# REGULAR SEMIGROUPS WITH NORMAL IDEMPOTENTS <br> XIANGFEI NI ${ }^{\boxtimes}$ and HAIZHOU CHAO 

(Received 10 May 2015; accepted 3 February 2017; first published online 29 March 2017)

Communicated by M. Jackson


#### Abstract

In this paper, we investigate regular semigroups that possess a normal idempotent. First, we construct a nonorthodox nonidempotent-generated regular semigroup which has a normal idempotent. Furthermore, normal idempotents are described in several different ways and their properties are discussed. These results enable us to provide conditions under which a regular semigroup having a normal idempotent must be orthodox. Finally, we obtain a simple method for constructing all regular semigroups that contain a normal idempotent.


2010 Mathematics subject classification: primary 20M10.
Keywords and phrases: regular semigroup, normal idempotent, orthodox semigroup.

## 1. Introduction

Let $S$ be a regular semigroup with the set $E$ of idempotents and let $\bar{E}$ be the subsemigroup generated by $E$. An idempotent $u$ of $S$ is called a medial idempotent if, for every element $x \in \bar{E}, x u x=x$. A medial idempotent $u$ is said to be normal if $u \bar{E} u$ is a semilattice. This notation appeared in [3].

The purpose of this paper is to characterize normal idempotents of a regular semigroup in various ways and to develop a method to construct a regular semigroup having a normal idempotent. The results we obtained are different from those provided in [3].

In fact, Blyth and McFadden gave an example to show that there exists a nonorthodox idempotent-generated regular semigroup which contains a normal idempotent. Then they described a normal idempotent by Green's relations and got a condition under which a regular semigroup having a normal idempotent is orthodox. By contrast, in Section 2, we first construct a nonorthodox nonidempotent-generated regular semigroup which contains a normal idempotent. It helps us explore different types of nonorthodox regular semigroups which have a normal idempotent. Next,

[^0]all normal idempotents of a regular semigroup are characterized in various ways via subsets of the idempotent set and some inverse elements. In particular, we prove that an idempotent $u$ of a regular semigroup $S$ is normal if and only if $u S u$ is a multiplicative inverse transversal for $S$. The result leads us to claim that a regular semigroup having a normal idempotent is locally inverse. Furthermore, several conditions under which a regular semigroup having a normal idempotent is orthodox are established.

Recall from [3] that every regular semigroup that contains a normal idempotent was described in terms of an idempotent-generated regular semigroup having a normal idempotent and an inverse semigroup with an identity. Naturally, there is a question here about the description of all idempotent-generated regular semigroups having a normal idempotent. In Section 3, we focus on investigating the structure of any regular semigroup having a normal idempotent. Actually, we establish a straightforward way of constructing such a regular semigroup: that is, we characterize it by means of a left inverse semigroup and a right inverse semigroup.

Refer to [2] and [4] for useful notation and terminology not defined in this paper. For convenience, we list some basic definitions as follows.

A semigroup $S^{\circ}$ is an inverse transversal for a regular semigroup $S$ if $S^{\circ}$ is a subsemigroup of $S$ and if, for any $x \in S,\left|V_{S^{\circ}}(x)\right|=1$. In this case, the unique inverse of $x$ is always denoted by $x^{\circ}$.

If $S^{\circ} S S^{\circ} \subseteq S^{\circ}$, then $S^{\circ}$ is called a quasi-ideal transversal for $S$.
Let $I=\left\{a a^{\circ} \mid a \in S, a^{\circ} \in V_{S^{\circ}}(a)\right\}, \Lambda=\left\{a^{\circ} a \mid a \in S, a^{\circ} \in V_{S^{\circ}}(a)\right\}$ and $E^{\circ}$ be the set of idempotents of $S^{\circ}$. If $\Lambda I \subseteq E^{\circ}$, then an inverse transversal $S^{\circ}$ is said to be multiplicative. It is known that, in this case, $I$ and $\Lambda$ are bands and $I \cap \Lambda=E^{\circ}$.

## 2. Normal idempotents

From now on, let $S$ be a regular semigroup. Denote by $E(S)$ the set of idempotents of $S$ and by $\overline{E(S)}$ the regular semigroup generated by $E(S)$. If there are no ambiguities, we would write them as $E$ and $\bar{E}$, respectively.

In [3], a nonorthodox idempotent-generated regular semigroup having a normal idempotent is provided. Blyth and McFadden then described a normal idempotent of $S$ by the Green's relations on $S$ and claimed that $S$ having a normal idempotent $u$ is orthodox if and only if $u$ is a middle unit, that is, $x u x=x^{2}$ for all $x$ in $E$.

However, in this section, we obtain a nonorthodox nonidempotent-generated regular semigroup which contains a normal idempotent. Moreover, we characterize normal idempotents of $S$, alternatively, according to some subsets of $E$ and $V(e)$ for all idempotents $e$, where $V(e)$ is the set of all inverse elements of $e$. In addition, we prove that an idempotent $u$ of a regular semigroup $S$ is normal if and only $u S u$ is a multiplicative inverse transversal for $S$. By applying this result, we deduce that a regular semigroup having a normal idempotent is locally inverse. Lastly, several different conditions under which a regular semigroup having a normal idempotent is orthodox are obtained. These conditions are actually equivalent to the condition that Blyth and McFadden provided.

Example 2.1. Let $B$ denote the monoid

$$
\langle p, q \mid q p=1\rangle=\left\{q^{m} p^{n}: m, n \geq 0\right\}
$$

and let $T=M[B ;\{1,2\},\{1,2\} ; P]$, where $P=\left(\begin{array}{c}q \\ 1 \\ 1\end{array}\right)$. Then $T$ is regular and $E(T)=$ $\{(2,1,1),(1,1,2),(1, p, 1),(2, q, 2)\}$. By computing, $(1,1,2)$ is a normal idempotent but $T$ is not orthodox.

In the following theorem, all normal idempotents of a regular semigroup are described in alternative ways.

Theorem 2.2. Let $u \in E$. For any e, $f \in E$, the following statements are equivalent.
(1) $u$ is normal.
(2) $u E u$ is a semilattice and $V(e) \cap u S u \neq \emptyset$ and uefu $\in E$.
(3) Eu is a left normal band and $V(e) \cap u S \neq \emptyset$ and efu $\in E$.
(4) $u E$ is a right normal band and $V(e) \cap S u \neq \emptyset$ and uef $\in E$.
(5) $\bar{E} u$ is a left normal band and $V(e) \cap u S \neq \emptyset$.
(6) $u \bar{E}$ is a left normal band and $V(e) \cap S u \neq \emptyset$.
(7) $u \bar{E} u$ is a semilattice and $V(e) \cap u S u \neq \emptyset$.

Proof. We only proof $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(5) \Rightarrow(7) \Rightarrow(1)$.
(1) $\Rightarrow$ (2) With the given information, $u \bar{E} u$ is a semilattice. It follows immediately that $u E u=u \bar{E} u$ is a semilattice and uefu $\in E$. On the other hand, ueиeueu $=u e u$ and еиеие $=e$. Then иеи $\in V(e) \cap u S$.
(2) $\Rightarrow$ (3) Obviously, $V(e) \cap u S \neq \emptyset$. Suppose that $e^{\prime} \in V(e) \cap u S u$. Then $e=$ $e e^{\prime} u e=e e^{\prime} u e$. This means that $e \mathcal{L} u e$. As $\mathcal{L}$ is a right congruence, efu $\mathcal{L} u e f u$. Since $u e f u \in E, e f u=e f u(u e f u)=(e f u)^{2}$. Let $g \in E$. Then $e u f u g u=e(u g u f u)=e u g u f u$, so $(e u f u)^{2}=e u f u e u f u=e u e u f u=e u f u$. Hence $E u$ is a left normal band.
(3) $\Rightarrow$ (5) Suppose that $f^{\prime} \in V(f) \cap u S$. Then $f=f f^{\prime} f=f u f^{\prime} f$. It means that $f \mathcal{R} f u$. As $\mathcal{R}$ is a left congruence, efu $\mathcal{R} e f u$. Since $e f u \in E$, ef $=e f u e f$. For any $g \in E$, efgu $=$ efufgu $\underline{\operatorname{Ef} u}$. Therefore, by mathematical induction, $x u \in E u$ for any $x \in \bar{E}$. As a result, $\bar{E}=E u$ is a left normal band.
(5) $\Rightarrow$ (7) In view of the above proof, efuef $=e f$. Suppose that $e^{\prime} \in V(e) \cap u S$. Then $e\left(e^{\prime} u\right) e=e e^{\prime}\left(e e^{\prime} u е e^{\prime}\right) e=e e^{\prime} e=e$ and $e^{\prime} и e e^{\prime} u=e^{\prime} e e^{\prime} и e e^{\prime} u=e^{\prime} u$. These imply that $e^{\prime} u \in V(e) \cap u S u$. On the other hand, let $x, y \in \bar{E}$. Since $\bar{E} u$ is a left normal band, ихиуи $=и($ иуихи $)=$ иуихи. This means that $u \bar{E} u$ is a semilattice.
(7) $\Rightarrow$ (1) Similarly to the proof of (3) $\Rightarrow(5)$, efu $\mathcal{R}$ ef and $x u \in E$ for any $x \in \bar{E}$. Since $\mathcal{R}$ is a left congruence, $x u x=x$, which, together with $u \bar{E} u$ being a semilattice, implies that $u$ is normal.

Corollary 2.3. If $u$ is a normal idempotent of $S$ then:
(1) $\bar{E} u=E u$ is a left normal band;
(2) $u \bar{E}=u E$ is a right normal band; and
(3) $u \bar{E} u=u E u$ is a semilattice.

Proof. This follows from Theorem 2.2 immediately.
Here we investigate several interesting properties of a regular semigroup possessing a normal idempotent. This enables us to intensively look into such regular semigroups.

If $u$ is an idempotent of $S$, then $u S u$ is obviously a subsemigroup of $S$.
Let $I=\left\{a a^{\circ} \mid a \in S, a^{\circ} \in V_{u S u}(a)\right\}$ and $\Lambda=\left\{a^{\circ} a \mid a \in S, a^{\circ} \in V_{u S u}(a)\right\}$.
Proposition 2.4. If u is a normal idempotent of $S$ then:
(1) $\left(\forall x \in S, \forall x^{\prime} \in V(x)\right)$

$$
u x^{\prime} u \in V_{u S u}(x) \cap V_{u S u}(u x u) \cap V_{u S u}(x u) \cap V_{u S u}(u x)
$$

(2) $(\forall x \in S)\left|V_{u S u}(x)\right|=1$;
(3) $u S u$ is an inverse transversal for $S$;
(4) $I=E u$ and $\Lambda=u E$;
(5) $\Lambda I=u E u$;
(6) $I \Lambda=\bar{E}$;
(7) $(\forall e, f \in E) e \mathcal{R} f \Leftrightarrow e u=f u$; and
(8) $(\forall e, f \in E) e \mathcal{L} f \Leftrightarrow u e=u f$.

Proof. (1) Notice that $u x^{\prime} u x u x^{\prime} u=u x^{\prime} x x^{\prime} u x x^{\prime} x u x^{\prime} x x^{\prime} u=u x^{\prime} x x^{\prime} u=u x^{\prime} u$ and $x u x^{\prime} u x=$ $x x^{\prime} x u x^{\prime} x x^{\prime} u x x^{\prime} x=x x^{\prime} x=x$. We have $u x^{\prime} u \in V_{u S u}(x)$. The remainder can be proved similarly.
(2), (3) Let $x^{\prime}, x^{\circ} \in V_{u S u}(x)$. Then $x^{\prime}, x^{\circ} \in V_{u S u}(u x u)$. Since $u \bar{E} u=E(u S u), u S u$ is an inverse semigroup. Therefore $x^{\prime}=x^{\circ}$, so $\left|V_{u S u}(x)\right|=1$.
(4) By Theorem 2.1, $\emptyset \neq I \subseteq E u$. Let $e \in E$. Then иeu $\in V_{u S u}(e u)$ and $e u=e(u e u)$. It follows that $e u \in I$. Consequently, $I=E u$. Similarly, $\Lambda=u E$.
(5) For any $e, f \in E$, $u e f u \in u \bar{E} u=u E u$, while $u E u \subseteq \Lambda I$ is obvious. So $u E u=\Lambda I$ is as required.
(6) Suppose that $x \in \bar{E}$. Then, by Corollary $2.3, x u, u x \in E$. So $x u \in I$ and $u x \in \Lambda$. From $x=$ xuu $x$ it follows that $x \in I \Lambda$. Therefore $\bar{E} \subseteq I \Lambda$, together with $I \Lambda=E u E \subseteq \bar{E}$, implies that $I \Lambda=\bar{E}$.
(7) Since $e u e=e$ for any $e \in E, e \mathcal{R} e u$. Then $e u \mathcal{R} e \mathcal{R} f \mathcal{R} f u$. As $E u$ is left normal, $e u=f u$. The converse part follows from $e \mathcal{R} e u=f u \mathcal{R} f$.
(8) This is obtained by a similar argument to that of (7).

Up to now, we have shown that if $u$ is a normal idempotent of $S$, then $u S u$ is a multiplicative inverse transversal. Actually, the reverse is also true.

Theorem 2.5. For any $u \in E, u$ is a normal idempotent if and only if $u S u$ is $a$ multiplicative inverse transversal.

Proof. The forward direction of this theorem is immediate from the above proposition. For the reverse direction, we take the Theorem 2.2(2) into consideration. By the hypothesis, $V_{u S u}(x) \neq \emptyset$ for any $x \in S$. In particular, if $x \in E$, then $V_{u S u}(x) \subseteq E(u S u)$, where $E(u S u)$ is the set of idempotents of $u S u$. We next need to show that $u E u$ is
a semilattice and that, for any $e, f \in E, u e f u \in u E u$. In fact, it is easy to check that $V_{u S u}(e)=V_{u S u}(e u)$. Suppose that $e^{\circ} \in V_{u S u}(e)$. Then $e e^{\circ} \in I$ and $e^{\circ} e u \in E(u S u)$. Since we know that $E(u S u) \subseteq I$ and $I$ is a band, $e u=\left(e e^{\circ}\right) e^{\circ} e u \in I$. Together with $I \subseteq E u$, we obtain $I=E u$. By applying similar arguments, $\Lambda=u E$. So $E u$ and $u E$ are bands. We conclude that $u E u=E(u S u)$ is a semilattice. Again by the hypothesis, $\Lambda I \subseteq E(u S u)$ : that is, $u E E u \subseteq u E u$. Therefore $u e f u \in u E u$, as required.

Corollary 2.6. Let $S^{\circ}$ be a multiplicative inverse transversal for $S$. Then the identity of $S^{\circ}$ is a normal idempotent of $S$.

Proof. Let $e \in E$ be the identity of $S^{\circ}$. Then $e S e=S^{\circ}$ is a multiplicative inverse transversal for $S$, so $e$ is normal.

Recall from [1] that a regular semigroup $S$ with an inverse transversal $S^{\circ}$ is locally inverse if and only if $S^{\circ}$ is a quasi-ideal of $S$. Together with Theorem 2.5, we claim that a regular semigroup having a normal idempotent must be locally inverse. In addition, we have the following proposition.
Proposition 2.7. If $u$ is a normal idempotent of $S$ then:
(1) $(\forall e \in E) S e$ is a left inverse semigroup;
(2) $(\forall e \in E) e S$ is a right inverse semigroup; and
(3) $(\forall e \in E)$ eSe is an inverse semigroup.

Proof. We only prove (1); the remainder will be obtained by a similar argument. Let $E(S e)$ be the set of idempotents of $S e$. Suppose that $g, h, k \in E(S e)$. Then

$$
\begin{aligned}
(g h)^{2} & =(\text { gehe })^{2}=[g(\text { eue }) h(\text { eue })]^{2} \\
& =(\text { geu })(\text { ehu })(\text { egu })(\text { ehu }) e \\
& =(\text { geu })(\text { egu })(\text { ehu })(\text { ehu }) e \\
& =\text { guehue }=g h .
\end{aligned}
$$

This means that $E(S e)$ is a band. On the other hand,

$$
\begin{aligned}
g h k & =\text { geheke }=\text { geueheuekeue } \\
& =g e(\text { uehueku }) e=\text { ge(uekuehu }) e \\
& =g k h .
\end{aligned}
$$

So $E(S e)$ is a left normal band and then $S e$ is a left inverse semigroup.
According to the above proposition, a normal idempotent of a regular semigroup must induce some orthodox subsemigroups. We now consider the conditions under which each regular semigroup having a normal idempotent must be orthodox.

Theorem 2.8. Let u be a normal idempotent of $S$. Then the following statements are equivalent.
(1) $S$ is an orthodox semigroup.
(2) $(\forall x \in S) u x u \in E \Rightarrow x \in E$.
(3) $(\forall e, f \in E) u e f u \in E \Rightarrow e f \in E$.

$$
\begin{equation*}
(\forall i \in I, \forall \lambda \in \Lambda) i \lambda \in E . \tag{4}
\end{equation*}
$$

(5) $(\forall i \in I, \forall \lambda \in \Lambda) \lambda u i=\lambda i$.
(6) $(\forall x, y \in S) x y=x u y$.

Proof. (1) $\Rightarrow$ (2) By the hypotheses, we know that $E$ is a band. For any $x \in S$, suppose that $x^{\prime} \in V(x) \cap u S u$. Since $x=x x^{\prime} u x u x^{\prime} x$ and $u x u \in E, x \in E$.
$(2) \Rightarrow(3)$ This is trivial.
(3) $\Rightarrow$ (4) We have shown that if $u$ is normal, then $u E u$ is a semilattice. Therefore, $u i \lambda u \in(u E u)(u E u) \subseteq E$ implies that $i \lambda \in E$.
$(4) \Rightarrow(5)$ With the given information, $u S u$ is a multiplicative inverse transversal. Then $\lambda u i, \lambda i \in \Lambda I \subseteq E$. It follows that

$$
(\lambda i)(\lambda u i)(\lambda i)=\lambda(i \lambda u i \lambda) i=\lambda(i \lambda) i=\lambda i \quad \text { and } \quad(\lambda u i)(\lambda i)(\lambda u i)=\lambda u i .
$$

So $\lambda u i \in V_{u S u}(i \lambda)$. Easily, $\lambda i \in V_{u S u}(i \lambda)$. Notice that $u S u$ is an inverse transversal; $\lambda u i=\lambda i$.
(5) $\Rightarrow$ (6) Review the proof of Theorem 2.4; $I=E u$ and $\Lambda=u E$. Let $x^{\prime} \in V(x) \cap$ $u S u$ and $y^{\prime} \in V(y) \cap u S u$. Since $x^{\prime} x=u x^{\prime} x \in \Lambda$ and $y y^{\prime}=y y^{\prime} u \in I, x u y=x\left(x^{\prime} x u y y^{\prime}\right) y=$ $x x^{\prime} x y y^{\prime} y=x y$.
$(6) \Rightarrow(1)$ For any $e, f \in E, e f=e f u e f=e f e f$. So $e f \in E$.
In view of this theorem, we say that the conditions are equivalent to $u$ being a middle unit.

## 3. A structure theorem

Blyth and McFadden in [3] described every regular semigroup that contains a normal idempotent in terms of an idempotent-generated regular semigroup with a normal idempotent and an inverse semigroup with an identity. In reality, we also wonder about the characterization of all idempotent-generated regular semigroups having a normal idempotent.

The objective of this section is to construct all regular semigroups having a normal idempotent by some simpler building bricks.

Let $M$ be a left inverse semigroup and let $N$ be a right inverse semigroup. Suppose that $M$ and $N$ have a common element $u$ as their right identity and left identity, respectively. Then $u M u=u M$ and $u N u=N u$. Also, assume that $u M \cong N u$. In this case, for convenience, denote $u M$ and $N u$ by $S^{\circ}$. Then $S^{\circ}$ is an inverse monoid such that $S^{\circ} \subseteq M \cap N$.

As $M$ is a left inverse semigroup, for any $x \in M$, there is an unique idempotent $e \in E(M)$ such that $e \mathcal{R} x$. We denote it by $x^{+}$. Similarly, for any $y \in N$, let $y^{*}$ be the unique idempotent such that $y \mathcal{L} y^{*} \in E(N)$.

Define a map $\circ: N \times M \rightarrow S^{\circ}$ by $(y, x) \mapsto y \circ x$ for any $x \in M, y \in N$.
The quadruple ( $S^{\circ} ; M, N ; \circ$ ) is said to be permissible if:
$(P 1)\left(\forall x \in M, \forall y \in N, \forall s \in S^{\circ}\right) s(y \circ x)=(s y) \circ x$ and $(y \circ x) s=y \circ(x s)$;
$(P 2)\left(\forall x \in M, \forall y \in N, \forall s \in S^{\circ}\right) y \circ s=y s$ and $s \circ x=s x$; and
(P3) $(\forall e \in E(M), \forall f \in E(N)) f \circ e \in E\left(S^{\circ}\right)$.

Let $P\left(S^{\circ} ; M, N ; \circ\right)=\{(x, y) \mid x \in M, y \in N, u x=y u\}$.
Denote $P\left(S^{\circ} ; M, N ; \circ\right)$ by $P$ and define a multiplication on $P$ as

$$
(x, y)(a, b)=\left(x^{+}(y \circ a),(y \circ a) b^{*}\right) .
$$

Lemma 3.1. $P$ is a regular semigroup.
Proof. It is easy to check that $u x^{+} u \mathcal{R} u x u=u y u \mathcal{R}(u y u)^{+}$. Since $S^{\circ}$ is an inverse semigroup, $u x^{+} u=(u y u)^{+}$. Then $\left.u x^{+}(y \circ a) u=u x^{+} u(y u \circ a) u=\left(u x^{+} u y u\right) \circ a\right) u=$ $u(y \circ a) u$. As a dual, $u(y \circ a) a^{*} u=u(y \circ a) u a^{*} u=u\left(y \circ a u a^{*} u\right)=u(y \circ a) u$. Hence $u x^{+}(y \circ a) u=u(y \circ a) a^{*} u$. This means that the above multiplication on $P$ is well defined.

Let $(c, d) \in P$. Then

$$
\begin{aligned}
{[(x, y)(a, b)](c, d) } & =\left(x^{+}(y \circ a),(y \circ a) b^{*}\right)(c, d) \\
& =\left(\left[x^{+}(y \circ a)\right]^{+}(y \circ a)\left(b^{*} \circ c\right),(y \circ a)\left(b^{*} \circ c\right) d^{*}\right) \\
& =\left(\left[x^{+}(y \circ a)^{+}\right](y \circ a)\left(b^{*} \circ c\right),(y \circ a)\left(b^{*} \circ c\right) d^{*}\right) \\
& =\left(\left[x^{+}(y \circ a)^{+}(y \circ a)\right]\left(b^{*} \circ c\right),(y \circ a)\left(b^{*} \circ c\right) d^{*}\right) \\
& =\left(x^{+}(y \circ a)\left(b^{*} \circ c\right),(y \circ a)\left(b^{*} \circ c\right) d^{*}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(x, y)[(a, b)(c, d)] & =(x, y)\left(a^{+}(b \circ c),(b \circ c) d^{*}\right) \\
& =\left(x^{+}\left[y \circ\left(a^{+}(b \circ c)\right)\right],\left[y \circ\left(a^{+}(b \circ c)\right)\right] d^{*}\right) .
\end{aligned}
$$

Suppose that $a^{\prime} \in V_{M}(a)$. Then $a^{+}=a a^{\prime}=a u a^{\prime} u$. Since $u a u=u b u, b^{*}=u a^{\prime} u b$. It follows that

$$
\begin{aligned}
y \circ\left(a^{+}(b \circ c)\right) & =y \circ\left(a u a^{\prime} u(b \circ c)\right) \\
& =y \circ\left(a\left(u a^{\prime} u b \circ c\right)\right) \\
& =y \circ\left(a\left(b^{*} \circ c\right)\right) \\
& =(y \circ a)\left(b^{*} \circ c\right) .
\end{aligned}
$$

In conclusion,

$$
[(x, y)(a, b)](c, d)=(x, y)[(a, b)(c, d)] .
$$

Therefore $P$ is a semigroup.
Let $x^{\prime} \in V_{M}(x)$ and $y^{\prime} \in V_{N}(y)$. Then $u x^{\prime} u \in V_{S^{\circ}}(x)=V_{S^{\circ}}(u x u)$ and $u y^{\prime} u \in V_{S^{\circ}}(y)=$ $V_{S^{\circ}}(u y u)$. Notice that $u x u=u y u$. Since $S^{\circ}$ is an inverse semigroup, $u x^{\prime} u=u y^{\prime} u$. It follows that $\left(u x^{\prime} u, u y^{\prime} u\right) \in P$.

$$
\begin{aligned}
(x, y)\left(u x^{\prime} u, u y^{\prime} u\right)(x, y) & =\left(x^{+}\left(y u x^{\prime} u\right),\left(y u x^{\prime} u\right)\left(u y^{\prime} u\right)^{*}\right)(x, y) \\
& =\left(x^{+}\left(\text {uyux }^{\prime} u\right), y u x^{\prime} u\right)(x, y) \\
& =\left(x^{+}\left(u x u^{+}, u y u x^{\prime} u\right)(x, y)\right. \\
& =\left(x^{+}, \text {yux } u\right)(x, y) \\
& =\left(x^{+}\left(\text {uyux }^{\prime} u x\right),\left(\text { uyux }^{\prime} u x\right) y^{*}\right) \\
& =\left(x,\left(\text { uyux }^{\prime} u x u\right) y^{*}\right) \\
& =(x, y)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(u x^{\prime} u, u y^{\prime} u\right)(x, y)\left(u x^{\prime} u, u y^{\prime} u\right) & =\left(\left(u x^{\prime} u\right)^{+}\left(u y^{\prime} u x\right),\left(u y^{\prime} u x\right) y^{*}\right)\left(u x^{\prime} u, u y^{\prime} u\right) \\
& =\left(\left(u x^{\prime} u x\right),\left(u y^{\prime} u x u\right)\left(u y^{\prime} u y\right)\right)\left(u x^{\prime} u, u y^{\prime} u\right) \\
& =\left(\left(u x^{\prime} u x\right), u y^{\prime} u y\right)\left(u x^{\prime} u, u y^{\prime} u\right) \\
& =\left(\left(u x^{\prime} u x u\right)\left(u y^{\prime} u y y^{\prime} u\right),\left(u y^{\prime} u y^{\prime} u\right)\left(u y^{\prime} u\right)^{*}\right) \\
& =\left(u x^{\prime} u, u y^{\prime} u\right) .
\end{aligned}
$$

Therefore $\left(u x^{\prime} u, u y^{\prime} u\right) \in V((x, y))$, so $P$ is regular.
Lemma 3.2. $E(P)=\left\{(x, y) \in P \mid u x=y u \in E\left(S^{\circ}\right)\right\}$.
Proof. It is trivial to check that

$$
(x, y)=(x, y)(x, y) \Leftrightarrow x^{+}(y \circ x)=x,(y \circ x) y^{*}=y .
$$

Since $x^{+}(y \circ x)=x, u x^{+}(y \circ x)=u x$. This implies that

$$
u x=u x^{+}(y \circ x)=u x^{+} u(y \circ x)=\left(u x^{+} u y u y^{*}\right) \circ x=u x^{2} .
$$

Conversely, $u x=u x^{2}$ also implies that $u x=u x^{+}(y \circ x)$. Notice that

$$
x=x^{+} u x=x^{+} u x^{+}(y \circ x)=x^{+}(y \circ x) .
$$

We conclude that $x^{+}(y \circ x)=x$ if and only if $u x=u x^{2}$, if and only if $u x \in E\left(S^{\circ}\right)$. Similarly, $(y \circ x) y^{*}=y$ if and only if $y u=y^{2} u$, if and only if $y u \in E\left(S^{\circ}\right)$. Therefore $E(W)=\left\{(x, y) \in W \mid u x=y u \in E\left(S^{\circ}\right)\right\}$.

In what follows, we will use the alternative description of a normal idempotent, obtained in Section 2, to prove that $P$ contains a normal idempotent.

Lemma 3.3. Denote the element $(u, u)$ by $\bar{u}$. Then $V((x, y)) \cap \bar{u} P \bar{u} \neq \emptyset$ for all $(x, y) \in$ $E(P)$.

Proof. According to the proof of Lemma 3.1, $\left(u x^{\prime} u, u y^{\prime} u\right) \in V((x, y))$. Since $\left(u x^{\prime} u, u y^{\prime} u\right)=\bar{u}\left(x^{\prime}, y^{\prime}\right) \bar{u}, V((x, y)) \cap \bar{u} P \bar{u} \neq \emptyset$.

Lemma 3.4. $E(P) \bar{u}$ is a left normal band.
Proof. Let $(x, y) \in E(P)$. Then $(x, y) \bar{u}=\left(x^{+}(y \circ u),(y \circ u) u\right)=\left(x^{+}(y u), y u\right)=(x, y u)$. Since

$$
\begin{aligned}
(x, y u)^{2} & =\left(x^{+}\left(u x^{2}\right),\left(y^{2} u\right)(y u)^{*}\right) \\
& =\left(x^{+} u x,(y u)(y u)^{*}\right)=(x, y u),
\end{aligned}
$$

$E(P) \bar{u} \subseteq E(P)$. Let $(a, b) \in E(P)$. Then

$$
\begin{aligned}
(x, y) \bar{u}(a, b) \bar{u} & =(x, y u)(a, b u)=\left(x^{+}(y u a),(y u a)(b u)^{*}\right) \\
& =\left(x u a,(y b u)(b u)^{*}\right)=(x u a, y b u) \\
& =(x u a, x u a) .
\end{aligned}
$$

As ихиа $\in E\left(S^{\circ}\right), E(P) \bar{u}$ is a band. Next, notice that $\bar{u}(a, b) \bar{u}=(u a, b u)$ and $\bar{u}(c, d) \bar{u}=$ (uc, $d u$ ). Hence

$$
\begin{aligned}
\bar{u}(a, b) \bar{u} \bar{u}(c, d) \bar{u} & =(u a, b u)(u c, d u) \\
& =\left((u a)^{+}(b u c),(b u c)(d u)^{*}\right)=(u a u c, b u d u) \\
& =(u c u a, d u b u)=\left((u c)^{+}(d u a),(d u a)(b u)^{*}\right) \\
& =(u c, d u)(u a, b u) \\
& =\bar{u}(c, d) \bar{u} \bar{u}(a, b) \bar{u} .
\end{aligned}
$$

Therefore $(x, y) \bar{u}(a, b) \bar{u}(c, d) \bar{u}=(x, y) \bar{u}(c, d) \bar{u}(a, b) \bar{u}$, so $E(P) \bar{u}$ is a left normal band.
Theorem 3.5. Suppose that ( $S^{\circ} ; M, N ; \circ$ ) is a permissible quadruple. Then $P\left(S^{\circ} ; M, N ; \circ\right)$ is a regular semigroup having a normal idempotent. Conversely, any regular semigroup that contains a normal idempotent can be constructed in this way.

Proof. According to Lemmas 3.3 and 3.4 and Theorem 2.2, we only need to prove this for any $(x, y),(a, b) \in E(P),(x, y)(a, b) \bar{u} \in E(P)$. It is easy to check that $u x \mathcal{L} x$. Since $u x \in E\left(S^{\circ}\right), x^{2}=x u x=x$. This implies that $x \in E(M)$. Similarly, $a \in E(M)$ and $y, b \in E(N)$. Then $y \circ a \in E\left(S^{\circ}\right)$ by (P3). As we know, $M$ is a left inverse semigroup and $N$ is a right inverse semigroup. So $x=x^{+}$and $b^{*}=b$. Finally, by trivial computing, $(x, y)(a, b) \bar{u} \in E(P)$ is true.

Conversely, let $S$ be any regular semigroup that contains a normal idempotent $u$. Then, by Proposition 2.7, $S u$ is a left inverse semigroup and $u S$ is a right inverse semigroup. For all $x \in S u$ and $y \in u S$, let $y \circ x$ be $y x$. We claim that ( $u S u ; S u, u S ; \circ$ ) is a permissible quadruple. Suppose that $(x u, u y) \in P(u S u ; S u, u S ; \circ)$. Then $u x u=u y u$ and $x u=\left(x^{+} u y\right) u, u y=u\left(x^{+} u y\right)$. Denote $x^{+} u y$ by $z$. We know that $(x u, u y)=(z u, u z)$, so $P(u S u ; S u, u S ; \circ)=\{(t u, u t) \mid t \in S\}$. Define a function

$$
\tau: S \rightarrow P(u S u ; S u, u S ; \circ), s \mapsto(s u, u s) \quad \text { for all } s \in S
$$

Obviously, $\tau$ is surjective. Assume that $(s u, u s)=(t u, u t)$. Then $s=(s u)^{+} u s=(t u)^{+}$ $u t=t$. Hence $\tau$ is also injective. On the other hand, $\tau(s) \tau(t)=(s u, u s)(t u, u t)=$ $(s t u, u s t)=\tau(s t)$. Therefore $\tau$ is an isomorphism.

## Acknowledgements

The authors would like to express their sincere thanks to Professor Marcel Jackson, Dr Aihua Li and the referees for their important and constructive modifying suggestions.

## References

[1] T. S. Blyth and M. H. Almeida Santos, 'A classification of inverse transversals', Commun. Algebra 29 (2001), 611-624.
[2] T. S. Blyth and R. B. McFadden, 'Regular semigroups with a multiplicative inverse transversal', Proc. R. Soc. Edinb. A 92 (1982), 253-270.
[3] T. S. Blyth and R. B. McFadden, 'On the construction of a class of regular semigroups', J. Algebra 81 (1983), 1-22.
[4] J. M. Howie, Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995).

XIANGFEI NI, Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China e-mail: nxf@zjnu.cn

HAIZHOU CHAO, Department of Mathematics, Shanghai University of Finance and Economics, Zhejiang College, Jinhua 321004, PR China e-mail: yfzcxjt@163.com


[^0]:    This project is supported by the National Natural Science Foundation of China (grant no. 11401534). (C) 2017 Australian Mathematical Publishing Association Inc. 1446-7887/2017 \$16.00

