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1. Introduction and preliminaries. The Goldie dimension of a module M, which
is defined as the supremum of cardinalities λ such that M contains a direct sum of λ

nonzero submodules, is a generalization of the dimension of linear spaces (in short,
linear dimension). The linear dimension can be characterized (or defined) in various
ways. In many papers it was studied whether or how far these characterizations can be
extended to the Goldie dimension. There were also many similar studies concerning
the dual Goldie dimension.

The definition of the Goldie dimension and its main properties can be smoothly
extended from modules to modular lattices with 0. This more general context seems
to be more appropriate for studying linear properties of that dimension, namely, some
constructions available in the framework of lattices (e.g. lattices of ideals, factor lattices
or some sublattices) help to describe such properties or distinguish lattices for which
they are satisfied. Moreover, the results obtained for lattices apply directly to the Goldie
and the dual Goldie dimensions of modules. It is worth to add that the idea of extending
studies of some problems on rings and modules to modular lattices turned out to be
fruitful also in some other situations (cf. [1, 2, 15] and also in the paper by T. Albu
‘Goldie dimension, dual Krull dimension and subdirect irreducibility’ in this issue).

Let V be a linear space and dimV denote the dimension of V . This paper will
concern extensions to the Goldie dimension of modules and modular lattices of the
following properties of dimV .

(1) dimV = sup{α | V contains a direct sum of α nonzero subspaces}.
(2) dimV = cardB, where B is an arbitrary basis of V . A basis of V can be defined

in many equivalent ways. The following two are most common:
(a) B is a maximal linearly independent subset of V .
(b) B is a minimal generating subset of V .
(3) If dimV = n < ∞, then dimV is equal to the length l(V ) of V .
(4) dimV = n < ∞ if and only if V contains subspaces W1, . . . , Wn such

that codimWi = 1, 1 ≤ i ≤ n, W1 ∩ · · · ∩ Wn = 0 and this representation of 0 is
irredundant.
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(5). For arbitrary subspaces W, T of V , the formula dim(W + T) + dim(W ∩ T) =
dimW + dimT holds.

Throughout the paper, L stands for a modular lattice whose underlying partial
order is denoted by ≤ and whose join and meet operations are denoted by ∨ and ∧,
respectively. We assume that L has a least element 0. If L contains a greatest element,
it is denoted by 1.

For undefined concepts and fundamental results on modular lattices we refer to
[11] and for those concerning modules we refer to [3].

For given elements a ≤ b of L, we denote by [a, b] the interval {x ∈ L | a ≤ x ≤ b}.
Recall that modularity of L means that for arbitrary a, b, c ∈ L, if a ≤ c, then

(a ∨ b) ∧ c = a ∨ (b ∧ c) or, equivalently, for arbitrary a, b ∈ L, the map x → x ∧ b is
an isomorphism of [a, a ∨ b] onto [a ∧ b, b]. The inverse isomorphism is y → a ∨ y.

The lattice dual to L will be denoted by Lo. This lattice is modular as well.
For a given module M the lattice of submodules of M will be denoted by L(M)

and the lattice dual to L(M) by Lo(M). The lattices L(M) and Lo(M) are modular.
An ideal I of L is a non-empty subset of L such that for arbitrary a, b ∈ I , [0, a ∨

b] ⊆ I . The set I(L) of all ideals of L is a complete, upper continuous modular lattice
with respect to the partial order given by inclusion. Recall that a complete lattice L is
said to be upper continuous if for each a ∈ L and every linearly ordered subset X of L,
a ∧ (

∨
X) = ∨

x∈X (a ∧ x).
For a subset S of I(L),

∧
S = ⋂

S and
∨

S = {x ∈ L | x ≤ ∨
F for a finite subset

F of
⋃

S}.
The following lattice, which we denote by T(a, b, c), will play a substantial role

in several results presented in this paper. We call it the testing lattice. Saying that a
lattice L contains T(a, b, c) or that T(a, b, c) is a sublattice of L, we mean that there is
a lattice embedding of T(a, b, c) into L which maps 0 of T(a, b, c) onto 0 of L. In such
a situation we will identify elements a, b, c with their images in L.
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It turns out that in a number of cases the Goldie dimension of L satisfies a given
linear property if and only if L does not contain the testing lattice with some extra
properties of a, b and c as elements of L. Thus, the lattice T(a, b, c) applies to test
whether the Goldie dimension of a lattice satisfies some linear properties.

The following proposition expresses in module theory terms the fact that for a
given module M, L(M) contains the testing lattice.

PROPOSITION 1. ([19]) For a given module M and its nonzero submodules A, C such
that A ∩ C = 0, the following conditions are equivalent:

(1) M contains a submodule B such that the sublattice of L(M) generated by {A, B, C}
is equal to T(A, B, C);

(2) A contains a nonzero submodule K such that A/K � C;
(3) There is a module epimorphism f : A → C with Kerf �= 0.
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GOLDIE DIMENSION OF MODULES AND MODULAR LATTICES 141

Modules M such that Lo(M) contains the testing lattice can be characterized as
follows:

PROPOSITION 2. ([19]) For a given module M, the following conditions are equivalent:

(1) Lo(M) contains the testing lattice;
(2) A homomorphic image M′ of M contains nonzero submodules A′and C′ such that

M′ = A′ ⊕ C′ and C′ contains a proper submodule isomorphic to A′.

2. Fundamental notions and results on Goldie dimension. In this section we survey
the most fundamental notions and results related to the Goldie dimension of lattices
and modules. We start with the following well-known result.

PROPOSITION 3. For arbitrary elements x1, . . . , xn of L, the following conditions are
equivalent:

(1) If S, T ⊆ {1, . . . , n} and S ∩ T = ∅, then (
∨

s∈S xs) ∧ (
∨

t∈T xt) = 0;
(2) For every 1 ≤ i ≤ n, xi ∨ (

∨
j �=i xj) = 0;

(3) For every 2 ≤ i ≤ n, xi ∨ (
∨

j<i xj) = 0.

A set of nonzero elements of L whose all finite subsets satisfy the conditions of
Proposition 3 is called independent.

It is clear that a set {Nt | t ∈ T} of nonzero submodules of a module M is
independent as a subset of L(M) if and only if the sum

∑
t∈T Nt is direct.

PROPOSITION 4. ([12]) A subset X of nonzero elements of L is independent if and only
if {[0, x] | x ∈ X} is an independent subset of I(L).

The Goldie dimension of L, denoted in this paper by GdimL, is defined as
sup{cardX | X} and is an independent subset of L.

Thus, the definition of the Goldie dimension is a direct extension of the definition
of the linear dimension as stated in the property I in the Introduction.

From Proposition 4 it easily follows that for arbitrary L, GdimL = GdimI(L).
For a module M, Gdim(L(M)) coincides with the Goldie dimension, GdimM, of

M.
In [21] Varadarajan introduced the concept of corank of a module M and in [12]

it was shown that it is equal to Gdim(Lo(M)). We call Gdim(Lo(M)) the dual Goldie
dimension of M and denote it by GodimM.

One may ask if GdimL = λ, then does L contain an independent subset of
cardinality λ? This is obviously so if λ < ∞. Applying Theorem 6 and Proposition 3
it is not hard to show that the answer is positive for λ = ℵ0. However, for larger λ the
problem is much more complicated. It was solved in [8] for lattices of modules.

REMARKS 1. It is clear that in Proposition 3 the implications 1. ⇒ 2. ⇒ 3. hold for all,
not necessarily modular, lattices with 0. However, in the general case these conditions
are not equivalent. Hence, for general lattices one can introduce different notions of
independence choosing one of the conditions from 1–3 to define independence of
elements. Relations among the so obtained notions (and some other) were studied in
[24].

2. The class of lattices with 0 for which Proposition 3 holds is strictly wider than
the class of modular lattices. In [16, 17, 23] it was proved that Proposition 3 holds for
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142 EDMUND R. PUCZYŁOWSKI

lattices satisfying the quasi-identity

(x ∧ y) ∨ ((x ∨ y) ∧ z) = 0 ⇒ (y ∨ z) ∧ x = 0.

In these papers it was shown that most of the results on the Goldie dimension (in
particular those stated in this section) of modular lattices extend to the class of lattices
satisfying this quasi-identity.

An element a ∈ L is called essential in L if for every 0 �= x ∈ L, a ∧ x �= 0.
If a ≤ b are elements of L and a is an essential element of [0, b], then we say that a

is essential in b and is denoted in shortly as a ≤e b.
A nonzero element u ∈ L is called uniform if every nonzero element from [0, u] is

essential in u.
It is not hard to check that u is a uniform element of L if and only if [0, u] is an

essential element of I(L).
Clearly, a subspace U of a linear space V over a field F is a uniform element of

L(V ) if and only if dimU = 1 or, equivalently, U �= 0 and U = Fu for every 0 �= u ∈ U .
The following two results are the most fundamental characterizations of modular

lattices with the finite Goldie dimension.

THEOREM 5. ([12]) The following conditions are equivalent:
(1) GdimL = n < ∞;
(2) L contains independent uniform elements u1, . . . , un such that u1 ∨ · · · ∨ un is an

essential element of L.

THEOREM 6. ([12]) GdimL < ∞ if and only if for every sequence a1 ≤ a2 ≤ · · · there
exists j such that for all k ≥ j, aj is essential in [0, ak].

Let us observe that the set consisting of elements {u1, . . . , un} appearing in
Theorem 5.2 is a maximal independent subset of uniform elements of L.

The following result proved in [13] extends Theorem 5 to the infinite case.

THEOREM 7. ([13]) If A is a maximal independent subset of L and all elements in A
are uniform, then for every independent subset B of L, cardB ≤ cardA.

Every maximal independent subset of L consisting of uniform elements is called a
basis of L.

For a module M, basis of L(M) will be called G-basis of M and basis of Lo(M)
will be called Go-basis of M.

It may happen that L contains no basis or even no uniform element.

EXAMPLE 8. One can easily check that for every ring P with unity and the ring
R = ∏∞

i=1 Pi/
⊕∞

i=1 Pi, where for each i, Pi = P, the module RR contains no uniform
submodule and, consequently, no G-basis.

PROPOSITION 9. ([12]) For a given lattice L, the following conditions are equivalent:
(1) L contains a basis:
(2) I(L) contains a basis;
(3) For every nonzero element l of L there is a uniform element u of L such that u ≤ l.

Theorem 7 immediately implies the following:

COROLLARY 10. If L contains a basis, then its cardinality is equal to GdimL.
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If {Ui}i∈I is a set of uniform elements of L(V ), where V is a linear space over a field
F , then Ui = Fui for 0 �= ui ∈ Ui, i ∈ I . Now {Ui}i∈I is an independent subset of L(V ) if
and only if the set {ui | i ∈ I} is linearly independent over F . Hence, the characterization
of GdimL as the cardinality of basis of L is an extension of the characterization of
dimV given in property 2(a) in the Introduction.

3. Goldie dimension and minimal generating sets. In this section we describe
lattices to which one can extend the characterization of bases of linear spaces as
minimal generating subsets (property 2 (b) in the Introduction).

We say that a set U of uniform elements of L is a generating subset of L if for every
nonzero element l ∈ L, there is a finite subset S of U such that l ∧ (

∨
S) �= 0.

Generating subsets of L(M), for a module M, will be called G-generating sets of M.
Note that these are families U of uniform submodules of M such that

∑
U∈U U ⊆e M.

Generating subsets of Lo(M) will be called Go-generating sets of M.
Note that S is a G-generating set of a linear space V over a field F if and only if for

some nonzero elements vs ∈ V , s ∈ S, S = {Fvs} and
∑

s∈S Fvs = V . This obviously
holds if and only if the set {vs | s ∈ S} generates V as a linear space. Consequently,
minimal G-generating sets of V correspond to bases of V as characterized in 2 (b) in
the Introduction.

Obviously, every basis of L is a minimal generating subset of L. One may expect
that, similarly as for linear spaces, the converse holds, i.e. every minimal generating
subset of L is a basis of L. This is not the case. Namely, {a, b} is a minimal generating
subset of the lattice T(a, b, c) but it is not a basis of this lattice. The following example
shows that there are modules without G-basis containing two-element G-generating
sets.

EXAMPLE 11. (cf. [18]) Let R = F [X ] be the polynomial algebra over a field F in
continuum number of commutative indeterminates and P = ∏

ℵ0
F/

⊕
ℵ0

F . There is
an F-algebra epimorphism f : R → P. It induces an R-module structure on P. One
can easily verify that {R ⊕ 0, {(r, f (r)) | r ∈ R}} is a minimal G-generating set of the
R-module M = R ⊕ P and, applying Example 8, check that M contains no basis.

The following result characterizes lattices in which minimal generating subsets are
bases. It in particular shows that T(a, b, c) can be used to test that property.

THEOREM 12. ([19]) For every L with a basis, the following conditions are equivalent:
(1) U is a minimal generating subset of L if and only if U is a basis of L;
(2) If u, v are uniform elements of L such that u ∧ v �= 0, then u ∨ v is a uniform

element of L;
(3) L does not contain a sublattice T(a, b, c) such that a is a uniform element of L.

Applying Theorem 12 and Proposition 1, one gets the following characterization
of modules in which minimal G-generating sets are G-bases.

THEOREM 13. ([19]) For a given module M which has a G-basis, the following
conditions are equivalent:

(1) A set of uniform submodules of M is a minimal G-generating set of M if and only
if it is a G-basis of M;

(2) For arbitrary uniform submodules A, B of M such that A ∩ B �= 0, the submodule
A + B is uniform;
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(3) M fails to contain a direct sum A ⊕ C of nonzero submodules such that A is a
uniform module and A/K � C for a nonzero submodule K of A.

Recall that a submodule N of a module M is called small if N + T �= M for
every proper submodule T of M or, equivalently, N is an essential element of Lo(M).
A nonzero module M is called hollow if all proper submodules of M are small or,
equivalently, M �= 0 and every proper submodule of M is an essential element of
Lo(M).

Theorem 12 and Proposition 2 give the following result concerning Go-generating
sets and Go-bases of modules.

THEOREM 14. ([19]) For every module M which has a Go-basis, the following
conditions are equivalent:

(1) Every minimal Go-generating set of M is a Go-basis of M;
(2) If A, B are submodules of M such that A + B �= M and M/A, M/B are hollow

modules, then M/A ∩ B is a hollow module;
(3) No homomorphic image of M is a direct sum A′ ⊕ C′ of nonzero submodules such

that C′ is a hollow module and A′ is isomorphic to a proper submodule of C′.

It is well known and not hard to check that an abelian group is uniform if and
only if it is a nonzero subgroup of the additive group of rational numbers or a cyclic
or a quasi-cyclic p-group for a prime p.

Abelian groups satisfying Theorem 13 are completely classified.

THEOREM 15. ([19]) An abelian group M satisfies conditions of Theorem 13 if and
only if

(i) M is a torsion-free group
or

(ii) M is a torsion group such that for every prime p the p-primary component of M
is one of the following groups: 0, a direct sum of groups of order p, a cyclic p-group of
order ≥ p2 or a quasi-cyclic p-group.

Not every minimal generating subset of T(a, b, c) is a basis. However, the
cardinality of every minimal generating subset of T(a, b, c) is equal to its Goldie
dimension. Thus, the class of lattices L such that the cardinality of every minimal
generating subset of L is equal to GdimL is strictly wider than the class of lattices
in which minimal generating subset are bases. The following theorem characterizes
lattices of the finite Goldie dimension in the former of these classes.

THEOREM 16. ([19]) If L contains a finite generating subset, then the following
conditions are equivalent:

(1) The cardinality of every minimal generating subset of L is equal to GdimL (in
particular GdimL < ∞).

(2) For arbitrary uniform elements u, v of L, Gdim[0, u ∨ v] ≤ 2.
(3) If T(a, b, c) is a sublattice of L and a is a uniform element of L, then c is a uniform

element of L.

Theorem 16 can be partially extended to arbitrary lattices containing generating
subsets.

THEOREM 17. ([19]) If L contains a generating subset and for arbitrary uniform
elements u, v of L, Gdim[0, u ∨ v] ≤ 2 , then L has a basis and the cardinality of every
minimal generating subset of L is equal to GdimL.
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Applying Theorems 16 and 17 one gets the following results for modules.

COROLLARY 18. ([19]) If a module M has a G-generating set and for arbitrary uniform
submodules U, V of M, Gdim(U + V ) ≤ 2, then the cardinality of every minimal G-
generating set of M is equal to GdimM. If M has a finite G-generating set, then the
converse holds as well.

COROLLARY 19. Let M be a module which has a Go-generating set. If for arbitrary
submodules U, V of M such that the modules M/U, M/V are hollow Godim(M/U ∩
V ) ≤ 2, then the cardinality of every Go-generating set of M is equal Godim(M) (in
particular M has a Go-basis). If M has a finite Go-generating set, then the converse holds
as well.

Abelian groups satisfying Corollary 18 can be completely described as follows.

PROPOSITION 20. ([19]) For a given abelian group M and arbitrary uniform subgroups
U, V of M, Gdim(U + V ) ≤ 2 if and only if

(i) M is a torsion-free group
or

(ii) M is a torsion group
or

(iii) for precisely one prime p the p-primary component of the torsion part of M is
nonzero.

The finiteness assumption in the second part of Corollary 18 is substantial even
for abelian groups.

EXAMPLE 21. Let M = ⊕∞
n=0 Z/nZ, where Z is the ring of integers. One easily

checks that GdimM = ℵ0 as well as the cardinality of every G-generating set of A is
equal to ℵ0. However, by Proposition 20, M contains uniform subgroups U, V such
that Gdim(U + V ) > 2.

It would be interesting to describe rings R such that all R-modules satisfy the
conditions of Theorem 13 or Theorem 14, Corollaries 18 and 19, respectively. In [19]
only basic relations among some of these classes of rings were established.

4. Goldie dimension and the length. The characterization of the linear dimension
by the length (stated in property V in the Introduction) does not hold for the Goldie
dimension of modules. For instance, GdimZZ = 1 but l(ZZ) = ℵ0. It is a bit surprising
that via some natural constructions one can find a relation between these invariants
for modular lattices.

Define for x, y ∈ L, x ∼ y if and only if x ∧ y is an essential element of [0, x] as
well as of [0, y].

We have the following result.

PROPOSITION 22. ([14], Proposition 2.1) ∼ is a congruence on the lower semilattice
(L,∧), i.e. ∼ is an equivalence relation on L such that for arbitrary x ∼ y and z ∈ L,
x ∧ z ∼ y ∧ z.

For a given x ∈ L denoted by [x], the equivalence class of L/ ∼ is determined by
x. Define [x] ≤ [y] if and only if x ∧ y ∼ x. It is not hard to check that so defined ≤ is
a partial order on L/ ∼.
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A lattice L with 1 is called complemented if for every a ∈ L there is b ∈ L such that
a ∧ b = 0 and a ∨ b = 1 and it is called E-complemented [14] if for every a ∈ L there is
b ∈ L such that a ∧ b = 0 and a ∨ b is an essential element of L.

Obviously, every complemented lattice is E-complemented. It is not hard to check
that the class of E-complemented lattices contains upper continuous lattices and lattices
with the finite Goldie dimension.

THEOREM 23. ([14]) If L is an E-complemented lattice, then L/ ∼ is a modular
complemented lattice.

For every L, I(L) is an E-complemented lattice. Hence, Theorem 23 applies to
I(L).

The following result gives a relation between GdimL and the length of the lattice
L/ ∼.

THEOREM 24. ([14]) If GdimL < ∞, then L/ ∼ is a modular complemented lattice
and GdimL = l(L/ ∼).

5. Relations between Goldie and Kurosh–Ore dimensions. An element a ∈ L is said
to be irreducible in L if a �= 1 and for arbitrary b, c ∈ L we have a < a ∧ c whenever
a < b and a < c.

It is clear that a proper subspace W of a linear space is an irreducible element of
L(V ) if and only if W is of co-dimension 1.

The following classical result is referred as Kurosh–Ore theorem.

THEOREM 25. (Kurosh–Ore) If a1 ∧ · · · ∧ an = 0 = b1 ∧ · · · ∧ bm are irredundant
representations of 0 in L and all a1, . . . , an, b1, . . . , bm are irreducible elements of L, then
n = m.

From Kurosh–Ore theorem it follows that the following notion is well defined.
Let n be a positive integer. We say that the Kurosh–Ore dimension, d(L), of L

is equal to n if L contains irreducible elements a1, . . . , an such that a1 ∧ · · · ∧ an = 0
is an irredundant representation of 0 in L. If there is no positive integer n such that
d(L) = n, then we set d(L) = ∞.

For a given module M the Kurosh–Ore dimension of L(M) will be denoted by
d(M).

It is not hard to check that if V is a finite dimensional linear space, then dimV =
d(L(V )).

It turns out that the Kurosh–Ore and Goldie dimensions are closely connected
and for modules they coincide.

THEOREM 26. ([12, 14]) If d(L) = n < ∞, then GdimL = d(L).

One can easily find lattices L with GdimL < ∞ and d(L) = ∞. As an example
(cf. [14]) one can take L = Lo(RR), where R is the ring of integers localized at the
multiplicative set generated by primes ≥ 5.

A lattice L is called a ∗-lattice if it is complete and for every linearly ordered subset
X of L and every a ∈ L, (

∨
X) ∧ a �= 0 if and only if x ∧ a �= 0 for some x ∈ X .

It turns out that for ∗-lattices Theorem 26 can be inverted.

THEOREM 27. ([14]) If L is a ∗-lattice and GdimL < ∞, then GdimL = d(L).
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Obviously, every upper continuous lattice is a ∗-lattice. Hence, examples of ∗-lattice
are the lattice I(L) of ideals of an arbitrary lattice L and the lattice L(M) of submodules
of an arbitrary module M. Applying Theorem 27 one gets the following.

COROLLARY 28.
(1) For every lattice L with GdimL < ∞, GdimL = GdimI(L) = d(I(L)).
(2) For every module M, GdimM < ∞ if and only if d(M) < ∞. Moreover,

GdimM = d(M).

Corollary 28 extends the characterization of dimV stated in property IV in the
Introduction to the Goldie dimension of lattices and modules.

We conclude this section with a few remarks concerning the spanning dimension
introduced by Fleury in [3] for modules.

We say that L is an F-lattice if for every strictly increasing chain a1 < a2 < · · · of
elements of L there is an n such that an is essential in L.

From Theorem 6 it immediately follows that if L is an F-lattice, then GdimL < ∞.
Also note that every complete F-lattice is a ∗-lattice. Indeed, suppose X is a linearly
ordered subset of L and (

∨
X) ∧ a �= 0 for some a ∈ L. If X contains the greatest

element x, then
∨

X = x, so x ∧ a �= 0. Otherwise X contains a chain x1 < x2 < · · · .
As L is an F-lattice, there is an n such that xn is essential in L. Hence, xn ∧ a �= 0 and
we are done. These observations and Theorem 27 give

COROLLARY 29. If L is a complete F-lattice, then GdimL = d(L) < ∞.

In [3] Fleury considered modules such that (in our terminology) Lo(M) are F-
lattices. He rediscovered the Kurosh–Ore theorem in this case and called the obtained
invariant, which in fact is d(Lo(M)), the spanning dimension of M. Moreover, by the
above corollary, d(Lo(M)) = GodimM.

All results presented in this section concern finite dimensional lattices or modules.
It would be interesting to study whether or how they can be extended to the infinite
case.

6. Dimension modules and lattices. In [5] Camillo and Zelmanowitz observed
that the formula stated in property V in the introduction does not extend to the
Goldie dimension of modules. Modules which do satisfy this formula were called in [5]
dimension modules. This notion can be easily extended to lattices.

A lattice L is called a dimension lattice if for arbitrary a, b ∈ L the following
dimension formula is satisfied:

Gdim[0, a] + Gdim[0, b] = Gdim[0, a ∧ b] + Gdim[0, a ∨ b].

In this section we survey some results on dimension lattices and modules of the
finite Goldie dimension. In infinite case many substantially new problems arise. In
fact the studies in [4, 5] and later in [22] concerned finite dimensional modules (even
the formula was stated in the form Gdim(A + B) = GdimA + GdimB − Gdim(A ∩ B),
which is not very clear in infinite case).

In [5] the following characterization of dimension modules was obtained.

THEOREM 30. ([5]) A module M fails to be a dimension module precisely when it has
a submodule isomorphic to X ⊕ (X/Y ) for some Y ⊆e X.
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This result is valid if GdimM < ∞, but it does not hold without this assumption
as the following example shows.

EXAMPLE 31. ([9]) Let V be a linear space over a field F such that dimF V = ℵ0 and
let R = {(f v

0 f ) | f ∈ F, v ∈ V}. Note that R is an F-algebra with respect to canonical
matrix operations and there is an F-algebra epimorphism φ of R onto F , which induces
and R-module structure on F . Clearly R is a local algebra so its radical J is an essential
R-submodule of R. Moreover, Kerφ = J, so (R/J)R � FR. One easily checks that,
because J2 = 0, R-submodules of R ⊕ F contained in J ⊕ F are precisely F-subspaces
of R ⊕ F , so for such submodules the dimension formula holds. If an R-submodule
A of R ⊕ F is not contained in J ⊕ F , then it contains J ⊕ 0, so that GdimAR = ℵ0.
These show that the R-module R ⊕ F is a dimension module.

If in the above example 2 ≤ dimF V < ∞, then the R-module M = R ⊕ F is not a
dimension module but the dimension formula is satisfied for uniform submodules of
M (cf. [19]). The question whether such examples exist was raised by del Valle in [22].

The following theorem collects some characterizations of dimension lattices.

THEOREM 32. For a given lattice L with GdimL < ∞, the following conditions are
equivalent.

(1) L is a dimension lattice.
(2) For arbitrary a ≤e b, c ∈ L, we have a ∨ c ≤e b ∨ c.
(3) ∼ is a lattice congruence on L.
(4) L does not contain the testing lattice T(a, b, c) such that a ∧ b ≤e a (as elements

of L).

The equivalence of 1 and 2 for modules was proved by del Valle in [22] and for
lattices in [18], where it was also proved that 2 and 3 are equivalent for arbitrary L.
The equivalence of 1 and 4 was obtained in [9].

In [14] it was observed that ∼ is a lattice congruence for distributive lattices, lattices
of non-singular modules and the lattice dual to the lattice of two-sided ideals of a unital
ring.

7. Goldie dimension and matroids. A matroid M is defined as a pair (S,P),
where S is a not-empty set and P is a collection of subsets of S satisfying the following
properties:

(1) ∅ ∈ P .
(2) If X ∈ P and Y ⊆ X , then Y ∈ P .
(3) If X, Y ∈ P and | X |=| Y | +1, then there exists x ∈ X\Y such that Y ∪ {x} ∈

P .
(4) If A ⊆ S and every finite subset of A is in P , then A is in P .

P is called an independence space of M and sets of P are called independent subsets
of S or M. A maximal with respect to inclusion set in P is called a basis of M. It
is known that cardinalities of all bases of M are equal. Their common cardinality is
called the dimension of M.

More information on Matroid Theory can be found in [20].
In [6] Dawson defined an independent space on the family of uniform submodules

of a module and showed that its dimension is equal to the Goldie dimension of the
module, provided the Goldie dimension is finite. Next, in [7] Dawson considered a dual
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independent space and an independent space connected with the Fleury dimension of
modules [10] as well as its dual. Dowson’s ideas and results were extended in [18].

Let U(L) be the set of all uniform elements of L (of course, it is possible that
U(L) = ∅) and let P be the set of all independent spaces in L subsets of U(L). In [18]
it was proved that (U(L),P) is a matroid. It is clear that every basis of L is a basis of
(U(L),P) (the opposite implication does not always hold). In this way one can get as
a consequence of results from Matroid Theory that the cardinality of every basis of L
(if it exists) is equal to GdimL.

Applying Matroid Theory one can also get a relation between the Goldie dimension
of L and the length of a lattice related to the matroid (U(L),P).

A subset A of U(L) is called a flat if for every independent in L subset K of A and
each x ∈ U(L) \ A the set K ∪ {x} is independent in L.

THEOREM 1. ([18]) The set F of flats of U(L) is a modular lattice with respect
to inclusion. If GdimL < ∞, then F � L/ ∼, where L/ ∼ is the lattice described in
Section 3.
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