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Dense suspensions of solid particles in viscous liquid are ubiquitous in both industry
and nature, and there is a clear need for efficient numerical routines to simulate their
rheology and microstructure. Particles of micron size present a particular challenge: at low
shear rates, colloidal interactions control their dynamics while at high rates, granular-like
contacts dominate. While there are established particle-based simulation schemes for
large-scale non-Brownian suspensions using only pairwise lubrication and contact forces,
common schemes for colloidal suspensions generally are more computationally costly and
thus restricted to relatively small system sizes. Here, we present a minimal particle-based
numerical model for dense colloidal suspensions that incorporates Brownian forces
in pairwise form alongside contact and lubrication forces. We show that this scheme
reproduces key features of dense suspension rheology near the colloidal-to-granular
transition, including both shear thinning due to entropic forces at low rates and shear
thickening at high rates due to contact formation. This scheme is implemented in LAMMPS,
a widely used open source code for parallelised particle-based simulations, with a runtime
that scales linearly with the number of particles, making it amenable for large-scale
simulations.
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1. Introduction

Dense suspensions of Brownian and non-Brownian solid particles in viscous liquid
present intriguing flow properties, and understanding their rheology is a subject of both
fundamental and technological relevance (Stickel & Powell 2005; Ness, Seto & Mari
2022). Of particular interest are suspensions comprising particles with radius a ≈ 1 μm,
or more broadly in the range 0.1–10 μm. These are present in numerous applications, in
all areas of food science (Jambrak et al. 2010) and consumer products, as well as across
the manufacturing and construction sectors (Roussel et al. 2010) and indeed in many
geophysical contexts (Kostynick et al. 2022). Often their physics are challenging because
their Brownian diffusion time may be comparable to the processing or macroscopic time
scales involved in their use, so that they sit at the boundary of colloidal and granular
systems (Guy, Hermes & Poon 2015).

Particle-based simulation offers a promising route to better understand the physics
of these materials, providing highly resolved information complementary to what can
be obtained by experiment. With simultaneous access to particle trajectories and bulk
rheology, one might devise new micromechanical constitutive equations (Gillissen
et al. 2020) or develop microstructural insight that could guide the future analysis of
experimental data. Numerical models might also be useful for exploring the parameter
space and systematically linking aspects of particle-level physics (friction (Seto et al.
2013), adhesion (Richards et al. 2020) and roughness (Lobry et al. 2019)) to the bulk flow
behaviour. As a result, one might aim to optimise industrial processes such as mixing and
extrusion, or indeed to optimise the design of the materials themselves through additives,
using insight gained through particle-based simulation.

Stokesian dynamics (SD) (Brady & Bossis 1988; Banchio & Brady 2003) is a
computational method used to simulate the rheological behaviour of colloidal and granular
particles suspended in a viscous fluid, addressing the special case of inertia-free flow
where the Stokes number is zero (Ermak & McCammon 1978). The latter quantity is
similar to a Reynolds number, and is defined as the ratio between the shearing time
scale 1/γ̇ and ρa2/η, with γ̇ the shear rate, ρ the particle density (assumed equal to
that of the fluid in the remainder of this article), a the particle size and η the liquid
viscosity. Other forms of Reynolds number may be defined, for instance based on the
fluid density (if it differs from that of the particles) or on another length scale. In the limit
of zero Stokes number, analytical solutions of the Stokes equation of motion can be used
to derive particle-scale hydrodynamic interactions. The SD method involves balancing
all of the forces and torques on each particle by evaluating their velocities via a grand
mobility matrix containing information on the relative positions of every particle in the
system, ensuring conservation of translational and angular momentum. Despite accurately
capturing the long- and short-range hydrodynamic interactions between particles, SD has
not been adopted widely as a predictive tool in applied and industrial settings in the
same way as other particle-based simulation methods have, due to the complexity of its
implementation and its computational expense (notwithstanding recent developments that
significantly speed it up (Sierou & Brady 2001; Fiore & Swan 2019)).

The discrete element method (DEM) (Cundall & Strack 1979), on the other hand, is
a particle-based computational method (a variant of molecular dynamics) that is used
widely to simulate the behaviour of granular materials including powders, particles and
grains, taking into account their pairwise interactions. In contrast to SD, DEM does
not explicitly balance the forces on each particle. Instead, inertia is present, and one
simply sums the forces and torques and the resultant leads to linear and rotational
accelerations that can be realised through a conventional timestepping algorithm such as
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Simulating the rheology of dense suspensions

velocity-Verlet. This approach has proven to be useful for studying overdamped
suspensions under shear flow (Trulsson, Andreotti & Claudin 2012; Ness & Sun 2015),
where one introduces short-ranged lubrication forces and sets the Stokes number to be
O(10−2) or smaller (assuming that hydrodynamic force and torque interactions derived in
the limit of zero Stokes number still apply). Moreover, it is pragmatic in the sense that
the physics associated with flowing dense suspensions can be implemented in existing,
widely used codes with large user bases, so that they have a clear path to adoption
in engineering and other applied contexts. To date, there is not, to our knowledge, an
open-source DEM simulation that includes the relevant physics of dense suspensions at
the colloidal-to-granular interface, accounting for short-ranged hydrodynamics, Brownian
forces and (frictional) particle–particle contacts.

Here, we present a minimal particle-based simulation model for predicting the rheology
of dense Brownian and non-Brownian suspensions. Our model comprises hydrodynamic
lubrication, particle–particle contacts and Brownian forces. After first describing the
model in detail, we present some aspects of the effective interactions and diffusion that
arise, before giving a detailed account of the rheological predictions of the model. The
model reproduces well the main features of the experimentally observed rheology of dense
suspensions, namely a low shear rate plateau that gives way to shear thinning and later
shear thickening as the shear rate is increased, with the relative viscosity of the suspension
increasing sharply with solid volume fraction and particle–particle friction coefficient.

2. Methodology

We consider a model system of nearly monodisperse solid spheres, dispersed at high
solids volume fraction φ in a density-matched Newtonian liquid. The microscopic physics
included in our model represents a minimal set of ingredients necessary to make useful
predictions of the rheology of suspensions comprising particles with radius in the range
10−7 to 10−4 m. The trajectories of individual particles with translational and rotational
motion are governed by Langevin equations that comprise three force (F ) and torque (T )
contributions: direct particle contacts (F C, T C), hydrodynamics (F H , T H) and Brownian
noise (F B, T B). The equations of motion for the translation and rotation of the particles
are written, respectively, as

mi
d2xi

dt2
=

∑
j

F C
i, j + F H,D

i +
∑

j

F H,L
i, j + F B,D

i +
∑

j

F B,L
i, j , (2.1)

2
5

mia2
i

dΩ i

dt
=

∑
j

T C
i, j + T H,D

i, j +
∑

j

T H,L
i, j + T B,D

i, j +
∑

j

T B,L
i, j , (2.2)

where xi represents the position of particle i, Ω i represents its rotational velocity and ai
and mi are its radius and mass, respectively. The subscript i represents single-body forces
and torques acting on particle i, while the subscript i, j represents pairwise forces and
torques acting between particles labelled i and j. The superscripts C, H, B, D and L refer
to the force and torque components arising due to contacts (C), hydrodynamics (H) and
Brownian (B) effects, with the latter two acting both through drag (D) and lubrication
(L). Each of these force and torque terms is described in detail below. These equations
of motion can be understood as Langevin equations in which the 〈·〉C terms represent
particle–particle interactions; the 〈·〉H terms represent configuration-dependent viscous
friction (i.e. dissipative forces linear in the particle velocities); and the 〈·〉B terms represent
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Figure 1. Snapshot of simulation box, and schematics of the leading pairwise force terms present in the model.
In all cases, the leading component of the pairwise force acts along the (positive or negative) direction of the
unit vector ni, j pointing from the centre of particle i to the centre of particle j. (a) Snapshot of the simulation
box showing particles of radii a (blue) and 1.4a (red), and the cubic domain length L. Particles are mixed in
approximately equal volume. We used a minimum particle number N = 1000 (L ≈ 25a) to ensure statistically
significant results. (b) Contact force, with force acting along ni, j; shown from left to right are (i) sketch of
contacting particles i and j, with the overlap δi, j shown in green; (ii) the unit vector ni, j pointing from the
centre of particle i to j; (iii) repulsive contact FC forces acting along the positive and negative directions of ni, j.
(c) Pairwise hydrodynamic lubrication force, with force set by the component of the relative particle velocity
acting along ni, j; shown from left to right are (i) sketch showing the velocity vectors U of neighbouring
particles i and j; (ii) the relative velocity Uj − Ui breaks down into tangential (blue) and normal (red)
components, with the latter pointing along ni, j; (iii) lubrication forces act along the positive and negative
directions of ni, j, proportional to the normal part of the relative velocity. (d) Pairwise Brownian lubrication
force with a random pairwise vector θ i, j projected onto ni, j. Shown from left to right are (i) neighbouring
particles with centre-to-centre unit vector ni, j; (ii) random vectors θ i, j drawn from a Gaussian distribution
(green) are projected onto ni, j by the tangential (blue) and normal (red) operators; (iii) Brownian forces act
along the positive and negative directions of ni, j, proportional to the normal part of the random vector.

configuration-dependent (multiplicative) noise. Although particle inertia is present in the
model, we omit fluid inertia (Hinch 1975), arguing that, for the regimes of interest, the
principal contributions to the overall bulk rheology will come from particle–particle
contact and hydrodynamic lubrication interactions. Particles are subjected to a liquid flow
field given by U∞ (acting through the body force F H,D

i as described below), leading to a
rate of strain tensor E = 1

2 (∇U∞ + (∇U∞)T). Pairwise forces and torques are summed
over the neighbours j of each particle i, and the positions, velocities and acceleration are
updated in a stepwise manner following the velocity-Verlet algorithm (Swope et al. 1982;
Frenkel & Smit 2023). Below, we describe each of the force and torque contributions in
detail; shown in figure 1 are illustrative schematics of each of the forces.

2.1. Contact forces and torques
The particle–particle contact force F C follows a conventional granular-type interaction
(Cundall & Strack 1979), and is activated for any two particles i and j for which the
centre-to-centre distance |ri, j| is smaller than the sum of the radii ai + aj. Contact forces
include a repulsive part acting normal to the pairwise centre-to-centre vector ri, j (we
define a unit vector ni, j = ri, j/|ri, j|), and a tangential part. For simplicity, we model
contacts as linear springs, so that particle pairs experience repulsive contact forces

984 A67-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

22
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.225
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proportional to their scalar overlap, defined once in contact as δi, j = (ai + aj)− |ri, j|.
The implementation of our model within LAMMPS (Plimpton 1995) nonetheless allows
straightforward deployment of more complex δi, j dependence (we note that, in LAMMPS,
the skin argument of the neighbour command has units of (length)). Tangential forces
are linear in ξ i, j, a vector describing the accumulated displacement of the particle
pair perpendicular to ni, j since the initiation of the contact. Contact force and torque
magnitudes are controlled by normal and tangential stiffness constants kn and kt that set
the hardness of the particles. The force and torque are given, respectively, by

F C
i, j = knδi, jni, j − ktξ i, j, (2.3)

T C
i, j = ai(ni, j × ktξ i, j). (2.4)

We additionally introduce a static friction coefficient μ that constrains the tangential force
to |ktξ i, j| ≤ μknδi, j. For larger values of ktξ i, j, the tangential part of the force and the
torque are truncated, and particle contacts transition from a rolling to a sliding regime. We
present data for μ = 0 throughout, except in figure 6, where we explore the role of contact
friction. Damping is not included in F C

i, j or T C
i, j as the lubrication forces and torques

described below already render particle–particle contacts well within the overdamped
regime. Each pairwise contact between particles i and j contributes to the overall contact
stress of the system with a tensorial stresslet given by the outer product −F C

i, j ⊗ ri, j. The
contact stress ΣC is obtained by summing this quantity over all contacting particle pairs
and dividing by the system volume and dimension.

Contact forces of this kind have successfully been deployed in numerical models
for rate-independent granular suspension rheology (Boyer, Guazzelli & Pouliquen 2011;
Trulsson et al. 2012; Cheal & Ness 2018; Ge & Brandt 2020) and for models of shear
thickening suspensions (Seto et al. 2013) (in the latter case, rate dependence arises from a
‘critical load’ that the contact force must exceed before static friction is activated).

2.2. Hydrodynamic forces and torques
In general, hydrodynamic interactions in suspensions appear as single-particle drag forces
F H,D, pairwise near-contact lubrication forces F H,L and many-body long-range forces. In
high volume fraction dense suspensions, however, it is argued by many authors that the
hydrodynamic interactions are dominated by near-contact lubrication interactions (Ball
& Melrose 1997) (which diverge on close approach) and that long-range interactions
are effectively screened by intervening particles (Seto et al. 2013; More & Ardekani
2020). We follow this reasoning and therefore omit long-range hydrodynamics from our
model, although we note there exist several implementations of coupling schemes between
LAMMPS and fluid solvers that extend the capability down to dilute and semi-dilute
regimes (see e.g. Sun & Xiao 2016). Below, we describe in detail the drag and lubrication
forces deployed in the model. Single-particle drag forces and torques are given by

F H,D
i = 6πηai(U∞(xi)− U i), (2.5)

T H,D
i = 8πηa3

i (Ω
∞ −Ω i), (2.6)

where we use the isolated-particle Stokes terms and, for simplicity, do not introduce
volume-fraction-dependent hindrance functions. Here, η is the liquid viscosity, U∞(xi)
is the value of the liquid streaming velocity at the position of the centre of mass of particle
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i, and Ω∞ = 1
2(∇ × U∞) (spatially uniform assuming U∞ varies linearly in space). The

drag forces lead to a per particle stress given by ΣH,D
i = 20

3 πηa3
i E.

For pairwise lubrication forces and torques acting between interacting particles i and j
we start from the conventional representation given by Kim & Karrila (2013) as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F H,L
i, j

F H,L
j,i

T H,L
i, j

T H,L
j,i

ΣH,L
i, j

ΣH,L
j,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ηR

⎛
⎜⎜⎜⎜⎜⎝

U∞(xi)− U i
U∞(xj)− U j
Ω∞ −Ω i
Ω∞ −Ω j

E
E

⎞
⎟⎟⎟⎟⎟⎠ , (2.7)

where R is the resistance matrix containing tensorial operations that linearly couple
pairwise particle forces (torques) to velocities (rotational velocities), taking into account
relative particle positions. After some algebra and omitting terms that vanish with the size
of the interparticle gap (see Radhakrishnan 2018 for details) one can obtain the forces in a
simplified pairwise form as

F H,L
i, j = −F H,L

j,i = (XA
11Ni, j + YA

11Ti, j)(U j − U i)

+ YB
11(Ω i × ni, j)

+ YB
21(Ω j × ni, j), (2.8)

where F H,L
i, j is the force acting on particle i by particle j; N = ni, j ⊗ ni, j is a tensorial

normal operator; T = I − ni, j ⊗ ni, j is a tensorial projection operator; ni, j is the unit
vector pointing from particle i to particle j; U i is the velocity of particle i; Ω i is the
rotational velocity of particle i; and I is the identity tensor in three dimensions. The scalar
prefactors X and Y encode the geometry of the interacting pair, namely the size of the
interparticle gap and the size ratio of the interacting particles. Their superscripts A, B
and subscripts 11, 22 are more appropriate to the labelling convention used by Kim &
Karrila (2013) but nonetheless we retain them here for ease of referencing to that work.
The particle size ratio is written as β = aj/ai and the dimensionless interparticle gap is
ξ = 2(|ri, j| − (ai + aj))/(ai + aj). The scalar prefactors are given by

XA
11 = 6πηai

(
2β2

(1 + β)3
1
ξ

+ β(1 + 7β + β2)

(5(1 + β)3)
ln

(
1
ξ

))
, (2.9)

YA
11 = 6πηai

(
4β(2 + β + 2β2)

15(1 + β)3
ln

(
1
ξ

))
, (2.10)

YB
11 = −4πηa2

i

(
β(4 + β)

5(1 + β)2
ln

(
1
ξ

))
, (2.11)

YB
21 = −4πηa2

j

(
β−1(4 + β−1)

5(1 + β−1)2
ln

(
1
ξ

))
. (2.12)
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Meanwhile, the torques on particles i and j as a result of their interaction with particles j
and i, respectively, are written as

T H,L
i, j = YB

11(U j − U i)× ni, j − Ti, j(YC
11Ω i + YC

12Ω j), (2.13)

T H,L
j,i = YB

21(U j − U i)× ni, j − Ti, j(YC
21Ω i + YC

22Ω j), (2.14)

with scalar prefactors given by

YC
11 = 8πηa3

i

(
2β

5(1 + β)
ln

(
1
ξ

))
, (2.15)

YC
12 = 8πηa3

i

(
β2

10(1 + β)
ln

(
1
ξ

))
, (2.16)

YC
22 = 8πηa3

j

(
2β−1

5(1 + β−1)
ln

(
1
ξ

))
, (2.17)

YC
21 = 8πηa3

j

(
β−2

10(1 + β−1)
ln

(
1
ξ

))
. (2.18)

Similar expressions may be obtained for the elements of the hydrodynamic lubrication
stress tensor, although these can be shown to be equivalent (up to an order-ξ term in
the normal stresses) to the form used for the contact forces. The contribution to the
hydrodynamic stress coming from each pairwise interaction is thus given by ΣH,L

i, j =
−F H,L

i, j ⊗ ri, j. To mitigate against divergence in the scalar prefactors at particle contacts
(that is, where ξ → 0) we use ξmin = 10−3 in the calculation whenever ξ < ξmin. We do
not calculate pairwise lubrication forces when particles are separated by gaps ξ > ξmax,
with ξmax = 0.05. This choice does not influence the overall effective potential between
interacting pairs (see figure 2a,b), but it does have a quantitative effect on the reported
viscosities as described by Mari et al. (2014) (see also figure 5e).

2.3. Brownian forces and torques
To satisfy fluctuation–dissipation theorem, we must produce Brownian forces that follow

〈FB ⊗ FB〉 = 2kbT
	t

R, (2.19)

〈FB〉 = 0, (2.20)

where FB is a list of the Brownian forces and torques, R is the overall resistance operator
for the system (taking into account both one-body and pairwise hydrodynamic dissipation
that we describe separately below). Here, kb is the Boltzmann constant and T is the
temperature, so that kbT is the thermal energy, and 	t is the computational timestep
(discussed in more detail below).

For one-body Brownian forces we need 6 random numbers (i.e. two vectors in
three-dimensional space ψ i and ϕi) to satisfy the translational and rotational degrees
of freedom of each particle i. The elements of the random vectors ψ i, ϕi are
drawn from a Gaussian distribution and satisfy 〈ϕαϕβ〉 = 〈ψαψβ〉 = δαβ and they are
uncorrelated with each other so that 〈ϕαψβ〉 = 0. The following forces and torques satisfy
fluctuation–dissipation theorem (we label them as Brownian drag ‘B,D’ to align with the
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(a) (b)
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(e)
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D
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φ

Figure 2. Evaluating the potential of mean force and the diffusion properties that arise from the particle-level
forces described above, in the absence of shear flow. (a) The radial distribution function g(r) (with r =
|ri, j|) computed from a two-particle simulation (inset: snapshot of simulation). (b) Potential of mean force
U(r), showing measured result (points) and the input particle stiffness (solid line). (c,d) Mean squared
displacement as a function of elapsed time for (c) three values of the time scale ratio τI/τB at φ = 0.001.
(d) Three values of φ at τI/τB = 1.7. (e) Diffusion coefficient as a function of elapsed time for a range of φ at
τI/τB = 1.7. The solid line in (c-e) represents the predictions of (3.1). ( f ) Long-time diffusion coefficient at a
broad range of φ and τI/τB.

hydrodynamic drag forces and torques defined above). The one-body Brownian force and
torque on particle i are given by

F B,D
i =

√
2kbT
	t

√
6πηaiψ i, (2.21)
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Simulating the rheology of dense suspensions

T B,D
i =

√
2kbT
	t

√
8πηa3

i ϕi. (2.22)

Averaging 〈F B,D
i ⊗ F B,D

i 〉 and 〈T B,D
i ⊗ T B,D

i 〉 over many realisations of the vectorsψ i and
ϕi leads, respectively, to (2kbT/	t)6πηaiI and (2kbT/	t)8πηa3

i I as required (with I the
identity matrix in three dimensions).

Pairwise Brownian forces and torques similarly require two random vectors θ i, j and
χ i, j (independent of ψ i and ϕi but with the same properties) to satisfy the relative
translational and rotational motion of two interacting particles (see also Kumar & Higdon
2010). The pairwise forces and torques must be constructed in such a way that, for
particles i and j, averaging 〈F B,L

i, j ⊗ F B,L
i, j 〉 and 〈T B,L

i, j ⊗ T B,L
i, j 〉 over many realisations of θ i, j

and χ i, j recovers the form of the pairwise hydrodynamic lubrication forces and torques
described above. Doing so (see Appendix A for details), which involves exploiting the
fact that the normal and projection operators present in the definition of the lubrication
forces and torques are idempotent (i.e. 〈(Ni, jθ i, j)⊗ (Ni, jθ i, j)〉 = Ni, j) and orthogonal
(i.e. 〈(Ni, jθ i, j)⊗ (Ti, jθ i, j)〉 = 0), one obtains the following expressions for the pairwise
Brownian force and torque (calculated when ξ < ξmax):

F B,L
i, j = −F B,L

j,i =
√

2kbT
	t

(√
XA

11Ni, j +
√

YA
11Ti, j

)
θ i, j, (2.23)

T B,L
i, j =

√
2kbT
	t

⎛
⎝ Y11

B√
Y11

A

θ i, j × ni, j +
√

Y11
C − (Y11

B )
2

Y11
A

Tχ i, j

⎞
⎠, (2.24)

T B,L
j,i =

√
2kbT
	t

⎛
⎝ Y21

B√
Y11

A

θ i, j × ni, j −
√

Y22
C − (Y21

B )
2

Y11
A

Tχ i, j

⎞
⎠. (2.25)

Our model thus involves computing (2.1) and (2.2) to evaluate the trajectory of each
particle, subject to imposed forces given by (2.3), (2.5), (2.8), (2.21) and (2.23), and
torques given by (2.4), (2.6), (2.13), (2.14), (2.22), (2.24) and (2.25). Our model is similar
to that of Mari et al. (2015), seeking to examine aspects of the same physics (albeit with
inertia present in our model) but using an alternative integration scheme.

2.4. Brownian stress calculation
One can similarly obtain from fluctuation–dissipation theorem an expression for the
Brownian stress resulting from the pairwise interaction between particles i and j
that averages over many realisations so that 〈ΣB,L

i, j ⊗ ΣB,L
i, j 〉 recovers the form of the

hydrodynamic lubrication stress, but as described above, this can similarly be shown to
be equivalent to ΣB,L

i, j = −F B,L
i, j ⊗ ri, j. Since the pairwise Brownian force term contains

the normal operator Ni, j acting on the random vector θ i, j, one obtains a prefactor in
the stress containing the dot product ni, j · θ i, j. This quantity will always approach zero
when averaged over many realisations of θ i, j, so that the Brownian stress computed in
this way averages to zero. Nonetheless, particle pairs do experience non-zero Brownian
forces acting at all timesteps that will influence their trajectories so that the resulting
contact and lubrication stresses will be altered by the presence of the Brownian forces.
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Below, we describe a method that allows us to estimate the contribution of Brownian
motion to the overall stress.

It is important to note here that our method, in which particle inertia is accounted
for, is fundamentally different to other computational approaches, notably SD (Ermak &
McCammon 1978; Brady & Bossis 1988; Bossis & Brady 1989), in which the trajectories
are evolved with a timestep longer than the inertial one. In the latter methods (see
in particular Banchio & Brady (2003)) the Brownian stress for the overall system is
obtained as ΣB = kbT∇ · (RSU · R−1

FU), in practice using a midpoint scheme in which
the positions and velocities of every particle are sampled at some increment of the overall
timestep. Here, RSU and RFU represent parts of the overall resistance matrix that couple,
respectively, stresses to velocities and forces to velocities. Our method described above
is based on the Langevin equation so that particle inertia is small but present, and force
balance is not strictly achieved at each timestep. In order to obtain an estimate of the
Brownian contribution to the stress, we deploy a structural method that exploits the
anisotropy of the radial distribution function, using the approach described by Brady
(1993). The Brownian stress attributable to the pair i, j can be written as

ΣB
i, j = −nkbTa

∫
S2

(ni, j ⊗ ni, j)p1/1(xj|xi) dS2, (2.26)

where p1/1(xj | xi) is the probability density for finding a particle at xj given that there is a
particle at xi, and n = N/V is the number density of particles in the suspension (where V
and N are the system volume and particle number, respectively). The integral is over the
surface of contact S2 of two touching particles.

To compute this function we sum for each particle the dyadic product of its unit
vector with each of its neighbours within a thin shell Δ = 0.05ai, so that, for a given
configuration, the Brownian contribution to the stress is (Lin et al. 2016)

ΣB = −kbT
V

∑
i

ai

Δ

∑
j∈Δ
(ni, j ⊗ ni, j). (2.27)

The stress obtained by this approach is not added to the hydrodynamic and contact stresses
computed in our model, but rather it measures what fraction of the total stress (the sum of
hydrodynamic and contacts stresses) is attributable to Brownian motion. It is thus available
to provide insight into the role of Brownian motion in setting the overall material response.

2.5. Additional simulation details
We simulate N = 1000 spherical particles of radius a and 1.4a (mixed approximately
equally by volume) in a cubic periodic simulation box of length L. For each set of flow
conditions we carried out between 10 and 800 realisations (dependent on the Péclet
number, see figure 3a) in order to obtain satisfactory ensemble averages.

The principal particle properties (these set the length, mass and time scales) are
the characteristic particle radius a (length), the particle density ρ (mass length−3)
(taken throughout to be equal to the fluid density so that the particles are neutrally
buoyant) and the particle normal stiffness kn (mass time−2) (this has a tangential
counterpart kt). The remaining material properties to be defined are the fluid viscosity
η (mass (length × time)−1) and the particle–particle friction coefficientμ (dimensionless),
relevant for micron sized (and larger) particles. The thermal energy scale in the system is
set by the product of the Boltzmann constant kb (held constant in the simulation) and the
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(b)(a) (c)

Figure 3. Computing the suspension viscosity ηr under sheared and non-sheared conditions, and the scaling
of computational run time with system size. Shown in (a) is the convergence of the measured ηr as a function
of the number of snapshots averaged over, for Pe = 0.01 (red), 1 (green) and 104 (blue). The noisy stress
signal when Brownian motion dominates necessitates large numbers of realisations (we take 106 samples per
realisation). In (b) is ηB,GK measured via the Green–Kubo relation taking the autocorrelation of the Brownian
shear stress as input, plotted as a function of the correlation time. (c) Simulation run time vs number of particles
for φ = 0.5, Pe = 1, when running a serial compilation of LAMMPS on a single processor. We show data for a
short simulation comprising 107 timesteps.

temperature T . In what follows we write this as kbT . As described below, we vary kn from
unity on physical grounds, and we provide a full list of parameter values in table 1.

The simulation box is deformed according to a specified ∇U∞. For instance, when
the only non-zero element of ∇U∞ is an off diagonal (say γ̇ ), shearing is applied by
tilting the triclinic box (at fixed volume) according to Lxy(t) = Lxy(t0)+ Lγ̇ t, where Lxy
is the displacement along x of the uppermost surface of the box. When the strain (γ = γ̇ t,
with t the time for which the simulation has run) reaches 0.5 in this example, the system
is remapped to a strain of −0.5. This has no effect on the particle–particle forces or on
the stress, and is simply a numerical tool to permit unbounded shear deformation while
preventing the domain from becoming elongated in one axis (Ness 2023). The system
is initialised in a randomised, non-overlapping configuration, and before all rheology
measurements we shear the system to steady state such that its initial arrangement has
been forgotten. Reported in the following is the relative viscosity of the suspension
ηr = Σxy/ηγ̇ , with Σxy the shear component of the stress tensor, γ̇ the shear rate and
η the fluid viscosity.

2.6. The time scales that appear in the simulation
The full list of dimensional parameters taken as inputs to the model is then a, L, t, ρ,
kn, kbT , η and γ̇ . Taking a/L 
 1 and γ̇ t � 1, dimensional analysis dictates that we
require three non-dimensional groups to fully characterise this system. In other words,
a measured non-dimensional quantity e.g. the reduced viscosity ηr = Σxy/ηγ̇ , can be
a function of at most three non-dimensional control parameters. This is in addition to
non-dimensional inputs viz. the volume fraction φ and the friction coefficient μ. Central
to our work will be the study of viscosities as a function of Péclet number, since this
latter quantity will control the colloidal to granular cross-over. It is desirous to choose the
remaining two non-dimensional control parameters such that particles are effectively hard
and non-inertial. To obtain an appropriate set of non-dimensional control parameters, we
consider the following list of time scales present in the model (in which we only include
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Simulating the rheology of dense suspensions

dimensional elements for simplicity):

τC =
√
ρa3

kn
, (2.28)

τI = ρa2

η
, (2.29)

τB = ηa3

kbT
, (2.30)

τS = 1
γ̇
. (2.31)

The contact time τC is a characteristic time spent by two particles in contact (assuming
contacts are describable as linear springs), in the absence of other forces playing a role. It is
obtained by solving the following equation of motion for the overlap δ between contacting
particles: ρa3(d2δ/dt2) = knδ. In practice, we adjust kn to approximate the hard-sphere
limit, so that τC does not compare with any other time scale in the system under any
conditions. Here, the lubrication and Brownian contributions to the final viscosity become
independent of kn (see figure 5b below). We note that other authors (Mari et al. 2014)
have used a less stringent criterion for kn, so that there may be weak dependence of the
rheology on this quantity under some flow conditions. The inertial relaxation time τI is the
characteristic time taken for the velocity of a particle to reach that of the background fluid
in the absence of other forces. It is obtained by solving the following equation of motion for
the velocity v of a particle: ρa3(dv/dt) = ηav. The Brownian time τB is the characteristic
time take for a particle to diffuse by a distance equal to its own radius under thermal motion
in the absence of other forces. The convective time scale τS is simply the inverse of the
shear rate. To resolve each of these time scales accurately within the simulation we chose
the numerical timestep to be substantially smaller than the smallest of the time scales listed
above. The Péclet number (Pe) described above is given by 6πτB/τS = 6πηa3γ̇ /kbT , and
we vary this quantity across a broad range from 0.01 to 100 000, aiming to explore the
colloidal to granular transition.

The contact time τC should be chosen to be sufficiently small that overlaps between
particles are orders of magnitude smaller than the particle radii, such that particles be
considered hard spheres. To do this, we ensure throughout that τc is at least an order
of magnitude smaller than the next smallest time scale. The role of particle inertia can
be expressed via (i) a Stokes number τI/τS = ρa2γ̇ /η, and (ii) an inertia–diffusion ratio
τI/τB = ρkbT/η2a. Below, we explore how small each of these quantities needs to be set
in order to ensure inertia plays no significant role in the measured results.

3. Results: interactions and diffusion

3.1. Two-particle simulations measuring the effective potential
To evaluate the net pairwise potential resulting from the particle-level forces described
above, we carried out simulations of two particles with radius a in a cubic periodic box of
length 4.1a (see snapshot in figure 2a Inset) subject to all of the forces described above,
and with U∞ = 0. We calculate the radial distribution function g(r) with r = |ri, j| and
averaged this across timesteps in the steady state and across all realisations (figure 2a),
then obtained the potential of mean force as U(r)/kbT = − ln(g(r)), figure 2(b). The result
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confirms that there is no net potential acting between particles when they are not in contact
(i.e. when r > 2a), so the lubrication and Brownian forces do not introduce an overall
repulsion or attraction. When particles are in contact (r/(ai + aj) < 1) there is a steep
repulsive potential that, as expected, is related to the stiffness of our contacts defined
above as U(r)/kbT = 0.5knδ

2
i, j. The model thus approximates a suspension of colloidal

hard spheres, in which the particle–particle interaction is zero and infinite for non-contacts
and contacts, respectively.

3.2. Mean squared displacement
We next verify that our simulated particles follow statistically the anticipated trajectories
by computing their mean squared displacement (MSD) under various conditions. An
isolated particle with motion governed by the single-body drag and Brownian forces
described above is expected to follow a trajectory with a short-time ballistic part and a
long-time diffusive part that leads to an overall MSD given by Lemons & Gythiel (1997)
and Hammond & Corwin (2017) as

〈x2〉 = 2kbT
m
γ 2

(γ
m

t − 1 + e−(γ /m)t
)
, (3.1)

with m = (4/3)πρa3 and γ = 6πηa. This expression gives 〈x2〉 ∼ t2 and 〈x2〉 ∼ t at small
and large times, respectively. It can equivalently be written in terms of our characteristic
time scales defined above as

〈x2〉/a2 = 2
27π

τI

τB

(
4.5

t
τI

− 1 + e−4.5(t/τI)

)
. (3.2)

Shown in figure 2(c) are MSDs for a dilute sample of monodisperse particles with
φ = 0.001 in which pairwise particle–particle interactions are absent. In terms of our
model time scales, we set τS = ∞ (i.e. no shear); τC = 10−3; τI = 10−1; and we vary τB to
explore the behaviour at different temperatures. We measure the elapsed time in units of τI ,
so that the cross-over from ballistic to diffusive behaviour begins in each case at t/τI ∼ 1.
As expected, based on the expression above, increasing temperature (which decreases τB)
while keeping all other variables constant simply shifts the MSD result vertically with
〈x2〉 ∼ kbT .

We next calculate the MSD for a series of larger φ, with results shown in figure 2(d,e). In
all cases the particles follow a ballistic trajectory at short times that is roughly independent
of φ. The longer time behaviour shows a decreasing diffusion coefficient (D = d/dt(〈x2〉))
with increasing φ, a consequence of pairwise hydrodynamic and contact interactions
resisting particle motion. For all volume fractions below jamming, D approaches a
constant at long time scales, confirming the presence of a diffusive regime.

In order for inertia to play a negligible role in our model, it is important for the diffusive
time scale to be longer than the inertial relaxation one. In other words, the time taken for
a particle velocity to relax to that of the background fluid should be much shorter than
the time taken for the particle to diffuse by its own radius. To understand quantitatively
how to achieve this, we measured D for varying τI/τB across a broad range of φ. The
normalised long time diffusion coefficient (D(φ)/D0) is shown in figure 2( f ), with D0 =
kbT/πηa(= a2/τB). Our result shows that, when τI/τB is smaller than 0.17, D(φ)/D0
becomes independent of temperature and follows a linearly decreasing trend. This suggests
a criterion for the maximum value of τI/τB, which we check under shearing conditions in
the following.
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Simulating the rheology of dense suspensions

4. Results: rheology

In the following we first describe the need for substantial ensemble averaging, especially
when Brownian motion dominates, and we demonstrate the convergence of the measured
rheology with the size of the sampling window. We next go on to expose the role of
particle inertia in our model under shear, and establish the parameter range in which it
can be assumed negligible. We then present rheology data showing ηr as a function of Pe,
highlighting the breakdown of the individual contributions (hydrodynamic, contact and
Brownian) and their variation with volume fraction. We finally demonstrate the role of
particle contact friction and a short-ranged repulsive potential.

4.1. Averaging method
All of the rheology simulations described in the following were carried out with N = 1000
particles, comprising an approximately equi-volume mixture of those with radii a and 1.4a.
Given the comparatively small number of particles (compared with a real experimental
system, for instance) and the random nature of the Brownian forces added to the system,
the stress signals output by a single simulation are extremely noisy, especially at low Pe.
(The same is true for inertia-free simulations (Mari et al. 2015), although the error bars
are rarely reported.) Thus, the number of realisations that must be averaged over to obtain
smooth data and reliable estimates of the true rheology increases as Pe is reduced.

Shown in figure 3(a) is the range of measured ηr as a function of the number of
steady-state snapshots averaged over, for 3 different Pe. At low Pe one must sample the
system ≈ 108 times to obtain a measurement of ηr with standard deviation less than 10 %,
whereas, for large Pe, 105 samples are sufficient. Importantly, the time taken to reach
steady state also differs drastically with Pe. For systems dominated by thermal fluctuation
(i.e. low Pe) the approach to steady state is set by the passage of Brownian time as opposed
to the accumulated strain, with systems at φ = 0.54 and below taking 3–4 Brownian times
to reach steady state at Pe = 0.01. For larger φ this time scale is stretched rapidly, likely
due to the proximity of glassy physics. At very large Pe, meanwhile, steady states are
reached for strains γ̇ t of 1–2 (Ness & Sun 2016).

4.2. Brownian stress at zero shear rate
To obtain the Brownian contribution to the viscosity in the limit of zero shear rate,
we apply the Green–Kubo method (Hansen & McDonald 2013) by calculating the time
autocorrelation function of the shear stress, taking as input the Brownian stress computed
as described above, for unsheared simulations. The Brownian viscosity is written as

ηB,GK = V
kbT

∫ ∞

0
〈ΣB

xy(t +	t)ΣB
xy(t)〉 d	t, (4.1)

where ΣB
xy is the shear component of the Brownian stress tensor. The stress correlation

decreases exponentially with increasing	t so that the Brownian viscosity can be modelled
as ηB,GK(t) = ηφ(1 − e−	t/τφ ). As shown in figure 3(b), the correlation time τφ is short
and weakly varying for φ < 0.5, so that ηφ can be measured using readily accessible data
for which 	t/τφ is large. For φ > 0.5, however, τφ grows quickly and we estimate ηφ by
extrapolation. The rapid growth of the correlation time τφ is likely indicative of a nearby
glass transition (as is the evidence of the onset of caging demonstrated by the overshoots
visible in figure 2e), although we defer detailed analysis of this behaviour to future work.
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Figure 4. Establishing the parameter range in which particle inertia can be neglected. (a) Suspension viscosity
ηr (rescaled by the low τI/τS value) plotted against the time scale ratio τI/τS = ργ̇ a2/η (the Stokes number) for
kbT = 0 (so that τB = ∞) and φ = 0.55, showing that our rheology results are rate independent and therefore
inertia free for τI/τS � 0.1; (b) ηr (rescaled by the low τI/τB value) plotted against the time scale ratio τI/τB =
ρkbT/η2a for τI/τS < 0.01 and φ = 0.45. Shown are various values of Pe.

By this approach we obtain an estimate of the Brownian contribution to the viscosity at
zero shear rate, which we discuss further in the following.

Given the large quantity of data required for obtaining smooth results, it is worth
considering the scaling of the simulation run time with the system size. To estimate the
scaling of the run time, we carried out simulations with N = 101, 102, 103, 104 particles
with φ = 0.5, running a serial build of LAMMPS on one core for 107 timesteps. The result
shown in figure 3(c) confirms that our simulation has complexity O(N).

4.3. The role of inertia
It is crucial that, in varying Pe, one maintains acceptable values of τI/τS and τI/τB. To
determine sufficiently small values of these two ratios so that inertia may be neglected,
we carried out two sets of simulations. In the first we simulate shear flow with φ = 0.55
and kbT = 0 (so we do not need to consider the Brownian time scale τB), while varying
the dimensionless shear rate τI/τS from 5 × 10−3 to 10. To be in the limit in which inertia
is negligible, we require a linear relation between the shear stress and the shear rate i.e.
a Stokes flow. In other words, we are correctly simulating an inertia-free flow if ηr is
independent of τI/τS. From figure 4(a) we can observe that this holds for τI/τS � 10−1.
In what follows, we therefore ensure that this inequality holds for all parameter sets. Our
result here is qualitatively consistent with prior simulations (Trulsson et al. 2012) and
experiments (Madraki et al. 2020; Tapia et al. 2022), although the value of the Stokes
number at the cross-over is apparently highly sensitive to system details.

In the second we simulate shear flow with τI/τS < 0.01, φ = 0.45 and at a range of
Pe, exploring the relative importance of inertia by varying the time scale ratio τI/τB. This
control parameter essentially sets the distance a particle will typically cover under ballistic
motion. In order for inertia to be negligible in the model, we expect that this distance
should be at least an order of magnitude smaller than the particle size, so that a typical
Brownian kick to a particle does not lead it to collide with a distant neighbour. From our
result in figure 2(b) we find that a ballistic to diffusive cross-over occurs at 〈x2〉/a2 = 0.01
for τI/τB = O(10−2). Our shear simulations (figure 4b) similarly show that ηr is a function
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Figure 5. Rheology and microstructure of dense suspensions at the transition from Brownian to non-Brownian
flow. Shown in (a–c) are the suspension viscosity ηr as functions of Pe, for frictionless particles with
(a) φ = 0.45; (b) φ = 0.5 (shown also are results for two additional values of kn); (c) φ = 0.55, showing
the contributions from contacts, hydrodynamics and Brownian forces. In (d) is the total viscosity as a function
of Pe and φ. In (e) is the total viscosity as a function of Pe for μ = 1 and two values of ξmax, comparing our
results with those of Mari et al. (2015) (who also used ξmax = 0.5) and Foss & Brady (2000b) (whose model
contains full (long- and short-ranged) hydrodynamics). In ( f –h) are slices through the three-dimensional radial
distribution function g(ri, j) showing the flow–gradient (xy) plane under steady-state simple shearing conditions
for φ = 0.5 and ( f ) Pe = 0.01; (g) Pe = 1; (h) Pe = 10 000.

of τI/τB only when the latter quantity is > 0.01. Therefore, in what follows we carry out
simulations with τI/τB < 0.01 and τI/τS < 0.1.

4.4. Flow curves
Our main rheology results are presented in figure 5. We simulated a broad range of Pe
(10−2–104), focussing on three different volume fractions φ (figure 5a–c) and adhering to
the constraints on τI obtained above. To achieve this range of Pe it was necessary to vary
both the shear rate γ̇ and the thermal energy kbT . We present in table 1 a full list of the
parameters used to generate the result in figure 5(a). In each rheology figure we break the
overall viscosity down into its contributions from hydrodynamic, contact and Brownian
stresses. The stresses obtained by taking the outer product of the pairwise vectors and
forces evaluated during the simulation run are the hydrodynamic one, the contact one
and the ‘instantaneous’ Brownian stress. The latter (not shown in figure 5), as described
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earlier, averages to zero so does not lead to a viscosity contribution. The total stress (shown
in black in figure 5a–c) is therefore just the sum of the hydrodynamic and contact parts.

As a post-processing step we make an estimate of the effective Brownian stress
(approximating the one that would be measured in a SD simulation), following the
calculation based on structural anisotropy described earlier. This gives us the red lines
in figure 5(a–c). Interestingly the Brownian stress maps quite closely to the contact stress
for low Pe, indicating that the surge in contact stress observed in this range may be due
to short-lived contacts induced by the Brownian kicks. Indeed, the formulation of the
Brownian stress is similar to that of the contact stress, differing only in the presence of
the contact overlap δi, j appearing in the latter. In figure 5(d) are the total viscosities at
each measured φ, while in figure 5(e) we compare our results (using two values of ξmax)
with literature data. The invariance of ηr with kn demonstrated in figure 5(b) suggests that
the difference in the value of this quantity when comparing the present work with that
of e.g. Seto et al. (2013) does not have a significant influence on the predicted rheology.
Meanwhile, in figure 5(e) we show the extent to which our results depend quantitatively on
ξmax, and indeed that our data agree qualitatively with Mari et al. (2015) when choosing
the same value of this cutoff.

Overall, we find that the predicted rheology corresponds well with canonical results,
both in the experimental literature (Laun 1984; de Kruif et al. 1985) and those obtained
by SD simulation (Foss & Brady 2000b) and similar numerical methods (Mari et al.
2015). At all volume fractions there is a shear thinning region for Pe < 1 that gives
way to shear thickening beyond Pe > 1, with the ηr values at large Pe tending towards
those reported for non-Brownian suspensions under a very similar numerical framework
(Cheal & Ness 2018). For φ = 0.45 and φ = 0.5 we observe a low Pe plateau, whereas,
at φ = 0.55 (figure 5c), ηr apparently continues to increase with decreasing Pe. The latter
effect is perhaps an artefact of proximity to a glass transition, although we defer a more
detailed study of this effect to future work due to the diverging time scales involved.
The hydrodynamic stress increases weakly with increasing Pe, whereas the contact stress
qualitatively follows the overall stress in its shape. The increase in contact viscosity at
high Pe may be attributed to the onset of contact force chains as the system approaches the
non-Brownian limit and can be considered granular (Lin et al. 2015), while at low Pe it is
related to the Brownian forces as described above.

Shown in figure 5( f –h) are slices through the three-dimensional radial distribution
function g(ri, j), showing the flow–gradient (xy) plane at Pe = 0.01, Pe = 1 and Pe = 104.
The general shape of the pairwise distributions is consistent with literature data (Foss &
Brady 2000a), showing increased anisotropy with increasing Pe and a sharpening of the
peaks at a + a, a + 1.4a and 1.4a + 1.4a.

4.5. Viscosity variation with volume fraction
In order to understand better the limiting behaviour at small Pe, we determine the
behaviour of ηr as a function of φ. To do so, we first evaluate the Brownian contribution
to the zero shear viscosity using the Green–Kubo method described above. To obtain
an estimate of the full viscosity, we take the value of the hydrodynamic viscosity at
the smallest (non-zero) measured Pe, and add this to the Green–Kubo prediction of the
Brownian stress (assuming the latter to be a good proxy for the contact stress, as was
assumed by Brady (1993) and is supported by our simulation data in figure 5). Doing so
at a range of φ, and comparing the result with the minimum ηr measured at Pe = 4.6 for
each φ as well as the large Pe limit, we obtain figure 6(a).

984 A67-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

22
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.225


Simulating the rheology of dense suspensions

10–2102 103 104 105 106101

101

101

102

102

103

100
100 102 104 106

1000.650.600.550.500.45 102101 104103 106105

0

10

20

30

40

50

60

0

10

20

30

40

50

60

φ Pe

Pe = 0 (GK)
ηr = (1 − φ/0.59)−1.54

Pe = 4.64

ηr = (1 − φ/0.64)−1.59
Pe = 104

A/kbT
0
1
102

Pe

φ
0.5
0.55
0.58

103

ηr

ηr

ηr

ηr

Σxy/Σ0

Σ0 = (1/a3) (5kbT + 0.05A)

φ = 0.5

φ = 0.5

μ = 1μ = 0.5

μ = 0

μ
0
0.1
0.5
1

(b)(a)

(c) (d )

Figure 6. The viscosity variation with volume fraction and particle–particle contact friction. (a) Variation
of ηr with volume fraction φ at three Pe, showing fits to ηr = (1 − φ/φJ)

−λ; (b) ηr as a function of Pe for
several particle–particle friction coefficients μ and repulsive force magnitudes A/kbT at a volume fraction of
φ = 0.5. The line and marker colour represents the value of A/kbT as shown in the legend, whereas the markers
represent the value of μ. Thus each of the blue lines have a common value of A/kbT but differing μ; (c) ηr as
a function of Pe for several φ and A/kbT , with μ = 0.5; (d) ηr as a function of the shear stress Σxy rescaled by
a characteristic stress scale Σ0, for φ = 0.5 and μ = 1. The colour legend in (b) refers also to (c) and (d).

In both the low and high Pe limits, we find that ηr, particularly at large φ, can be fit
relatively well with a simple relation as ηr ≈ (1 − φ/φJ)

−λ, with φJ(Pe → 0) = 0.587
and φJ(Pe = 104) = 0.642 (and λ ≈ 1.5, similar to Mari et al. 2014). At intermediate Pe,
ηr is reduced relative to its value in the non-Brownian limit. The large Pe value of φJ
will be highly sensitive to details of the particle–particle contact interaction, especially
the presence of a static friction coefficient, as we have reported elsewhere (Cheal & Ness
2018; Singh et al. 2020). In particular, for large friction coefficients, the large Pe value
of φJ (usually denoted φm) will likely drop below the low Pe value. In this scenario, one
expects flow curves near jamming to be diverging at both low and high Pe, with finite
ηr at intermediate Pe. We leave this complexity to be explored in future work, and in the
following we examine the role of friction for a small range of φ.

4.6. Role of particle–particle friction and short-ranged repulsion
In the context of experimental work by Guy et al. (2015), it is important to consider the role
of particle friction at the colloidal-to-granular transition. Since granular particles are large,
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micron size objects they will likely have a static friction coefficient, which may constitute
both sliding and rolling components (Singh et al. 2020; Blair & Ness 2022). So far we
have only considered a model system of frictionless particles. It is well established that the
presence of static sliding friction means that each particle–particle contact will constrain
more than one degree of freedom of each particle, so that, for large friction coefficients (in
practice μ � 0.5), a rigid packing can be obtained with a per particle contact number of
≈ 4 (as opposed to 6 for frictionless spheres), with limiting volume fraction φm ≈ 0.57. In
figure 6(b) we report rheology predictions from simulations of suspensions with a range
of particle–particle friction coefficients μ (black data), demonstrating that the presence of
friction leads to a dramatic increase in ηr at large Pe. This behaviour, and its sensitivity to φ
demonstrated in figure 6(c) (black data), is qualitatively consistent with the large literature
on friction-driven shear thickening (see, most importantly, Mari et al. 2014, and the review
in Ness et al. 2022). Notably, ηr at lower Pe is unaffected by friction, suggesting that
Brownian forces suppress the mobilisation of static friction for all μ, at least at φ = 0.5. In
this respect, the Brownian forces act analogously to a weak repulsive potential, inhibiting
the formation of sustained particle contacts and rendering the suspension effectively
frictionless even when μ > 0 (see also Goyal et al. 2022). This leads to a bulk viscosity
with rate dependence qualitatively similar to that of shear thickening suspensions with
load-activated friction describable by the canonical model of Wyart & Cates (2014).

Importantly, however, is it not clear that the shear thickening transition, when controlled
by Brownian motion, is governed by a single stress scale. In particular, the range of Pe over
which the transition happens in figure 6(b) (black data) is rather broad (occurring over 4–5
orders of magnitude in Pe), especially when compared with Mari et al. (2015) in which the
transition takes at most 2 orders of magnitude in shear rate. To explore this we introduce a
short-ranged repulsive force defined by

F R
i, j = A

κ
exp

(
(ai + aj)− |ri, j|

κ

)
ni, j, (4.2)

with κ = 0.01(ai + aj). We show results of this model for A/kbT = 0, 1, 102, 103 in
figure 6(b) and for several φ at μ = 0.5 in figure 6(c). Introducing a sufficiently large
repulsive force scale (in practice we required A/kbT ≈ 100) narrows the range of Pe over
which shear thickening occurs, and shifts the transition to larger Pe. This result suggests
not only an additive effect of Brownian and repulsive forces as reported by Mari et al.
(2015), but rather a qualitative change in the functionality of ηr with Pe when the onset of
contacts is set by the magnitude of Brownian or repulsive forces. The qualitative change
is made clear in figure 6(d), in which we plot the viscosity as a function of stress, with the
latter rescaled by an additive combination of the Brownian and repulsive stress scales
(with prefactors chosen to best collapse the data). Beyond A/kbT = 1 there is a clear
qualitative change in the stress dependence. Examining this subtlety in more detail is a
promising area in which our model might be deployed. Thus, with the introduction of
particle–particle friction and a short-ranged repulsive force, we can control in our model
the position and extent of shear thickening, providing a flexible starting point from which
to make predictions of the rheology in more specific contexts.

5. Concluding remarks

In conclusion, we have implemented a minimal numerical model for the rheology of
dense suspensions that incorporates sufficient microscopic physics to predict the colloidal
to granular cross-over as a function of Pe. The model is implemented in LAMMPS
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(Plimpton 1995) so that its run time scales linearly with the number of particles. The
Brownian component of our model differs from that in SD in that we resolve the
fluctuations at a much shorter, inertial time scale. The naively calculated Brownian stress
therefore averages to zero over realisations and instead we compute an estimation of the
Brownian contribution to the stress based on the structural statistics measured from the
simulation. This stress follows closely the contact stress that we measure directly from
the pairwise forces and relative positions. The model predicts shear thinning at low Pe,
with a low Pe plateau (in some cases) that increases with volume fraction. At larger Pe
a Brownian regime gives way to a contact dominated regime in which particle–particle
interactions proliferate and friction (if present) becomes important. In this latter regime
shear thickening is observed even for zero particle friction, although its extent increases
with increasing friction coefficient. We finally introduced into our model a short-range
repulsive force, a crucial prerequisite for shear thickening in the paradigmatic model of
non-Brownian suspensions (Mari et al. 2014). This keeps particles separated and inhibits
the contact contribution to the stress, thus broadening the intermediate Pe viscosity plateau
(as observed by Cwalina & Wagner 2016) or equivalently shifting the value of Pe at which
particle contacts become important.

We have focussed in this article on steady, simple shear rheology. Broadening the
work to inhomogeneous conditions (such as those described by Gillissen & Ness
2020) and to dynamic simple shear to measure the frequency-dependent (and indeed
amplitude-dependent (Ness, Xing & Eiser 2017)) response are promising lines of future
research that will provide additional scope for constitutive model development and for
validation against experimental data.

In the future we anticipate deploying our code in mixed systems, in which one
population of particles are Brownian and another non-Brownian (Cwalina & Wagner
2016). This is motivated by numerous real world examples such as geophysical flows
and many scenarios in chemical engineering and manufacturing. In such systems the
small, Brownian particles (in some contexts these are referred to as superplasticisers) will
simultaneously contribute a Brownian stress but improve the efficiency of packing, so that
their overall effect on the rheology is non-trivial and likely to be non-monotonic and Pe
dependent. Mapping out this complexity as functions of the small and large particle sizes
and their relative numbers requires a tractable numerical model, and will likely rely on
the implementation of more advanced neighbour listing algorithms such as those by Shire,
Hanley & Stratford (2021). Extending this further to systems with continuous, broad size
distributions remains on open challenge (Mwasame, Wagner & Beris 2016).
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Appendix A. Demonstration that the Brownian forces and torques satisfy
fluctuation–dissipation theorem

Here, we demonstrate that our pairwise Brownian forces and torques adhere to
fluctuation–dissipation theorem. To do so they must obey the following two equations:

〈FB ⊗ FB〉 = 2kBT
	t

R, (A1)

〈FB〉 = 0, (A2)

where R contains both the pairwise and single-body contributions. It is trivial to
demonstrate that the single-body parts ((2.21) and (2.22)) are satisfactory, so in the
following we consider only the pairwise terms. We define the pairwise Brownian force
(and torque) as the 12 element vector FB = (F B,L

i, j ,F B,L
j,i ,T B,L

i, j ,T B,L
j,i ), before cleaning up

the notation by writing

⎛
⎜⎝

f 1
f 2
g1
g2

⎞
⎟⎠ =

√
	t

2kBTη

⎛
⎜⎜⎜⎜⎜⎜⎝

F B,L
i, j

F B,L
j,i

T B,L
i, j

T B,L
j,i

⎞
⎟⎟⎟⎟⎟⎟⎠ . (A3)

We take the following ansatz:

⎛
⎜⎝

f 1
f 2
g1
g2

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(√
X11

A N +
√

Y11
A T

)
ψ(

−
√

X11
A N −

√
Y11

A T
)
ψ

Y11
B /

√
Y11

A Eψ +
√

Y11
C − (Y11

B )
2/Y11

A Tφ

Y21
B /

√
Y11

A Eψ −
√

Y22
C − (Y21

B )
2/Y11

A Tφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A4)

where the elements of the random vectors ψ,φ satisfy 〈φiφj〉 = 〈ψiψj〉 = δij and 〈ψi〉 =
〈φi〉 = 〈φiψj〉 = 0, and the tensorial operations are defined as Nij = ninj, Tij = δij − ninj ,
Eij = εijknk. Here, angled brackets denote averages over realisations of the random vectors.
Since 〈ψi〉 = 〈φi〉 = 0, it is clear by inspection that our ansatz satisfies (A2). To satisfy
(A1), we need to verify that

〈⎛
⎜⎜⎜⎜⎝

f 1 f T
1 f 1 f T

2 f 1gT
1 f 1gT

2

f 2 f T
1 f 2 f T

2 f 2gT
1 f 2gT

2

g1 f T
1 g1 f T

2 g1gT
1 g1gT

2

g2 f T
1 g2 f T

2 g2gT
1 g2gT

2

⎞
⎟⎟⎟⎟⎠

〉

=

⎛
⎜⎜⎜⎜⎝

X11
A N + Y11

A T −X11
A N − Y11

A T −Y11
B E −Y21

B E

−X11
A N − Y11

A T X11
A N + Y11

A T Y11
B E Y21

B E

Y11
B E −Y11

B E Y11
C T Y12

C T

Y21
B E −Y21

B E Y12
C T Y22

C T

⎞
⎟⎟⎟⎟⎠ . (A5)

To do so it is helpful to first establish some useful identities relating the tensorial
operations. Operating on these random vectors, the normal and projection operators are
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idempotent

〈(Nψ)i(Nψ)Tk 〉 = ninjnknm〈ψjψm〉 = ninknjnmδjm = nink = N, (A6)

〈(Tψ)i(Tψ)Tk 〉 = (δij − ninj)(δkm − nknm)δjm = δik − nink − nink + ninkn2
j

= δik − nink = T, (A7)

and orthogonal

〈(Tψ)i(Nψ)Tk 〉 = (δij − ninj)nknmδjm = δijnknj − nink = 0,
〈(Nψ)(Tψ)T〉 = 0.

}
(A8)

Similarly, we obtain the following:

〈(Nψ)(Eψ)T〉 = 〈(Eψ)(Nψ)T〉 = 0, (A9)

〈(Tψ)(Eψ)T〉 = −E, (A10)

〈(Eψ)(Tψ)T〉 = E, (A11)

〈(Eψ)(Eψ)T〉 = T. (A12)

These relations similarly hold for φ, but any mixed φ and ψ terms average to zero. To
verify our ansatz we systematically examine each element of the tensors given in (A5) to
verify that the equality holds.

A.1. N + T terms
Using the above identities, it is straightforward to demonstrate that

〈 f 1 f T
1 〉 = 〈 f 2 f T

2 〉 = X11
A N + Y11

A T, (A13)

〈 f 1 f T
2 〉 = 〈 f 2 f T

1 〉 = −X11
A N − Y11

A T, (A14)

as required for the top left corner blocks of (A5).

A.2. E terms
Since the mixed φ and ψ terms average to zero, we obtain the following:

〈g1 f T
1 〉 = Y11

B 〈(Eψ)(Tψ)T〉 = Y11
B E, (A15)

〈 f 2gT
1 〉 = −Y11

B 〈(Tψ)(Eψ)T〉 = Y11
B E, (A16)

and similarly

〈 f 2gT
1 〉 = 〈g1 f T

2 〉 = −Y11
B E, (A17)

〈 f 1gT
2 〉 = 〈g2 f T

2 〉 = −〈 f 1gT
2 〉 = −〈g2 f T

2 〉 = −Y21
B E, (A18)

as required for the top right and bottom left blocks of (A5).
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A.3. T terms
The bottom right terms of (A5) are rather more involved in their algebra. We approach the
diagonal terms first, which, since only cross-product and tangential terms contribute with
no mixed terms, readily simplify to

〈g1gT
1 〉 = Y11

C T, 〈g2gT
2 〉 = Y22

C T. (A19a,b)

For the remaining terms, we need to check that

〈g2gT
1 〉 = 〈g1gT

2 〉 = Y12
C T. (A20)

Expanding 〈g2gT
1 〉 we obtain the following expression:

〈g2gT
1 〉 =

⎛
⎜⎜⎜⎜⎜⎝

Y21
B Y11

B

Y11
A︸ ︷︷ ︸
1©

−
√√√√√√√Y11

C Y22
C︸ ︷︷ ︸

2©
− Y22

C
(Y11

B )
2

Y11
A︸ ︷︷ ︸

3©

− Y11
C
(Y21

B )
2

Y11
A︸ ︷︷ ︸

4©

+ (Y21
B )

2(Y11
B )

2

(Y11
A )

2︸ ︷︷ ︸
5©

⎞
⎟⎟⎟⎟⎟⎠T, (A21)

where we have labelled the terms 1©– 5© to be addressed in what follows. In the first term
1© we have

Y21
B Y11

B

Y11
A

=

(
−4πa2

j

(
β−1(4 + β−1)

5(1 + β−1)2
ln

(
1
ξ

))) (
−4πa2

i

(
β(4 + β)

5(1 + β)2
ln

(
1
ξ

)))

6πai

(
4β(2 + β + 2β2)

15(1 + β)3
ln

(
1
ξ

))

= 2
5

aia2
j π

β(4 + β−1)(4 + β)

(2 + β + 2β2)(1 + β)
ln

(
1
ξ

)
. (A22)

Second term 2©

Y11
C Y22

C = 8πa3
i

(
2β

5(1 + β)
ln

(
1
ξ

))
8πa3

j

(
2β−1

5(1 + β−1)
ln

(
1
ξ

))

= 256
25

π2a2
i a4

j
1

(1 + β)2

(
ln

(
1
ξ

))2

. (A23)

Third term 3©

Y22
C
(Y11

B )
2

Y11
A

= 8πa3
j

(
2β−1

5(1 + β−1)
ln

(
1
ξ

)) (
−4πa2

i

(
β(4 + β)

5(1 + β)2
ln

(
1
ξ

)))2

6πai

(
4β(2 + β + 2β2)

15(1 + β)3
ln

(
1
ξ

))

= 32
25

π2a2
i a4

j
(4 + β)2

(2 + β + 2β2)(1 + β)2

(
ln

(
1
ξ

))2

. (A24)
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Fourth term 4©

Y11
C
(Y21

B )
2

Y11
A

= 8πa3
i

(
2β

5(1 + β)
ln

(
1
ξ

)) (
−4πa2

j

(
β−1(4 + β−1)

5(1 + β−1)2
ln

(
1
ξ

)))2

6πai

(
4β(2 + β + 2β2)

15(1 + β)3
ln

(
1
ξ

))

= 32
25

π2a2
i a4

j
(4 + β−1)2β2

(2 + β + 2β2)(1 + β)2

(
ln

(
1
ξ

))2

. (A25)

Fifth term 5©

(Y21
B )

2(Y11
B )

2

(Y11
A )

2
=

(
−4πa2

j

(
β−1(4 + β−1)

5(1 + β−1)2
ln

(
1
ξ

)))2 (
−4πa2

i

(
β(4 + β)

5(1 + β)2
ln

(
1
ξ

)))2

(
6πai

(
4β(2 + β + 2β2)

15(1 + β)3
ln

(
1
ξ

)))2

= 4
25

π2a2
i a4

j
(4 + β−1)2β2(4 + β)2

(1 + β)2(2 + β + 2β2)2

(
ln

(
1
ξ

))2

. (A26)

Collecting terms under the square root gives

= 4
25

π2a2
i a4

j
1

(1 + β)2(2 + β + 2β2)2
225β2

(
ln

(
1
ξ

))2

. (A27)

Therefore

〈g2gT
1 〉 =

⎛
⎝2

5
aia2

j π
β(4 + β−1)(4 + β)

(2 + β + 2β2)(1 + β)
ln

(
1
ξ

)

−
√

4
25

π2a2
i a4

j
1

(1 + β)2(2 + β + 2β2)2
225β2

(
ln

(
1
ξ

))2
⎞
⎠T

=
(

2
5

aia2
j π

β(4 + β−1)(4 + β)

(2 + β + 2β2)(1 + β)
ln

(
1
ξ

)

−6πaia2
j

1
(1 + β)(2 + β + 2β2)

β ln
(

1
ξ

))
T

= 4
5
πa3

i
β2

(1 + β)
ln

(
1
ξ

)
T

= Y12
C T. (A28)

We have thus demonstrated that the equality in (A5) holds, so that the forces and torques
given in our ansatz satisfy fluctuation–dissipation.
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