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The fluctuations in power output from wind farms display significantly reduced
spectra compared to single wind turbines due to power smoothing and averaging. In
order to better understand these spectral features and to relate them to properties of
turbulent boundary layers, we perform a wind tunnel experiment in which we measure
spatio-temporal characteristics of an experimental surrogate of the power output from
a micro wind farm with 100 porous disk models. The experimental results show
that the frequency spectrum of the total wind farm power follows a power law
with a slope between −5/3 and −2, and up to lower frequencies than seen for
any individual turbine model. In agreement with previous studies in the literature,
peaks in the spectrum are observed at frequencies corresponding to the mean flow
convection time between consecutive turbines. In the current work we interpret the
sum of power extraction from an array of turbines as a discrete spatial filtering of a
turbulent boundary layer and derive the associated transfer function. We apply it to an
existing model for the wavenumber–frequency spectrum of turbulent boundary layers.
This approach allows us to verify the individual roles of Doppler shift and broadening
of frequencies on the resulting spatially sampled frequency spectrum. Comparison
with the wind tunnel data confirms that the approach captures and explains the main
features in the spectrum, indicating the crucial role of the interaction between the
spatial sampling and the space–time correlations inherently present in the flow. The
frequency spectrum of the aggregated power from a wind farm thus depends on both
the spectrum of the incoming turbulence and its modulation by the spatial distribution
of turbines in the boundary layer flow.

Key words: boundary layer structure, turbulent boundary layers, turbulent flows

1. Introduction
Wind energy is characterized by inherent variability. When wind farms are

connected to an electricity grid, the power fluctuations need to be compensated by,
e.g. ancillary power generators (Apt 2007) or wind farm control (Shapiro et al. 2016).

† Email address for correspondence: Juliaan.Bossuyt@kuleuven.be
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It is thus important to understand over which time scales and with what magnitudes
the power output fluctuates. This issue has motivated several studies on the spectral
characteristics of the electrical power output from a wind farm or a cluster of wind
farms (Apt 2007; Katzenstein, Fertig & Apt 2010; Vigueras-Rodríguez et al. 2010;
Stevens & Meneveau 2014; Bandi 2017). Understanding the interaction between the
wind turbines and the turbulent boundary layer, with its inherent statistical structure
and presence of large coherent motions, is necessary for describing the resulting
spectrum of the power output.

Apt (2007) analysed the spectrum of the power, aggregated over six turbines, and
observed a power-law behaviour with a f−5/3 scaling over four orders of magnitude in
frequency. This observation raised the question of the relation between the spectrum
and the scaling of the velocity fluctuations in the boundary layer, which follow a
f−5/3 spectrum over a similar range of scales (Larsén, Larsen & Petersen 2016).
Bandi (2017) discussed how the spectrum of the power output from a single turbine
scales similarly with that of the velocity fluctuations. In this analysis, Bandi (2017)
considered the structure function of the power output and showed how higher-order
structure functions of velocity fluctuations scale similarly, considering inertial range
scalings in analogy with Kolmogorov’s 1941 theory (Kolmogorov 1941).

For the sum of the power over many wind farms, the individual wind farm outputs
can become uncorrelated on time scales related to local turbulence, because of the
large geographical spacing. In this case, self correlation of the power signals becomes
dominant, and is shown to lead to a limiting power-law scaling of f−7/3 (Katzenstein
et al. 2010; Bandi 2017). However, on the scale of a single wind farm, the wind
turbine power outputs can show significant correlations (Stevens & Meneveau 2014;
Bossuyt et al. 2017), which cannot be neglected in estimating the wind farm spectrum.

For a fixed wind direction, large-eddy simulations by Stevens & Meneveau (2014),
and later wind tunnel experiments by Bossuyt et al. (2016), confirmed power-law
behaviour with a slope close to −5/3 for the spectrum of the aggregate wind farm
power output. The measured spectra also showed a peak at a frequency corresponding
to the convective travel time between streamwise aligned turbines. Moreover, it was
observed that the power-law region extends to frequencies that are significantly
lower than observed in the spectrum of any individual wind turbine. By artificially
decorrelating the measured wind turbine power signals in time, Bossuyt et al. (2016)
confirmed the importance of the spatio-temporal correlation between wind turbine
power outputs in generating these specific spectral characteristics.

In this paper we consider the fundamental question whether power fluctuations
in wind farms can be related to the structure of turbulence in boundary layers.
Specifically, we interpret the interaction between the array of wind turbines and
the turbulent boundary layer as a discrete spatial sampling in order to model and
explain how the wind farm frequency spectrum is composed. The analysis is done by
making use of a model parametrization for the wavenumber–frequency spectrum of
the streamwise velocity in high Reynolds number turbulent boundary layers (Wilczek,
Stevens & Meneveau 2015a). In § 2 an overview of the results from the wind tunnel
experiment are given including main characteristics of the experimental set-up. Based
on these observations, a model for the wind farm frequency spectrum is developed
in § 3. The model is compared with experimental data and conclusions are provided
in § 4.

2. Experimental data
A wind tunnel study was performed based on a model (‘micro’) wind farm

consisting of 100 porous disk models with a thrust coefficient CT = 0.75 ± 0.04
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FIGURE 1. (Colour online) (a) Photograph of the micro wind farm and (b) measurement
results for the surrogate power output spectra from the wind tunnel study by Bossuyt et al.
(2016).

(Bossuyt et al. 2017). The porous disk models have a diameter of D = 3 cm and
a hub height of 2.3 cm. Each model is instrumented with two strain gauges and
calibrated to measure the instantaneous thrust force. By using standard relations from
momentum theory, one may deduce the incoming spatially averaged velocity 〈u〉i for
porous disk i from the time signal of the thrust force with Fi(t)≈ (1/2)ρCTA〈u〉2i (t).
The instantaneous equivalent power output, Pi(t), is then deduced by assuming a
typical wind turbine power coefficient CP, such that Pi(t) ≈ (1/2)ρCPA〈u〉3i (t). Here,
A = πD2/4 is the rotor area and ρ the air density. This signal is a surrogate power
signal for a wind turbine. Considering the effect of the spatial filtering by the disk,
the frequency response of the models goes up to fD/U≈ 0.6, where f is the frequency
and U the mean velocity at hub height. This is sufficiently high for the time scales
considered here. The wind farm layout consists of an array with 5 streamwise
aligned columns and 20 rows, with a streamwise and spanwise spacing of Sx = 7D
and Sy = 5D. Instantaneous measurements of the thrust force were performed for the
sixty models in the three central columns of the micro wind farm. Figure 1(a) shows
a photograph of an aligned layout. A staggered layout is created by sliding the even
rows in the spanwise direction.

The incoming velocity profile is measured with a hot-wire probe 0.21 m upstream
of the wind farm. The measured boundary layer height is δ99 = 0.16 m, with the
models operating in the log region of the boundary layer and with an incoming
velocity at hub height of U = 11.8 m s−1. The measured roughness length is
z0 = 0.9× 10−2 mm, the friction velocity is uτ = 0.6 m s−1 and the root-mean-square
of the velocity is urms = 1.28 m s−1. With a geometric scaling factor of 1 : 3333,
the measurement set-up represents a full-scale wind farm operating in a neutral and
moderately rough boundary layer. The measurement time for each case is 5 minutes
or more. This is over 3 × 104 times the largest integral time scale measured in the
boundary layer, so that well-converged statistics are obtained. More information can
be found in Bossuyt et al. (2017).

Figure 1(b) shows the power spectral density of relative power fluctuations P′(t)/P
(we denote the temporal mean with an overbar and the temporal fluctuation with a
prime), which are reconstructed from the strain gauge measurements (Bossuyt et al.
2017). Throughout this paper we normalize the variables where possible by scales

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

32
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.328


332 J. Bossuyt, C. Meneveau and J. Meyers

of interest to wind farms, such as the streamwise spacing Sx, the hub-height velocity
U and the friction velocity uτ . When variables are not normalized, we display the
corresponding units. For an aligned layout, the spectrum for an individual model in
each row is plotted in blue to yellow colours. Also shown are the spectra for the
aggregated wind farm power of an aligned (black) and staggered (red) wind farm. For
comparison, the dashed lines show the spectra when the individual power signals from
each model are first decorrelated in time (by shifting the entire time series by arbitrary,
large, time delays) before aggregating and calculating the spectral density. The spectra
for individual models show the increase in variability with increasing row number, due
to the added wake turbulence.

The aggregated wind farm spectra show the features mentioned above: a peak at
fSx/U = 1 when the layout is aligned and fSx/U ≈ 0.5 when staggered, a second
smaller peak at twice this frequency and a power-law region with a slope slightly
steeper than −5/3 up to lower frequencies than observed for any individual model.
When the power signals are artificially decorrelated in time, these features are not
observed in the resulting spectrum. This difference illustrates the crucial role of the
spatio-temporal correlation in the boundary layer and the specific frequency ranges
over which the individual power signals show a correlation (e.g. 0.1 < fSx/U and
fSx/U≈ 1, 2, . . . for the aligned layout) or anti-correlation (e.g. 0.1< fSx/U< 0.9 for
the staggered layout). For the staggered layout the peaks shift to lower frequencies as
the streamwise spacing between aligned turbines has doubled. It is also observed that
the power-law range extends to lower frequencies when the layout is staggered. In
the next section we aim at providing a quantitative description of these measurements
based on an analytically tractable model for the spatio-temporal structure of high
Reynolds number boundary layer turbulence.

3. Modelling of the wind farm power output frequency spectrum

In the first part of this section, the relation between the wind turbine power and
velocity fluctuations is discussed. This will allow the use of a recently developed
parametrization for the wavenumber–frequency spectrum of the velocity (Wilczek et al.
2015a), as discussed in the second part. Then, a transfer function to represent the
discrete spatial sampling of the boundary layer is derived. Both are then combined to
find the frequency spectrum of the wind farm power output. This section is concluded
with a validation of the model with experimental data.

3.1. Power fluctuations
The power output of a wind turbine Pi(t) is generated by the forces acting on the
blades as they sweep through the flow field. At a typical tip speed ratio of the order
of 5–10, the blade tips sweep through the flow 5− 10 times faster than the incoming
velocity. The focus of this study is on turbulent length scales that are significantly
larger than the turbine diameter, i.e. comparable to the streamwise turbine spacing
or larger. Over the corresponding time scales, the blades make multiple full rotations
within the time for turbulent eddies of these scales to pass through the wind turbine.
The turbine power can therefore be expressed in terms of the disk average power
of the air flowing through the rotor area (we denote the spatial average with angle
brackets) Pair(t)= (1/2)ρA〈u〉3(t) and the instantaneous power coefficient of the wind
turbine CP(t) (Milan, Wächter & Peinke 2013), thereby neglecting higher-order terms
and leading to Pi(t)≈ (1/2)ρACP(t)〈u〉i3(t) for wind turbine i.
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Focusing on the below-rated operating regime, wind turbines are controlled to
maximize aerodynamic efficiency. In this regime, the overall turbine power coefficient
CP(t) is kept maximal and can be considered nearly constant (Aho et al. 2012).
Furthermore, power fluctuations are significantly less sensitive to changes in CP(t)
then to velocity fluctuations (Theunissen et al. 2015). With a constant power
coefficient, the instantaneous turbine power depends on the cube of the velocity,
as given by Pi(t)≈C1〈u〉i3(t) and with C1 = ρACP/2 a constant.

The spatially averaged velocity is decomposed in a temporal mean and fluctuating
part: 〈u〉 = 〈u〉 + 〈u〉′, to express the power fluctuations in terms of the velocity
fluctuations:

P′i(t) ≈ C1(〈u〉i + 〈u〉′i)
3
−C1(〈u〉i + 〈u〉′i)3 (3.1)

≈ 3C1〈u〉
3
i

(
〈u〉′i(t)
〈u〉i

+
〈u〉′2i (t)

〈u〉i
2 +

1
3
〈u〉′3i (t)

〈u〉i
3 −

〈u〉′2i
〈u〉i

2 −
1
3
〈u〉′3i
〈u〉i

3

)
, (3.2)

P′i(t) ≈ C2〈u〉′i(t), (3.3)

with C2 = (3/2)ρACP〈u〉
2
. Equation (3.3) involves neglecting higher-order terms. For

typical atmospheric conditions over reasonably short time intervals over which nearly
stationary conditions can be assumed (e.g. 10–20 min), it is acceptable to assume
〈u〉′/〈u〉� 1 (e.g. measurements at the Horns Rev wind farm show TIu = (u′2)1/2/u≈
0.05–0.1 (Hansen et al. 2012)), so that the higher-order terms can be neglected as a
first approximation.

With these simplifications, the power fluctuations are shown to scale approximately
linearly with the disk-averaged velocity fluctuations. As shown by Bandi (2017),
higher powers of u′ scale similarly, providing further justification for the simplifications
used. The spectrum of the aggregated wind farm power (PWF =

∑
Pi) can thus be

considered as a discrete spatial sampling of the fluctuating disk-averaged velocity
field.

3.2. Spatio-temporal flow description
To evaluate the frequency spectrum of the power output of an array of turbines with a
given spatial distribution, a description for the space–time correlation of the boundary
layer is required. To this end, we use the model developed by Wilczek et al. (2015a)
for the spectral analogue, the wavenumber–frequency spectral density, as given by:

Φ11(k1, k2, ω)=
Ekk(k1, k2)√
2π〈(v · k)2〉

exp
(
−
(ω− k1U)2

2〈(v · k)2〉

)
. (3.4)

Here, U is the convective velocity, taken to be a mean velocity at hub height in the
x direction, ω= 2πf the angular velocity, Ekk(k1, k2) the wavenumber spectrum of the
streamwise velocity fluctuations (see appendix A for definitions of the spectra) and v
a random sweeping velocity in the horizontal direction.

The approach is developed in a horizontal plane at hub height z and spanning the
streamwise k1 and spanwise k2 directions, where we assume horizontal homogeneous
flow properties. The spatial averaging of the velocity over the rotor area in the vertical
direction is not considered, but takes place at smaller length and corresponding time
scales (of the order of the diameter) than those of interest (of the order of the
streamwise spacing and larger). Thereby, the height dependence of the spatio-temporal
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flow structure (Wilczek, Stevens & Meneveau 2015b) over the rotor height is not
considered, and is expected to slightly smear out the spectrum over the frequency
axis.

We use the analytical form for the spatial two-dimensional (2-D) spectrum
Ekk(k1, k2) and the necessary parameters as provided by Wilczek et al. (2015a).
This analytical spectrum assumes a classical scaling for the logarithmic and inertial
range regions of streamwise wavenumbers in turbulent boundary layers (e.g. k−1

1

and k−5/3
1 ), see Nickels et al. (2005). The high wavenumber range of this spectrum,

E>kk(k1, k2), is modelled by an infinitely extended inertial range:

E>kk(k1, k2)=
Γ (1/3)CK

5
√

πΓ (5/6)
ε2/3

(
1−

8
11

k2
1

k2

)
k−8/3, (3.5)

with k =
√

k2
1 + k2

2, CK ≈ 1.6 the Kolmogorov constant, ε = u3
τ/(κz) an estimate

for the energy dissipation and κ ≈ 0.4 the von Kármán constant, such that
(Γ (1/3)CK)/(5

√
πΓ (5/6))≈ 0.268. For the low wavenumbers, a k−1

1 region is
transitioned to a constant spectrum by:

E<kk(k1, k2)= zu2
τD(z)

((
1
H

)β
+ kβ1

)−1/β

, (3.6)

with the exponent β = 4 and H a length scale for the boundary layer height. These
two ranges are blended together to form the complete wavenumber spectrum:

Ekk(k1, k2)= [1− θ(kz)]E<kk(k1, k2)+ θ(kz)E>kk(k1, k2), (3.7)

with θ(kz)= (tanh(α log(kz))+ 1)/2 and α= 4. The height dependent amplitude D(z)
for the low wavenumber range is determined numerically such that

∫
Ekk dk1 dk2 = u2

rms.
The wavenumber spectrum is thereby defined by three parameters: H, uτ and urms. In
projecting Ekk to the wavenumber–frequency domain with (3.4), the term 〈(v · k)2〉 is
modelled as 〈(v · k)2〉 = u2

rms(k
2
1 +Ck2

2), with C≈ 0.41 (Wilczek et al. 2015a).
In figure 2(a) we compare the spectrum measured by the hot-wire probe in the

wind tunnel experiment upstream from the wind farm, with the 1-D spectrum implied
by this model (Eω =

∫∫
Φ11(k1, k2, ω) dk1 dk2) and based on the values for H= δ99, uτ

and urms from the hot-wire measurement (see § 2). The hot-wire spectrum is estimated
by averaging over windowed segments. Because the time length of the hot-wire signal
is limited, the spectrum is estimated once by averaging over 10 segments to cover
the lowest frequencies, and once over 50 shorter windows for a better estimate of the
higher frequency range. A Hanning window is used and the 95 % confidence bounds
are shown, as estimated by the pwelch routine in MatlabTM. Overall, the agreement
is acceptable and mostly within the uncertainty bounds for high frequencies. Note
that the dissipation range is not modelled as it takes place at scales significantly
smaller than those of interest. The modelled spectrum has a slightly lower energy at
the lowest frequencies. This is caused by the higher modelled spectrum where the
−1 and −5/3 regions are blended, which results in a smaller parameter D(z) and
a lower spectrum or correlation in the low frequency and wavenumber ranges. This
limitation of the modelled spectrum should be kept in mind when modelled wind
farm spectra are compared with experimental data, as further discussed in § 3.5. The
streamwise wavenumber–frequency spectrum Ekω(k1, ω) =

∫
Φ11(k1, k2, ω) dk2 from

the model using the measured hot-wire parameters, is shown in figure 2(b).
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FIGURE 2. (Colour online) (a) Comparison of the modelled frequency spectrum
Eω with the measured hot-wire spectrum upstream of the scaled wind farm
and (b) the corresponding modelled streamwise wavenumber–frequency spectrum
4π2UEkω(k1, ω)/(u2

τS
2
x). The horizontal green and red lines indicate the location of two

cuts of the spectrum, discussed in § 3.4 and shown in figure 4.

Inside the wind farm, the wind turbines interact with the boundary layer by
producing wakes with a lower velocity and added turbulence, thereby modulating the
spatio-temporal structure in some degree. These effects result in a deviation from the
classical scaling for the velocity spectra in a turbulent boundary layer. However, it
is experimentally extremely challenging to measure the full wavenumber–frequency
spectrum of such a large domain. Furthermore, from the cross-correlation results
in Bossuyt et al. (2017) it is clear that inside the wind farm the large scale
spatio-temporal structure of the flow is still very similar to that of a classical turbulent
boundary layer, but with an increased decorrelation due to the turbine wakes. We
thus use the wavenumber–frequency spectrum for the boundary layer in front of the
wind farm to characterize the baseline flow properties that are sampled by the array
of turbines.

3.3. Spatial sampling transfer function
The fluctuating part of the wind farm power is evaluated as the sum of the fluctuations
of each turbine, according to: P′WF =

∑
P′i ≈ C2

∑
〈u〉′i (see (3.3)), where we assume

that C2 is the same for all turbines. Consequently, the sampling of the velocity field
by the wind farm can be expressed as a convolution evaluated at the wind farm
position, e.g. P′WF(t) ≈ C2

∫∫
g(x, y)u′(x, y, t) dx dy, where g(x, y) is the wind farm

sampling kernel. This function represents the sum over all turbines as well as the
spatial averaging over the rotor area of each wind turbine. The latter is here modelled
with a Dirac impulse at the location of turbine i and a box filter with width equal to
the turbine diameter. The wind farm sampling function is given by:

g(x, y)=
N∑

i=1

δ(x− xi)
1
D

H
(

D
2
− |y− yi|

)
. (3.8)

Analogous to the power spectrum of the wind farm power output, we consider the
spatial filtering of the energy spectrum of the streamwise velocity Φ11(k1, k2, ω), by
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the respective transfer function ĝ(k1, k2) (Maidanik & Jorgensen 1967):

Φ̃11(k1, k2, ω)= |ĝ(k1, k2)|
2Φ11(k1, k2, ω), (3.9)

where the tilde indicates the spatial sampling. The frequency spectrum can then be
found by integrating over all wavenumbers:

Ẽω(ω)=
∫
∞

−∞

∫
∞

−∞

Φ̃11(k1, k2, ω) dk1 dk2, (3.10)

so that the filtered energy spectrum is connected to the spectrum of the wind farm
power output by PSD(P′WF)≈C2

2Ẽω. The transfer function ĝ(k1, k2) is found by taking
2π times the Fourier transform of the physical-space filter function in each direction
(see appendix B for details):

ĝ(k1, k2) =

∫
∞

−∞

∫
∞

−∞

g(x, y) exp(−ik1x) exp(−ik2y) dx dy

=

sin
(

k2
D
2

)
k2

D
2

N∑
i=1

exp(−i(k1xi + k2yi)), (3.11)

resulting in:

|ĝ(k1, k2)|
2
=

sin
(

k2
D
2

)
k2

D
2


2 (

N∑
i=1

N∑
j=1

cos(k1(xi − xj)+ k2(yi − yj))

)
. (3.12)

3.4. Discussion
The manipulation of the wind farm frequency spectrum by the sparse sampling of
the turbulent boundary layer can be better understood by considering the simplified
transfer function for a single streamwise column of wind turbines. For such an array
of N wind turbines with uniform streamwise spacing Sx, the transfer function is (see
appendix B for details):

|ĝ(k1, k2)|
2
=

sin
(

k1SxN
2

)
sin
(

k1Sx

2

)


2

︸ ︷︷ ︸
ĝA(k1)

sin
(

k2
D
2

)
k2

D
2


2

︸ ︷︷ ︸
ĝB(k2)

. (3.13)

The transfer function is separable in the streamwise and spanwise directions, with both
components shown in figure 3. The streamwise contribution ĝA(k1) shows a power
law decrease of the amplitudes for reduced wavenumbers of kSx/(2π) < 1 and peaks
with amplitude N2 at increments kSx/(2π) = 0, 1, 2, . . . of the streamwise spacing.
The spanwise contribution ĝB(k2), shown in red, represents the averaging over the
rotor width. Because this only influences scales significantly smaller than Sx, with
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10010–110–210–3 101

10–4

100

10–2 –2

FIGURE 3. (Colour online) Spatial sampling transfer functions for a single streamwise
column of N wind turbines, spaced evenly with spacing Sx and with diameter D. The lines
for ĝA(k1) show lobes beginning at decreasing wavenumber as N increases from 10 to 200.
The line for ĝB(k2) (red) does not display low-wavenumber lobes below k2Sx/(2π)∼ Sx/D.

a comparably smaller energy, the effect of ĝB(k2) is not considered in the next part
of this discussion. Doing so, the filtering is a function of k1 only, and is given by
Ẽω(ω)=

∫
ĝA(k1)Ekω(k1, ω) dk1.

If the flow would stay perfectly correlated, while being advected by the mean
horizontal velocity U, the wavenumber–frequency spectrum would be given by
Ekω = Ek(k1)δ(k1 −ω/U1), representing a Doppler shift. In this case, the filtered
frequency spectrum is given by Ẽω(ω) = ĝA(ω/U1)Ek(ω/U1). The transfer function
then directly modulates the resulting frequency spectrum, thereby extending and/or
steepening the already present power-law region of the velocity spectrum and
introducing peaks at frequencies corresponding to the travel time between rows
of turbines. Interestingly, as shown in figure 3, the power-law range of the transfer
function has a slope close to −5/3 for an aggregate over twenty rows. In the limit
of large N and k1Sx/(2π)� 1, the slope can be shown to reach a −2 asymptote.

In practice there is temporal decorrelation of the turbulence, which is here modelled
in the wavenumber–frequency model by considering random sweeping (Wilczek et al.
2015a). The impact on Ekω(k1, ω) is depicted in figure 2(b) and figure 4 by the
Doppler broadening (i.e. a broader distribution of the spectral energy) along the
Doppler shift (as described by δ(k1 − ω/U1)). Consequently, the spectral energy
content of a single frequency has contributions from a range of wavenumbers. The
influence on the spatially sampled frequency spectrum is visualized in figure 4. Two
cuts of Ekω(k1, ω) are shown, together with the streamwise transfer function for a
wind farm with twenty rows. Due to the Doppler broadening, the sharp features
from the transfer function smear out. More specifically, it widens and reduces the
amplitude of the peak, and smooths out the power-law region of the transfer function.

3.5. Validation with experimental data
The frequency spectrum of the wind farm power output is calculated by numerically
integrating equation (3.10), making use of the modelled spectrum from § 2, and
with |ĝ(k1, k2)|

2/N2 as the transfer function (see appendix B for an overview of the
transfer functions). Dividing by N2 is done to represent the relative reduction of the
spectra. Because figures 5 and 6 compare the spectra of velocity fluctuations, the
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101
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10–2

10010–110–2 101

FIGURE 4. (Colour online) Comparison of two cuts of the wavenumber–frequency
spectrum Ekω(k1, ω) from figure 2 with the streamwise transfer function ĝA(k1) for a
streamwise column of twenty wind turbines, spaced evenly with a spacing Sx.

10–4

101

100

10–1

10–2

10–3

10010–110–2

Model
Hot-wire

–1

FIGURE 5. (Colour online) Comparison of the modelled wind farm spectrum and the wind
tunnel data, for which 95 % confidence bounds are displayed as estimated by the pwelch
routine in MatlabTM. Results are shown for an aligned layout.

surrogate power signals from the wind tunnel study are scaled with the constant
C2 = (3/2)ρACP〈u〉

2
to represent the same units. The signals are furthermore also

divided by the number of considered porous disk models N to represent the relative
reduction in the fluctuations. Here, 〈u〉 is chosen as the average velocity measured by
the considered porous disk models in the experiment and also used to normalize the
frequency axis, as an approximation of the convection velocity in the experiment.

A comparison between the modelled wind farm spectra (dashed lines) and
experimental data (solid lines) is given in figures 5 and 6. As a reference, the
hot-wire spectrum (orange) and the corresponding unfiltered model spectrum (black)
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FIGURE 6. (Colour online) Comparison of the modelled wind farm spectrum and the wind
tunnel data, for which 95 % confidence bounds are displayed as estimated by the pwelch
routine in MatlabTM. Results are shown for a staggered layout.

are also shown. On each figure, four different wind farm spectra are included, each
for a different sum of wind turbine power outputs. This is indicated by the number
of rows NR over which the aggregate is taken. In each row, the values from the three
central models are measured, resulting in a total aggregate over N = 3NR porous disk
models. When wind tunnel results are shown for less than twenty rows, the rows are
selected counting from the end of the wind farm.

For the aligned case (figure 5), excellent agreement is observed for NR = 2,
approximately within the measurement uncertainty bounds. When more rows are
considered in the aggregate, the model correctly predicts the extension of the
power-law region to lower frequencies. However, the agreement weakens and the
modelled slope shows deviations from the measured spectra. More specifically a
bulge appears in the power-law range, which influences the local slope, and the peaks
become over predicted up to 1.5 times for the largest aggregate. On the other hand,
the low frequency limit of the model spectrum agrees with the experimental data
within the uncertainty bounds. In general, it can be seen that the two main effects
observed in the literature are captured by the model: an extended power-law region to
lower frequencies than observed for the unfiltered spectrum and peaks at frequencies
comparable to the turbine-to-turbine convection time.

For the staggered layout (figure 6), it is observed that the model correctly predicts
the peaks at a lower frequency due to the larger apparent spacing between streamwise
aligned turbines, and that the magnitude of the main peaks are within the uncertainty
bounds. The agreement is however also not perfect. There is an underestimation
of the spectrum at low frequencies up to a factor of 2, and the second peaks at
ωSx/(2πU)= 1 are overestimated.

The differences for the aligned and staggered layout are expected to be mainly
caused by the use of an approximate wavenumber–frequency model with a lower
energy in the low wavenumber and frequency ranges, and which does not consider the
lower velocity and increased decorrelation by the presence of the wind turbines. The
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largest differences are seen for the staggered layout. Because the apparent spanwise
spacing is twice as small, the resulting wind farm spectrum becomes significantly
more sensitive to the spanwise correlation, or in some cases anti-correlation, as
observed in the experiment (Bossuyt et al. 2017). This indicates that the approach
can be improved by better representing the wavenumber–frequency spectrum inside
the wind farm.

4. Conclusions
An analytical model for the frequency spectrum of the aggregate power output from

a wind farm is presented, as function of wind farm layout and inflow turbulence
properties of the wind. The calculation is performed in spectral space, based on an
analytical model for the wavenumber–frequency spectrum. This approach allows us to
interpret and explain the interaction between the wind turbines and the boundary layer
flow as a discrete spatial sampling. More specifically, it is shown how Doppler shift
and broadening smear out the sharp features of the spatial sampling transfer function.
The model also reproduces the observed peak in the spectrum of a wind farm at a
frequency corresponding to the convective travel time between rows, and the extended
steeper decay in the spectrum. The steeper decay can be considered close to a −5/3
power-law region (but is not strictly such a power law), which reaches up to lower
frequencies than present in the spectrum of the velocity.

Considering its simplifications and assumptions, the model shows good agreement
with the measurement data for an aligned wind farm. For a staggered layout the model
under predicts the spectrum for frequencies fSx/U< 0.2. This is expected to be related
to the imperfect modelling of the flow inside the wind farm, more specifically an
underestimation of the spanwise correlation. Further improvement, by studying how
the wavenumber–frequency spectrum is altered by the presence of the wind turbines,
is the subject of future research.
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Appendix A. Definitions of spectra
In this section we give a brief overview of the used notations and main definitions

of spectra, following the usual conventions in the corresponding literature (Pope 2001;
Wilczek et al. 2015a).

For statistically stationary and homogeneous turbulence, the wavenumber energy
spectrum is defined by the Fourier transform of R11(r, 0):

Ek(k)=
1

(2π)3

∫
R11(r, 0) exp(−ik · r) dr, (A 1)

while the energy spectrum in the wavenumber–frequency domain is defined by:

E(k, ω)=
1

(2π)4

∫∫
R11(r, τ ) exp(−ik · r) exp(iωτ) dr dτ . (A 2)
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Here, R11(r, τ ) is the two-point and two-time velocity covariance tensor of the
streamwise velocity component, defined by:

R11(r, τ )= u1(x, t)u1(x+ r, t+ τ). (A 3)

In this paper we do not consider filtering in the vertical direction. The energy
spectra in the horizontal plane are found by integrating the full energy spectra
over k3:

Ekk(k1, k2)=

∫
Ek(k) dk3, (A 4)

Φ11(k1, k2, ω)=

∫
E(k, ω) dk3. (A 5)

Appendix B. Calculation of the transfer function
The transfer function is calculated by applying 2π times the Fourier transform to

the physical-space sampling function, in each direction (Pope 2001):

ĝ(k1, k2)=

∫
∞

−∞

∫
∞

−∞

g(x, y) exp(−ik1x) exp(−ik2y) dx dy. (B 1)

Inserting the sampling function g(x, y) and separating the integrals leads to:

ĝ(k1, k2)=

N∑
i=1

∫
∞

−∞

δ(x− xi) exp(−ik1x) dx
∫
∞

−∞

1
D

H
(

D
2
− |y− yi|

)
exp(−ik2y) dy,

(B 2)

and:

ĝ(k1, k2)=

N∑
i=1

exp(−ik1xi)
i

k2D

[
exp

(
−ik2

(
yi +

D
2

))
− exp

(
−ik2

(
yi −

D
2

))]
.

(B 3)

By making use of Euler’s formula for complex exponentials the exponentials can be
combined:

ĝ(k1, k2)=

sin
(

k2
D
2

)
k2

D
2

N∑
i=1

exp(−i(k1xi + k2yi)). (B 4)

The transfer function for the sampling of the energy spectrum |ĝ|2 is given by:

|ĝ|2 = ĝĝ∗ =

sin
(

k2
D
2

)
k2

D
2


2 ( N∑

i=1

cos(k1xi + k2yi)

)2

+

(
N∑

i=1

sin(k1xi + k2yi)

)2
 ,
(B 5)
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and is equal to:

|ĝ|2 =

sin
(

k2
D
2

)
k2

D
2


2 (

N∑
i=1

N∑
j=1

(cos(k1xi + k2yi) cos(k1xj + k2yj)

+ sin(k1xi + k2yi) sin(k1xj + k2yj))

)
. (B 6)

By making use of the trigonometric identities: 2 cos(a) cos(b)= cos(a−b)+ cos(a+b)
and 2 sin(a) sin(b)= cos(a− b)− cos(a+ b), this can be simplified to:

|ĝ(k1, k2)|
2
=

sin
(

k2
D
2

)
k2

D
2


2 (

N∑
i=1

N∑
j=1

cos(k1(xi − xj)+ k2(yi − yj))

)
. (B 7)

For the special case of one streamwise column of N wind turbines with spacing
Sx, the sum in (B 4) becomes the geometric series:

∑N−1
n=0 exp(−inSxk1) = (1 −

exp(−iNSxk1))/(1− exp(−iSxk1)) so that:

ĝ(k1, k2)=

sin
(

k2
D
2

)
k2

D
2

1− exp(−iNSxk1)

1− exp(−iSxk1)
, (B 8)

and

|ĝ(k1, k2)|
2
=

sin
(

k2
D
2

)
k2

D
2


2 sin

(
k1SxN

2

)
sin
(

k1Sx

2

)


2

. (B 9)

Figure 7 shows the transfer function calculated with (B 7) for several cases that
are representative for the experimental set-up, as described in § 2. Figure 7(a) is for
a single streamwise column with 20 wind turbines, spaced evenly with Sx. A peak
at k1 = 2π/Sx is observed in the streamwise direction. In the spanwise direction,
the box filter by the turbine diameter can be noticed. Figure 7(b) is for an aligned
wind farm with 20 spanwise rows and 5 streamwise columns, spaced evenly in the
streamwise direction with Sx and in the spanwise direction with Sy. In the spanwise
direction, the filter also shows a peak at k2= 2π/Sy. Figure 7(c) considers a staggered
wind farm by shifting the even rows with Sy/2 in the spanwise direction. The peak
in the spanwise direction has now shifted to k2 = 4π/Sy, because of the smaller
apparent spanwise spacing. An extra peak is observed at k1 = π/Sx and k2 = 2π/Sx,
representative for the streamwise aligned wind turbines which have now a spacing
of 2Sx. Figure 7(d) is for the aligned wind farm, angled 45◦ compared to the k1
direction, as an example for a different wind direction.
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FIGURE 7. (Colour online) The spatial sampling transfer function |ĝ(k1, k2)|
2/N2 for a

single streamwise column with 20 wind turbines (a), an aligned wind farm with 20 rows
and 5 columns (b), a staggered wind farm with 20 rows and 5 columns (c) and the aligned
wind farm rotated 45◦ with the k1 direction (d).
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