
Can. J. Math., Vol. XXV, No. 3, 1973, pp. 603-610 

EDGE PARTITION PROPERTIES OF GRAPHS 

C. WARD HENSON 

Introduction. Erdôs and Hajnal [1] have introduced an edge partition 
relation for graphs 

(1) G-ïÇHuH*) 

which means that whenever the edges of G are separated into two sets, E± and 
E2, there exists a subgraph G' of G such that G' is isomorphic to Ht and the 
edges of G' are all in Eif for i = 1 or 2. A class of graphs J ^ has the G-R (Galvin-
Ramsey) property [2] if for each H in Jf there exists a G in Jf which satisfies 
G-+{H,H). 

The results in this paper are stated in terms of a partition relation which 
is stronger than (1). We define 

(2) G~(HUH%) 

to mean that whenever the edges of G are separated into two sets, Ei and E2, 
there exists an induced subgraph G' of G such that G' is isomorphic to Ht and 
the edges of G are all in Eu for i = 1 or 2. A class of graphs J ^ has the strong 
G-R property if for each H in J f there exists a G in J ^ which satisfies G >-> (H, H). 

Galvin has asked whether the class J^ 3 of all finite graphs without triangles 
has the G-R property. This question is discussed in [2], where a subclass of 
J^3 is given which does have the G-R property. We give, in Section 1, a different 
sort of partial answer to Galvin's question: if Hi is in J^ 3 and H2 is either 
a finite tree or an even circuit C2Jc or a complete bipartite graph Kr>s, then 
(2) holds for some G in J^3 . (More generally, this assertion is true if J^ 3 is 
replaced by the class J f n of all finite graphs which have no complete subgraphs 
with n vertices, n ^ 3.) 

In Section 2 we prove that the class of finite comparability graphs [3 ; 4] has 
the strong G-R property. (Of course it has the G-R property, by Ramsey's 
Theorem, since it contains every finite complete graph.) In contrast, the class 
of all comparability graphs does not have the strong G-R property. 

Preliminaries. If G is a graph, we denote the vertex set of G by \G\ and 
the edge set of G by E(G). Thus 

E(G) = {{v, w] \vy w Ç \G\ and v is joined to w in G}. 

A graph H is a subgraph of G if | i f |C|G| and E(H) C E(G). H is an induced 
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subgraph if | i? |C|G| and 

E(H) = {{v,w} \v,w e \H\] r\E(G). 

For each nonempty subset A of \G\, let G\A denote the induced subgraph of G 
with vertex set A. For each v in \G\, the induced subgraph of G obtained by 
removing v is denoted by G — v. The cardinality of \G\ is denoted by c(G). 

A complete graph with n vertices is denoted by Kn. A circuit with n vertices 
is denoted by Cn. Thus \Cn\ = {v\, . . . , vn] where E(Cn) consists of the edges 
{vit vi+i} for 1 S i < n and the edge {vn, Vi\. A complete bipartite graph is 
denoted by Kr>s. This graph has r + s vertices V\, . . . ,vr and wx, . . . , ws, 
where E(KTtS) consists of all possible edges of the form {vu Wj}- A tree is a 
graph with no subgraph isomorphic to a circuit. A graph G is a comparability 
graph [3; 4] if there is a partial ordering < i on |G| such that 

E(G) = {\v> w\ \v < i w)' 

In that case we say that G is the graph defined by < i . 
The class of finite graphs with no subgraph isomorphic to Kn is denoted 

by JTn, for n ^ 3. 

1. Galvin's question about J#% may be broadened to ask whether jfw has 
the G-R property, for n ^ 3. We observe that if J^n has the G-R property 
then it must have the strong G-R property. This is a consequence of the fact 
that each H inCfcn is an induced subgraph of some H' m^n which is maximal, 
in the sense that the addition of any new edge to H' would create a subgraph 
isomorphic to Kn. If G is injfn and satisfies G —> (H\ H'), then the maximality 
of H' implies that G >-> {H\ Hr), and therefore G satisfies G >-> {H, H). 

This observation suggests an attempt to analyze those pairs Hi, H2 m^n for 
which there exists a G in J^n such that (2) holds. The results which follow each 
assert that if H2 is a certain fixed graph and H\ is an arbitrary member of J^w, 
then there exists a G inC^n for which (2) holds. The proofs are inductive and, 
in each case, depend on the fact that the induction assumption is stated in 
terms of the stronger partition relation (2). 

THEOREM 1. Let H2 be a finite graph of one of the following types: (I) a tree, 
(II) an even circuit C21i, or (III) a complete bipartite graph KTtS. If Hi is in 

Ji^n (n è 3), then there exists a G in C#\ which satisfies G >-> (Hi, H2)-

Proof. Fix n §: 3. Logically this proof consists of three different inductive 
arguments, each covering one of the three possible types of graph into which 
H2 may fall. In the cases where H2 is an even circuit or a complete bipartite 
graph, the arguments depend on the result for the case where H2 is a tree. 
However there are many common features of the three proofs, so that we 
shall present them together. In particular, the three induction steps all use 
a certain graph construction described below. 
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In Case ( I ) , where H2 is a tree, the argument is by induction on the number 
c(H\) + c(H2). In Case ( I I ) H2 is taken to be a fixed even circuit and the 
proof is by induction on c(Hi). In Case ( I I I ) , where H2 is a complete bipar t i te 
graph Krs, the argument is by induction on c{Hi) + r. 

In all three cases the basis step is trivial. Moreover, if v is an isolated vertex 
in H\ and if G >-> (Hi — v, H2), then G' >-> (Hi, H2), where G' is the result of 
adding an isolated vertex to G. Therefore in the various induction steps we 
m a y suppose t h a t Hi and H2 have no isolated vertices. 

T h e three induction steps make use of the following construction. Let Gi 
and G2 be members of J^ n , and l e t s / be the collection of all nonempty subsets 
A of |G2( such t ha t no two vertices in A are joined in G2. For each A in s/ let 
dA be a copy of Gi. Le t&~ be the set of all func t ions / denned o n s / such t h a t 
for each A G s/,f(A) is a nonempty subset of |Gi^| and GiA\f(A) is injfw__i. 
For each / in &~ let G2

f be a copy of G2 and let a r : G2 —* G2
r be an isomorphism. 

Given i Ç J / , let 

A' = {af(v)\v G A}. 

We assume tha t the vertex sets of the various graphs GiA and G2
f are 

pairwise disjoint. A graph G = G(Gi, G2) is constructed as follows. T h e vertex 
set of G is the union of all the vertex sets | G / | for A G J / and \G2

f\ f o r / G ^ . 
E(G) consists of the edge sets E(GiA) for A G s/ and E(G2

f) f o r / G J ^ 
together with all edges {v, w} where v £ Af and w G f(A) for some 4̂ G se 
and / G ^ . Note t ha t for A G J / and / G ^~ , the graphs GiA and G2

r are 
induced subgraphs of G. 

L E M M A 1. / / Gi awĉ  G2 are in3fn, then G = G(Gi, G2) is also in$fn. 

Proof of the Lemma. Suppose otherwise, so t ha t there exist vertices vi, . . . , vn 

each two of which are joined in G. Each induced subgraph GiA or G2
f of G is 

in Jf^. T h u s there exists A £_S$ a n d / Ç J^~ so tha t one of the edges {viy Vj} is 
of the form {v, w) where v G Af and w G f(A). Then each z^ mus t lie in 
AfKJf(A). Since no two members of Af are joined in G2

f it follows t h a t 
if vt T^ v, then vt G f(A). But this implies G 2

r | / ( ^ 4 ) is not in J f n _ i , which 
is a contradiction. 

Now we outline the proof of the rest of Theorem 1. In each of the three 
induction steps below, Hi is a given member of C^n and H2 is a special graph of 
the type being considered. A vertex v is chosen from Hi and the set of vertices 
joined to v in Hi is denoted by V. A certain graph H3 is constructed, depending 
on H2 and the case being considered, and a nonempty subset B of \H3\ is 
defined which has the proper ty t h a t no two vertices in B are joined in i73 . 

T h e induction assumption in each case assures the existence of a graph Gi 
in J^n which satisfies Gi >-> (Hi -~v,H2). There also mus t exist a graph G2 

in J^n which satisfies G2 >-> (Hi,H$). (In Case (I) this is assured by the 
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induction assumption; in Cases (II) and (III) it is assured by the induction 
assumption or by Case (I).) The graph G = G(Gi, G2), which is in %n by 
Lemma 1, is shown to satisfy G >-> (Hi, H2), thus completing the induction. 
This last step is proved by contradiction. Thus we assume that E\, E2 is a 
partition of E(G) such that no induced subgraph of G exists which is isomorphic 
to Hi and has all its edges in Ei or is isomorphic to H2 and has all its edges 
in E2. Therefore, for each A in s/ there is an induced subgraph GA of GiA 

such that G A is isomorphic to Hi —v and E(GA) Q E\. For each such A let 
f(A) be the subset of GA corresponding to V under the given isomorphism 
between GA and Hi —v. Since Hi is in Jfw, GA\f(A) must be in Jfn-i. Thus 
the function/ is an element of J^~. There is an induced subgraph H' of G2/such 
that H' is isomorphic to H\ and E(H;) Ç E2. Let B' be the subset of \H'\ 
which corresponds to the set B under the given isomorphism between H' and 
Hz. Then no two vertices in B' are joined in G2

f, so there exists an A ms/ for 
which B' = Af. 

Keeping this notation, we now turn to the details of each case. 
Case (I). In this case H2 is a finite tree. Choose a vertex w in H2 which is 

joined to exactly one vertex, u. (This is possible since H2 is a finite tree and 
may be assumed to have no isolated vertices.) In this case Hz is taken to be 
H2 — w and B is {u\. 

Let u! be the vertex of H' for which B' = {u'\ = Af. Then E(G) contains 
every edge between u' and elements of f(A). If all these edges are in Ei, 
then the induced subgraph of G with vertex set \GA\ U {^j is isomorphic 
to Hi and has all its edges in E\. Otherwise there exists v' in/(^4 ) such that {vf, u'\ 
is in E2. In that case the induced subgraph of G with vertex set \H'\ U |zi') 
is isomorphic to H2 and has all its edges in E2. Therefore we have shown 
G >~> (Hi, H2), as asserted. 

Case (II). Here H2 is an even circuit C2k, k ^ 2. Let p > 0 be the number 
of elements in V. Hz is a certain finite tree, in this case, with distinguished 
vertices vo, Vi, . . . , vp+\. Let Hz have other vertices and edges so that Vo is 
joined to each other vt by a path of exactly k — 1 edges. The set B is defined 
to be {vi, v2j . . . , vp+i}. Since iJ3 is a tree, the existence of G2 is assured by 
Case (I). 

Now let vi, . . . , Vp+i be the elements of B', so that Af = {vi, . . . , vp+i\. 
Then E(G) contains all the edges between the vertices v/ and the elements 
of /04) . Suppose that for some 1 ^ i ^ p + 1, every edge of the form {v/, u], 
where u is i n / 0 4 ) , is an element of JSi. Then the induced subgraph of G with 
vertex set \GA\ VJ {v/} is isomorphic to Hi and has all its edges in E\. Other­
wise, for each i (1 S i S P + 1) there is an element ut off(A) so that {v/, Ui\ 
is in E2. Since f(A) has p elements there must exist i, j (1 ^ i < j ^ p -\~ I) 
such that Ui = Uj. Let G' be the induced subgraph of G whose vertices are 
uu Vi, v/ and all the vertices on the unique path in H' from vi to v/. Then 
Gf is a circuit with 2k vertices and E(Gr) C E2. This completes the argument 
that G >-> (Hi, H2) in this case. 
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Case ( I I I ) . In this case H2 is a complete bipart i te graph Krs. If r = 1, 
then H\ is a tree and Case (I) applies. Thus we assume r > 1. Again let p > 0 
be the cardinali ty of V. Here we let i7 3 be KT_ijPS; let 

|if3 | = {Vl, . . . , flr-l, Wi, . . . , Wvs\ 

where E(H-S) consists of all possible edges of the form {vuWj\. Le t 
B = {w\, . . . , wps\. The induction in this case is on the quan t i ty c(Hi) + r, 
so the existence of G2 is assured by the induction assumption. 

As in Case ( I I ) , if there is a vertex in B' whose edges with elements of f(A) 
are all in E\, then we obtain an induced subgraph of G which is isomorphic 
to Hi and has all its edges in E\. Otherwise, since f(A) has p elements and B' 
has ps elements, there is a vertex u in f{A) and s vertices Vi , . . . , v/ in Bf 

such t h a t {u,v/\ is in E2 for i = 1, . . . , s. Let G' be the induced subgraph 
of G whose vertices are u, Vi, . . . , z// and the r — 1 vertices in | i J ' | ^ |2$'|. 
Then G' is a complete bipart i te graph Krs and E(G') C £ 2 . This completes 
the proof of Theorem 1. 

T h e simplest open problem of the type in Theorem 1 is the following: if 
Hi is in J ^ 3 and H2 is the 5-circuit C5, does there exist a G in J ^ 3 such t h a t 
G >-* (Hi, H2)t Also, given finite graphs i f i and iiZ"2, one may ask whether 
any graph G exists which satisfies G >-> ( # 1 , # 2 ) . In other words, does the 
class of all finite graphs have the strong G-R property? 

2 . Erdos and Hajnal [2] have made the observation t ha t if G satisfies 
G —> (G, G), then the class of finite subgraphs of G has the G-R property. 
This is the principal method by which classes of finite graphs with the G-R 
proper ty are obtained in [2]. Actually, many of the infinite graphs they 
construct satisfy the stronger condition G >-* (G, G). In t h a t case the class 
of finite induced subgraphs of G, which we will denote by J ^ ( G ) , has the 
strong G-R property. 

In general it is difficult to give an intrinsic characterization of J ^ ( G ) . 
Therefore this method is not likely to be sufficient to decide whether a class 
likeJ^n or the class of all finite graphs has the strong G-R property. However, 
as we show next, the class of finite comparabil i ty graphs is the union of 
certain subclasses of the form J ^ ( G ) where G satisfies G >-> (G, G). As a 
consequence we have the following result. 

T H E O R E M 2. The class of finite comparability graphs has the strong G-R 
property. 

Proof. Let N be the set of positive integers. For each A CI N and each 
k ^ 1, let [̂ 4]* denote the collection of finite subsets of A which have cardin­
ali ty k. We will always write an element a = {ai, a2y . . . , ak\ of [N]k so 
t ha t a\ < a2 < . . . < ak. Define a part ial ordering <k on [N]2k by 

a <k b <^ for each j = ! , . . . , & , a2j_i < b2j-i < b2j < a2j* 
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Let Gk be the comparability graph defined on the vertex set [N]2k by the 
partial ordering <k. We will show that Gk >-> (Gkl Gk) for each k ^ 1 and 
that each finite comparability graph is isomorphic to an induced subgraph 
of some Gk. From these facts will follow the Theorem, as discussed above. 

Let Ei, E2 be a partition of the edge set of Gk. Define a bijection from 
E(Gk) onto [N]Ak by letting the edge {a, b} of Gk correspond to the set 

{O-l, & i , Z>2, 0 2 , • • • , 0 2 * - 1 » &2fc- l , &2fc, 02A;}-

This determines an induced partition of [iV]4*. Applying Ramsey's Theorem 
yields an infinite subset A ol N (and i = 1 or 2) such that if a and b are 
in [A]2k and a <&&, then {a, b} is in E*. But the induced subgraph of Gk 

with vertex set [A]2k is obviously isomorphic to Gk. Therefore Gk satisfies 
Gk>-> (Gk, Gk). 

Now let G be an arbitrary finite comparability graph. Suppose G is defined 
by the partial ordering <<C on |G|. Let n = c{G) and let a±, . . . , ak be a list of 
all bijections a from \G\ onto {1, . . . , n\ which satisfy 

v <£w =ï a(v) < a(w), for all v, w Ç |G|. 

Each such bijection a corresponds to an extension of <C to a total ordering on 
\G\. Therefore, it follows that for each v,w£ \G\ 

v <<C w <^ oij(v) < o>j(w) for all j = 1, . . . , k. 

Now we define a mapping F of \G\ into [N]2Jc. Given v in |G|, let 

F(v) = {au a2, . . . , a2fc}, 
where 

a2^-i = 2n(j — 1) + aj(v) and 
a2j ~ 2nj + 1 — cij(v) for each j = 1, . . • , fe. 

It is easy to check that for each v, w in \G\, v <<C w is equivalent to F(v) <k F(w). 
Therefore F is an embedding of the graph G onto an induced subgraph of Gk. 
This shows that every finite comparability graph is an element of J^(Gk) for 
some k, completing the proof. 

The class of all comparability graphs does not have the strong G-R property, 
as is implied by the following observations. 

(i) If G and H are comparability graphs and G >-> (H, H), then there is a 
well-founded partial ordering which defines H. 

Proof. Let < i be a partial ordering on \G\ which defines G and let < 2 be 
a well-ordering of |G|. Define 

Ei = {{v, w} \v <\W and v < 2 w] 

E2 = {{v, w] \v < i w and w < 2 v}. 

Then Ei, E2 is a partition of E(G), so that there is an induced subgraph G' of 
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G such that G' is isomorphic to H and E(Gf) C Ex or C £2 . We may assume 
that E(G') C Ei, changing from < i to its converse partial ordering if neces­
sary. Then the restriction of < i to \G'\ is a well-founded partial ordering and 
it defines G', since G' is an induced subgraph of G. 

(ii) Every partial ordering <K which defines the comparability graph in 
Figure 1 satisfies 

u <£v <&w or w <&v « w 

FIGURE 1 

(iii) If H is a comparability graph and <3C is a partial ordering which defines H, 
then there is a comparability graph H' such that H is an induced subgraph of 
Hr and the restriction to \H\ of any partial ordering which defines H' is equal to 
<<C or to its converse. 

Proof. We may assume that there exist v0 and v\ in \H\ such that for any 
other v in \H\, vo <3C v <<C V\. For each v in \H\, add two new vertices v' and v" 
to \H\. Extend <<C to this new set as follows. 

(a) For each v in \H\, let v' « v, v <<C v" and v' « v". 
(b) For each u, v in |i7| with u<^v, let uf <£v,u<£ v", uf <C v;/ and z;r <<C u". 

It is easy to check that this extension of <<C is a partial ordering. Let H' be 
the comparability graph which it defines. Obviously H is an induced sub­
graph of H'. 

Now let < i be any partial ordering which defines Hf. We may assume 
that Vo < l vi, passing to the converse partial ordering of < i if necessary. For 
u, v, w in \H\, if u <<C v <K w then there is an induced subgraph of H' like that 
in Figure 1, with a equal to u" and b equal to w'. Therefore, by (ii), either 
u <\v <\W or w <iv <\U. Applying this when u = v0 and w = Vi yields 

^o <iv < i » i 

for any other v in \H\. But if u, v are in H and u<^v, then u <\V (since 
vi <\V <iu is impossible). Since the restriction of < i to \H\ defines H, 
it follows that this restriction must equal <<C 
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Now let « be any partial ordering such that neither « nor its converse is 
well-founded, and let H be the graph it defines. Let H' be the comparability 
graph constructed from H as in (iii). Then there is no well-founded partial 
ordering which defines H'. By (i) it follows that for no comparability graph G 
does G >-> (Hf, H') hold. Thus we have proved: 

THEOREM 3. The class of all comparability graphs does not have the strong 
G-R property. 

This argument leaves open the possibility that the class of comparability 
graphs definable by well-founded partial orderings does have the strong 
G-R property. 

Remark. The proof of Theorem 2 actually proved the following, apparently 
stronger fact: given a finite partial ordering < i there is another finite partial 
ordering < 2 such that if E\, E2 is a partition of the set 

{{x,y} \x <2y] 

then there is a subset A of the domain of < 2 for which 

{{x, y] \x, y Ç A and x < 2 y) 

is contained in E\ or E2 and the restriction of < 2 to A is isomorphic to < i. 
Indeed, this fact can be inferred easily from Theorem 2, using observation (iii) 
above: Given < i let <<C be a finite partial ordering with restrictions isomorphic 
to < i and to the converse of < x . Let H' be constructed as in (iii) from the 
graph H defined by <<C, and let G be a comparability graph which satisfies 
G >-> (H', H'). Then any partial ordering < 2 which defines G will have the 
property expressed above. 
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