REGULAR SEMIGROUPS WITH NORMAL IDEMPOTENTS

XIANGFEI NI[™] and HAIZHOU CHAO

(Received 10 May 2015; accepted 3 February 2017; first published online 29 March 2017)

Communicated by M. Jackson

Abstract

In this paper, we investigate regular semigroups that possess a normal idempotent. First, we construct a nonorthodox nonidempotent-generated regular semigroup which has a normal idempotent. Furthermore, normal idempotents are described in several different ways and their properties are discussed. These results enable us to provide conditions under which a regular semigroup having a normal idempotent must be orthodox. Finally, we obtain a simple method for constructing all regular semigroups that contain a normal idempotent.

2010 *Mathematics subject classification*: primary 20M10. *Keywords and phrases*: regular semigroup, normal idempotent, orthodox semigroup.

1. Introduction

Let S be a regular semigroup with the set E of idempotents and let \overline{E} be the subsemigroup generated by E. An idempotent u of S is called a *medial idempotent* if, for every element $x \in \overline{E}$, xux = x. A medial idempotent u is said to be *normal* if $u\overline{E}u$ is a semilattice. This notation appeared in [3].

The purpose of this paper is to characterize normal idempotents of a regular semigroup in various ways and to develop a method to construct a regular semigroup having a normal idempotent. The results we obtained are different from those provided in [3].

In fact, Blyth and McFadden gave an example to show that there exists a nonorthodox idempotent-generated regular semigroup which contains a normal idempotent. Then they described a normal idempotent by Green's relations and got a condition under which a regular semigroup having a normal idempotent is orthodox. By contrast, in Section 2, we first construct a nonorthodox nonidempotent-generated regular semigroup which contains a normal idempotent. It helps us explore different types of nonorthodox regular semigroups which have a normal idempotent. Next,

This project is supported by the National Natural Science Foundation of China (grant no. 11401534). (c) 2017 Australian Mathematical Publishing Association Inc. 1446-7887/2017 \$16.00

all normal idempotents of a regular semigroup are characterized in various ways via subsets of the idempotent set and some inverse elements. In particular, we prove that an idempotent u of a regular semigroup S is normal if and only if uSu is a multiplicative inverse transversal for S. The result leads us to claim that a regular semigroup having

regular semigroup having a normal idempotent is orthodox are established. Recall from [3] that every regular semigroup that contains a normal idempotent was described in terms of an idempotent-generated regular semigroup having a normal idempotent and an inverse semigroup with an identity. Naturally, there is a question here about the description of all idempotent-generated regular semigroups having a normal idempotent. In Section 3, we focus on investigating the structure of any regular semigroup having a normal idempotent. Actually, we establish a straightforward way of constructing such a regular semigroup: that is, we characterize it by means of a left inverse semigroup and a right inverse semigroup.

a normal idempotent is locally inverse. Furthermore, several conditions under which a

Refer to [2] and [4] for useful notation and terminology not defined in this paper. For convenience, we list some basic definitions as follows.

A semigroup S° is an *inverse transversal* for a regular semigroup S if S° is a subsemigroup of S and if, for any $x \in S$, $|V_{S^{\circ}}(x)| = 1$. In this case, the unique inverse of x is always denoted by x° .

If $S \circ S S \circ \subseteq S \circ$, then $S \circ$ is called a *quasi-ideal transversal* for *S*.

Let $I = \{aa^{\circ} | a \in S, a^{\circ} \in V_{S^{\circ}}(a)\}, \Lambda = \{a^{\circ}a | a \in S, a^{\circ} \in V_{S^{\circ}}(a)\}$ and E° be the set of idempotents of S° . If $\Lambda I \subseteq E^{\circ}$, then an inverse transversal S° is said to be *multiplicative*. It is known that, in this case, I and Λ are bands and $I \cap \Lambda = E^{\circ}$.

2. Normal idempotents

From now on, let *S* be a regular semigroup. Denote by E(S) the set of idempotents of *S* and by $\overline{E(S)}$ the regular semigroup generated by E(S). If there are no ambiguities, we would write them as *E* and \overline{E} , respectively.

In [3], a nonorthodox idempotent-generated regular semigroup having a normal idempotent is provided. Blyth and McFadden then described a normal idempotent of *S* by the Green's relations on *S* and claimed that *S* having a normal idempotent *u* is orthodox if and only if *u* is a *middle unit*, that is, $xux = x^2$ for all *x* in *E*.

However, in this section, we obtain a nonorthodox nonidempotent-generated regular semigroup which contains a normal idempotent. Moreover, we characterize normal idempotents of S, alternatively, according to some subsets of E and V(e) for all idempotents e, where V(e) is the set of all inverse elements of e. In addition, we prove that an idempotent u of a regular semigroup S is normal if and only uSu is a multiplicative inverse transversal for S. By applying this result, we deduce that a regular semigroup having a normal idempotent is locally inverse. Lastly, several different conditions under which a regular semigroup having a normal idempotent is orthodox are obtained. These conditions are actually equivalent to the condition that Blyth and McFadden provided.

EXAMPLE 2.1. Let *B* denote the monoid

$$\langle p, q \mid qp = 1 \rangle = \{q^m p^n : m, n \ge 0\},\$$

and let $T = M[B; \{1, 2\}, \{1, 2\}; P]$, where $P = \binom{q}{1}{p}$. Then T is regular and $E(T) = \{(2, 1, 1), (1, 1, 2), (1, p, 1), (2, q, 2)\}$. By computing, (1, 1, 2) is a normal idempotent but T is not orthodox.

In the following theorem, all normal idempotents of a regular semigroup are described in alternative ways.

THEOREM 2.2. Let $u \in E$. For any $e, f \in E$, the following statements are equivalent.

- (1) u is normal.
- (2) *uEu* is a semilattice and $V(e) \cap uSu \neq \emptyset$ and $uefu \in E$.
- (3) *Eu* is a left normal band and $V(e) \cap uS \neq \emptyset$ and $efu \in E$.
- (4) *uE* is a right normal band and $V(e) \cap Su \neq \emptyset$ and $uef \in E$.
- (5) $\overline{E}u$ is a left normal band and $V(e) \cap uS \neq \emptyset$.
- (6) $u\overline{E}$ is a left normal band and $V(e) \cap Su \neq \emptyset$.
- (7) $u\overline{E}u$ is a semilattice and $V(e) \cap uSu \neq \emptyset$.

PROOF. We only proof $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (5) \Rightarrow (7) \Rightarrow (1)$.

(1) \Rightarrow (2) With the given information, $u\overline{E}u$ is a semilattice. It follows immediately that $uEu = u\overline{E}u$ is a semilattice and $uefu \in E$. On the other hand, ueueueu = ueu and eueue = e. Then $ueu \in V(e) \cap uS$.

 $(2) \Rightarrow (3)$ Obviously, $V(e) \cap uS \neq \emptyset$. Suppose that $e' \in V(e) \cap uSu$. Then e = ee'ue = ee'ue. This means that $e \perp ue$. As \perp is a right congruence, $efu \perp uefu$. Since $uefu \in E$, $efu = efu(uefu) = (efu)^2$. Let $g \in E$. Then eufugu = e(ugufu) = eugufu, so $(eufu)^2 = eufueufu = eueufu = eufu$. Hence Eu is a left normal band.

(3) \Rightarrow (5) Suppose that $f' \in V(f) \cap uS$. Then f = ff'f = fuf'f. It means that $f \mathcal{R} fu$. As \mathcal{R} is a left congruence, $efu \mathcal{R} efu$. Since $efu \in E$, ef = efuef. For any $g \in E$, $efgu = efufgu \in Eu$. Therefore, by mathematical induction, $xu \in Eu$ for any $x \in \overline{E}$. As a result, $\overline{E} = Eu$ is a left normal band.

 $(5) \Rightarrow (7)$ In view of the above proof, efuef = ef. Suppose that $e' \in V(e) \cap uS$. Then e(e'u)e = ee'(ee'uee')e = ee'e = e and e'uee'u = e'ee'uee'u = e'u. These imply that $e'u \in V(e) \cap uSu$. On the other hand, let $x, y \in \overline{E}$. Since $\overline{E}u$ is a left normal band, uxuyu = u(uyuxu) = uyuxu. This means that $u\overline{E}u$ is a semilattice.

 $(7) \Rightarrow (1)$ Similarly to the proof of $(3) \Rightarrow (5)$, $efu \ \mathcal{R} \ ef$ and $xu \in E$ for any $x \in E$. Since \mathcal{R} is a left congruence, xux = x, which, together with $u\overline{E}u$ being a semilattice, implies that u is normal.

COROLLARY 2.3. If u is a normal idempotent of S then:

- (1) $\overline{E}u = Eu$ is a left normal band;
- (2) $u\overline{E} = uE$ is a right normal band; and
- (3) $u\overline{E}u = uEu$ is a semilattice.

PROOF. This follows from Theorem 2.2 immediately.

Here we investigate several interesting properties of a regular semigroup possessing a normal idempotent. This enables us to intensively look into such regular semigroups.

If u is an idempotent of S, then uSu is obviously a subsemigroup of S.

Let $I = \{aa^{\circ} | a \in S, a^{\circ} \in V_{uSu}(a)\}$ and $\Lambda = \{a^{\circ}a | a \in S, a^{\circ} \in V_{uSu}(a)\}.$

PROPOSITION 2.4. If u is a normal idempotent of S then:

(1) $(\forall x \in S, \forall x' \in V(x))$

$$ux'u \in V_{uSu}(x) \cap V_{uSu}(uxu) \cap V_{uSu}(xu) \cap V_{uSu}(ux);$$

- (2) $(\forall x \in S) |V_{uSu}(x)| = 1;$
- (3) uSu is an inverse transversal for S;
- (4) $I = Eu \text{ and } \Lambda = uE;$
- (5) $\Lambda I = uEu;$
- (6) $I\Lambda = \overline{E};$
- (7) $(\forall e, f \in E) e \mathcal{R} f \Leftrightarrow eu = fu; and$
- (8) $(\forall e, f \in E) \ e \ \mathcal{L} \ f \Leftrightarrow ue = uf.$

PROOF. (1) Notice that ux'uxux'u = ux'xx'uxx'xux'xx'u = ux'xx'u = ux'u and xux'ux = xx'xux'xx'uxx'x = xx'x = x. We have $ux'u \in V_{uSu}(x)$. The remainder can be proved similarly.

(2), (3) Let $x', x^{\circ} \in V_{uSu}(x)$. Then $x', x^{\circ} \in V_{uSu}(uxu)$. Since $u\overline{E}u = E(uSu)$, uSu is an inverse semigroup. Therefore $x' = x^{\circ}$, so $|V_{uSu}(x)| = 1$.

(4) By Theorem 2.1, $\emptyset \neq I \subseteq Eu$. Let $e \in E$. Then $ueu \in V_{uSu}(eu)$ and eu = e(ueu). It follows that $eu \in I$. Consequently, I = Eu. Similarly, $\Lambda = uE$.

(5) For any $e, f \in E$, $uefu \in uEu = uEu$, while $uEu \subseteq \Lambda I$ is obvious. So $uEu = \Lambda I$ is as required.

(6) Suppose that $x \in \overline{E}$. Then, by Corollary 2.3, $xu, ux \in E$. So $xu \in I$ and $ux \in \Lambda$. From x = xuux it follows that $x \in I\Lambda$. Therefore $\overline{E} \subseteq I\Lambda$, together with $I\Lambda = EuE \subseteq \overline{E}$, implies that $I\Lambda = \overline{E}$.

(7) Since eue = e for any $e \in E$, $e \ \mathcal{R} eu$. Then $eu \ \mathcal{R} e \ \mathcal{R} f \ \mathcal{R} fu$. As Eu is left normal, eu = fu. The converse part follows from $e \ \mathcal{R} eu = fu \ \mathcal{R} f$.

(8) This is obtained by a similar argument to that of (7).

Up to now, we have shown that if u is a normal idempotent of S, then uSu is a multiplicative inverse transversal. Actually, the reverse is also true.

THEOREM 2.5. For any $u \in E$, u is a normal idempotent if and only if uSu is a multiplicative inverse transversal.

PROOF. The forward direction of this theorem is immediate from the above proposition. For the reverse direction, we take the Theorem 2.2(2) into consideration. By the hypothesis, $V_{uSu}(x) \neq \emptyset$ for any $x \in S$. In particular, if $x \in E$, then $V_{uSu}(x) \subseteq E(uSu)$, where E(uSu) is the set of idempotents of uSu. We next need to show that uEu is

X. Ni and H. Chao

a semilattice and that, for any $e, f \in E$, $uefu \in uEu$. In fact, it is easy to check that $V_{uSu}(e) = V_{uSu}(eu)$. Suppose that $e^{\circ} \in V_{uSu}(e)$. Then $ee^{\circ} \in I$ and $e^{\circ}eu \in E(uSu)$. Since we know that $E(uSu) \subseteq I$ and I is a band, $eu = (ee^{\circ})e^{\circ}eu \in I$. Together with $I \subseteq Eu$, we obtain I = Eu. By applying similar arguments, $\Lambda = uE$. So Eu and uE are bands. We conclude that uEu = E(uSu) is a semilattice. Again by the hypothesis, $\Lambda I \subseteq E(uSu)$: that is, $uEEu \subseteq uEu$. Therefore $uefu \in uEu$, as required.

COROLLARY 2.6. Let S° be a multiplicative inverse transversal for S. Then the identity of S° is a normal idempotent of S.

PROOF. Let $e \in E$ be the identity of S° . Then $eSe = S^{\circ}$ is a multiplicative inverse transversal for *S*, so *e* is normal.

Recall from [1] that a regular semigroup S with an inverse transversal S° is locally inverse if and only if S° is a quasi-ideal of S. Together with Theorem 2.5, we claim that a regular semigroup having a normal idempotent must be locally inverse. In addition, we have the following proposition.

PROPOSITION 2.7. If u is a normal idempotent of S then:

- (1) $(\forall e \in E)$ S e is a left inverse semigroup;
- (2) $(\forall e \in E) eS$ is a right inverse semigroup; and
- (3) $(\forall e \in E) eSe$ is an inverse semigroup.

PROOF. We only prove (1); the remainder will be obtained by a similar argument. Let E(Se) be the set of idempotents of Se. Suppose that $g, h, k \in E(Se)$. Then

$$(gh)^{2} = (gehe)^{2} = [g(eue)h(eue)]^{2}$$
$$= (geu)(ehu)(egu)(ehu)e$$
$$= (geu)(egu)(ehu)(ehu)e$$
$$= guehue = gh.$$

This means that E(Se) is a band. On the other hand,

So E(Se) is a left normal band and then Se is a left inverse semigroup.

According to the above proposition, a normal idempotent of a regular semigroup must induce some orthodox subsemigroups. We now consider the conditions under which each regular semigroup having a normal idempotent must be orthodox.

THEOREM 2.8. Let u be a normal idempotent of S. Then the following statements are equivalent.

- (1) *S* is an orthodox semigroup.
- (2) $(\forall x \in S) uxu \in E \Rightarrow x \in E.$
- (3) $(\forall e, f \in E) uefu \in E \Rightarrow ef \in E.$

- (4) $(\forall i \in I, \forall \lambda \in \Lambda) \ i\lambda \in E.$
- (5) $(\forall i \in I, \forall \lambda \in \Lambda) \lambda u i = \lambda i.$
- (6) $(\forall x, y \in S) xy = xuy.$

PROOF. (1) \Rightarrow (2) By the hypotheses, we know that *E* is a band. For any $x \in S$, suppose that $x' \in V(x) \cap uSu$. Since x = xx'uxux'x and $uxu \in E$, $x \in E$.

 $(2) \Rightarrow (3)$ This is trivial.

 $(3) \Rightarrow (4)$ We have shown that if *u* is normal, then uEu is a semilattice. Therefore, $ui\lambda u \in (uEu)(uEu) \subseteq E$ implies that $i\lambda \in E$.

(4) \Rightarrow (5) With the given information, uSu is a multiplicative inverse transversal. Then λui , $\lambda i \in \Lambda I \subseteq E$. It follows that

$$(\lambda i)(\lambda u i)(\lambda i) = \lambda (i\lambda u i\lambda)i = \lambda (i\lambda)i = \lambda i$$
 and $(\lambda u i)(\lambda i)(\lambda u i) = \lambda u i$.

So $\lambda u \in V_{uSu}(i\lambda)$. Easily, $\lambda i \in V_{uSu}(i\lambda)$. Notice that uSu is an inverse transversal; $\lambda u = \lambda i$.

(5) \Rightarrow (6) Review the proof of Theorem 2.4; I = Eu and $\Lambda = uE$. Let $x' \in V(x) \cap uSu$ and $y' \in V(y) \cap uSu$. Since $x'x = ux'x \in \Lambda$ and $yy' = yy'u \in I$, xuy = x(x'xuyy')y = xx'xyy'y = xy.

(6)
$$\Rightarrow$$
 (1) For any $e, f \in E, ef = efuef = efef$. So $ef \in E$.

In view of this theorem, we say that the conditions are equivalent to *u* being a middle unit.

3. A structure theorem

Blyth and McFadden in [3] described every regular semigroup that contains a normal idempotent in terms of an idempotent-generated regular semigroup with a normal idempotent and an inverse semigroup with an identity. In reality, we also wonder about the characterization of all idempotent-generated regular semigroups having a normal idempotent.

The objective of this section is to construct all regular semigroups having a normal idempotent by some simpler building bricks.

Let *M* be a left inverse semigroup and let *N* be a right inverse semigroup. Suppose that *M* and *N* have a common element *u* as their right identity and left identity, respectively. Then uMu = uM and uNu = Nu. Also, assume that $uM \cong Nu$. In this case, for convenience, denote uM and Nu by S° . Then S° is an inverse monoid such that $S^{\circ} \subseteq M \cap N$.

As *M* is a left inverse semigroup, for any $x \in M$, there is an unique idempotent $e \in E(M)$ such that $e \mathcal{R} x$. We denote it by x^+ . Similarly, for any $y \in N$, let y^* be the unique idempotent such that $y \perp y^* \in E(N)$.

Define a map $\circ : N \times M \to S^{\circ}$ by $(y, x) \mapsto y \circ x$ for any $x \in M, y \in N$.

The quadruple $(S^{\circ}; M, N; \circ)$ is said to be *permissible* if:

(P1) $(\forall x \in M, \forall y \in N, \forall s \in S^{\circ}) s(y \circ x) = (sy) \circ x$ and $(y \circ x)s = y \circ (xs)$;

(P2) $(\forall x \in M, \forall y \in N, \forall s \in S^{\circ}) y \circ s = ys$ and $s \circ x = sx$; and

 $(P3) \ (\forall e \in E(M), \ \forall f \in E(N)) \ f \circ e \in E(S^{\circ}).$

Let $P(S^{\circ}; M, N; \circ) = \{(x, y) \mid x \in M, y \in N, ux = yu\}$. Denote $P(S^{\circ}; M, N; \circ)$ by *P* and define a multiplication on *P* as

$$(x, y)(a, b) = (x^+(y \circ a), (y \circ a)b^*).$$

LEMMA 3.1. *P* is a regular semigroup.

PROOF. It is easy to check that $ux^+u \mathcal{R} uxu = uyu \mathcal{R} (uyu)^+$. Since S° is an inverse semigroup, $ux^+u = (uyu)^+$. Then $ux^+(y \circ a)u = ux^+u(yu \circ a)u = (ux^+uyu) \circ a)u = u(y \circ a)u$. As a dual, $u(y \circ a)a^*u = u(y \circ a)ua^*u = u(y \circ aua^*u) = u(y \circ a)u$. Hence $ux^+(y \circ a)u = u(y \circ a)a^*u$. This means that the above multiplication on P is well defined.

Let
$$(c, d) \in P$$
. Then

$$[(x, y)(a, b)](c, d) = (x^{+}(y \circ a), (y \circ a)b^{*})(c, d)$$

= ([x⁺(y \circ a)]⁺(y \circ a)(b^{*} \circ c), (y \circ a)(b^{*} \circ c)d^{*})
= ([x^{+}(y \circ a)^{+}](y \circ a)(b^{*} \circ c), (y \circ a)(b^{*} \circ c)d^{*})
= ([x^{+}(y \circ a)^{+}(y \circ a)](b^{*} \circ c), (y \circ a)(b^{*} \circ c)d^{*})
= (x^{+}(y \circ a)(b^{*} \circ c), (y \circ a)(b^{*} \circ c)d^{*})

and

$$\begin{aligned} (x,y)[(a,b)(c,d)] &= (x,y)(a^+(b\circ c),(b\circ c)d^*) \\ &= (x^+[y\circ (a^+(b\circ c))],[y\circ (a^+(b\circ c))]d^*) \end{aligned}$$

Suppose that $a' \in V_M(a)$. Then $a^+ = aa' = aua'u$. Since uau = ubu, $b^* = ua'ub$. It follows that

$$y \circ (a^{+}(b \circ c)) = y \circ (aua'u(b \circ c))$$
$$= y \circ (a(ua'ub \circ c))$$
$$= y \circ (a(b^{*} \circ c))$$
$$= (y \circ a)(b^{*} \circ c).$$

In conclusion,

$$[(x, y)(a, b)](c, d) = (x, y)[(a, b)(c, d)].$$

Therefore *P* is a semigroup.

Let $x' \in V_M(x)$ and $y' \in V_N(y)$. Then $ux'u \in V_{S^\circ}(x) = V_{S^\circ}(uxu)$ and $uy'u \in V_{S^\circ}(y) = V_{S^\circ}(uyu)$. Notice that uxu = uyu. Since S° is an inverse semigroup, ux'u = uy'u. It follows that $(ux'u, uy'u) \in P$.

$$(x, y)(ux'u, uy'u)(x, y) = (x^{+}(yux'u), (yux'u)(uy'u)^{*})(x, y)$$

= $(x^{+}(uyux'u), yux'u)(x, y)$
= $(x^{+}(uxu)^{+}, uyux'u)(x, y)$
= $(x^{+}, yux'u)(x, y)$
= $(x^{+}(uyux'ux), (uyux'ux)y^{*})$
= $(x, (uyux'uxu)y^{*})$
= (x, y)

122

and

$$\begin{aligned} (ux'u, uy'u)(x, y)(ux'u, uy'u) &= ((ux'u)^+(uy'ux), (uy'ux)y^*)(ux'u, uy'u) \\ &= ((ux'ux), (uy'uxu)(uy'uy))(ux'u, uy'u) \\ &= ((ux'ux), uy'uy)(ux'u, uy'u) \\ &= ((ux'uxu)(uy'uyuy'u), (uy'uyuy'u)(uy'u)^*) \\ &= (ux'u, uy'u). \end{aligned}$$

Therefore $(ux'u, uy'u) \in V((x, y))$, so *P* is regular.

LEMMA 3.2. $E(P) = \{(x, y) \in P \mid ux = yu \in E(S^{\circ})\}.$

PROOF. It is trivial to check that

$$(x, y) = (x, y)(x, y) \Leftrightarrow x^+(y \circ x) = x, (y \circ x)y^* = y.$$

Since $x^+(y \circ x) = x$, $ux^+(y \circ x) = ux$. This implies that

$$ux = ux^+(y \circ x) = ux^+u(y \circ x) = (ux^+uyuy^*) \circ x = ux^2.$$

Conversely, $ux = ux^2$ also implies that $ux = ux^+(y \circ x)$. Notice that

$$x = x^{+}ux = x^{+}ux^{+}(y \circ x) = x^{+}(y \circ x).$$

We conclude that $x^+(y \circ x) = x$ if and only if $ux = ux^2$, if and only if $ux \in E(S^\circ)$. Similarly, $(y \circ x)y^* = y$ if and only if $yu = y^2u$, if and only if $yu \in E(S^\circ)$. Therefore $E(W) = \{(x, y) \in W \mid ux = yu \in E(S^\circ)\}$.

In what follows, we will use the alternative description of a normal idempotent, obtained in Section 2, to prove that P contains a normal idempotent.

LEMMA 3.3. Denote the element (u, u) by \overline{u} . Then $V((x, y)) \cap \overline{u}P\overline{u} \neq \emptyset$ for all $(x, y) \in E(P)$.

PROOF. According to the proof of Lemma 3.1, $(ux'u, uy'u) \in V((x, y))$. Since $(ux'u, uy'u) = \bar{u}(x', y')\bar{u}, V((x, y)) \cap \bar{u}P\bar{u} \neq \emptyset$.

LEMMA 3.4. $E(P)\bar{u}$ is a left normal band.

PROOF. Let $(x, y) \in E(P)$. Then $(x, y)\overline{u} = (x^+(y \circ u), (y \circ u)u) = (x^+(yu), yu) = (x, yu)$. Since

$$(x, yu)^{2} = (x^{+}(ux^{2}), (y^{2}u)(yu)^{*})$$
$$= (x^{+}ux, (yu)(yu)^{*}) = (x, yu),$$

 $E(P)\overline{u} \subseteq E(P)$. Let $(a, b) \in E(P)$. Then

$$(x, y)\overline{u}(a, b)\overline{u} = (x, yu)(a, bu) = (x^{+}(yua), (yua)(bu)^{*})$$

= $(xua, (ybu)(bu)^{*}) = (xua, ybu)$
= $(xua, xua).$

123

As $uxua \in E(S^\circ)$, $E(P)\overline{u}$ is a band. Next, notice that $\overline{u}(a, b)\overline{u} = (ua, bu)$ and $\overline{u}(c, d)\overline{u} = (uc, du)$. Hence

$$\begin{split} \bar{u}(a,b)\bar{u}\bar{u}(c,d)\bar{u} &= (ua,bu)(uc,du) \\ &= ((ua)^+(buc),(buc)(du)^*) = (uauc,budu) \\ &= (ucua,dubu) = ((uc)^+(dua),(dua)(bu)^*) \\ &= (uc,du)(ua,bu) \\ &= \bar{u}(c,d)\bar{u}\bar{u}(a,b)\bar{u}. \end{split}$$

Therefore $(x, y)\overline{u}(a, b)\overline{u}(c, d)\overline{u} = (x, y)\overline{u}(c, d)\overline{u}(a, b)\overline{u}$, so $E(P)\overline{u}$ is a left normal band. \Box

THEOREM 3.5. Suppose that $(S^{\circ}; M, N; \circ)$ is a permissible quadruple. Then $P(S^{\circ}; M, N; \circ)$ is a regular semigroup having a normal idempotent. Conversely, any regular semigroup that contains a normal idempotent can be constructed in this way.

PROOF. According to Lemmas 3.3 and 3.4 and Theorem 2.2, we only need to prove this for any $(x, y), (a, b) \in E(P), (x, y)(a, b)\overline{u} \in E(P)$. It is easy to check that $ux \ \mathcal{L} x$. Since $ux \in E(S^{\circ}), x^2 = xux = x$. This implies that $x \in E(M)$. Similarly, $a \in E(M)$ and $y, b \in E(N)$. Then $y \circ a \in E(S^{\circ})$ by (P3). As we know, M is a left inverse semigroup and N is a right inverse semigroup. So $x = x^+$ and $b^* = b$. Finally, by trivial computing, $(x, y)(a, b)\overline{u} \in E(P)$ is true.

Conversely, let *S* be any regular semigroup that contains a normal idempotent *u*. Then, by Proposition 2.7, *Su* is a left inverse semigroup and *uS* is a right inverse semigroup. For all $x \in Su$ and $y \in uS$, let $y \circ x$ be yx. We claim that $(uSu; Su, uS; \circ)$ is a permissible quadruple. Suppose that $(xu, uy) \in P(uSu; Su, uS; \circ)$. Then uxu = uyu and $xu = (x^+uy)u$, $uy = u(x^+uy)$. Denote x^+uy by *z*. We know that (xu, uy) = (zu, uz), so $P(uSu; Su, uS; \circ) = \{(tu, ut) \mid t \in S\}$. Define a function

$$\tau: S \to P(uSu; Su, uS; \circ), s \mapsto (su, us)$$
 for all $s \in S$.

Obviously, τ is surjective. Assume that (su, us) = (tu, ut). Then $s = (su)^+ us = (tu)^+$ ut = t. Hence τ is also injective. On the other hand, $\tau(s)\tau(t) = (su, us)(tu, ut) = (stu, ust) = \tau(st)$. Therefore τ is an isomorphism.

Acknowledgements

The authors would like to express their sincere thanks to Professor Marcel Jackson, Dr Aihua Li and the referees for their important and constructive modifying suggestions.

References

- [1] T. S. Blyth and M. H. Almeida Santos, 'A classification of inverse transversals', *Commun. Algebra* **29** (2001), 611–624.
- [2] T. S. Blyth and R. B. McFadden, 'Regular semigroups with a multiplicative inverse transversal', *Proc. R. Soc. Edinb.* A 92 (1982), 253–270.

Regular semigroups with normal idempotents

- [3] T. S. Blyth and R. B. McFadden, 'On the construction of a class of regular semigroups', *J. Algebra* **81** (1983), 1–22.
- [4] J. M. Howie, Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995).

XIANGFEI NI, Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China e-mail: nxf@zjnu.cn

HAIZHOU CHAO, Department of Mathematics, Shanghai University of Finance and Economics, Zhejiang College, Jinhua 321004, PR China e-mail: yfzcxjt@163.com

[10]