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1. Introduction

Let n be a positive integer. We give an elementary construction for the
nth variation, V,(f), of a real valued continuous function f and prove an
analogue of the classical Jordan decomposition theorem. In fact, let C[0, 1]
denote the real valued continuous functions on the closed unit interval, let
A, denote the semi-algebra of non-negative functions in C[0, 1] whose first »n
differences are non-negative, and let S, denote the difference algebra 4,— A4,.
We show that S, is precisely that subset of C[0, 1] on which V,(f)<co.
(Theorem 1).

This paper can be regarded as completing our work in (2) where we discussed
S, as a Banach algebra in its cone norm. We show that our nth variation
norm coincides with the cone norm on S, and combine this representation
theorem with the main results of (2) in the statement of Theorem 2.

This work forms part of the author’s Newcastle Ph.D. thesis, and was
undertaken while he held the title of Junior Research Fellow in the University
of Edinburgh and was supported by the Carnegie Trust. I wish to thank my
research supervisor Professor F. F. Bonsall for his helpful advice and Dr. E. J.
Barbeau for checking an early draft of the manuscript and removing some errors.

2. Notation

A, ={feC[0,1]: Ajf(x)20,0sr<n 0 x<x+rh 21},
where

Apf(x) = f(x), ALf(x) = flx +h) —f(x), K, f(x) = A(AL™ ().
Sa=A,—A,={f-g:f,ge A} Ap= () A,and S, =A,—A4,.
It is well known (cf. (4)) that "l
A, = {fe C[0,1]:f(n= Y ot a 20, Y a< oo}.
r<o r=o

It follows that S, comprises those functions in C[0, 1] with absolutely con-

vergent Taylor series.

3. nth variation
Suppose that 0<x < 1, then we say that a subdivision D of [0, x] is n-

admissible if D is of the form {x,}"- o, where m 2 n, 0 = xo<x;...<x, < X,
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X,—X,-y = hp, r=1, ..., my and x—x,,<hy,. Note that the mesh length h,
completely determines D.

Definition. For each fe C[0, 1] we define the nth variation of f over [0, 1] by

ip=swp TS L |l
where D ranges over all n-admissible subdivisions of [0, 1].

If V,(f)<co, we say that f has bounded nth variation on [0, 1].

For the remainder of this section we suppose that f belongs to C[0, 1]
and has bounded nth variation on [0, 1].

If 0<x < 1, and D is an n-admissible subdivision of [0, x], let

o= L oo ¥ |8fce)l po= L o T (G )",
M= L e ¥ (Bhafn)
(If A is a real number, 2* = max (4, 0), /1' = —min (4, 0).) We define

t(x) = sup tp, p(x) = sup pp, n(x) = sup ny,
D D D

where, in each case, the sup is over all n-admissible subdivisions of [0, x].
If x = 0, define p(0) = n(0) = #(0) = 0. Note that #(1) = V, (/).
Interchanging the order of summation in the above gives a neater formula:

Lemma 1.
— ('” r- 1) 8. po= 3 ('" r- 1)(A ),
r=0 n-— r=0 n-—
np=Y (’""‘l)mz,,f(x,»'.
r=o n—1
Lemma 2.

(i) tD = pD+ n ps
n—1
@) pp=rp=fGm)~ T (’:‘) 47,50).

Proof. Part (i) is obvious. Let us consider (ii)). We have

m=n

Po=mp= L . 38005

I‘”—

The right hand side equals

Z Z (Bh5 (%, 4 1) — M35 H(0)),

rn = rz =
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and repeated application gives

n—1 —
Pp—np = f(Xp)— zo(’" r”*’) o f(tn—r—1)-

r=

The difference operator satisfies

Binirerd =" 5 ("‘:‘l) )
so that
Po= o =)= 3. 4AL,SO)
where

o = Z (m—-n+an—-r+1)'
r=0 r S—r

By comparing coefficients of z* in the identity

(1 _z)—m+n—1(1 _Z)—n+s = (1 _Z)—m+s—l’

we see that o, = (m), s=0,..,n—1. It follows that

n=1 m
po=mo=fx)= T (") 85,509,

as required.
The next two lemmas constitute the crucial step in the argument.

Lemma 3. If D’ is obtained from D by bisecting each subinterval of D
(and adding a new right hand end-point if necessary) then

tpr 2 tp, Ppr 2 Pps Npr 2 Np.

Proof. It will suffice to consider p,. Since the addition of a right hand
end-point will not decrease p, we can suppose no such addition is made.

Suppose, then, that D = {x,}".,, D' ={y}?% o Where x,—x,_, = h,
r=1, .., m y—y,_,=3%h, r=1, ..., 2m, and, in particular, y,, = x,,
r=0,1, .. m

Write

lr = (A;l'f (xr))":, = (A;hf (y'))+ .

Then by Lemma 1,

o 5 (7)1 0

)

~
)
]
3
1
N
N
3
i
-
|
39
N—
~

We define
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The coefficient of u,; in gp. is not greater than

m—s+t—1\/n
Oégén( n—1 XZt)'

But_by equating coefficients of z2™~2"" in the identity
(1-2)7"=(1-25)""(1+2),

¥ m—s+t—1\/n _ 2m—-2s—1
0sZtsn n—1 2t n—1 )
Similarly the coefficient of y,,,, in g is not greater than

Z m—s+t—1 n _[(2m—25-2
0<2tF1 5n n—-1 2t+1 n—1 '

It follows from (2) that
2men (Om—r—1
Pr= X ( )ur 2 qp- @

we obtain

r=0 n—1

3 (':) parvi= % (’:)(A;hf(yz,+,))+ = ( > (’:) B 03rs0)
(50 B0300) = W8S02D* =

so that ) (':) Uarse = Ay, and hence, by (3), (1),

t=0
=P im-r—1
qD’g Z < )ArzpD

r=o\ n-—1
Together with (4) this shows that pp = pj, as required.
Lemma 4. (i) #(x) = p(x)+n(x).

@ 2= =10 % (%) tim Assc0m)

=o\r!
Proof. The case x = 0 is trivial. Accordingly we suppose that 0<x < 1
By Lemma 2,

n—1

Pp=np+f(xm)— Y. (':’) A;, f(0),

r=0

so that

p(x) 2 np+f(xm)— "il (T) A7, f(0).

r=0
In view of Lemma 3 we may choose k arbitrarily small. We note that

mh = x,>x—h
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so that x,,—»x and m— o0 as h—0,. Hence

P2 ) +H- Y lim (':’) AL f(0),

but

. m\ ., 1 Xim m! AL f(0)

Ao (r) Wf0) = ,.ll—Tz <r!><m’(m-—r)!>( h >
= i‘—r lim <Lf(0—)), 0Lrn—-1,
rlun-o. h"
so that
n—1 r
LOSLORV ORI (%) Tim (&f(0)/K). M

Similarly, the inequality
n—1
Po=flm+ T (':‘) A5, £(0) < n(x)

leads to .
n—1 r
LORLOEY ORI (ii') T (ALfO)/H). @

From (1) and (2),
lim (A;f(0)/h") = lim (A;f(O)/h), O=r=n-1,
=0+ =04

so that

n—1

p(x)—n(x) = f(x)— 'Zo (—:—,) ;.1-1.? (ALf(Q)/R"). 3)
Since tp = pp+np, #x) < p(x)+n(x). Buttp = (pp—np)+2np, so that

n—1

2nD +f(xm)— Z (':l) A;,Df(()) é t(x)’

r=

and hence

n-1

2n(x)+f(x)— Y

(x_) lim (ALfO)/R) < 1(x),
r!/)r-o.

ie. p(x)+n(x) £ t(x), using (3). Thus #(x) = p(x)+n(x), which completes the
proof.

Remark. The continuity of f figures essentially in the above. For example
there are discontinuous solutions (unbounded in any finite interval) of the
functional equation f(x+y) = f(x)+f(y). (Use a Hamel basis for the reals
over the rationals.) For such an f, #(x) = p(x) = n(x) = 0 but the full state-
ment of Lemma 4 is not meaningful (except in the case n = 1).

It remains to prove that, e.g. p(x) belongs to 4,. It seems convenient to
travel by a somewhat indirect route.
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Lemma 5. If1 < s =<n 0= x<1, then for any k>¢&>0 such that
x+sk+e £ 1,
+s 4s—1

p(x)+ ';1 (ZSr) p(x+2rk+e)2 Y (2:'_ 1) p(x+Qr+1)k—e)+sp(x+k),

r=1

§ e€ven.
3(s-1)

spx )+ i(si:l)( r+> p(x+Qr+Dk+e)2z Y ( ) p(x+2rk—eg)+ p(x),
r=1
s odd.

Proof. Let D be an n-admissible subdivision of [0, x+sk] with mesh length
h<gfs. For definiteness let D = {x,}{ . ,. Let ¢ be the largest integer such
that x, < x. (¢ may be zero i.e. if x = 0). Let m be the largest integer such
that x,4,, = x+k. Take A sufficiently small to ensure ¢ = n if x>0, and to
ensure m = nif x = 0.

We set x,,, = x,+rh, r =0, 1, ..., sm (this may or may not be a proper
extension of D) and write

t+mw—n t+mw—q—1
A

)(A )t w=1,..,s,
n—1

Py =

g=0

Po= Zo( —aT 1)(A St if x>0,

and p, = 0if x = 0.
Forw=2,...,s,

| Xpmee— (X +wWk)| = | x,+wmh—x—wk |
S |lx—x,+k—mh|+(w-1)| k—mh |
= | X m— O+ +(Ww—D| k—mh |<sh<e.

It follows that x+wk—& £ X, me < x+wkteforw =2, ..,
We now have

p(x+wk—¢) < sup p,, S p(x+wk+e),w=2, ..., 5,
D
@
Sup p; = p(x+k), and sup po = p(x),

where the sup is over all subdivisions of the type described above. However

t+ms—n

LT Zo BAALf(x D)™,

q=

—r t+mr—q—1
= X1 (X )

and the integer r satisfies max ((g—t+n)/m, 0) < r < 5. It follows that §,

uMn

where
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is the coefficient of z™**~97" in the expression (1 —z™)%(1 —z) ", and hence that
B, 2 0. This gives

uMm

, D7 '()p,;o. &)

(1) and (2) combine to give the required result.

The proof of the next Lemma follows a standard pattern used to prove the
continuity of a convex function. Recall our standing assumption that fis a
continuous function with bounded nth variation on [0, 1].

Lemma 6. If n = 2 then p is continuous in [0, 1[.

Proof. By the previous Lemma p is non-negative, non-decreasing and

satisfies
P(x+2k+e)—p(x+k) Z p(x+k)—p(x) 1)

whenever k>e>0, x = 0, x+2k+¢e £ 1.

Suppose that there exists >0 such that p(x+4)—p(x) = 6 whenever A>0.
Choose h = dm(m+1), ¢ = 1/m*(m+1) where m>2 is a positive integer
satisfying y+1/m < 1. By repeated application of (1), for different choices
of x, k, we obtain, forr = 2, ..., m+1,

PO+ rh+3r(r—1)8) = p(r+ (r— Dh+3r— 1)(r—2)6) = pr+h)—p(») 2 6.
Summation gives

Z [p(y+rh+3(r—1re)— p(y+(r—Dh+3(r—1)(r—2)e)] = mé.

Therefore p(y+ 1/m) = p(y + (m+ 1)h+3im(m+1)e) = mé—- 0, as m—oo. This
contradicts the boundedness of p, and shows that p is right hand continuous
on [0, 1[. A similar argument shows that p is left hand continuous on ]0, 1.

Definition. Suppose f belongs to C[0, 1] and has bounded nth variation on
[0, I]. We define

fi(x) = p(x)+ Z ( >11m (AL fO)/H)*, 0<x=1

fa(x) = n(x)+ Z ( > lim (A,f(0)/h)~, 0=x=1.

Note that f{x) = f1(x)—f3(x), 0 £ x < 1, by Lemma 4 (ii).
Lemma7. If0Sx < x+4rh<1,0=<r < nthen
Arfi(x) 20, Arfy(x)=0.

Proof. Since p is non-negative non-decreasing on [0, 1] in all cases, it is
not hard to see that f}, f, are non-negative, non-decreasing. This gives the full
result in the case n = 1.

If n = 2, it follows from Lemmas 5, 6 that p satisfies A;p(x) = 0 for

0 x = x+rh<l,
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0 =< r < n. It follows easily that a similar result holds for f;, f,. Since f}, f5
are non-negative, non-decreasing this may be strengthened to read

ALfi(X) 20, Ajf,(x)20for 0Sx<x+rh£1,05r<n.

Lemma 8. If f(x) = f3(x)—fux), 0 £ x £ 1, where f;, f, satisfy the
conditions

Af3(x) 20, Aifu(x) 20 for 0Sx<x+rh<1,0<r<n

then
Six) £ f5(x), fo(x) £ fuo(x) O0<x £ 1.
Proof.
(=) =48 a(x)20,0=sx<x+rh£1,02r<n,
hence

f3() Z (ALf(x)*, 0Sx Sx+rh 1, 05 r<n
If D is an n-admissible subdivision, say {x,}/'- o, of [0, x], where 0<x < 1,

then fy(x,)— "f (’;’) r £0) 2 pp (cf. Lemma 2). A fortiori,
n—1
FOES ) (’:’)(A;,,f(ow

and, reasoning as in the proof of Lemma 4, we deduce that f3(x) = f1(x).
Similarly f,(x) = f,(x). This completes the proof.

Theorem 1. Let f belong to C[0, 1] and suppose that n is a positive integer.
Then f has bounded nth variation on [0, 1] if and only if f is of the form f = fi—f5,
with f, f, € A,.

Proof. If fe A, then V,(f) £ f(1) (see Lemma 2 (ii)). Therefore if
[ = fi—fr, with fy, f, € 4,

V() EVi(f)+Vf2) £ D) +fo(1) <00

Suppose now that f belongs to C[0, 1] and has bounded nth variation.
Suppose first that n = 2. In view of Lemmas 6, 7 it remains only to prove
that the functions f}, f, appearing in the statement of Lemma 7 are continuous
at 1.

Let fi(x) = f1(x), 0 £ x<1, f3(1) = lim fy(x),

X1

fax) =f(x), 0 £ x<1, f,(1) = 1i13 Sa(x).

It is easily seen that f,(1)—f,(1) = f(1). Moreover f3, f, have their first n
differences non-negative on [0, 1] so that, by Lemma 8, f3(1) = f,(1) and
fa(1) = f5(1). However the reverse inequalities hold since fi, f, are non-
decreasing on [0, 1]. It follows that f}, £, are indeed continuous at 1. In the
case n = 1 it is possible to prove f,, f, right hand continuous in [0, 1[ and
left hand continuous in ]0, 1] by making an appropriate choice of f5, f, in an
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argument similar to the above. Since such proofs are already well known in
this situation we omit the details.

4. Cone norm on S,

Bonsall proves in (1) that if 4 is a closed semi-algebra in a Banach algebra
then the difference algebra S = 4— A is itself a Banach algebra with respect
to the cone norm | ;. (|| |, is the Minkowski functional of the absolutely
convex hull of the unit ball of 4). In (2) we study the semi-algebras 4, (which
are closed in the uniform norm topology of the Banach algebra C[O0, 1])
obtaining an integral representation for the cone norm and relating the order
structure of S, to that norm. We shall now show that the results of Section 3
enable us to interpret the cone norm of S, as the nth variation nocm.

Definition. For fe C[0, 1] and any positive integer n,

171l =VaH)+ 20 | R GHOLY

jr!

With slight abuse of language we call | ||, the nth variation norm. (In fact
I 11, is a sub-additive extended real valued functional on C[0, 1]).

Theorem 2. Let n be a positive integer.
M {feC0, 1]:} f <0} = S, = 4,— 4,
(ii) S,, under | |,, is @ Banach algebra with maximal ideal space [0, 1].
(iii) {fe Syl " I = U f1)""} = £4,
(iv) S, with norm || |, and the order induced by A, is an abstract (L)-space.

Proof. (i) If fe S, then || £, = f/i(D)+f>(1) < o0, where f = f, —f, is the
canonical decomposition appearing in Lemma 7. The rest follows from
Theorem 1.

(ii) The definition of the cone norm, | |5, shows that

NS lls, = inf (1 fa [ +1 72 D
where || || denotes the uniform norm and the inf is over all f3, f, € 4, such
that = f;—f, (cf. (2)). By Lemma 8, fi(1) < f3(1) and f2(1) < f4(1). It

follows that
1A s, = 1A b+ 2 | = A +£O = | f |

since the uniform norm coincides with evaluation at 1 on 4,

We have now proved that | ||, coincides with the cone norm on S, and,
as a result, parts (ii), (iii), (iv) of the theorem coincide with Theorems 2, 3, 4
of (2).

5. The case of S,
Definition. For fe C[0, 1], let || |, = sup || /.
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Lemma 9. S, = {feC[0, 1]:|fll,<o0} and || |, coincides with the
cone norm on S,

Proof. Suppose that fe S, and that f = f{™ —f{™ is the canonical decom-
position of f regarded as an element of S,, » = 1, 2, .... Then

1£ . =P+, n=1,2, ..
If f = f3—f4, where f3, f, € S,,, then by repeated application of Lemma 8

LD-f(1) 2 ”f"n+1 2 "f"m n=1,2, ...
Hence sup || f ||, S fs(D+fa()<oo. Let f; = sup f{™, f, = sup f{. In fact,

fi(x) = lim f{?, fo(x) = lim f{"(x),

so that f,, /> have non-negative nth differences for each n = 1, 2, ..., and we
can show that £, f, € 4, (cf. the proof of Theorem 1).

Arguing as in the proof of Theorem 2 we deduce that f;(1) +£5(1) equals the
cone norm of f; and hence that || f ||, equals the cone norm of f.

Finally, if we are given fe C[0, 1] with | f ||, <oo then we can construct
fi, f> as above.

Remarks. (i) The Lemma shows that a function in C[0, 1] has an absolutely
convergent Taylor series if and only if its nth variation norms are uniformly
bounded. Note however that

CN0, 1] = {fe C[0, 1] : ¥(f)<o0, n=1,2,..}= () S.

n=1
where C)[0, 1] denotes the infinitely differentiable functions on [0, 1]. There
is no norm under which C [0, 1] is a Banach algebra, see (3).

(ii) It is not difficult to establish an isometric isomorphism between S,
with the cone norm, and the sequence space /. This means we have exact
analogues of parts (i) and (iv) of Theorem 2. The maximal ideal space of
S, is easily seen to be the closed unit disc, but the analogue of part (iii), which
amounts to describing those elements of S, on which spectral radius coincides
with norm, is rather tedious to state. The details appear in (2).
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