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Abstract

In this paper, we consider convex programs with linear constraints where the objective
function involves nested maxima of linear functions as well as a convex function. A dual
program is constructed which has interpretational significance and may be easier to solve
than the primal formulation. A numerical example is given to illustrate the method.

1. Introduction

Consider the following nondifferentiable convex program.

(P): Minimize/(x) + Maxiafx + bA (1)
IES" is/

subject to Cx s£ d. (2)

Here / ( ) is a closed convex function defined over R", I is a finite dimensional
index set and a,, / e /; Z>,, / e /; C and d are given parameters. Such programs
arise naturally in a variety of settings where one is trading off convex exploitation
and linear investment costs. It is the purpose of this paper to construct a dual and
duality relations for the above program and to examine its significance. The
mathematical machinery is provided by the generalized theory of geometric
programming [3] which is summarized in Section 2 below. In Section 3, this
duality theory is used to develop a dual for program (P) and its significance
discussed. A numerical example, solved by MINOS [2] is given in Section 4.
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2. Generalized geometric programming

We consider an optimization problem of the form:

Minimize/(x), x e D (3)

subject to x e y • (4)

where x is a closed convex cone in R" and/is a closed convex function defined on
a closed convex set D in Rn. This is termed the primal problem. We associate with
the primal problem, another problem called the dual problem, which is of the
form:

Minimize/*(**), x* e D* (5)

subject to x* e x*, (6)

where x* denotes the dual cone of x in R" and [/* : D*] is the conjugate
transform of [/: D] defined by

/•(**)= sup (xTx*-f(x)) (7)
xeD

and

D* = (x*\sup (xTx*-f(x))< +00). (8)

T denotes a transpose and

X* = {x*\xTx* > 0 , V x G X } - (9)

At optimality, Peterson [3] has shown that the following relationships hold
between the primal and dual optimal points x0 and x$ respectively.

/ (x 0 )+ /* (*$) = 0, (10)

* S e 3 / ( x 0 ) , x o ea /* (x$) , (11)

*o*8 = 0- (12)

Here 9/(x0) denotes the subgradient set of/at x0 and is defined by

3/(*o) = {**!/(*) >f(*o) + x*oT(z ~ ^0). Vz G D). (13)

In the case where / (x) is a differentiate function, the subgradient set is
replaced by the gradient, that is, (11) may be written

**o = V/(x0), x0 = V/«(*S), (14)

where V denotes the gradient operator.
These optimality conditions allow an optimal point for one program to be

calculated from an optimal point of the other.
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Program (P) defined by (1) and (2) may be written in the following equivalent
form which is more amenable to analysis.

(F) : Minimize/(x) + a

subject to a]x + bt < a, /

Cx^d.

(15)

(16)

(17)

With the introduction of a scalar variable a, the program is no longer
nondifferentiable, however, additional linear constraints have been added. In
order to invoke generalized geometric programming duality, we need to transform
the constraints (16) and (17) into a cone. To this end, we introduce new variables
P and y restricted to one point domains b and d, respectively. Hence program (P')
may be equivalently written as

(F'): Minimize f(x) + a
x,a,pe{b),ye{d)

subject to a - afx - /?, > 0, i e /

y - Cx 7* 0.

The dual objective is given by the conjugate transform of (18). This is

sup (xTx* + a V + prp* + y V - f(x) - a)

(18)

(19)

(20)

= /*(**) + bTfi* + dTy* with a* = 1 and JC* e S. (21)

Here S is the domain of/*() which will usually be R", R"+ or R"_.
Further we require the dual of the cone generated by (19) and (20). This is

given by

(22)

(23)

(24)

(25)

(26)

1*
a*
P*w

=Mlu
-i

\ oj

u +
f-CT\

0
0

i / /
where A = ||a<v||, U = (1,1 1) and u 7* 0, V > 0. It follows that

x* = -ATu - CTv,

P* = -u > 0,

Y* = v > 0.
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Collecting results (21)-(26), the following dual results

(D) : Minimizef*(-ATu - CTv) - bTu + dTv (27)
u,v

subject to

I>, = 1, (28)

-ATu - CTv G S, (29)

u > 0, v > 0. (30)

Further, at optimality, the primal and dual variables are related by

f(x) + Max (aj + b,) +f*(-ATu - CTv) - bvT + duT = 0, (31)
16/

-AuT - CvT e df(x), x e df*(-ATu - CTv), (32)

Ui(ajx + b, - a) = 0, / 6 / , (33)

0, Mk. (34)

Here the dual variable v has the usual interpretation of the shadow price
associated with the resource availability of the righthand side of (2). Similarly the
dual variable M, has the interpretation of the shadow price associated with b{.
However, specifically it indicates, when strictly positive, those terms in the nested
maxima which contributes to the optimal objective value. This follows as a
consequence of complementary slackness.

The computational viability of the dual program (D) depends on the availabil-
ity in analytic form of the function /*(•) and on the structure of the set S. The
former question has been discussed elsewhere (e.g. [1], [4]); in the latter case S is
often the whole space of an orthant. For example, when / (x ) = E,"_1c,expA:,, it
may be shown that S = R"+. In this case of the quadratic function f(x) = Ec,x,2,
the dual is particularly simple since S is the whole space and program (D) has
essentially one constraint, namely equality (28). A numerical example, where the
dual is solved by MINOS, is given in the final section.

4. A numerical example

Consider the program

Minimize [&x? + 5x1 + lx] + Sxj
X

+ 3x2 + 5x3 + x4,

* ! + 2*2 + x3 + 2xA, 3x1 + jc3 + 3JC4)] (35)
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subject to

+ 2x2 +.
-2x2

+ :

+ xA

*3

+ 5x4

2x3 -x.

> 10
> 5
> 31
> 28
> 17.

(36)
(37)
(38)
(39)
(40)12*!

A straightforward calculation shows the dual program to be

Minimize [l/32(2w1 + u2 + 3w3 + vx + v2 + 12i>5)
2

u

+ 2u2 + u3 + 2v2 - 2v3)
2

+ u2 - M3 + v2 + 5v4 + 2vs)
2

+ 2u2 - w3 + v1 + 5v3 - vs)
2

4-IODJ + 5y2 + 31i>3 + 28u4 + 17u5] (41)

subject to

Uj + u2 + M3 = 1 (42)

« > 0, u > 0. (43)
With only one linear equality constraint and nonnegativity conditions, this is a

particularly simple nonlinear program. The solution, from MINOS, is found to be

«! = 1, u2 = 0, «3 = 0, (44)

v1 = 70.40212, v2 = 0, v3 = 4.439153, vA = 16.68, u5 = 0, (45)

with objective value -673.69328042.
From (44), it follows that the only linear term contributing to the minimal

objective value is / = 1. Using the relations between the primal and dual variables
in (31) to (34), it follows that the optimal primal solution is

xl = 4.275132, x2 = 1.187831, x3 = 5.6, x4 = 5.724868

with objective value 673.69328042.
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