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Abstract

For a fixed parabolic subalgebra p of gl(n, C) we prove that the centre of the principal
block Op

0 of the parabolic category O is naturally isomorphic to the cohomology ring
H∗(Bp) of the corresponding Springer fibre. We give a diagrammatic description of Op

0

for maximal parabolic p and give an explicit isomorphism to Braden’s description of the
category PervB(G(k, n)) of Schubert-constructible perverse sheaves on Grassmannians.
As a consequence Khovanov’s algebra Hn is realised as the endomorphism ring of some
object from PervB(G(n, n)) which corresponds under localisation and the Riemann–
Hilbert correspondence to a full projective–injective module in the corresponding
category Op

0. From there one can deduce that Khovanov’s tangle invariants are obtained
from the more general functorial invariants in [C. Stroppel, Categorification of the
Temperley Lieb category, tangles, and cobordisms via projective functors, Duke Math. J.
126(3) (2005), 547–596] by restriction.
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Introduction

Let G= GL(n, C) be the general linear group with subgroup B given by all invertible upper
triangular matrices. Let g = gl(n, C) and b be their Lie algebras and let W be the Weyl group,
so W = Sn. Let µ= (µ1, µ2, . . . , µr) be positive integers summing up to n. Then we have
the parabolic subalgebra p⊇ b of g with Levi subalgebra glµ1

⊕ glµ2
⊕ · · · ⊕ glµr , Weyl group

Wp = Sµ1 × Sµ2 × · · · × Sµr , and P the corresponding parabolic subgroup of G. Let xµ ∈ g be a
nilpotent element whose Jordan normal form has blocks of size µi, 1≤ i≤ r. Let uµ = Id +xµ be
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Parabolic category O, Springer fibres and Khovanov homology

the corresponding unipotent element. Let B =G/B, the variety of full flags in Cn. Associated
with µ we have the partial flag variety G/P . On the other hand, we also have the variety Fuµ
of uµ-fixed points: Fuµ is the Springer fibre associated with p; we denote it by Bp.

Let Op
0 be the principal block in the category of highest weight modules for g which

are locally finite for p. If p = b then Op
0 is the principal block of the ordinary Bernstein–

Gel’fand–Gel’fand (BGG) category O. The category Op
0 is equivalent to mod-Ap, the category of

finitely generated modules over the (finite-dimensional) endomorphism algebra Ap of a minimal
projective generator of Op

0; it is also equivalent to the category of perverse sheaves on G/P ,
constructible with respect to the Schubert stratification (via localisation and the Riemann–
Hilbert correspondence).

Centres and Springer fibres. The first result of this paper generalises Soergel’s results
from [Soe90], confirms [Kho04, Conjecture 3] and gives an explicit description of the centre
Z(Ap) of Ap.

Theorem 1. There is a canonical isomorphism of algebras H∗(Bp)∼= Z(Ap).

In particular, up to isomorphism, Z(Ap) only depends on the parts of µ, not on the order in
which they appear.

This theorem was independently proved by Brundan [Bru08] using different techniques. His
approach also works for singular blocks and provides an explicit description of these centres as
quotients of polynomial rings.

The cohomology of Springer fibres H∗(Bp) was used by Springer [Spr78] to construct the
irreducible representations of the symmetric group Sn. In particular, he defined an Sn-action
on H∗(Bp). From the isomorphism above we obtain an induced Sn-action on Z(Ap). In § 3 we
give a functorial interpretation of this Sn-action on Z(Ap) as follows. Let BW be the underlying
braid group. Jantzen’s translation functors can be used to define a (weak) braid group action
on the bounded derived category of Op

0 (see e.g. [BFK99, Rou06, Str05]). The resulting functors
are the derived functors of Irving’s shuffling functors (see § 3.3). Since these functors are tilting
functors, they induce a braid group action on the centre of Op

0, hence on Z(Ap). Now the natural
map can : Z(Ab)→Z(Ap) is BW -equivariant (Theorem 3.4.2) and if b = p, then the braid group
action factors through an action of Sn (Lemma 3.4.1). A very recent result of Brundan [Bru06]
says that can is surjective, hence there is an Sn-action on Z(Ap) as well. This is the Sn-action
we are looking for. Together with the theorem above and the main result from either [DP81]
or [Tan82] it follows that Z(Op

0)∼= C[W ]⊗C[Wp] Ctriv as W -module. It also shows that the
dimension of the centre stays invariant under deformations of Ap.

The main idea of the proof of Theorem 1 is as follows. From Soergel’s Endomorphismensatz
and Struktursatz [Soe90] we obtain an isomorphism H∗(B)∼= Z(Ab) of rings. On the other hand
we have the restriction map Z(Ab)→Z(Ap). We first show that the kernel of the canonical
map H∗(B)→H∗(Bp) is contained in the kernel of Z(Ab)→Z(Ap) using deformation theory
(following [Soe90]). This is based on the results of [Tan82] and a handy description of H∗(Bp) as
a quotient of S(h) along the lines of [GP92]. To show that the induced map Φp :H∗(Bp)→Z(Ap)
is injective it is enough to show that it is injective on its socle (considered as an H∗(B)-module).
The main idea here is that the top degrees of H∗(Bp) and Z(Ap) coincide (Lemma 4.3.2). This will
be used to show that Φp is non-zero when restricted to the socle (Propositions 4.2.1 and 4.3.1),
and even Sn-equivariant onto its image. Then we use the fact that the socle of H∗(Bp) is an
irreducible Sn-module and obtain the injectivity. In Theorem 4.3.6 we show that the induced
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injective map defines an isomorphism of Sn-modules on the top degree parts

H∗(Bp)top →̃ Z(Ap)top.

This follows on the one hand from Springer’s construction of irreducible Sn-modules and, on
the other hand, from the categorification of irreducible Sn-modules using projective–injective
modules in Op

0 obtained in [KMS09]. In the maximal parabolic case we give an alternative
proof for the injectivity by a deformation argument, since the algebra Ap can be replaced be
a symmetric subalgebra with the same centre (§ 4.5) and the deformation ring is a principal
ideal domain. For the applications we have in mind (see below) the maximal parabolic case is
enough. As far as we see deformation methods are not sufficient to prove the surjectivity in
Theorem 1. Instead, some ‘external’ information is needed which is obtained in [Bru06] from the
representation theory of cyclotomic Hecke algebras.

Connection to Khovanov homology. Theorem 1 together with [DP81] and [Tan82] provide
an explicit description of Z(Ap), so we would like to have an explicit description of Ap as well. In
general, this seems to be ambitious, but in the case where p is a maximal parabolic subalgebra
it has been achieved by Braden [Bra02] using perverse sheaves on Grassmannians. However,
Braden’s description is difficult to use for explicit calculations. Moreover, the Koszul grading of
Ap (defined in [BGS96]) is not visible. Therefore, we consider the situation of [Bra02] again and
first remark that any indecomposable projective Ap-module has a commutative endomorphism
ring (Proposition 2.8.1). Later on we deduce that each of these endomorphism rings is of the form
C[X]/(X2)⊗k for some k ∈ Z≥0. In Corollary 5.7.2 we explain how Ap becomes a graded algebra
using the description of [Bra02]. The intriguing result is, however, Theorem 5.8.1 which gives a
purely graphical description of Braden’s algebra Am,m very similar to Khovanov’s approach (see
e.g. [Kho04]) which we will describe below.

The crucial fact behind Theorem 1 and its proof is the existence of a bijection between
the isomorphism classes PrInj(p) of indecomposable projective–injective modules in Op

0 and the
irreducible components in Bp. Let us consider the case where n= 2m for some m ∈ Z>0 and
µ= (m, m). In this case the irreducible components of Bp and, hence, the isomorphism classes
PrInj(p), are in bijection to I, the set of crossingless matchings of 2m points. Let {T (i)2m}i∈I
be a complete minimal set of representatives of PrInj(p) and T2m :=

⊕
i∈I T (i)2m. In [Kho02],

a finite-dimensional C-algebra Hm was introduced whose primitive idempotents are naturally
indexed by crossingless matchings of 2m points. These algebras were used to define the famous
Khovanov homology which gives rise to an invariant of tangles and links. It is known [Kho04]
that the centre Z(Hm) of Hm is isomorphic to H∗(Bp).

In Theorem 5.6.2 and Proposition 5.6.4 we verify [Str06, Conjecture 2.9(a)] which is a stronger
version of the conjectures formulated in [Bra02] and [Kho04].

Theorem 2. For any natural number m there is an isomorphism of algebras

Endg(T2m) →̃ Hm.

Hence, Khovanov’s algebra Hm is a subalgebra of Ap, where p is the parabolic subalgebra of
gl2m corresponding to the decomposition 2m=m+m.

Corollary 1. There is an isomorphism of rings Z(Endg(T2m)) →̃ Z(Hm).

With [Kho04, Theorem 3] we therefore have an alternative proof of Theorem 1 in this special
situation (purely based on [Bra02]) which implies [Kho04, Conjecture 2].
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As an application of Theorem 2 one can deduce that Khovanov’s tangle invariants are nothing
else than restrictions of the functorial invariants from [Str05] (see [Str06, Conjecture 2.9(b)] for a
precise statement). Since the proof is lengthy, this part will be presented in a subsequent paper.

Diagrammatic description of Braden’s algebra. Theorem 2 will be a direct consequence of
our diagrammatic description of Braden’s algebra Am,m in the case µ= (m, m). The primitive
idempotents of Am,m or, equivalently, the isomorphism classes of indecomposable projective
modules of Op

0, are in bijection to the shortest coset representatives of Sm × Sm\S2m: by
permuting the entries, the symmetric group S2m acts transitively on the set of {+,−}-
sequences of length 2m with exactly m pluses and m minuses. Since the sequence σdom =
(+, . . . ,+,−, . . . ,−) has stabiliser Sm × Sm we obtain a bijection between the primitive
idempotents of Am,m and the set S(m) of {+,−}-sequences of length 2m with exactly m pluses
and m minuses (Proposition 5.2.2). The isomorphism class of the projective generalised Verma
module in Op

0 is mapped to σdom under this bijection. For m= 1 we have the sequence (+,−)
corresponding to the projective Verma module and the sequence (−,+) corresponding to the
‘antidominant projective module’.

We want to associate a cup-diagram to each isomorphism class of indecomposable projective
modules. To do so we have to make the {+,−}-sequences longer. Putting m minuses in front of a
sequence from S(m) and m pluses afterwards we obtain a distinguished set of {+,−}-sequences
of length 4m with exactly 2m pluses. Connecting successively each minus with an orphaned
neighboured plus to the right we obtain a collection of crossingless matchings of 4m-points.
In this way we associate to each primitive idempotent a of Am,m a cup diagram/crossingless
matching of 4m points. For the sake of argument in this introduction we number the points
from 1 to 4m. In the case m= 1 for example, the two sequences (−,+) and (+,−) of length
2 from above become the sequences (−,−,+,+) and (−,+,−,+) of length 4 and we associate
the crossingless matchings depicted in § 5, Figure 1.

To a pair (a, b) of two primitive idempotents we obtain a collection of circles as in [Kho02],
namely by putting one crossingless matching upside down on top of the other (see § 5, Figure 2
for m= 1).

The fundamental difference to [Kho02] is that we additionally introduce a colouring of these
circles indicating the position of a circle (§ 5, Figure 5). If a circle connects only points in the
interval [m+ 1, 3m], then the circle is black. If a circle passes either through at least two points
in [1, m] or at least two points in [3m+ 1, 4m] then it is red. In all other cases it is green.

The principle idea is that we fix for each allowed colour (black, red, green) a two-dimensional
topological quantum field theory (TQFT): red circles correspond to the trivial Frobenius algebra,
green circles correspond to the one-dimensional Frobenius algebra, and black circles correspond
to the Frobenius algebra C[X]/(X2). In § 5.4 we combine these three TQFTs to define an
algebra Km. If we restrict to idempotents such that only black circles occur then we are in
exactly the situation of [Kho02] and we obtain Hm naturally as a subalgebra of Km. However,
the colouring carries all of the additional information to give a graphical description of Braden’s
algebra Am,m (see Theorem 5.8.1).

Theorem 3. For any m ∈ Z>0 there is an isomorphism of algebras

E :Am,m ∼=Km.
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To determine the dimension of the homomorphism space between two indecomposable
projective modules it is enough to take the corresponding two cup diagrams, one upside down
on top of the other, and count the numbers of circles for each colour. The dimension of the
morphism space is then zero if there is a red circle, otherwise two to the power of the number of
black circles. Taking the dimension of these homomorphism spaces is a natural extension of the
categorical version of the Sn-invariant bilinear form defined on irreducible Sn-modules described
in [KMS09].

The homomorphism space between two indecomposable projective modules P and Q carries
a natural Z-grading induced from the Koszul grading introduced in [BGS96]. It turns out that,
up to a shift, the Poincaré polynomial agrees with the intersection theory Poincaré polynomial
associated with the intersection of the corresponding two irreducible components of the associated
Springer fibre (Theorem 5.9.1).

On the other hand Km carries a natural Z-grading induced from the Z-grading on C[X]/(X2),
where X has degree two. The isomorphism from Theorem 3 induces a grading of Am.m which
we show is the Koszul grading (Corollary 5.7.2). It follows, in particular, that the arrows in the
Ext-quiver of Am,m are given by Braden’s relation ↔ (Corollary 5.7.3).

Plan. The paper starts by recalling basics from Category O and its deformation theory
in § 2. Section 3 contains general facts about braid group actions on the centres of the categories
we are interested in. Starting from § 4 we only consider Type A, the Lie algebra gln. In § 4 we
explain the connection between the centres of blocks of category O and the cohomology of the
Springer fibres. Section 5 contains the connection with Braden’s and Khovanov’s work. We tried
to make this part accessible without the Lie theoretic background from the previous sections.
We abbreviate ⊗C as ⊗ and dim = dimC denotes the dimension of a complex vector space.

1. Preliminaries

Let G be a complex reductive simply connected algebraic group with a chosen Borel subgroup B
and maximal torus T . Let g be the corresponding reductive complex Lie algebra, with b⊃ h the
Lie algebras of B and T , respectively. For any Lie algebra l let U(l) be its universal enveloping
algebra. We abbreviate U = U(g) and denote by Z the centre of U . For any finite-dimensional
complex vector space V let S(V ) be the algebra of polynomial functions on V ∗, especially
S := S(h) = U(h). We denote by 4⊆R+ ⊂R the set of simple roots, positive roots and all
roots. Let W be the Weyl group and X =X(R) the integral weight lattice. The Weyl group acts
naturally on h∗; this action is denoted by (w, λ) 7→ w(λ), for w ∈W , λ ∈ h∗. We also have the
so-called ‘dot-action’ given by (w, λ) 7→ w · λ := w(λ+ ρ)− ρ, where ρ is the half-sum of positive
roots. For a root α ∈R we denote by α̌ the corresponding coroot with the evaluation pairing 〈, 〉.
In this paper, a weight λ ∈ h∗ is called dominant, if 〈λ+ ρ, α̌〉 /∈ {−1,−2, . . .} for any α ∈R+.
Let h∗dom be the set of dominant weights.

If π ⊆4, then there is a corresponding parabolic subalgebra pπ = gπ ⊕ hπ ⊕ nπ of g, where gπ
is semisimple with simple roots π and Cartan hπ, and hπ =

⋂
α∈π ker α. Denote by pπ : h→ hπ

the projection along hπ as well as the induced restriction morphism pπ : S(h)→ S(hπ).
Let Wpπ be the parabolic subgroup of W associated with π. If π = ∅, then Wpπ is trivial. We

denote by W pπ the set of shortest coset representatives in Wpπ\W with respect to the Coxeter
length function l. Let w0 ∈W be the longest element, wpπ

0 the longest element in Wpπ , and finally
[wpπ ] the representative of the longest element of Wpπ\W .
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2. Deformation

Fix now some π ⊆4. To simplify notation we leave out the index π most of the time. In particular,
p = pπ. Consider the following commutative algebra

T = T π := S(hπ)(0) =
{
f

g

∣∣∣∣ f, g ∈ S(hπ), g(0) 6= 0
}
,

the localisation of S(hπ) at the augmentation ideal, with maximal ideal m.
Let T ′ be a π-deformation algebra, that is, an associative unitary noetherian commutative

T -algebra. The structure morphism ϕ : T → T ′, induces a U(p)-module structure on T ′ via

the composition pπ
p−→ hπ

i−→ S(hπ) i′→ T
ϕ−→ T ′, where p is the canonical projection, and i, i′

the canonical inclusions. We have the set Xπ of π-integral weights and the set X+
π of

(π-)admissible weights, defined as follows:

Xπ := {λ ∈ h∗ | 〈λ, α̌〉 ∈ Z, α ∈ π},
X+
π := {λ ∈ h∗ | 〈λ, α̌〉 ∈ Z≥0, α ∈ π}.

Recall that there is a natural bijection

{finite-dimensional irreducible U(p)-modules} 1:1↔X+
π , (2.0.1)

by mapping a module to its highest weight. Let Ẽ(λ) be the irreducible module corresponding to
λ ∈X+

π . For any π-deformation algebra T ′ define the T ′-deformed (generalised) Verma module
with highest weight λ ∈X+

π as

Mp
T ′(λ) := U(g)⊗U(p) (Ẽ(λ)⊗ T ′).

This is a U(g)⊗ T ′-module, where T ′ is just acting on T ′ by multiplication. Given a U(g)⊗
T ′-module M and λ ∈ h∗, we denote by

Mλ
T ′ = {m ∈M | h.m= ϕ(λ(h) + h)m, ∀ h ∈ h}

the λ-weight space of M . (Here λ(h) + h is considered as an element of T via the map i′ ◦ i ◦ p
and ϕ(λ(h) + h) is an element of T ′.)

2.1 The deformed (parabolic) category O
Let Op

T be the full subcategory of the category of U(g)⊗ T -modules defined by the set of objects
M satisfying:

– M is finitely generated;
– M =

⊕
λ∈h∗ M

λ
T as T -module; and

– (U(p)⊗ T )m is a finitely generated T -module for all m ∈M .

In particular, Mp
T (λ) ∈ Op

T for any λ ∈X+
π . Note that the third condition is equivalent to saying

that M is locally U(gπ ⊕ nπ)⊗ T -finite.
If we replace T by C in all of the definitions, then Op

T is the ordinary parabolic category Op as
defined in [Roc80, Section 3]. In particular, Ob

C is the ordinary BGG-category Ob from [BGG76].
The generalised Verma modules Mp

C(λ) are abbreviated as Mp(λ).

2.2 Weight and root decompositions of Op
T

If λ ∈ h∗ we denote by λ its class in h∗/X and by λ̃ its class in h∗/ZR. We have the following weight
decomposition: Op

T =
⊕

Λ∈h∗/X O
p
T,Λ, where M ∈ Op

T,Λ if and only if Mλ
T 6= {0}⇒ λ= Λ, and the

959

https://doi.org/10.1112/S0010437X09004035 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004035


C. Stroppel

finer root decompositionOp
T =

⊕
Λ∈h∗/ZR O

p
T,Λ, whereM ∈ Op

T,Λ if and only ifMλ
T 6= {0}⇒ λ̃= Λ.

Both decompositions are far away from giving block decompositions, hence we have to refine them
once more.

2.3 Central character and block decomposition

Let ξ] : Z→ S be the Harish-Chandra homomorphism normalised by ξ](z)− z ∈ U(g)n, where
n = n∅. Hence, ξ] : Z→ S(W,·), the W -invariants under the dot-action. This is the comorphism
for ξ : h∗→Max(Z) which induces a bijection between (W, ·)-orbits of h∗ and maximal ideals
Max(Z) of Z. For any weight λ, we have +λ : h∗→ h∗, µ 7→ λ+ µ. Let λ] : S→ S be the
corresponding comorphism.

Since deformed Verma modules are generated by their highest weight space we have a
canonical isomorphism of rings Endg⊗T (Mp

T (λ)) = T . Let χλ : Z ⊗ T → T be such that z.m=
χλ(z)m for any z ∈ Z ⊗ T , m ∈Mp

T (λ). Explicitly, the morphism χλ is given by

Z ⊗ T (λ]◦ξ])⊗id−−−−−−→ S ⊗ T i]⊗id−−−→ S(hπ)⊗ T j⊗id−−−→ T ⊗ T m−→ T, (2.3.1)

where i : (hπ)∗→ h∗ is the canonical embedding, j is the canonical embedding into its localisation,
and m is the multiplication map (for details see [Soe90, § 2]).

Let µ ∈ h∗ and consider the support suppMp
T (λ)⊆ Spec(Z ⊗ T ) of Mp

T (λ) viewed as a Z⊗
T -module. By definition, suppMp

T (λ) is the closed subset of the spectrum of Z ⊗ T given by
all prime ideals containing AnnZ⊗T (Mp

T (λ)) = AnnZ⊗T (Mp
T (λ)λ) = ker χλ. Unlike in the non-

deformed situation, ker χλ does not need to be a maximal ideal. However, the homomorphism
theorem implies that there is a homeomorphism between the spectrum of T and suppMp

T (λ).
Hence, suppMp

T (λ) contains exactly one closed point, namely ξ(λ)⊗ T + Z ⊗m, since T is local
with maximal ideal m. If λ, µ ∈X+

π , then

suppMp
T (λ) ∩ suppMp

T (µ) 6= ∅⇔ ξ(λ) = ξ(µ)⇔ λ ∈W · µ.

For χ, a maximal ideal of Z, let Op
T,χ be the full subcategory of Op

T given by all objects
having support contained in

⋂
ξ(µ)=χ suppMp

T (µ). For λ ∈ h∗dom let Op
T,λ =Op

T,ξ(λ) ∩ O
p
T,Λ, such

that Λ = λ̃. We have the following ‘block’ decomposition:

Op
T =

⊕
λ∈h∗dom

Op
T,λ =

⊕
λ∈h∗dom∩X

+
π

Op
T,λ.

Strictly speaking, this is not a block decomposition, since the summands might decompose
further. This is, however, not the case if p = b or λ= 0, where Op

T,λ is in fact a block. Since we
are mainly interested in this case we call it ‘block’ decomposition.

2.4 The ordinary parabolic category Op
0

Let us stop for a moment and recall the structure of the principal block Op
0 of Op

C =Op

from [Roc80]. The generalised Verma modules in Op
0 are exactly the Mp

C(λ), where λ ∈X+
π ∩

W · 0, or in other words λ is of the form λ= w · 0, where w ∈W p. The simple objects in Op
0

are exactly the simple quotients L(w · 0), w ∈W p of these generalised Verma modules. (There
is only one finite-dimensional simple module, namely the trivial module.) The category Op

0 has
enough projectives; for w ∈W p let P p(w · 0) be the projective cover of L(w · 0) in Op

0.
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2.5 Specialisations: C and Q = Quot T

For any morphism f : T → T ′ of deformation algebras let Op
T ′,λ denote the image of Op

T,λ under
the specialisation functor − ⊗T T ′.

From [Fie03, Proposition 2.6 and § 2.4] it follows that if f : T → T/m = C is the canonical
projection then the image of Op

T under the C-specialisation is the ordinary parabolic category Op
C

with the usual decomposition Op
C =

⊕
λ∈h∗dom∩X

+
π
Op
C,λ (see e.g. [Jan83, 4.4]). It follows directly

from the definitions that Mp
T (λ)⊗T C∼=Mp

C(λ) as g-modules.
On the other hand we could consider the specialisation functor − ⊗T Q, where Q= Quot T is

the quotient field of T . We identify (h⊗C Q)∗ := HomQ(h⊗Q,Q) = h∗ ⊗C Q. Let τ ∈ (h⊗Q)∗

be the tautological weight, i.e. restricted to h it is just the projection onto hπ ⊆ S(hπ)⊂ T ⊂Q.
From the definitions we have Mp

T (λ)⊗T Q∼=Mp
Q(λ+ τ) as g ⊗Q-modules. If λ ∈X+

π for all
α ∈ π, then 〈λ+ τ, α̌〉= 〈λ, α̌〉 ∈ Z by definition of hπ and τ , hence λ+ τ is an admissible
weight for the Lie algebra g ⊗Q. If α ∈4− π, then τ(α) 6= 0 (since the elements from 4 are
linearly independent) and therefore 〈λ+ τ, α̌〉 /∈ Z for any α ∈4− π. It follows that Mp

Q(λ+ τ)
is simple [Jan83, (1.17)]. In particular, the image of Op

T under the Q-specialisation functor is
semisimple with simple objects Mp

Q(λ+ τ), λ ∈X+
π .

2.6 Translation functors
Let λ, µ ∈ h∗dom such that µ− λ ∈X(R). For any deformation algebra T ′ let

θµλ,T ′ :O
p
T ′,λ→O

p
T ′,µ

be the translation functor defined as M 7→ prµ(M ⊗ E), where E is the finite-dimensional
g-module with extremal weight µ− λ and prµ is the projection to the summand Op

T ′,µ. Since Op
T ′ ,

the direct sum of all blocks, is closed under tensoring with finite-dimensional g-modules, the
definition makes sense. Obviously, θµλ,T ′ commutes with base change, i.e. there is a natural
isomorphism

θµλ,T ′(M ⊗T T
′)∼= (θµλ,TM)⊗T T ′.

2.7 Deformed projectives
For the reader’s convenience we recall some fundamental properties of the deformed parabolic
categories, but omit the proofs. The arguments can be found in [Fie03, Soe90, Soe92].

Proposition 2.7.1. Let T ′ be any π-deformation algebra.

(i) The category Op
T ′ has enough projectives.

(ii) The category Op
T ′ is closed under taking direct summands and finite direct sums.

(iii) If λ ∈X+
π ∩ h∗dom, then Mp

T ′(λ) is projective in Op
T ′,λ and in Op

T ′ .

(iv) Any projective module in Op
T ′ is obtained by applying translation functors to some Mp

T ′(λ),
λ ∈X+

π ∩ h∗dom, taking finite direct sums and direct summands.

(v) Any projective object in Op
T ′ has a Verma flag, i.e. a filtration with subquotients isomorphic

to various deformed generalised Verma modules.

(vi) The weight spaces of projective objects in Op
T ′ are free T ′-modules of finite rank.

(vii) The specialisation functor − ⊗T C defines a bijection between the (indecomposable)
projective objects in Op

T and the (indecomposable) projective objects in Op
C.

(viii) If M , N ∈ Op
T ′ are projective, then Homg⊗T ′(M, N) is a free T ′-module of finite rank.
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(ix) If M , N ∈ Op
T are projective, then the canonical map

Ψ : Homg⊗T (M, N)⊗T T ′ ∼= Homg⊗T ′(M ⊗T T ′, N ⊗T T ′)
f ⊗ t 7→ f ⊗ t · id.

is an isomorphism.

If P ∈ Op
T ′ has a Verma flag, then we denote by [P :Mp

T (λ)] the multiplicity of a Mp
T (λ)

as a subquotient of an (arbitrarily chosen) Verma flag of P . Note that this number is stable
under changes of the deformation ring (by Proposition 2.7.1(vi)). For simplicity we restrict our
attention to the principal blocks Op

T ′,0 in the following.

2.8 Commutativity of the endomorphism rings
In this section we use the deformation theory to obtain (as an easy application) the commutativity
of certain endomorphism rings.

Proposition 2.8.1. Let P ∈ Op
0 be an indecomposable projective module.

(i) If [P :Mp(λ)]≤ 1 for any λ ∈ h∗, then Endg(P ) is commutative.

(ii) If p = b, then the following are equivalent:

(a) [P :Mb(λ)]≤ 1 for any λ;
(b) Endg(P ) is commutative;
(c) Z surjects onto Endg(P ) canonically.

Proof. Let PT be the T -deformation of P given by Proposition 2.7.1(vii). From Proposition
2.7.1(ix) we obtain an isomorphism of rings

Endg⊗T (PT )⊗T T ′ ∼= Endg⊗T (PT ⊗T T ′)

for any T -algebra T ′. If we choose T ′ = C, then the commutativity of Endg⊗T (PT ) implies the
commutativity of Endg(P ). On the other hand, we could choose T ′ =Q, the ring of fractions
of T . The category O0,Q is semisimple, with simple objects being the Q-specialised deformed
Verma modules (§ 2.5). They all have commutative endomorphism rings isomorphic to Q.
Set J = {λ ∈ h∗ | [PT :Mp

T (λ)] 6= 0}. By our assumption on the multiplicities we obtain PT ⊗T
Q∼=

⊕
λ∈J M

p
T (λ)⊗T Q∼=

⊕
λ∈J M

p
Q(λ+ τ), and Endg⊗Q(P ⊗T Q)∼=

⊕
λ∈J Q is commutative.

Proposition 2.7.1(viii) and (ix) provide an inclusion

End(PT ) −→ End(PT )⊗T Q∼= End(P ⊗T Q)
f 7−→ f ⊗ 1.

So, Endg⊗T (PT ) is a subring of a commutative ring, hence itself commutative. The first part of
the proposition follows. The second part is [Str03b, Theorem 7.1]. 2

We do not know whether Proposition 2.8.1(ii) is true for general p. A famous example
for a module P satisfying the conditions of the proposition in case p = b is the ‘antidominant
projective module’ P (w0 · 0) ∈ Ob

0 (see § 3 below). The following are further examples (see also
Proposition 4.2.1).

Proposition 2.8.2. Let g = gln and pπ a maximal parabolic, i.e. π =4− {αs} for some simple
reflection s. Then Endg(P ) is commutative for any indecomposable projective object P ∈ Op

0.

Proof. With this choice of a parabolic subalgebra, the assumptions of Proposition 2.8.1(i) are
satisfied [Bre02, Theorem 5.1]. 2
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In § 5 we show that the endomorphism rings appearing in Proposition 2.8.2 are of the form
(C[X]/(X2))⊗k for some k ∈ Z≥0.

3. The centre as a module for the Weyl group

Recall that the centre Z(A) of an abelian category A is the endomorphism ring of the identity
functor id = idA. If, for instance, A∼= mod-A, the category of finitely generated right modules
over some unitary C-algebra A, then the centre of A is naturally isomorphic to the (ordinary)
centre Z(A) of the algebra A. The isomorphism associates to a natural transformation f the
value fA(1).

3.1 The cohomology ring of the flag variety
Let us consider for a moment the case p = b. It is well known that the centre of Ob

C,0 is
naturally isomorphic to C = S/(SW+ ), the ring of coinvariants ([Soe90, Endomorphismensatz and
Struktursatz] together with [MS08, Theorem 5.2(2)]). The natural action of the Weyl group
W on S = S(h) gives rise to an action of W on C. In the deformed situation, the picture is
similar: the centre of the deformed category Ob

0,T is naturally isomorphic to S ⊗SW T [Soe92,
Theorem 9, Corollary 1], and hence carries obviously the structure of a W -module. To obtain
an explicit description of the isomorphism we first note that each element of the centre of Ob

0,T

defines an element of the endomorphism ring E of the ‘antidominant projective’ in Ob
0,T by

restriction, defining an isomorphism between the centre of the category and E (see e.g. [Str06,
Theorem 1.8]). On the other hand, Soergel showed in [Soe92, Theorem 9] that E is canonically
isomorphic to T ⊗TW T = S ⊗SW T . Moreover, since the specialisation functor − ⊗T C maps E
surjectively onto the endomorphism ring of the antidominant projective module in Ob

C,0, the
principal block of the ordinary category O, the centre of Ob

T,0 maps surjectively onto the centre
of Ob

C,0.
Let B =G/B be the flag variety corresponding to g (i.e. the variety of Borel subalgebras in

g) and H∗(B) its cohomology algebra with complex coefficients. The Weyl group acts on H∗(B).
Note that C has an even Z-grading coming from the grading on S, where h is concentrated
in degree two. We recall the following well-known fact (see e.g. [DP81, Section 4.1] or [Spr76,
Proposition 7.2]).

Proposition 3.1.1. There is a W -equivariant isomorphism of graded algebras ψ : C∼=
H∗(G/B), and C∼= C[W ] as W -modules.

Via the natural isomorphism C = Z(Ob
0), the centre of Ob

0 inherits an action of W giving rise
to the regular representation. In the following we explain how this W -action on the centre can be
obtained via braid group actions on the bounded derived category Db(Ob

0), inducing a W -action
on the centre of Ob

C,0 and then finally also on the centre of Op
C,0.

3.2 Braid group actions on the centre of a category
Before we pass to derived categories, we want to give the main idea behind this braid group
action on the centre of Op

0 by first assuming a simplified situation. Let C be an abelian C-linear
category. Let F : C → C be a functor. Assume that F is invertible. Then the centre of C is
isomorphic to End(F ) in two ways: first by mapping an element c in the centre to F (c) and
second by mapping c (naively) to the endomorphism given by multiplication with c. Now given c
in the centre of C there is a unique c′ in the centre of C such that F (c) is given by multiplication
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with c′. In particular, there is an automorphism ΨF : Z(C)→Z(C) which maps c to c′. Hence, c
and c′ are related by the formula c′F (M) = F (cM ) for any object M .

Assume now that G is a group acting on C, i.e. for any g ∈G, there is an (invertible) functor
Fg : C → C such that Fe ∼= id, Fgh ∼= Fg ◦ Fh. We obtain the corresponding automorphisms ΨFg

which give rise to an action of G on the centre of C. For further details we refer the reader
to [Kho04].

3.3 The Irving shuffling functors
Let s ∈W be a simple reflection and choose λ ∈ h∗ an integral weight with stabiliser {e, s}.
Let θs = θ0

λθ
λ
0 :Ob

0→Ob
0 be the translation functor through the s-wall. Let as : id→ θs be the

adjunction morphism. Consider the functor Cs = coker(as). This is a right exact functor such
that its left derived functor LCs induces an equivalence on the bounded derived category Db(O0)
(see [MS05, Theorem 5.7]). It is quite easy to see that they satisfy braid relations in the weak
sense (see [KM05, Theorem 2] and [MOS09, Section 6.5]), which means if we have a braid relation
st . . .= ts . . . then there is an isomorphism of functors LCsLCt

∼= . . .∼= LCtLCs . . . . (Although
this weak version is enough for our purposes we want to point out that Rouquier showed that
the isomorphisms of functors can be chosen in a compatible way [Rou06].)

Since the translation functors preserve the parabolic categories, the functors Cs induce
functors Cs :Op

0→O
p
0 and the left derived functors LCs are auto-equivalences of Db(Op

0)
(cf. [MS05, § 4]).

Each of the categories Op
0 is equivalent to mod-Ap for some finite-dimensional algebra Ap (see

e.g. [Str03b, § 2.1]). Under this equivalence, the functors Cs become so-called tilting functors,
given by tensoring with some tilting complex (see [Ric94] and [MS05, § 5]). Hence, we have a
braid group action via tilting auto-equivalences on Db(Op

0). Since these equivalences are given
by tilting complexes we obtain an induced braid group action on the centre of the underlying
abelian category Op

0 (see [Ric89, Theorem 9.2]).

3.4 The action of the Weyl group on Z(Ob
0)

Let us now construct this action explicitly. We first consider the case p = b and recall some
results from [Soe90]: let P (w0 · 0) ∈ Ob

0 be the projective cover of the simple Verma module
M(w0 · 0) = L(w0 · 0). Consider Soergel’s Strukturfunktor

V = Homg(P (w0 · 0),− ) :Ob
0 −→mod-Endg(P (w0 · 0)).

By Soergel’s Endomorphismensatz we have Endg(P (w0 · 0))∼= C = Cop canonically and under
this identification we obtain a functor V :Ob

0→ C-mod. There is an isomorphism Vθs ∼= ΘsV,
where Θs : C-mod→ C-mod, M 7→ C⊗Cs M and Cs denotes the s-invariants of C. Under this
isomorphism, the adjunction morphism as : id→ θs corresponds to the morphism as given by

as(M) : C⊗C M → C⊗Cs M,

1⊗m 7→ X ⊗m+ 1⊗Xm, m ∈M, X = α̌s (3.4.1)

see [Str05, Lemma 8.2]. Let cokers be the functor of taking the cokernel of as : id→Θs.
By construction, VCs

∼= cokers V when restricted to the additive subcategory of Ob
0 generated

by P (w0 · 0).

Lemma 3.4.1. Let c ∈ C with the corresponding element mc of the centre of C-mod given by
multiplication with c. Then cokers(mc) =ms(c).
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Proof. It is enough to check this on the regular module C. Let C
as→ C⊗Cs C

p→ cokers(C) be the
defining sequence of cokers(C). Note that cokers(C)∼= C as a C-module, and is generated by
the image of 1⊗ 1 under p. Let c ∈ C, homogeneous of degree one. Then we have

Θs(mc)(1⊗ 1) = 1⊗mc(1) = 1⊗ c. (3.4.2)

On the other hand s(c)− c= rX for some r ∈ C and X = α̌s. Since C is a free Cs module on
basis 1, X, we therefore obtain

1⊗ c= 1
2(1⊗ (s(c) + c)− 1⊗ (s(c)− c)) = 1

2((s(c) + c)⊗ 1− 1⊗ rX),

because c+ s(c) is s-invariant. However,
1
2((s(c) + c)⊗ 1− 1⊗ rX) ≡ 1

2((s(c) + c)⊗ 1 + rX ⊗ 1)
= 1

2((s(c) + c+ s(c)− c)⊗ 1)
= s(c)⊗ 1,

where ≡ means equality modulo the image of as. The lemma follows. 2

Let us summarise: on Z(Op
0), the centre of Op

0, there is an action of the braid group BW which
underlies W . This action is induced from the braid group action of the left derived functors of
Irving’s shuffling functors (§ 3.3).

Theorem 3.4.2. Let p⊆ g be any parabolic subalgebra containing b.

(i) The action of the braid group on Z(Ob
0) factors through W .

(ii) The canonical isomorphism Z(Ob
0) = C is W -equivariant.

(iii) The canonical restriction morphism Z(Ob
0)→Z(Op

0) is BW -equivariant. In particular, the
image becomes a W -module.

Proof. The first two statements hold because of Lemma 3.4.1 and the natural identification of the
centre with the endomorphism ring of the antidominant projective module by restriction [MS08,
Theorem 5.2(2)]. The last statement follows directly from the definition of the braid group
actions. 2

Remark 3.4.3. Theorem 3.4.2(i) and (ii) hold analogously for the deformed categories Op
T,0. If

we consider the corresponding semisimple category Op
Q,0, then we have isomorphisms

Z(Op
Q,0) ∼=

⊕
x∈Wp

Endg⊗QM
p
Q(x · 0 + τ) =

⊕
w∈Wp

Q

z 7→ (zx)x∈Wp ,

where zx ∈Q is the image of the natural transformation z applied to MQ(x · 0 + τ) evaluated at
1⊗ 1⊗ 1⊗ 1 ∈MQ(x · 0 + τ). The Q-version of LCs maps MQ(x · 0) to MQ(xs · 0) if x, xs ∈W p

and to MQ(x · 0)[1] otherwise. Hence, s(zx) = zxs if xs ∈W p and s(zx) = zx otherwise. Therefore,
Z(Op

Q,0)∼= C[W ]⊗C[Wp] Ctriv as a W -module.

4. Type A: the centres and the Springer fibres

From now on we stick to the special case where g = gln with standard Borel subalgebra b given
by the upper triangular matrices. We would like to generalise Proposition 3.1.1 to the parabolic
case.
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Let G= GL(n, C) with Borel subgroup B given by the upper triangular matrices and Lie
algebra b. Then B =G/B is the variety of complete flags in Cn. Let p⊆ g be a parabolic
subalgebra containing b, hence p is given by upper diagonal (µ1, µ2, . . . , µr)-block matrices,
where µ= (µ1, µ2, . . . , µr) is a composition of n. For example, p = b corresponds to the
composition (1n) of n. Any maximal parabolic subalgebra corresponds to a two part composition.
Let λ(µ) = λ(p) be the partition obtained from µ by reordering the parts. Let x= xp ∈G be the
nilpotent element of G in Jordan normal form such that the Jordan blocks are of size µ1, µ2,
etc. Let Bp be the Springer fibre corresponding to x, that means the subvariety of B of all flags
fixed by the unipotent element u= Id +x. Note that Bb = B.

4.1 The main result: centres via cohomology
Let H∗(Bp) denote the cohomology of Bp. Springer defined an Sn-action on H∗(Bp) and
proved that the top part H∗(Bp)top is the irreducible representation of Sn corresponding to
the partition λ(p) (see [Spr76] or [HS77]). The embedding of Bp into B induces a morphism
h :H∗(Bb)→H∗(Bp), which is surjective [HS77] and W -equivariant [DP81, Tan82].

Theorem 4.1.1. Let g = gln with parabolic subalgebra p containing b and Weyl group W = Sn.

(i) The canonical map H∗(B) = C = Z(O0)→Z(Op
0) factors through H∗(Bp) and induces an

isomorphism of rings

Φp :H∗(Bp) →̃ Z(Op
0).

(ii) Φp is W -equivariant and Z(Op
0)∼= C[W ]⊗C[Wp] Ctriv as a W -module.

(iii) Up to isomorphism, H∗(Bp) and Z(Op
0) only depend on λ(p).

Proof. Let R denote the regular functions on h∗ ⊕ U , where U := {λ ∈ h∗ | λ(hπ) = 0}= (hπ)∗.
Hence, R= S ⊗ S(hπ). We fix the standard basis εi, 1≤ i≤ n for h∗ with its set of fundamental
weights ωi =

∑i
k=1 εi. The ωi1 , . . . , ωir contained in U form a basis of U . Let

I = {f ∈R | f
(
w(λ), λ

)
= 0, for all λ ∈ U, w ∈W} ⊆R⊆ S ⊗ T

and put K = {f(−, 0) | f ∈ I} ⊂ S = S(h).

Claim 1: K = ker(S→ C→H∗(Bp)) =: ker.
We start by showing that K contains ker. Thanks to [Tan82] we have an explicit set of

generators for ker: Let µ′ = (µ′1, µ
′
2, . . . , µ

′
r′) be the dual partition of λ(µ). If we identify S with

C[x1, . . . xn] in the usual way by taking the dual standard basis vectors ε∗i as generators, then
ker is generated by all lth elementary symmetric functions el(X ), k > 0, l > 0 where

X ⊆ {x1, . . . , xn}, |X |= k, k ≥ l > k − (µ′n−k+1 + µ′n−k+2 + · · ·+ µ′r′).

Therefore, it is enough to show that these el(X ) are contained in K. Thanks to the W -invariance,
we only have to consider the cases where X consists of the first k variables x1, x2, . . . , xk. Taking
the dual basis of the ωij ∈ U , 1≤ j ≤ r, we identify R= C[x1, x2, . . . , xn]⊗ C[y1, y2, . . . , yr], and
for any choice of k and l from the allowed range construct a polynomial f = fk,l ∈R with the
following properties:

(i) f(x1, x2, . . . , xn, 0, 0, . . . , 0) = el(x1, x2, . . . , xk);
(ii) f(b1, b2, · · · , bn, a1, a2, . . . , ar) = 0 for any point (b1, b2, . . . , bn) where µi of the coordinates

are equal to ai for 1≤ i≤ r.
Then f ∈ I and so el(x1, x2, . . . , xk) = f(x1, x2, . . . , xn, 0, 0, . . . , 0) ∈K.
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Let now k and l be fixed from the allowed range. The construction of this polynomial
goes along the lines of [GP92]. For 1≤ i≤ r let mi be the maximum of µi − n+ k and zero,
and define d :=

∑r
i=1 mi. Note that d= (µ′n−k+1 + µ′n−k+2 + · · ·+ µ′r′) as above. To construct

the polynomial f we first define P (t) =
∏k
i=1(t+ xi), a polynomial in t with coefficients from

C[x1, x2, . . . , xk], and consider the polynomial Q(t) =
∏r
i=1(t+ yi)mi of degree d in t with

coefficients from C[y1, y2, . . . , yr]. We perform the long division of P (t) by Q(t) and obtain
P (t) = q(t)Q(t) + r(t), where r(t) =

∑d−1
s=0 rst

s is a polynomial in t with coefficients being
homogeneous polynomials rs in the x and y. We claim that f = rk−l does the job.

If we set all yi = 0, then Q(t) = td, and rs = ek−s(x1, . . . , xk), hence rk−l = el(x1, . . . , xk)
and property (i) follows. Now let (a1, . . . , ar) ∈ Cr = U and b = (b1, b2, . . . , bn) ∈ Cn = h∗ such
that µi of the coordinates are equal to ai for 1≤ i≤ r, hence at least mi = µi − (n− k) of the
first k coordinates are equal to ai. In particular, P (t) evaluated at the first k coordinates of b, is
divisible by Q(t) if yi = ai, i.e. if Q(t) is evaluated at b. Hence, r(t) becomes zero when evaluated
at xi = bi, yi = ai, and so property (ii) holds. This implies ker⊆K.

It is left to show that the inclusion is in fact an equality. Let u ∈ U be a generic point
and define Ku = {f(−, u) = 0 | f ∈ I} ⊆ S. Since u is generic, S/Ku is the coordinate algebra of
|W/Wp| distinct points in h∗, and hence dim(S/Ku) = |W/Wp|, and also dim(S/grKu) = |W/Wp|,
where the associated graded gr is taken with respect to the canonical grading of S. Moreover,
one can easily see that K ⊆ gr(Ku) by mapping f(−, 0) to f(−, u). Altogether, the natural
surjection from S to S/K factors through S/ ker and the natural surjection from S to S/grKu

factors through S/K. Therefore, dim(S/ ker)≥ dim(S/K)≥ dim(S/grKu) = |W/Wp|. By the
main result of [Tan82], we have dim(S/ ker) = |W/Wp|, hence all of the dimensions agree and
Claim 2 follows.

Claim 2: K ⊆ ker(S→Z(O0)→Z(Op
0)).

Let PT be a projective generator of Op
T,0. We consider the following commutative diagram.

Z ⊗ T
ξ] //

α

��

SW ⊗ T h //

β

��

Endg⊗T (PT )

γ

��
Z ⊗Q

ξ] // SW ⊗Q h // Endg⊗Q(PQ)

The two maps labelled h are given by applying the product of the two factors to the module (so
that h ◦ ξ] is the canonical map), whereas the vertical maps are the obvious inclusions (using
Proposition 2.7.1 (ix)). By § 2.5 we have an isomorphism

ε : Endg⊗Q(PT ⊗T Q)∼= Endg⊗Q

(⊕
axM

p
Q(x · 0 + τ)

)
,

where ax is the multiplicity of Mp
T (x · 0) as a subquotient of a Verma flag of PT (see § 2.5). The

map γ is injective (by Proposition 2.7.1(viii)). Hence the kernel of the upper can is the kernel of
can ◦ β.

An element z ⊗ t ∈ Z ⊗ T acts on Mp
Q(x−1 · 0 + τ) by multiplication with (x−1 · 0 +

τ)(ξ](z))τ(t). On the other hand (x−1 · 0 + τ) ◦ ξ](z) = ξ](z)(x−1 · 0 + τ) = (x · x−1 · 0 + x(τ)) ◦
ξ](z) = x(τ) ◦ ξ](z), so z ⊗ t acts by multiplication with x(τ) ◦ ξ](z). On the other hand

jx : S ⊗ T x]⊗id−−−→ S ⊗ T pπ⊗id−−−−→ S(hπ)⊗ T mult−−−→ T −→Q, (4.1.1)
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where x] : S→ S is the comorphism given by the action of x. Hence, z ⊗ t acts by multiplication
with τ ◦ jx(ξ](z)⊗ t).

To pass from Z ⊗ T to S ⊗ T note that the map ξ] induces an isomorphism ψ : Z ⊗
T/ξ]

−1(J)∼= S ⊗ T/J , where J =
⋂
x∈W ker jx ⊆ S ⊗ T (see [Soe90, p. 429]). (Note that we use

here the assumption that our block Op
0 is regular, and so ξ is étale at 0.)

Let now f ∈K and find f̃ ∈ I such that f = f̃(−, 0). Using the explicit formula before (4.1.1)
and the map ψ it follows that f̃ acts on MQ(x−1 · 0 + τ) by multiplication with the function
λ 7→ f̃(x(λ), λ), hence by zero. So, f̃ is in the annihilator of PT . By the definition of K, we
can write f̃ = f ⊗ 1 + g ∈ S ⊗ T , where g ∈ S ⊗m. So, g induces an endomorphism on PT which
specialises to the zero endomorphism of PC. Claim 2 follows.

Therefore, the canonical map H∗(B) = C = Z(O0)→Z(Op
0) factors through H∗(Bp) and

induces the map Φp. The latter is surjective by [Bru06, Theorem 5.11]. The injectivity will be
proved at the end of the section. Let us assume for the moment we have proved this already (so
statement (i) holds). Thanks to Theorem 3.4.2, Φp is W -equivariant, and statement (ii) is true if
p = b by Proposition 3.1.1. Hence, the image of Φp, i.e. Z(Op

0), is isomorphic to C[W ]⊗C[Wp] Ctriv

as W -module by [HS79, Corollary 8.5] or [Tan82, Theorem 1]. Statement (ii) of the theorem
follows. Part (iii) is clear from [Tan82], but also has a direct proof from the categorical side
by [MS08, Theorems 5.4 and 5.2]. 2

In the following two sections we prove the injectivity of Φp. This result follows in fact directly
by dimension arguments, since Brundan [Bru06] showed that the dimension of the centre of Op

0

is equal to the dimension of H∗(Bp). However, our approach gives a distinguished basis of the
top degree part of H∗(Bp) and shows in a nice way how the categorification of the symmetric
group action comes into play.

4.2 A generalised antidominant projective module
The missing part in the proof of Theorem 4.1.1 will be deduced from several non-trivial results
which we recall first. We start with the following fact.

Proposition 4.2.1. Let g = gln and p be any parabolic subalgebra. Then there is always an
indecomposable projective module P ∈ Op

0 such that:

– P is injective; and

– the natural action of C defines a surjection C→→ Endg(P ), in particular Endg(P ) is
commutative.

Proof. By [IS88, Corollary p. 327] there is an integral dominant weight λ such that Op
λ contains a

simple projective module N = L(µ), µ= x · λ for some x ∈W . Hence, N is also injective and
a Verma module. Then θ0

λ(N) is projective and injective, and has a (generalised) Verma flag
satisfying the assumptions of Proposition 2.8.1 (see also [Jan83, 4.13(1)]). Hence, there is some
projective and injective module P = θ0

λN with commutative endomorphism ring. If Γ :Oλ→Op
λ

is the functor which picks out the largest quotient contained in Op
λ, then ΓM(µ) =N . Since Γ

commutes with translation functors, we have Γθ0
λM(µ)∼= θ0

λΓM(µ)∼= θ0
λN = P . On the other

hand, Γ commutes (by definition) with the action of the centre and thanks to the existence of
the canonical projection Endg(θ0

λM(µ))→ End(θ0
λN), it is enough to show that C surjects onto

Endg(θ0
λM(µ)) naturally. However, M(µ)∼= TxM(λ), where Tx is the twisting functor as studied

in [AL03, AS03]. Now, Tx commutes with the action of the centre (see the definition of the
functors in [AS03]), it is therefore enough to show that C surjects onto Endg(θ0

λM(λ)) naturally.
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However, θ0
λM(λ) satisfies the assumptions of Proposition 2.8.1 for p = b. Then the statement

follows from Proposition 2.8.1(ii). 2

Definition 4.2.2. An object M ∈ Op
0 is called projective–injective if it is both projective and

injective in Op
0.

Proposition 4.2.1 ensures the existence of projective–injective modules.

4.3 Grading and Loewy length
Let P ∈ Op

0 be projective, then Endg(P ) has a natural non-negative Z-grading induced from the
Koszul grading [BGS96] of Ap = Endg(Pgen), where Pgen ∈ Op

0 is a minimal projective generator.
This Koszul grading induces a Z-grading on Z(Op

0), the centre of Op
0.

Proposition 4.3.1. Assume that g is any reductive complex Lie algebra and p some parabolic
subalgebra. Let Pi, i ∈ I, be a complete system of representatives for the isomorphism classes of
indecomposable projective–injectives in Op

0.

(i) The centre of Op
0 is the centre of Endg(

⊕
i∈I Pi).

(ii) The Loewy lengths of all Pi agree and equal the maximal possible Loewy length ll. The
maximal degree of Endg(Pi), considered as a graded ring, is equal to ll−1.

(iii) Consider Zp := Z(Op
0) as a graded ring with its top degree part Zp

top. Then dimC Zp
top = |I|

and top = ll−1.

Proof. The first two statements of the proposition were proved in [MS08, Theorem 5.2]. Now
consider D := Endg(

⊕
i∈I Pi) as a graded ring. Let P̃i be a graded lift of Pi (in the sense

of [BGS96] or [Str03a, § 3.1]). Then the radical, socle and the grading filtrations of P̃i agree
up to a shift of the grading [BGS96, Proposition 2.4.1], since Pi has simple head and simple socle
(the latter by [Irv85, Appendix]). If now f ∈D is of maximal degree, then f is contained in the
span of the maps gi where gi maps the head of Pi to its socle and is zero on all other summands by
the second statement. On the other hand, the gi are all contained in the centre of B. Therefore,
we have an isomorphism of vector spaces Dtop

∼= Zp
top and the proposition follows. 2

Lemma 4.3.2. Let g = gln and p be any parabolic subalgebra. Then the top degree of Z(Op
0)

agrees with the top degree of H∗(Bp).

Proof. From [IS88, Proposition and Corollary 3.1] (see also Remark 4.4.3) we have an explicit
formula for the Loewy length of a projective–injective module in Op

0, hence for the top degree
of Z(Op

0) by Proposition 4.3.1. The formula agrees with [HS79, Lemma 1.3] and implies the
assertion. 2

Lemma 4.3.3. Let g = gln and p be any parabolic subalgebra. Then the following numbers
coincide:

– the number of isomorphism classes of indecomposable projective–injective modules in Op
0;

– the dimension of Zp
top, where Zp is the centre of Op

0, considered as a graded algebra;

– the number of irreducible components of Bp, and hence the dimension of H∗(Bp)top;

– the dimension of the irreducible representation Sλ(p) of the symmetric group Sn.
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Proof. The first two agree by Proposition 4.3.1, the last two by Springer’s construction
of irreducible Sn-modules [HS79, Proposition 7.1]. Thanks to the main result of [Irv85],
the indecomposable projective–injective modules in Op

0 are indexed by elements of some
right cell of Sn. The statement follows, since the cell modules are exactly the irreducible
Sn-modules [Nar89]. 2

The importance of the bijections in the previous lemma becomes apparent in the fact that
the category of indecomposable projective–injective modules in Op

0 together with the translation
functors θs, s ∈W a simple reflection, categorifies the irreducible representation Sλ(p)′ of Sn,
where λ(p) denotes the dual partition of λ(p).

More precisely: consider the additive category Cp of projective–injective modules in Op
0. By

Lemma 4.3.3, the complexified (split) Grothendieck group K0(Cp) (that is, the complexification
of the free abelian group generated by the isomorphism classes [M ] of objects M in Cp modulo the
relation [M ] + [N ] = [M ⊕N ]) is isomorphic to the corresponding Specht module as a complex
vector space. Moreover, Cp is stable under translations θs through walls. Since the functors θs
are exact, they induce endomorphisms [θs] of K0(Cp). Let Ts = [θs]− id :K0(Cp)→K0(Cp), then
the statement is as follows.

Proposition 4.3.4 [KMS09]. Let g = gln with b the standard Borel and p a parabolic
subalgebra. Let λ(p)′ be the dual partition of λ(p) and Sλ(p)′ the corresponding Specht module.
Then there is an isomorphism of right Sn-modules

ε : Sλ(p)′ ∼=K0(Cp).

The Sn-module structure on the right-hand side is induced by the Ts.

Let us finish the proof of Theorem 4.1.1 as follows.

Theorem 4.3.5. Let g = gln and let p be any parabolic subalgebra. Then the map Φp from
Theorem 4.1.1 is an inclusion which induces an isomorphism of Sn-modules H∗(Bp)top

∼= Zp
top.

Proof. We know that Φp is a homomorphism of C-modules. Hence, it is enough to show that Φp

is injective when restricted to the socle of H :=H∗(Bp). By [Gor03, Theorem 6.6(vi)] the socle
of H agrees with the part of highest degree Htop. We have Φp(Htop)⊆Zp

top by Lemma 4.3.2 and
obtain Φp(Htop) 6= 0 by Propositions 4.2.1 and 4.3.1. On the other hand Φp is BW -equivariant
and even W -equivariant onto its image (Theorem 3.4.2). Since Htop is an irreducible W -module,
Φp defines an inclusion H∗(Bp)top ↪→Zp

top, and Φp is injective. Moreover, H∗(Bp)top ↪→Zp
top must

be an isomorphism by Lemma 4.3.3. 2

As a consequence (independent of [Bru06, Theorem 5.11]) we obtain the following categorical
construction of the Springer representations.

Corollary 4.3.6. There is an isomorphism Zp
top
∼= Sλ(p) of Sn-modules.

Proof. This follows directly from Theorem 4.3.5 and Springer’s construction of the irreducible
Sn-modules [Spr78], since Φp is W -equivariant. 2

4.4 A few remarks on the singular case
Let still g = gln. Let ν ∈ h∗ be an integral dominant weight. Let Wν = {w ∈W | w · ν = ν}. Then
Z(Ob

ν) = CWν , the Wν invariants of C (see [Soe90]). Let pν be the parabolic subalgebra of g such
that Wpν =Wν and denote by P ν the subgroup of GL(n, C) with Lie algebra pν . Let Pν =G/P ν
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be the corresponding partial flag variety. The canonical projection B→→Pν gives rise to an inclusion
iνb :H∗(Pν) ↪→H∗(B) with image CWν (see [HS79, Lemma 8.1]). For any parabolic p of g let Pνp
be the associated fixed point variety. The image of the corresponding inclusion

iνp :H∗(Pνp ) ↪→H∗(Bp)

are the Wν-invariants H∗(Bp)Wν of H∗(Bp) (see [HS79, Lemma 8.1]).
Theorem 4.1.1 and Lemma 4.3.3 are generalised as follows.

Theorem 4.4.1. Let g = gln with the standard Borel b contained in a fixed parabolic p = pπ.
Let ν ∈ h∗ be a dominant integral weight.

(i) The canonical map H∗(Pν) = CWν = Z(Ob
ν)→Z(Op

ν) factors through H∗(Pνp ) and induces
a ring homomorphism

Φν
p :H∗(Pνp )→Z(Op

ν).

(ii) Φν
p is a surjection and an isomorphism if p = b.

Proof. The canonical projection of Bp onto Pνp induces an inclusion H∗(Pνp )→H∗(Bp). By [HS79,
Lemma 8.1] we know that the image are exactly the Wν-invariants of H∗(Bp). Assume that z is in
the kernel of the canonical map H∗(Pν)→H∗(Pνp ). Assume that z acts non-trivially on Op

ν . Then
there is some module M ∈ Op

ν , such that z acts non-trivially on M . Hence, θν0(z) ∈ Endg(θν0M)
is non-trivial, since θν0 is exact and does not annihilate modules. By [Soe90, Lemma 8], θν0(z) is
just given by multiplication with z ∈ C. Hence, z acts non-trivially on Op

0. This is a contradiction
to Theorem 4.1.1 and the first statement of the theorem follows.

The map Φν
b is an isomorphism by [Soe90, Endomorphismensatz]. On the other hand Φν

p is
surjective by [Bru06, Theorem 5.11]. 2

Lemma 4.4.2. Let g be any reductive complex Lie algebra with Borel b and some parabolic
subalgebra p⊃ b. Let ν ∈ h∗ be a dominant integral weight. Then P ∈ Op

ν is indecomposable
projective–injective if and only if θ0

νP ∈ O
p
0 is.

Proof. Let L ∈ Op
0 be a simple module. Then θν0L= L′ is simple or zero [Jan83, 4.12(3)], and

Homg(θ0
νP, L) = Homg(P, θν0L) = Homg(P, L′) 6= 0 only if P is the projective cover of L′. Using

again [Jan83, 4.12(3)] we deduce that θ0
νP has simple top, and is therefore indecomposable. Since

θ0
ν does not annihilate any module, P is indecomposable if and only if θ0

νP is indecomposable.
Since θν0θ

0
ν is isomorphic to a direct sum of copies of the identity functor (see [Jan83,

4.13(2)] and [BG80, Theorems 3.3 and 3.5]) and translation functors preserve projectivity and
injectivity, P is projective–injective if and only if θ0

νP is. 2

Remark 4.4.3. Proposition 4.3.4 together with Proposition 4.4.2 give the dimension of the top
degree part of Z(Op

ν), namely the number of standard ν-tableaux of shape λ(p)′, the dual
partition of λ(p). Using a graded version of θ0

ν (in the sense of [Str03a, Definition 3.3]) one
can deduce from Proposition 4.4.2 a formula for the top degree of Z(Op

ν): consider λ(p)′ and wp′

0

the longest element in the corresponding symmetric group Sλ(p)′1
× · · · × Sλ(p)′r

. If ν is regular,

then top = 2(l(wp′

0 )) by [IS88, Proposition and Corollary 3.1]. If ν is not necessarily regular, let
wν0 be the longest element in Wν . Then top = 2(l(wp′

0 )− l(wν0)), because a graded version of θ0
ν

adds 2l(wν0) degrees if we apply it to a simple module (see [Str03a, Theorem 8.2(4)] for a special
case). If either p 6= b or ν is not regular, then the number of simple objects in Op

ν is in fact

971

https://doi.org/10.1112/S0010437X09004035 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004035


C. Stroppel

(see [Bru06, Theorem 2]) strictly smaller than the dimension of H∗(Pνp ) (see § 2.4 and [HS79,
Remark 8.6]). In particular, the map Φν

p is not injective in these cases [Bru06, Theorem 2].
A detailed description of these resulting proper quotients of H∗(Pνp ) can be found in [Bru08].

4.5 The maximal parabolic case

The proof of the injectivity of Φp in Theorem 4.1.1 was quite involved. In the case g = gln and
p 6= g is a maximal parabolic subalgebra, there is an alternative proof which we now present.

Lemma 4.5.1. Let B be a finite-dimensional complex algebra. Assume that B is symmetric, i.e.
there is a non-degenerate associative symmetric C-bilinear form b :B ×B→ C. Then there is
an isomorphism of vector spaces

Z(B) ∼= (B/[B, B])∗

z 7→ b(z,− ).

Proof. Let z ∈ Z(B), the centre of B and a, b ∈B. Then b(z, ab− ba) = b(z, ab)− b(z, ba) =
b(z, ab)− b(zb, a) = b(z, ab)− b(a, zb) = b(z, ab)− b(a, bz) = b(z, ab)− b(ab, z) = 0. Hence,
b(z,− ) ∈ (B/[B, B])∗. On the other hand if b(z,− ) ∈ (B/[B, B])∗, then b(z, ab− ba) = 0 for
any a, b ∈B. Hence, b(za, b) = b(z, ab) = b(z, ba) = b(ba, z) = b(b, az) = b(az, b) for all b ∈B
and so az = za, since b is non-degenerate, and therefore z ∈ Z(B). The claim of the lemma
follows. 2

Theorem 4.5.2. Let g = gln and pπ a maximal parabolic, i.e. π =4− {αs}. Then Φp is an
isomorphism.

Proof. The surjectivity is given by [Bru06]. Let Pi, i ∈ I, be a complete system of representatives
for the isomorphism classes of indecomposable projective–injectives in Op

0. Set P =
⊕

i∈I Pi and
let PT be the T -deformation of P given by Proposition 2.7.1(vii). Then AT = Endg⊗T (PT ) is a
free T -module of finite rank (Proposition 2.7.1(viii)). LetDT := [AT , AT ]. Since p = pπ is assumed
to be maximal parabolic, hπ is one-dimensional and S(hπ) is a principal ideal domain. Therefore,
DT is a free T -module as well. We have canonical isomorphisms AT ⊗T T ′ ∼= Endg⊗T (PT )⊗T
T ′ ∼= Endg⊗T ′(PT ⊗T T ′) for T ′ = C or T ′ =Q (Proposition 2.7.1(ix)). Set AT ⊗T T ′ =AT ′ for
T ′ = C or T ′ =Q and note that DT ′ :=DT ⊗T T ′ = [AT , AT ]⊗T T ′ surjects onto [AT ′ , AT ′ ]
canonically. For T =Q we even have an isomorphism, since DT is free as a T -module. We
deduce that

dimC Endg(P ) = dimQ End(PT ⊗T Q) = rankT End(PT ) = rankT AT
dimC DC ≤ dimQ DQ = rankT DT . (4.5.1)

Since Endg⊗Q(PQ) is a product of |W p|matrix rings (see § 2.5), we have dimQ(AQ)− dimQ DQ =
dimQ(AQ/DQ) = |W p|. Hence, (4.5.1) implies |W p| ≤ dimC(AC)− dimC DC = dimC(AC/DC).
Since the algebra AC is symmetric [MS08, Theorem 5.2], we obtain

dimC Z(AC)≥ |W p|.

Since the map Φp is surjective, Z(AC) is a quotient of C[W ]⊗C[Wp] Ctriv as W -module by
Theorem 3.4.2 and [HS79, Corollary 8.5]. Comparing the dimensions we are done. 2
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D D’

Figure 1. The elements of Cup(2).

W(D’)D’ W(D)D’ W(D’)DW(D)D

Figure 2. Gluing two cup diagrams gives a collection of circles.

5. Diagrammatic approach and Khovanov homology

In this section we prove Theorems 2 and 3 from the introduction. We proceed as follows:
first we recall the definition of the algebras Hn. Then we state some combinatorial results
which will be used to give a purely diagrammatic description of Op(gln) for maximal parabolic
subalgebras p 6= g. We explicitly describe how Braden’s presentations can be transformed into
this diagrammatic framework, where almost everything is computable. This will finally improve
the presentation of [Bra02] drastically in several ways: we are able to see the Koszul grading
and obtain a usual Ext-quiver with homogeneous relations, we give a very easy recipe to
compute dimensions of homomorphism spaces between projective modules, and deduce that
the endomorphism rings of projective–injective modules are all isomorphic.

For the rest of the paper we fix n ∈ Z>0 and g = gl2n with standard Borel b and p = pn the
parabolic subalgebra where Wp = Sn × Sn and denote Op

0(gl2n) by On,n0 . This is the category
which plays an important role.

5.1 Khovanov’s algebras Hn

We recall the basic definitions from [Kho00], but refer to that paper for details. From now on let
R := C[X]/(X2) be the ring of dual numbers. This is a commutative Frobenius algebra, hence
defines a two-dimensional TQFT F . In other words, F is a monoidal functor from the category
of oriented cobordisms between 1-manifolds to the category of finite-dimensional complex vector
spaces. The Frobenius algebra structure of R is given by:

– the associative multiplication m :R⊗R→R, r ⊗ s 7→ rs;

– the comultiplication map ∆ :R→R⊗R, 1 7→X ⊗ 1 + 1⊗X, X 7→X ⊗X (note that this
is just a special case of (3.4.1) for g = gl2);

– the unit map ε : C→R, 1→ 1;

– the counit or trace map δ :R→ C, 1 7→ 0, X 7→ 1.

The functor F associates to k disjoint circles the vector space R⊗k, to the cobordisms of
‘pair of pants shape’ the multiplication map m and the comultiplication ∆, respectively. To the
cobordisms connecting one circle with the empty manifold, F associates the trace map δ and
the unit map ε.
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D

D’

W(D) W(D)

D

W(D’)

Figure 3. Composition of maps: R⊗R m−→R
∆−→R⊗R.

D’

W(D’)

D’

D

W(D’)

W(D)

Figure 4. Composition of maps: R⊗R m−→R
∆−→R⊗R.

Let Cup(n) be the set of crossingless matchings of 2n points (see Figure 1). For a, b ∈ Cup(n)
let W (b) be the reflection of b in the horizontal axis and W (b)a the closed 1-manifold obtained
by gluing W (b) and a along their boundaries (see Figure 2). Given a, b, c ∈ Cup(n), there is the
cobordism from W (c)bW (b)a to W (c)a which contracts bW (b) (see Figures 3 and 4 where
the relevant parts are drawn as thin (grey) lines). This cobordism induces a homomorphism
of vector spaces

F(W (c)b)⊗F(W (b)a)→F(W (c)a). (5.1.1)

The algebra Hn introduced in [Kho00] is defined as follows: as a vector space it is

Hn =
⊕

a,b∈Cup(n)

bHna =
⊕

a,b∈Cup(n)

F(W (b)a). (5.1.2)

The elements from Cup(n) should be thought of as being primitive idempotents of Hn, and the
spaces F(W (b)a) =: bHna are the morphisms from the indecomposable projective left Hn-module
indexed by a to that indexed by b. Therefore, one defines the product fg = 0, if f ∈ cHnd , g ∈ bHna ,
where a, b, c, d ∈ Cup(n), b 6= d. In the case b= d, the product is given by (5.1.1).

If we consider R as a graded vector space with the basis vector 1 ∈R in degree −1 and the
basis vector X ∈R in degree 1, then the vector space Hn inherits a natural Z-grading. To make
it compatible with the algebra structure we have to apply an overall shift 〈n〉 which increases the
grading by n. The graded vector space Hn =

⊕
a,b∈Cup(n) bHna〈n〉 with the above multiplication

becomes a positively graded algebra [Kho02]. In the following we consider the algebra Hn with
this grading. In particular, there are the subalgebras aHna ∼=R⊗n〈n〉 of Hn for any a ∈ Cup(n)
(cf. Lemma 5.4.2 below).

5.2 Combinatorics: tableaux and generalised cup diagrams
In this section we recollect a few combinatorial facts that are needed later. For any positive integer
n let S(n) be the set of all sequences σ = (σ1, σ2, . . . , σ2n) where σi ∈ {+,−} for 1≤ i≤ 2n with
exactly n pluses (minuses respectively). Of course, S2n acts transitively on S(n) from the right-
hand side. Let σdom := (+,+, . . . ,+,−,−, . . . ,−) ∈ S(n).
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Let Y (n) be the set of Young diagrams which fit into an n× n-square of n2 boxes, i.e. the
Young diagram corresponding to the partition (nn). Let Y (n, upper) be the set of Young diagrams
which fit into the Young diagram corresponding to the partition (n− 1, n− 2, n− 3, . . .).

To D ∈ Y (n) we associate a sequence σD ∈ S(n) indicating its shape as follows: first embed
D into a n× n-square D′ of n2 boxes, such that their upper left corners coincide. Now there is
a unique path pD from the bottom left corner to the top right corner of D′, along the sides of
the boxes, such that the interior of D is completely to the left of the path and all other boxes
are to the right. The number of sides involved in the path is always 2n. Starting from the lower
left corner, the path is uniquely determined by giving the direction for each side. We use the
rule ‘minus=go up’, ‘plus=go right’. In this way we associate to D first a path pD, and then a
sequence σD ∈ S(n) encoding the path pD.

Example 5.2.1. It is Y (2) = { , , , , , ∅} and Y (2, upper) = { , ∅}. σ = (+,+,−,−),

σ = (+,−,+,−), σ = (+,−,−,+), σ = (−,+,+,−), σ = (−,+,−,+), σ∅ = (−,−,+,+).

Let PMS(n) (and PrInj(n) respectively) be the set of iso-classes of indecomposable
projective(–injective) modules in On,n0 .

Proposition 5.2.2. There are canonical bijections

Y (n) ↔ S(n) ↔ Sn × Sn\S2n ↔ PMS(n)
D 7→ σD, σdomw 7→ w 7→ [P p(w · 0)]

Proof. The first bijection is clear. The second is obvious, since S2n acts transitively on S(n) and
σdom has stabiliser Sn × Sn. The third bijection is by definition (see § 2.4). 2

To make the assignment D 7→ σD more precise we now follow the setup of Braden, see [Bra02]
for details. Put H := Z + 1

2 and for k, l ∈ R set H[k, l] := {α ∈H | k ≤ α≤ l}. We generalise
the construction above: let λ be a partition, by which from now on we mean an infinite
decreasing sequence λ= λ1 ≥ λ2 ≥ λ3 ≥ · · · of non-negative integers such that λi = 0 for large i.
We associate the corresponding Young diagram D(λ) with λi boxes in the i-row, and also an
infinite {+,−}-sequence ϕλ indexed by H (that is, a function ϕλ : H→{−,+}) as follows:

ϕλ(α) =

{
− if α= λi − i+ 1

2 for some i ∈ Z>0,

+ otherwise.

The uncommon indexing set is chosen to make it compatible with [Bra02]. In particular, D(λ)
fits into a square of n× n boxes if and only if:

– ϕλ(j) =− if j <−n+ 1
2 ;

– ϕλ(j) = + if j > n− 1
2 ;

– the set {ϕλ(j) | n− 1
2 ≥ j ≥−n+ 1

2} contains exactly n pluses and n minuses.

Let S̃(n) be the set of such {+,−}-sequences. We have isomorphisms of finite sets Y (n)∼= S̃(n),
D(λ) 7→ ϕλ and S̃(n)∼= S(n) ϕ 7→ (ϕ(−n+ 1

2), ϕ(−n+ 3
2), . . . , ϕ(n− 1

2)), the restriction of ϕ to
H[−n, n].

Definition 5.2.3. Let λ be a partition, i.e. λ= λ1 ≥ λ2 ≥ λ3 ≥ · · · of non-negative integers
such that λi = 0 for large i. Following [Bra02] we call (α, β) ∈ ϕ−1

λ ({−})× ϕ−1
λ ({+}) a λ-pair

if α < β,
∑

α≤γ≤β ϕλ(α)1 = 0 and β is minimal with this property. If (α, β) and (α′, β′) are
λ-pairs, then (α′, β′)> (α, β) if and only if α′ < α and β′ > β. If (α′, β′) is minimal with this
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property, then (α′, β′) is called a parent of (α, β). In the following (α′, β′) will always denote the
parent of (α, β).

For an example see the first diagram in Figure 7. Each λ-pair has a unique parent [Bra02,
§ 1.2], so the notation (α′, β′) makes sense. The set H[−n, n] labels in a natural way the endpoints
of the arcs in any cup diagram from Cup(n) from the left to the right: if n= 2 for instance,
then Cup(2) = {D, D′} (see Figure 1), the vertices labelled by −3

2 , −1
2 , 1

2 , 3
2 from left to right.

Then (−3
2 ,

3
2), (−1

2 ,
1
2) are λ-pairs for D, whereas (−3

2 ,−
1
2), (1

2 ,
3
2) are λ-pairs for D′.

If D ∈ Y (m, upper), then let cD be the 2m-cup diagram cD ∈ Cup(m) where α, β ∈H[−m, m]
are connected if and only if (α, β) form a λ-pair in ϕλ. (This procedure is well defined since the
pairs are nested [Bra02, Lemma 1.2.1].

The bijections from the Proposition 5.2.2 provide three different labelling sets for the
isomorphism classes of indecomposable projective modules in PMS(n). The subset PrInj(n)
given by projective–injective modules plays an important role, so we would like to have the
corresponding labelling sets singled out. The indecomposable projective module P ([wp] · 0)
corresponding to the longest element [wp] is always projective–injective in Op

0, and all other
projective–injective modules are exactly those which occur as direct summands when translation
functors are applied to P ([wp · 0]), and their number is equal to the dimension of the Specht
module corresponding to λ(p)′ (see [KMS09, Proposition 4.3.4]). Now Proposition 5.2.2 restricts
to the following result.

Proposition 5.2.4. There are canonical bijections

Cup(n) ←− Y (n, upper) ←→ S(n)′ ←→ PrInj(n)
cD ←− [ D 7−→ σD, σdomw 7−→ [P p(w · 0)]

where S(n)′ denotes the subset of sequences σ ∈ S(n) such that for any plus there are more
minuses than pluses appearing prior to the given plus.

Proof. A sequence σ ∈ S(n) can give rise to a cup diagram in Cup(n) if and only if for
any plus there are more minuses than pluses appearing prior to the given plus. Hence, the
associated path stays above the diagonal, and gives rise to a Young diagram D ∈ Y (n, upper)
such that σD = σ. Since the sets Cup(n), Y (n, upper) and S(n)′ have the same cardinality
(the nth Catalan number), the first two bijections follow. The element [wp] corresponds to the
sequence (−,−, . . . ,−,+,+, . . . ,+), hence to a 2n-cup diagram. The last bijection follows from
Proposition 4.3.4, since the S2n-Specht module S(n,n) factors through the specialised Temperley–
Lieb algebra TL2n (see [Str05, Theorem 4.1]) and the resulting representation is the regular
representation. 2

Example 5.2.5. Let n= 1, hence g = gl2 with Weyl group S2 = 〈s〉 and p = b. The only element
in Y (1, upper) is the empty diagram and corresponds to the cup diagram with one cup and
the sequence (−,+), which then corresponds to the indecomposable projective–injective module
P p(s · 0) = P b(s · 0) ∈ O1,1

0 .

Example 5.2.6. Let n= 2, hence g = gl4 with Weyl group S4 = 〈s1 = (1, 2), s2 = (2, 3), s3 =
(3, 4)〉 and p such that Wp = 〈s1, s3〉 ∼= S2 × S2. The empty Young diagram corresponds to
the element D from Figure 1 and the sequence (−,−,+,+), which correspond then to
P p(s2s1s3s2 · 0), whereas the one-box diagram corresponds to D′ and the sequence (−,+,−,+)
which correspond to P := P p(s2s1s3 · 0). Note that P ∼= θ0

λP
p(s2 · ν), where ν is a dominant
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integral weight with stabiliser 〈s1, s3〉 (hence, this illustrates Proposition 4.2.1). It is easy to
check that Endg(P )∼= C[X]/(X2)⊗ C[X]/(X2).

5.3 Khovanov’s algebra and PrInj
The motivation for the remaining sections is to establish a direct connection between the tangle
invariants defined in [Kho02] on the one hand and those defined in [Str05] on the other hand.
In this paper we establish the key step from which it can then be deduced that Khovanov’s
invariants are nothing else than certain restrictions of the functorial invariants from [Str05] (see
§ 5.10). The key step is to prove the following result (conjectured in [Str06], see also the weaker
version in [Bra02]).

Theorem 5.3.1. Let n ∈ Z>0 and g = gl2n. Let p = pn and P p(x · 0), x ∈ I ⊆W p be a complete
set of representatives for PrInj(n). Set

Dn,n := Endg

(⊕
x∈I

P p(x · 0)
)
.

Then there is an isomorphism of algebras

Dn,n
∼=Hn (5.3.1)

such that Homg(P p(x · 0), P p(y · 0)) is identified with bHna , where a= σdomx, b= σdomy. The
isomorphism is even an isomorphism of Z-graded algebras.

Corollary 5.3.2. In the situation of the theorem we have

Endg(P )∼= (C[X]/(X2))⊗n

for any indecomposable projective–injective module in Op
0.

To prove the theorem we embed the algebra Hn into a larger algebra Kn where the primitive
idempotents are in bijection to the elements of Y (n) and not just to the elements of Y (n, upper).
The actual proof will be given in § 5.7.

5.4 The algebra Kn, an enlargement of Hn

Let a ∈ S(n). Take the corresponding Young diagram D ∈ Y (n) (i.e. a= σD) and the
corresponding partition λ. We view D as a Young diagram D̃ ∈ Y (2n) and associate the
{+,−}-sequence σ̃λ ∈ S(2n) of length 4n by restricting the {+,−}-sequence ϕλ to H[−2n, 2n].
Alternatively, we could take the sequence a and put n minuses in front and n pluses afterwards
to obtain a {+,−}-sequence of length 4n which is exactly σ̃λ.

Let ã= σD̃ ∈ Cup(2n) be the corresponding 4n-cup diagram where the arcs correspond to
λ-pairs. Hence, given a, b ∈ S(n) we have the cup diagrams ã, b̃ where the endpoints of the cups
are labelled by α ∈H[−2n, 2n] and the arcs correspond to λ-pairs. We call an endpoint inner if it
is contained in H[−n, n], outer left if it is contained in H[−2n,−n], outer right if it is contained
in H[n, 2n].

Consider W (b̃)ã. This is a collection of circles which we view as coloured.

– A circle is black if it passes through inner points only.
– A circle is green if it is not black and passes through at most one outer left point and at

most one outer right point.
– A circle is red if it is neither black nor green.
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Figure 5. The vertical lines separate inner from outer points.

Example 5.4.1. For n= 2 and a= (+,+,−,−), b= (−,+,+,−), c= (+,−,+,−), d=
(−,−,+,+) we display in Figure 5 the cup diagrams ã, b̃, c̃ as well as the diagrams W (b̃)ã,
W (c̃)ã and W (d̃)d̃. (The dotted circles are green; the left most (dashed) circle is red. There are
two black circles.)

Let B(b, a) (G(b, a), R(b, a) respectively) be the number of black (green and red, respectively)
circles in W (b̃)ã. To W (b̃)ã we associate the complex vector space

G(W (b̃)ã) := bKna :=

{
R⊗B(b,a) ⊗ C⊗G(b,a) if R(b, a) = 0,
{0} otherwise.

As a complex vector space, the algebra Kn is

Kn =
⊕

a,b∈S(n)

bKna =
⊕

a,b∈S(n)

G(W (b̃)ã). (5.4.1)

The unit ε : C→R, the map ε′ :R→ C 1 7→ 1 X 7→ 0, the inclusion {0}→R and the zero
map R→{0} give rise to canonical maps can : F(W (c̃)ã)→G(W (c̃)ã) and can : G(W (c̃)ã)→
F(W (c̃)ã) which ‘introduce the colouring’ and ‘forget the colouring’. We turn Kn into an algebra
by putting fg = 0 if f ∈ cKnd , g ∈ bKna , where a, b, c, d ∈ S(n), b 6= d; and in the case b= d, the
product is given by the composition

G(W (c̃)b̃)⊗ G(W (b̃)ã) G(W (c̃)ã),
↓ ↑

F(W (c̃)b̃)⊗F(W (b̃)ã) → F(W (c̃)ã)
(5.4.2)

where the vertical maps are canonical and the horizontal map is the multiplication in H2n

from (5.1.1).

Lemma 5.4.2. Let a ∈ S(n). Then aKna ∼=R⊗B(a,a) ⊗ C⊗G(a,a) as algebras and the canonical map

ãH2n
ã → aKna is surjective.

Proof. By the definition of ã and the colouring rules, W (ã)ã is a union of black and green circles
only. Hence, aKa ∼= G(W (ã)ã) =RB(a,a) ⊗ C⊗G(a,a) 6= {0}. If we number the circles of W (ã)ã,
first the black and then the green ones, then

G(W (ã)ã)⊗ G(W (ã)ã) −→ G(W (ã)ã),
(R⊗B(a,a) ⊗ C⊗G(a,a))⊗ (R⊗B(a,a) ⊗ C⊗G(a,a)) −→ R⊗B(a,a) ⊗ C⊗G(a,a)
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by multiplying the ith factor in the first tensor product G(W (ã)ã) with the ith factor in the
second G(W (ã)ã). The first statement of the lemma follows. The second follows directly from
the definitions. 2

Example 5.4.3. Let n= 1 with the two sequences a= (−,+) and b= (+,−). Then ã and b̃
are the diagrams as depicted in Figure 1. We obtain aK1

a =R⊗ C as algebra, bK1
a = C = aK1

b

as vector spaces and bK1
b = C⊗ C as algebra. Using formula (5.4.2) one easily verifies that the

multiplication is given by the following formulas

aK1
a ⊗ aK1

b =R⊗ C⊗ C −→ C = aK1
b

1⊗ 1⊗ 1 7−→ 1
X ⊗ 1⊗ 1 7−→ 0

bK1
a ⊗ aK1

b = C⊗ C −→ C⊗ C = bK1
b

1⊗ 1 7−→ 0

aK1
b ⊗ bK1

a = C⊗ C −→ R⊗ C = aK1
a

1⊗ 1 7−→ X ⊗ 1

aK1
b ⊗ bK1

b = C⊗ C⊗ C −→ C = aK1
b

1⊗ 1⊗ 1 7−→ 1

bK1
a ⊗ aK1

a = C⊗R⊗ C −→ C = bK1
a

1⊗ 1⊗ 1 7−→ 1,
1⊗X ⊗ 1 7−→ 0

bK1
b ⊗ bK1

a = C⊗ C⊗ C −→ C = bK1
a

1⊗ 1⊗ 1 7−→ 1.

Note that K1 is isomorphic to the endomorphism ring A1,1 of a minimal projective generator in
Ob

0(gl2) (see [Str03b, § 5.1.1] and also Theorem 5.8.1).

The Z-grading on H2n (see the paragraph before § 5.2) induces a unique grading on Kn with
respect to which both the maps can are graded maps. It is then clear that Kn is itself a graded
algebra. We leave it as an exercise to the reader to show that K1 from Example 5.4.3 is in fact
a Koszul algebra.

If a ∈ S(n), then we define for 1≤ i≤ 2n the element can(Xi(a)) ∈ aKna as the image
of Xi(a) := 1⊗(i−1) ⊗X ⊗ 1⊗(2n−i) ∈ ãH2n

ã under the canonical map. The following lemma
describes bKna as a left bKnb - and right aKna -module.

Lemma 5.4.4. Let a, b ∈ S(n). Let f ∈ bKna and can(f) its canonical image in
b̃
H2n
ã . Then

can(Xi(b))f = can
(
Xi(b) can(f)

)
∈ bKna

f can(Xi(a)) = can
(

can(f)Xi(a)
)
∈ bKna

for 1≤ i≤ 2n.

Proof. This follows directly from the definitions (5.1.1) and (5.4.2). 2

5.5 Braden’s description of On,n0

If P is a minimal projective generator of On,n0 and An,n = Endg(P ), then On,n0 is equivalent to the
category of finitely generated right An,n-modules. (In fact we could also work with left modules,
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Figure 6. Diamonds.

since O has a contravariant duality which identifies An,n with its opposite algebra.) In [Bra02],
Braden gave an explicit description of An,n in terms of generators and relations. We briefly recall
this description.

Definition 5.5.1. Let λ and ν be partitions. We write λ→ ν or λ
(α,β)−→ ν if there is a λ-pair

(α, β) such that ϕλ(γ) = ϕν(γ) for any γ ∈H, γ 6= α, β and ϕν(α) = + and ϕν(β) =− (see
Figure 7). Note that the λ-pair is uniquely determined by λ and ν. We write λ↔ ν if either
λ→ ν or ν→ λ. Similarly, if φλ, φν ∈ S̃(n) with corresponding partitions λ and ν, then we write
φλ→ φν if λ→ ν and φλ↔ φν if λ↔ ν. A diamond is a tuple (λ, λ′, λ′′, λ′′′) of four distinct
partitions satisfying λ↔ λ′↔ λ′′↔ λ′′′↔ λ.

Typical diamonds are depicted in Figure 6 where we display the relevant parts of the {+,−}-
sequences with their cup-diagrams.

Proposition 5.5.2 [Bra02, § 1.3]. The algebra An,n is the unitary associative C-algebra with
generators {

eλ, tα,λ | α ∈H, λ ∈ S̃(n)
}
,{

p(λ, ν), µ(λ, ν) | λ, ν ∈ S̃(n), λ↔ ν
}
,

and relations:

(i)
∑

λ∈S̃(n)
eλ = 1;

(ii) eλeν = 0 if λ 6= ν and eλeλ = eλ for any λ ∈ S̃(n);
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(iii) µ(λ, ν) = 1 + p(λ, ν)p(ν, λ) for any λ↔ ν;

(iv) tα,λp(λ, ν) = p(λ, ν)tα,ν for any α ∈H, λ ∈ S̃(n);
(v) tα,λtβ,ν = 0 if λ 6= ν;

(vi) the t commute with each other;

(vii) tα,λtβ,λ = eλ if (α, β) is a λ-pair;

(viii) tα,λ = eλ for any λ ∈ S̃(n) if α <−n or α > n;

(ix) if λ
(α,β)−→ ν and the λ-pair (α′, β′) is the parent of (α, β), then

µ(ν, λ)η(β) = tα,νtβ′,ν

µ(λ, ν)η(β) = tα,λtβ′,λ

where η(β) = (−1)β+ 1
2 ;

(x) if (λ, λ′, λ′′, λ′′′) is a diamond with all elements contained in S̃(n), then

p(λ′′, λ′)p(λ′, λ) = p(λ′′, λ′′′)p(λ′′′, λ).

If all of the elements in the diamond except λ′′′ are in S̃(n), then

p(λ, λ′)p(λ′, λ′′) = 0 = p(λ′′, λ′)p(λ′, λ). (5.5.1)

Remark 5.5.3. The labelling of the idempotents in the algebra An,n is such that eλ ∈An,n =
Endg(P ) is the idempotent projecting P onto its summand P p(w.0) where λ corresponds to
w according to Proposition 5.2.4. For instance, the empty partition corresponds to the zero-
dimensional Schubert cell, whereas the largest possible partition corresponds to the largest
Schubert cell. Indeed, the idempotent eλ is naturally associated with the Schubert cell Xλ

in [Bra02, § 1.1], which in turn comes along with an intersection homology complex Iw
corresponding to P p(w · 0) (see [HTT08, Theorem 12.2.5 and Example 12.2.6]). The dictionary
between the partition λ and the Weyl group element w is given by the formulas [Ful98,
Propositions 8 and 9] together with the duality [Ful98, p. 149].

5.6 The map from An,n to Kn

The following lemma allows us to pass between λ-pairs, arcs and circles and follows directly from
the definitions.

Lemma 5.6.1. Let a ∈ S(n) and let λ be the corresponding partition. Then:

(i) there is a canonical bijection between the λ-pairs (α, β) where −2n≤ α≤ 2n and the cups
in ã;

(ii) this bijection induces a canonical bijection between the λ-pairs (α, β) where −2n≤ α≤ 2n
and the circles in W (ã)ã;

(iii) to any λ-pair (α, β) where −2n≤ α≤ 2n and b ∈ S(n), there is a unique circle in W (b̃)ã
(and in W (ã)b̃, respectively) which contains the arc in ã corresponding to (α, β).

Let a, b ∈ S(n) and λ, ν ∈ S̃(n) their extensions. We denote by eλ, eν the corresponding
idempotents in Kn. If Lemma 5.6.1 associates with (α, β) the kth circle in W (ã)b̃ (or W (b̃)ã),
then denote

Xα(a, b) := can(1⊗(k−1) ⊗X ⊗ 1⊗2n−k) ∈ aKnb ,
Xα(b, a) := can(1⊗(k−1) ⊗X ⊗ 1⊗2n−k) ∈ bKna .
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Figure 7. The relevant parts involved in λ
(α,β)−−−→ ν.

If the pair (α, β) is not associated with a circle of W (ã)b̃ (or W (b̃)ã, respectively), then set
Xα(a, b) = 0 ∈ aKnb (and Xα(b, a) = 0 ∈ bKna , respectively).

Proposition 5.6.2. In the notation of Definition 5.2.3, there is a homomorphism of algebras

E : An,n −→ Kn
eλ 7−→ eλ ∈ aKna
tα,λ 7−→ eλ + η(β)Xα ∈ aKna
tβ,λ 7−→ eλ − η(β)Xα ∈ aKna

p(ν, λ) 7−→ 1⊗ 1⊗ . . .⊗ 1 + 1
2Xα ∈ bKna

p(λ, ν) 7−→ 1⊗ 1⊗ . . .⊗ 1 + 1
2Xα′ ∈ aKnb

µ(λ, ν) 7−→ eλ +Xα +Xα′ +Xα ? Xα′ ∈ aKna

where λ, ν ∈ S̃(n) with restrictions a, b ∈ S(n) and λ-pairs (α, β) such that λ
(α,β)−→ ν in the last

three cases; and x ? y denotes the component-wise product in aKnb for any x, y ∈ aKnb .

For the proof we need the following lemma which is illustrated in Figure 7.

Lemma 5.6.3. Let λ, ν be partitions such that λ
(α,β)−→ ν. Let j′ := (α′, β′) be the parent of

j := (α, β). By definition of ↔ the λ-pairs j and j′ are transformed into the ν-pairs (α′, α),
(β, β′). Moreover, η(β) =−η(β′).

Proof. The definition of a parent (Definition 5.2.3) implies α′ < α and β < β′. The definition
of ↔ gives ϕν(α′) =−, ϕν(α) = +, ϕν(β) =−, ϕν(β′) = +. Since (α′, β′) is the parent of
(α, β), every element x ∈H[α′ + 1, α− 1] must be λ-paired with an element y ∈H[α′ +
1, α− 1]. Therefore,

∑
α′≤γ≤α ϕν(γ)1 =

∑
α′<γ<α ϕν(γ)1 =

∑
α′<γ<α ϕλ(γ)1 = 0. Similarly,∑

β≤γ≤β′ ϕν(γ)1 = 0. Since going from λ to ν only affects the pairs j and j′ we are done. As
all x ∈H[β, β′] are ν-paired inside this interval, the cardinality of H[β, β′] is even. In particular,
η(β) =−η(β′). 2

Proof of Proposition 5.6.2. We have to prove that the map E is well defined, hence to verify the
compatibility with the relations from Proposition 5.5.2. Concerning the relations (i), (ii) and (v),
there is nothing to do.

Let now λ
(α,β)−→ ν. Let j′ := (α′β′) be the parent of j := (α, β). Consider the relation (iii).

Assume first that the circle corresponding to j in W (ã)b̃ as well as the circle corresponding to
j′ in W (b̃)ã are both black and consider the corresponding subspaces R⊆ aKnb and R⊆ bKna .
Note that for the description of the maps E(p(λ, ν)) and E(p(ν, λ)) only the circles associated
with j and j′ are relevant. If we restrict ourselves to the relevant circles, E(p(λ, ν)) and E(p(ν, λ))
become the elements 1 + 1

2X ∈R and their composition is displayed in Figures 3 and 4, hence
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explicitly given as

∆ ◦m((1 + 1
2X)⊗ (1 + 1

2X)) = ∆((1 + 1
2X) · (1 + 1

2X))
= ∆(1 +X) =X ⊗ 1 + 1⊗X +X ⊗X.

Hence, relation (iii) is satisfied if all of the relevant circles are black. If there are green circles
then the statement follows by applying the canonical maps. Amongst the relevant circles there
are no red ones. To see this we consider again the diagrams in Figures 3 and 4. If there is a red
circle then at least one of the cup diagrams contains at least two left outer or two right outer
points. This, however, is not possible because a, b ∈ S(n).

Therefore, E is compatible with relation (iii). The compatibility with relation (iv) is
Lemma 5.4.4. Relation (vi) is clear. If (α, β) is a λ-pair, then

E(tα,λtβ,λ) = (eλ + η(β)Xα

)(
eλ − η(β)Xαg)

= eλ − η(β)Xα + η(β)Xα = eλ = E(eλ).

Hence, E is compatible with relation (vii). Relation (viii) holds by definition. Since µ(λ, ν) is
unipotent [Bra02, Proposition 1.8.2] we could formally take the logarithm ln of it and replace
the relations (ix) by

η(β) ln(µ(ν, λ)) = ln(tα,ν) + ln(tβ′,ν) (5.6.1)
η(β) ln(µ(λ, ν)) = ln(tα,λ) + ln(tβ′,λ). (5.6.2)

Note that for Y = η(β)Xα we have ln(eν + Y ) = Y . Therefore,

E(ln(tα,ν) + ln(tβ′,ν)) = η(β)Xα − η(β′)Xα′

Lemma 5.6.3= η(β)Xα + η(β)Xα′ .

Now E(ln(µ(ν, λ))) = ln(eλ +Xα +Xα′ +Xα ? Xα′) =Xα +Xα′ , hence equation (5.6.1), and
similarly (5.6.2), hold, and E is compatible with the relations (ix). It is left to verify the diamond
relations (x). If (λ, λ′, λ′′, λ′′′) is a diamond, then the ϕλ, ϕλ′ , ϕλ′′ , ϕλ′′′ agree outside a set
N ⊆H of cardinality four. On N , each of them takes twice the value, and twice the value +.
Therefore, given N , there are only six choices for λ. These, together with the possible diamonds,
are depicted in Figure 6. Let us first assume that

All except the vertex λ′′′ of the diagram are contained in S̃(n). (5.6.3)

In particular, there are either two left outer or two right outer points in λ′′′ which are paired,
and λ′′′ is the only vertex in the diamond with this property. Let us consider the first diagram
in Figure 6. Let A, B, C, D be the top, left, right, bottom vertex of the diamond, respectively.

If λ′′′ corresponds to A, then either α1 and β1 are both left or both right outside, and then
α1, α2 are left outside, or β1, β2 are right outside in B. This contradicts (5.6.3).

If λ′′′ corresponds to B and say λ to A, then λ
(α1,β1)−−−−→ λ′′′. Hence, either α1 is outer and β1

is inner or vice versa. In the first case α3 and α2 are both left outer in D, in the second case β1

and β2 are both right outer in D. This contradicts (5.6.3).

If λ′′′ corresponds to D and say λ to B, then λ
(α2,α1)−−−−→ λ′′′. Hence, either α2 is outer and α1

is inner or vice versa. In the first case α3 and α2 are both left outer in C, in the second case β2

and β3 are both right outer in C. This contradicts (5.6.3).

If λ′′′ corresponds to C and say λ to A, then λ
(α2,β2)−−−−→ λ′′′. Hence, either α2 is outer and β2 is

inner or vice versa. In the first case α3 and α2 are both left outer in D. This contradicts (5.6.3).
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In the second case W (A)D and W (D)A are both a single circle which is red (since it connects
β2 and β3). Hence,

E(p(λ, λ′))E(p(λ′, λ′′)) = 0 = E(p(λ′′, λ′))E(p(λ′, λ)).

The arguments for the second diamond depicted in Figure 6 are analogous. Hence, E is compatible
with the relations (5.5.1).

Let us now assume that (λ, λ′, λ′′, λ′′′) is a diamond with all elements contained in S̃(n).
Let us consider again the diamonds in Figure 6. For simplicity we first assume that all
endpoints of the arcs are inner. Restricting to the relevant circles only we could consider any
E(p(ν, ν ′)), ν, ν ′ ∈ {λ, λ′λ′′λ′′′}, as an element of R⊗R. An easy direct calculation shows that
the composition of two of them is given by the multiplication

(R⊗R)⊗ (R⊗R)→ R (5.6.4)
r1 ⊗ r2 ⊗ r3 ⊗ r4 7→ r1r2r3r4 (5.6.5)

and the statement follows immediately. If one of the relevant circles is red, then not all elements
of the diamond are contained in S̃(n). If there are green circles appearing, then the statement
follows by applying the canonical map after and before (5.6.4). (This is enough, because
ε′ ◦ ε : C→R→ C is the identity map.) The map E is therefore compatible with the relations (x).

So, the map E is well defined and gives rise to a homomorphism of algebras. 2

Proposition 5.6.4. The algebra homomorphism E is surjective.

Proof. The algebra Kn is by construction a graded quotient of the algebra H2n. Now, the algebra
H2n is generated (over its semisimple degree-zero part) in degrees one and two. To see this, first
recall that for any a ∈ Cup(2n), the subalgebra aH2na is generated in degrees zero and two,
whereas the space aH2nb, equipped with its natural aH2na-module structure, is generated by its
lowest degree element 1 ∈ aH2nb. By [Kho04, Lemma 1], the elements 1 ∈ aH2nb are contained
in the subalgebra of H2n generated by degree-one elements and so the claim follows. Now the
proposition follows from Lemma 5.4.4 and the definition of the map E , since the image of E
contains the images of the generators of H2n in the quotient algebra Kn. 2

5.7 The grading of An,n and the proof of Theorem 5.3.1

Let λ, ν ∈ S̃(n) and λ
(α,β)−→ ν and consider p := p(ν, λ) and q := p(λ, ν). Set x= qp and y = pq.

One can find finite sums p̃ := p̃(ν, λ) :=
∑

k≥0 ckpx
k and q̃ := p̃(λ, ν) :=

∑
k≥0 ckx

kq, ck ∈ C such
that p̃q̃ = ln(µ(ν, λ)) and q̃p̃= ln(µ(λ, ν)). Namely define inductively c0 = 1, and for k ∈ Z>0

ck =
1
2

(
(−1)k

1
k + 1

−
∑

0<l,m<k,l+m=k

clcm

)
.

Then the claimed equalities hold (as formal power series in x and y). Since x and y are
nilpotent [Bra02, Proposition 1.8.2] all of the infinite sums are in fact finite. Note also that
1 + x= exp(ln(1 + x)) is contained in the subalgebra generated by 1 and (ln(1 + x)), similarly
for y + 1. We obtain the following proposition.
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Proposition 5.7.1. The algebra An,n is generated by{
eλ, ln(tα,λ) | α ∈H, λ ∈ S̃(n)

}
,{

p̃(λ, ν), ln(µ(λ, ν)) | λ, ν ∈ S̃(n), λ↔ ν
}
.

Proof. It is enough to show that the original generators are in the subalgebra, call it B, generated
by the generators from the proposition. This is clear for the eλ. We also know it for the µ. For
the t it follows then from [Bra02, Proposition 1.8.1]. Finally p̃= p(1 +

∑
k>0 ckx

k) where the
second factor is invertible in B, since x ∈B is nilpotent. Hence, p ∈B and similarly q ∈B and
the statement follows. 2

Corollary 5.7.2. Putting the generators eλ, ln(tα,λ), p̃(λ, ν), ln(µ(λ, ν)) of An,n from
Proposition 5.7.1 in degree zero, two, one, two turns An,n into a positively graded algebra and E
becomes a homomorphism of Z-graded algebras. This grading is the Koszul grading.

Proof. Using the new generators, the relations from Proposition 5.5.2 become homogeneous. This
is completely obvious except for relation (x). Let us assume this to be true for the moment, then
the relations also show that An,n becomes a quadratic positively graded algebra, i.e. generated
in degree zero and one with relations in degree two. Now we are in the situation of [BGS96,
Proposition 2.4.1], i.e. for any graded An,n-module M with simple head, the radical filtration
of M agrees (at least up to a shift in the grading) with the grading filtration. This holds in
particular for indecomposable projective modules. The same holds if we equip An,n with its
Koszul grading [BGS96]. By the unicity of gradings [BGS96, § 2.5], the statement follows if we
verified relation (x).

Since we only have a case-by-case argument, we sketch the argument for a specific example
only and leave it to the reader to figure out all other possibilities. Let (λ, λ′, λ′′, λ′′′) be the
diamond on the left in Figure 6. We use the notation from the small diamond in the middle of
Figure 6. We claim that the relation p2p1 = q4p3 could be replaced by the relation p̃2p̃1 = q̃4p̃3.
Let xi = qipi. Using the relations of Proposition 5.5.2 we obtain

p2p1(1 + x1)
(iii),(ix)

= p2p1(tα1,λtβ2,λ)η(β1) (iv)
= (tα1,λ′′tβ2,λ′′)

η(β1)p2p1

(vii),(vi)
= (tβ1,λ′′tβ3,λ′′)

−η(β1)p2p1
(iv)
= p2p1T

p2(1 + x2)p1
(iii),(ix)

= p2(tα2,λ′tβ2,λ′)
η(α1)p1

(iv)
= p2p1T

′,

q4p3(1 + x3)
(iii),(ix)

= q4p3T
′

(1 + x4)q4p3
(iii),(ix)

= (tβ1,λ′′′tβ3,λ′′′)
η(β2)q4p3

(iv)
= q4p3T

where T := (tβ1,λtβ3,λ)−η(β1) and T ′ = (tα2,λtβ2,λ)η(β2).

Hence, p2p1 = q4p3 implies p2(1 + x2)kp1 = q4p3(1 + x3)k for any k ∈ Z≥0 and then
p2(x2)kp1 = q4p3(x3)k by induction. The displayed equations above also imply p2(1 + x2)kp1(1 +
x1)l = (1 + x4)lq4p3(1 + x3)k for any k, l ∈ Z≥0 and then, by induction, p2(x2)kp1(x1)l =
(x4)lq4p3(x3)k. It follows p̃2p̃1 = q̃4p̃3.

Assume now that p̃2p̃1 = q̃4p̃3. Then p̃2(1 + x2)kp̃1 = q̃4p̃3(1 + x3)k for any k ∈ Z≥0 with
the arguments from above. By induction, we obtain p̃2(x2)kp̃1 = q̃4p̃3(x3)k. Using again the
arguments from above we obtain p̃2(x2)kp̃1(1 + x1)l = (1 + x4)lq̃4p̃3(x3)k for any k, l ∈ Z≥0. By
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induction we therefore obtain

p̃2(x2)kp̃1(x1)l = (x4)lq̃4p̃3(x3)k. (5.7.1)

Now let l be maximal such that p1x
l
1 6= 0 or xl4q4 6= 0. Then choose (if possible) k maximal such

that p2(x2)kp1(x1)l 6= 0 or (x4)lq4p3(x3)k 6= 0. From (5.7.1) we obtain

c0c0p2(x2)kp1(x1)l = c0c0(x4)lq4p3(x3)k. (5.7.2)

Then we choose k′ < k maximal with the above conditions and deduce that p2x
k′
2 p1x

l
1 =

xl4q4p3x
k′
3 . Inductively, the latter holds for any k′. By double induction on l and k we finally

obtain p2p1 = q4p3. 2

We obtain a description of the arrows in the Ext-quiver of the algebra Am,m.

Corollary 5.7.3. Let L(v · 0), L(w · 0) ∈ On,n0 be simple modules. Consider σdomv, σdomw ∈
S(n) and let ν, λ ∈ S̃(n) be their extensions. Then

Ext1
On,n0

(L(v · 0), L(w · 0)) =

{
C if ν↔ λ,

{0} otherwise.

Proof. Let P (n,n)(v · 0), P (n,n)(w · 0) ∈ O(n,n)
0 be the projective cover of L(v · 0) and L(w · 0),

respectively. Then the dimension of Ext1
On,n0

(L(v · 0), L(w · 0)) is equal to the dimension of the

subspace M of HomO(P (n,n)(w · 0), P (n,n)(v · 0)) spanned by all morphisms f whose image is
contained in the radical of P (n,n)(v · 0), but not in the square of the radical. When passing
to An,n, this subspace corresponds to the space spanned by all morphisms of degree one, since,
for indecomposable projectives, the grading filtration agrees with the radical filtration thanks
to [BGS96, Proposition 2.4.1]. By Corollary 5.7.2 there is, up to a non-zero scalar, a unique
morphism of degree one if ν↔ λ and no morphism otherwise. 2

Proof of Theorem 5.3.1. The homomorphism E from Proposition 5.6.2 induces a surjective
homomorphism of algebras

E ′ : Dn,n →Hn (5.7.3)

such that Homg(P p(x · 0), P p(y · 0)) is mapped to aHnb , where a= σdomx, b= σdomy (see
Remark 5.5.3). By Corollary 5.7.2 it is only left to show that E ′ is an isomorphism. To do
so it is enough to compare the dimensions. However, the dimension of aHnb is 2k, where k is
the number of circles in W (a)b. We could rephrase this as follows: consider the irreducible right
(complex) S2n-module M corresponding to the partition 2n= n+ n. This module has a unique
up to a scalar symmetric non-degenerate S2n-invariant bilinear form b (see [Mur95, § 6]). One
can naturally identify the elements of Cup(n) with the basis of M obtained by specialising
the Kazhdan–Lusztig basis in the generic Hecke algebra of S2n such that dimC(aHnb ) = b(a, b)
(see [Fun03, Theorem 7.3] and references therein). On the other hand, we categorified M in
Proposition 4.3.4. One can also categorify the bilinear forms as follows: there is a scalar γ ∈ C
such that

dimC Homg(P p(x · 0), P p(y · 0)) = b(a, b)γ (5.7.4)

where a= σdomx, b= σdomy (see [KMS09, Proposition 4]). The explicit formulas in [IS88,
Corollary, p. 327] give the dimension of the endomorphism ring of P ∈ On,n0 as in
Proposition 4.2.1, namely as follows: P ∼= θ0

νM
p(ν) where Mp(ν) is a (simple, projective)
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n–n

Figure 8. If aw = +r −s +s−r, then W (ãw)ãe consists of green circles only.

generalised Verma module. By [IS88, Proposition 3.1] the stabiliser of ν is isomorphic to n
copies of S2. This implies dimC Homg(P, P ) = 2n and, hence, γ = 1. The theorem follows. 2

5.8 A graphical description of On,n0

In this section we prove the following.

Theorem 5.8.1. For any n ∈ Z>0 the algebra homomorphism E :An,n ∼=Kn is an isomorphism.

Proof. We use the notation from Proposition 5.2.2 and § 5.4 and set p = pn. For w ∈W p put
aw = σdomw. Let us denote by ϕw ∈ S̃(n) the extension of aw, and let λw be the corresponding
partition.

Since E is surjective (Proposition 5.6.4) and the involved algebras are finite dimensional, it
is enough to show that for any v, w ∈W p

Homg(P p(v · 0), P p(w · 0))∼= G
(
W (ãv)ãw

)
. (5.8.1)

Let us first consider the case where ν = e, the identity of W . By [Bre02, Corollary 5.2] we
have {0} 6= Homg

(
P p(0), P p(w · 0)

)
(and then equal to C) if and only if

aw = (+, . . . ,+︸ ︷︷ ︸
r

,−, . . . ,−︸ ︷︷ ︸
s

,+, . . . ,+︸ ︷︷ ︸
s

,−, . . . ,−︸ ︷︷ ︸
r

) =: +r −s +s−r

for some r, s ∈ Z≥0.

If there are γ, δ ∈H[−n, 0] γ < δ such that ϕw(γ) =− and ϕw(δ) = +, then there is a λw-
pair (α, β) such that α, β ∈H[−n, 0]. Moreover, ϕe(α) = + = ϕe(β). The corresponding circle
in W (ãw)ãe is then red. Similarly, if there are γ, δ ∈H[0, n] γ < δ such that ϕw(γ) =− and
ϕw(δ) = +, then there is a λw-pair (α, β) such that α, β ∈H[0, n], ϕe(α) = − = ϕe(β). The
corresponding circle in W (ãw)ãe is red. Therefore, G(W (ãw)ãe) = {0} if aw is not of the form
+r −s +s−r as above. On the other hand, if aw = +r −s +s−r, then W (ãw)ãe consists of green
circles only (as depicted in Figure 8), and G(W (ãv)ãw) = C.
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Hence, formula (5.8.1) is true for v = e and we can do induction on the length of v. Choose
some simple reflection s such that vs < v. Then

Homg(P p(v · 0), P p(w · 0))
= Homg(θsP p(vs · 0), P p(w · 0))
= Homg(P p(vs · 0), θsP p(w · 0))

=


Homg(P p(vs · 0), P p(ws · 0)) ws ∈W p, ws > w,
Homg(P p(vs · 0), P p(w · 0)⊕ P p(w · 0)) if ws < w,
{0} if ws 6∈W p

by [BW01, Theorem 1], the self-adjointness of θs and [Soe97, § 3]. On the other hand, if ws ∈W p,
ws > w, then obviously G(W (ãv)ãw) = G

(
W (ãvs)ãws

)
which is zero if ws /∈W p. If ws ∈W p and

ws < w, then G
(
W (ãv)ãws

)
differs from G

(
W (ãv)ãw

)
by a black circle. Formula (5.8.1) follows

therefore from the induction hypothesis. 2

Remark 5.8.2. Theorem 5.8.1 can be generalised to all maximal parabolic subalgebras or
perverse sheaves on Grassmannians PervB(Gr(k, n)). In general, one has to take {+,−}-
sequences of length n with k pluses and n− k minuses. They define the inner points. Then
we add n− k minuses to the left and n− (n− k) pluses to the right and proceed as before.

5.9 Intersections of components of the Springer fibre
In the first three sections of the paper we used Soergel’s Endomorphismensatz [Soe90] which,
in particular, implies that the endomorphism ring of the only indecomposable projective–
injective module in O0 has commutative endomorphism ring, isomorphic to H∗(B) (see
Proposition 3.1.1 and the preceding paragraph). On the other hand, we know by Proposition 2.8.2
that the endomorphism ring of any indecomposable projective module in a Op for maximal
parabolic p is commutative, and Theorem 5.3.1 gives an explicit algebraic description of the
endomorphism rings of indecomposable projective–injective modules. In fact, it describes
the space of homomorphisms between two indecomposable projective–injective modules as a
bimodule over their endomorphism rings. A geometrical interpretation of these bimodules in
terms of cohomology rings is still missing. We would like to finish this paper by formulating a
conjectural interpretation based on the following.

Theorem 5.9.1. Let g = gln and let p be some maximal parabolic subalgebra. Let Irr(Bp)
denote the set of irreducible components of Bp and PrInj(p) the set of isomorphism classes
of indecomposable projective–injective modules in Op

0. Then there is a bijection

ψ : PrInj(p)∼= Irr(Bp)

such that there is an isomorphism of vector spaces

Homg(P, Q)∼=H∗(ψ(P ) ∩ ψ(Q))

for any P , Q ∈ PrInj(p).

Proof. By results of Vargas and of Spaltenstein, there is an explicit bijection between the
irreducible components of Bp and standard tableaux of shape λ(p). In our special situation we
have to consider only tableaux with two rows, and we refer to [Fun03, Theorem 5.2], where the
bijection is made explicit. We restrict ourselves to the case where µ= λ(p) is already a partition.
This is possible thanks to [MS08, Theorem 5.4].
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Let us first consider the case λ(p) = (n, n). Given a standard tableaux T with two rows of
length λ1 = n and λ2 = n, one can associate a cup diagram in Cup(n) as follows: T has the entries
1, 2, . . . , 2n so that the numbers are decreasing from left to right in each row, and decreasing from
top to bottom in each column. The cup diagram CT has 2n vertices, labelled by 1 to 2n from the
left, so that the left endpoint of each cup is labelled by a number appearing in the bottom row
of T , whereas the right endpoints of the cups are labelled by elements from the top row of T .
(So the endpoints of each cup are in different rows of T ). For example, if n= 2 then we have the
standard tableaux

4
2

3
1 ,

4
3

2
1

to which we associateD and D′ displayed in Figure 1. It is easy to see that this procedure provides
a bijection between standard tableaux of shape (n, n) (and, hence, of irreducible components
of Bp), and cup diagrams from Cup(n). Now we apply Proposition 5.2.4 and obtain a bijection
between the irreducible components and the isomorphism classes of indecomposable projective–
injective modules PrInj(n). Thanks to Theorem 5.3.1 the dimension of the homomorphism spaces
between projective–injective modules can be computed using the diagram calculus, which is also
used in [Fun03, Theorems 7.2 and 7.3] to compute the dimension of the cohomology of the
intersection of two components. This settles the case of the partition (n, n) and gives an explicit
way to compute the dimensions of the vector spaces.

In general, one should argue as follows: first of all we have [KMS09, Proposition 4] the
categorification of the Specht modules for the symmetric group (Proposition 4.3.4), but also of
its invariant bilinear form (5.7.4) by taking dimensions of the homomorphism spaces between
indecomposable projective modules. On the other hand, the dimension of the cohomology of the
intersection of components is computed in the same way [Fun03, Theorems 7.2 and 7.3], so that
the statement follows up to a multiplication with a common factor. However, one easily checks
that this common factor must be equal to one by computing one of the endomorphism rings
explicitly. 2

Up to a shift, the isomorphism from the theorem is an isomorphism of Z-graded vector spaces,
where the grading on the hom-space is given as in § 4.3.

We conjecture that this isomorphism is compatible with the multiplicative structure as well.

Conjecture 5.9.2. The isomorphism Endg(P )∼=H∗(ψ(P )) is a ring homomorphism and

Homg(P, Q)∼=H∗(ψ(P ) ∩ ψ(Q))

as (Endg(P ), Endg(Q)) = (H∗(ψ(P )), H∗(ψ(Q)))-module.

5.10 Connection with Khovanov homology

Using Theorem 5.3.1 one can deduce that the full conjecture [Str06, Conjecture 2.9] holds.
Roughly speaking this says that the functorial tangle invariants defined in [Kho02] are obtained
by restricting the functorial tangle invariants from [Str05] to a certain subcategory, invariant
under all of these functors. In particular, the resulting homological invariants are the same. The
proof is quite technical and lengthy and will appear in a subsequent paper. We expect that
Conjecture 5.9.2 provides the basis for a geometric interpretation of Khovanov homology using
categories of sheaves related to the Springer fibres.
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