach the ion emission regime (Gamero-Castaño & Fernández
De La Mora 2000), while the electrosprays of the propylene carbonate solution, with its
low �G∗

S, do not contain field-emitted ions (Gamero-Castaño 2019).

5. Conclusions

The first-principles model for the ion emission regime presented in this article captures
the phenomenology observed in experiments. The model shows that ion emission can
take place from the tip of a Taylor cone-like meniscus anchored on a tubular emitter. The
emitted current strongly depends on the solvation energy of the ion, �GS, and current
values comparable to those measured in experiments are obtained when using typical
solvation energies. The current is proportional to the potential of the emitter, and increases
with the electrical conductivity and surface tension of the liquid. The model is also useful
to understand the governing physics. A key result is the increase of the temperature at the
tip resulting from ohmic dissipation. There is a positive feedback between ion emission
and tip temperature: increasing emission increases ohmic dissipation; this increases the
tip temperature, which increases the conductivity of the liquid; this increases the emission.
For low values of �GS the ion emission and the temperature are unphysically high, because
at such temperatures the liquid may decompose and/or evaporate, which is not considered
by the model.

We have also developed a simplified analytical model to derive scaling laws for the
emitted current and the size of the emission area, as well as criteria for identifying
liquids that are likely to operate in the ion emission regime. The model is based on the
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electrostatic solution for the ideal Taylor cone. This assumption may be inaccurate near
the tip of the meniscus, but the detailed numerical solution corroborates the validity of
the analytical model. In the analytical expression for the current density the emission of
ions is proportional to the normal component of the outer electric field on the surface,
Eo

n, which drives two processes acting in series: the injection of charge on the surface by
conduction from the bulk, and the evaporation of charge from the surface restricted by
the energy barrier. In the tip of the Taylor cone Eo

n tends to infinity, the energy barrier
impeding ion evaporation is negligible, and the emission of ions is limited by the charge
that bulk conduction injects on the surface. Most of the ions are emitted from this region,
which has a characteristic length Lc = (cos θTq6αγ )/(8π2ε0

3�GS
4) and a characteristic

current density Jω = (K/ε)
√

2γ cos θT/(ε0Lc). The resulting emitted current scales as
Ic = (cos2 θT/8π)(α3/2q9Kγ 2/ε0

5ε�GS
6). These results show the importance of the ion

solvation energy in determining the total emitted current and the size of the emission
region, and the lesser but important roles played by the electrical conductivity and the
surface tension. Finally, we find a criterion for an ion–liquid pair to operate in the ion
emission regime, �GS � (q3/2α1/4β1/2ρ1/12γ 1/6K1/6)/2πε0

11/12. This criterion predicts
well the ability of an ionic liquid for operating in ion emission regime.

The size of the emission region is near the limits of application of the continuum
hypothesis. Our model could be improved by relaxing this assumption near the vertex of
the meniscus, and replacing this small region with boundary conditions obtained from
molecular dynamics or a similar calculation. Nonetheless, our model reproduces the
main characteristics of the ion emission regime, and improves our understanding of this
problem.
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Appendix A. Definition of the orthogonal grids of regions 3 and 4

The equation sets applied in regions 3 and 4 of the domain (figure 1) are solved using finite
differences along the orthogonal coordinates {ξ3, η3} for region 3 and {ξ4, η4} for region 4
(see figure 14).

Region 3, corresponding to the area near the tip of the meniscus, is bounded by the
surface of the liquid on top and the symmetry axis on the bottom. Its geometry is well
suited for applying the method defined by Srinivas & Fletcher (2002), where the grid is
constructed by defining η3 ranging from the axis (η3 = 0) to the surface (η3 = 1), while
ξ3 is obtained by solving

dξ3

dη3
=

∂x
∂ξ3

∂x
∂η3

+ ∂r
∂ξ3

∂r
∂η3(

∂x
∂ξ3

)2

+
(

∂r
∂ξ3

)2 (A1)

from the liquid surface to the symmetry axis: ξ3 is defined along the surface of the liquid
going from ξ3 = 0 upstream to ξ3 = 1 at the tip of the meniscus, then (A1) is integrated
from η3 = 1 to η3 = 0 to obtain the orthogonal grid.
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η4 ξ4

Figure 14. Orthogonal and surface reference frames defined near the meniscus tip.

Region 4 encloses the first portion of the ion beam, and it often has a significant
difference in radial size from start (the liquid surface) to end. The aforementioned method
used for region 3 would generate a grid with significant distortion close to the symmetry
axis. The orthogonal grid of region 4 is constructed from the ion trajectories, by defining
the coordinate ξ4 along the characteristic lines computed by (3.26a,b).

Together with {ξ3, η3} and {ξ4, η4}, a third set of coordinates {t, n} is defined along
the surface of the liquid, to easily manage quantities that extend along the whole liquid
surface.

We define the differential operators along the {ξ3, η3} and {ξ4, η4} orthogonal grids as

∂

∂x
= ∂ξ

∂x
∂

∂ξ
+ ∂η

∂x
∂

∂η
,

∂

∂r
= ∂ξ

∂r
∂

∂ξ
+ ∂η

∂r
∂

∂η
,

⎫⎪⎪⎬
⎪⎪⎭ (A2)

∂2

∂x2 = ∂ξ

∂x

2 ∂2

∂ξ2 + ∂η

∂x

2 ∂2

∂η2 + 2
∂ξ

∂x
∂η

∂x
∂2

∂ξ∂η
+ ∂2ξ

∂x2
∂

∂ξ
+ ∂2η

∂x2
∂

∂η
,

∂2

∂r2 = ∂ξ

∂r

2 ∂2

∂ξ2 + ∂η

∂r

2 ∂2

∂η2 + 2
∂ξ

∂r
∂η

∂r
∂2

∂ξ∂η
+ ∂2ξ

∂r2
∂

∂ξ
+ ∂2η

∂r2
∂

∂η
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A3)

To compute the ξ and η differentials in these equations we must redefine them as

∂ξ

∂x
=

∂r
∂η

∂x
∂ξ

∂r
∂η

− ∂x
∂η

∂r
∂ξ

∂ξ

∂r
=

− ∂x
∂η

∂x
∂ξ

∂r
∂η

− ∂x
∂η

∂r
∂ξ

,

∂η

∂x
=

− ∂r
∂ξ

∂x
∂ξ

∂r
∂η

− ∂x
∂η

∂r
∂ξ

∂η

∂r
=

∂x
∂ξ

∂x
∂ξ

∂r
∂η

− ∂x
∂η

∂r
∂ξ

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)
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∂2ξ

∂x2 =

(
∂2r
∂ξ2

∂x
∂η

− ∂2x
∂ξ2

∂r
∂η

)
∂r
∂η

2
+
(

∂2r
∂η2

∂x
∂η

− ∂2x
∂η2

∂r
∂η

)
∂r
∂ξ

2

+2
∂r
∂ξ

∂r
∂η

(
∂2x

∂ξ∂η

∂r
∂η

− ∂2r
∂ξ∂η

∂x
∂η

)
(

∂x
∂ξ

∂r
∂η

− ∂x
∂η

∂r
∂ξ

)3 ,

∂2ξ

∂r2 =

(
∂2r
∂ξ2

∂x
∂η

− ∂2x
∂ξ2

∂r
∂η

)
∂x
∂η

2
+
(

∂2r
∂η2

∂x
∂η

− ∂2x
∂η2

∂r
∂η

)
∂x
∂ξ

2

+2
∂x
∂ξ

∂x
∂η

(
∂2x

∂ξ∂η

∂r
∂η

− ∂2r
∂ξ∂η

∂x
∂η

)
(

∂x
∂ξ

∂r
∂η

− ∂x
∂η

∂r
∂ξ

)3 ,

∂2η

∂x2 =

(
∂2x
∂ξ2

∂r
∂ξ

− ∂2r
∂ξ2

∂x
∂ξ

)
∂r
∂η

2
+
(

∂2x
∂η2

∂r
∂ξ

− ∂2r
∂η2

∂x
∂ξ

)
∂r
∂ξ

2

+2
∂r
∂ξ

∂r
∂η

(
∂2r

∂ξ∂η

∂x
∂ξ

− ∂2x
∂ξ∂η

∂r
∂ξ

)
(

∂x
∂ξ

∂r
∂η

− ∂x
∂η

∂r
∂ξ

)3 ,

∂2η

∂r2 =

(
∂2x
∂ξ2

∂r
∂ξ

− ∂2r
∂ξ2

∂x
∂ξ

)
∂x
∂η

2
+
(

∂2x
∂η2

∂r
∂ξ

− ∂2r
∂η2

∂x
∂ξ

)
∂x
∂ξ

2

+2
∂x
∂ξ

∂x
∂η

(
∂2r

∂ξ∂η

∂x
∂ξ

− ∂2x
∂ξ∂η

∂r
∂ξ

)
(

∂x
∂ξ

∂r
∂η

− ∂x
∂η

∂r
∂ξ

)3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)

so that we can compute them along the ξ = const and η = const lines of the orthogonal
grids.

For the {t, n} reference frame the differential operators are defined as

∂

∂x
= tx

∂

∂t
+ tr

∂

∂n
,

∂

∂r
= tr

∂

∂t
− tx

∂

∂n
,

⎫⎪⎪⎬
⎪⎪⎭ (A6)

∂2

∂x2 = tx2 ∂2

∂t2
+ tr2 ∂2

∂n2 + 2txtr
∂2

∂t∂n
+
(

tx
∂tx
∂t

+ tr
∂tx
∂n

)
∂

∂t
+
(

tx
∂tr
∂t

+ tr
∂tr
∂n

)
∂

∂n
,

∂2

∂r2 = tr2 ∂2

∂t2
+ tx2 ∂2

∂n2 − 2txtr
∂2

∂t∂n
+
(

tr
∂tr
∂t

− tx
∂tr
∂n

)
∂

∂t
+
(

tx
∂tx
∂n

− tr
∂tx
∂t

)
∂

∂n
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(A7)

where tx, tr are the axial and radial components of the vector tangential to the liquid
surface. We can also define a relation between the three reference frames valid on the
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liquid surface,

∂

∂t
=
⎡
⎣−
√

∂ξ3

∂x

2
+ ∂ξ3

∂r

2 ∂

∂ξ3

⎤
⎦

η3=1

=
⎡
⎣
√

∂η4

∂x

2
+ ∂η4

∂r

2 ∂

∂η4

⎤
⎦

ξ4=0

,

∂

∂n
=
⎡
⎣
√

∂η3

∂x

2
+ ∂η3

∂r

2 ∂

∂η3

⎤
⎦

η3=1

=
⎡
⎣
√

∂ξ4

∂x

2
+ ∂ξ4

∂r

2 ∂

∂ξ4

⎤
⎦

ξ4=0

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A8)

Due to the orthogonality of these sets of coordinates, we define a series of identities
useful to simplify the equation set of the model,

∂ξ

∂x
∂η

∂x
+ ∂ξ

∂r
∂η

∂r
= 0,

∂ξ

∂x√
∂ξ

∂x

2
+ ∂ξ

∂r

2
=

∂η

∂r√
∂η

∂x

2
+ ∂η

∂r

2
,

∂ξ

∂r√
∂ξ

∂x

2
+ ∂ξ

∂r

2
=

−∂η

∂x√
∂η

∂x

2
+ ∂η

∂r

2
,

√
∂ξ

∂x

2
+ ∂ξ

∂r

2
√

∂η

∂x

2
+ ∂η

∂r

2
= ∂ξ

∂x
∂η

∂r
− ∂η

∂x
∂ξ

∂r

tx = −nr tr = nx txnx + trnr = 0

tx
∂tx
∂t

= −tr
∂tr
∂t

tx
∂tx
∂n

= −tr
∂tr
∂n

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A9)

Appendix B. Definition of the liquid surface in polar coordinates

For the optimization phase of the model, the surface of the meniscus is defined in polar
coordinates as �(θ) (figure 15), to avoid numerical instabilities at the vertex of the
meniscus (θ = 0) and at the anchoring point with the emitter (θ = π/2). In this frame
of reference we define the normal and tangential vectors to the surface as[

tx
tr

]
= 1√

�2 + �′2

[−� sin θ + �′ cos θ

� cos θ + �′ sin θ

]
, (B1)

[
nx
nr

]
= 1√

�2 + �′2

[
� cos θ + �′ sin θ

� sin θ − �′ cos θ

]
. (B2)

To define the surface tension stress in polar coordinates we also require the normal vector
n in the {θ, �} reference frame [

nθ

n�

]
= 1√

�2 + �′2

[−�′
�

]
(B3)
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r

xθ

�

Figure 15. Polar coordinates defined for the liquid meniscus surface.

from which we define the surface tension stress as

γ∇ · n = γ

[
1
�2

∂
(
�2n�

)
∂�

+ 1
� sin θ

∂ (nθ sin θ)

∂�

]

= γ√
�2 + �′2

(
2 − ��′′ − �′2

�2 + �′2 − �′

� sin θ

)
. (B4)
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