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1. Introduction
Let n be a positive integer. We give an elementary construction for the

nth variation, Vn(f), of a real valued continuous function / and prove an
analogue of the classical Jordan decomposition theorem. In fact, let C[0, 1]
denote the real valued continuous functions on the closed unit interval, let
An denote the semi-algebra of non-negative functions in C[0, 1] whose first n
differences are non-negative, and let Sn denote the difference algebra An — An.
We show that Sn is precisely that subset of C[0, 1] on which Vn(f)<co.
(Theorem 1).

This paper can be regarded as completing our work in (2) where we discussed
Sn as a Banach algebra in its cone norm. We show that our wth variation
norm coincides with the cone norm on Sn and combine this representation
theorem with the main results of (2) in the statement of Theorem 2.

This work forms part of the author's Newcastle Ph.D. thesis, and was
undertaken while he held the title of Junior Research Fellow in the University
of Edinburgh and was supported by the Carnegie Trust. I wish to thank my
research supervisor Professor F. F. Bonsall for his helpful advice and Dr. E. J.
Barbeau for checking an early draft of the manuscript and removing some errors.

2. Notation

An = {/e C[0, 1] : Ar
hf(x) ̂  0, 0 g r g n, 0 ̂  x ^ x + rh g 1},

where
A*°/« =/(*), Alf(x) =f(x + h)-f(x), Alf(x) = AUAJT/

Sn = An-An = {f-g:f,geAn}. An = fl An and Sm = Ax-Ax.
n = 1

It is well known (cf. (4)) that

e C[0, 1] :/(0 = £ «/, ar ^ 0, £ ar<co j .
r = O r = 0 J

It follows that Sm comprises those functions in C[0, 1] with absolutely con-
vergent Taylor series.

3. nth variation
Suppose that 0<x ^ 1, then we say that a subdivision D of [0, x] is n-

admlssible if D is of the form {xr}J?= 0, where m ^ n, 0 = xo<xl...<xm ^ x,
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206 G. BROWN

xr—xr_! = hD, r = 1, ..., m, and x—xm<hD. Note that the mesw
completely determines D.

Definition. For each/e C[0, 1] we define the nth variation off over [0, 1] by

Fn(/)=sup Y ! - £ \KJ{xri%
D rn = 0 r n - i = O r i = 0

where D ranges over all n-admissible subdivisions of [0, 1].
If ^n(/)<°°> we say tha t /has bounded nth variation on [0, 1].
For the remainder of this section we suppose that / belongs to C[0, 1]

and has bounded nth variation on [0, 1].
If 0<x ^ 1, and D is an n-admissible subdivision of [0, x], let

h=Y- S I AUWl, PD= Y - E (AUR,))+.
rn = 0 ri = O rn = 0 ri = 0

»i>= Y - E (AWfe,))-.
rn = 0 TI = 0

(If A is a real number, A+ = max (X, 0), A~ = — min (A, 0).) We define

t(x) = sup <D) p(x) = sup pD, «(x) = sup nD,
D D D

where, in each case, the sup is over all n-admissible subdivisions of [0, x\.
If x = 0, define p(0) = n(0) = *(0) = 0. Note that t(l) = Vn(f).

Interchanging the order of summation in the above gives a neater formula:

Lemma 1.

Y(:)\u\ z (
r = o \ n—1 / r = o \ n—

DY
r = 0

Lemma 2.
(0 tD =

(ii) pD-nD=f(Xm)- ^ f

Proof. Part (i) is obvious. Let us consider (ii). We have

PD~nD= Y - £ KJ{xri).
rn = O rj = 0

The right hand side equals

Y - 2 l V
rn = 0 r2 = 0
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and repeated application gives

PD-nD=f{xm)-
r = o \ r )

The difference operator satisfies
n-r-l I j

so that

Po-nD=f(xJ- f aAD/(0),
s = 0

where

«•= .?« ( r X . - r )
By comparing coefficients of z" in the identity

( l - z ) - m + n - 1 ( l - z ) - " + s = ( l - 2 ) - m +

/ \
we see that a, = I ], s = 0, ..., n—1. It follows that

W

5 = 0 \S

as required.
The next two lemmas constitute the crucial step in the argument.

Lemma 3. If D' is obtained from D by bisecting each subinterval of D
{and adding a new right hand end-point if necessary) then

tD- ^ *D> PD' £? PD> nD' ^ nD-

Proof. It will suffice to consider pD. Since the addition of a right hand
end-point will not decrease pD we can suppose no such addition is made.

Suppose, then, that D = {xr}™= 0, D' = {yr}f 1 0, where xr—xr^1 = h,
r = 1, ..., m, yr-yr-i = \h, r = 1, ..., 2m, and, in particular, y2r = xr,
r = 0, 1, ..., m.

Write
K = (AZ/(xr))

+, ft. = (A^/^,))+.
Then by Lemma 1,

(.--7

We define

= Z ( , E
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The coefficient of n2s in qD> is not greater than

y (m—s+t— l V n \
— — \ / \ /

But. by equating coefficients of z
2m~2s~n in the identity

we obtain
y (m-s+t-i\fn\ _ {2m-2s-i\
L I n—1 A2t) ~ V n — 1 I

Similarly the coefficient of //2s+i m 9B is n o t greater than
-s + t-l\f n \ (2m-2s-2\

It follows from (2) that

However,
f fi \ " I n\

''li2r+t~ t = o\t) ih 2r+' = Vt^o
n / \ \ +

E ( I Ai*/(j;2r + «) I = (Kf(yir))+ = ̂ r.
,= oy ' ' '

so that £ I I n2r+t ^ r̂> and hence, by (3), (1),
, = o V tj

m — r—1

Together with (4) this shows that pD, ^ pD, as required.

Lemma 4. (i) t(x) = p(x) + n(x).

(ii) p(x)-n(x)=f(x)- E ' f^) lim (ArJ(0W).

Proof. The case x = 0 is trivial. Accordingly we suppose that 0<x
By Lemma 2,

n - 1

PD = nD+KxJ- E

so that

r = o \ r i

In view of Lemma 3 we may choose h arbitrarily small. We note that

mh = xm>x—h
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so that xm-*x and m-*co as A-+0+. Hence

but

p{x)^n(x)+f(x)- "Y. Um
r = 0 *->O+ \ r

j , ^ o + \ r / *-o+ \ r ! / \m r (m-r ) ! / \ h'

-'umfXMX 0<r<n-l,

so that

Similarly,

leads to

From (1)

p(x)-n(x)Zf(x)- V (
r = 0 \

the inequality
n — 1 / N

PD-/(XJ+ E ( m

r = o \ r /

p(x)-n(x)^f(x)- £ (
r = 0 \

and (2),

^ Um (AJ/(O)/ftO-

) A ^ D / ( 0 ) ^ « ( x )

(1)

(2)

l im (AJJ/(O)//jr) = l i m (AJj/(O)/ /T), O ^ r ^ n — 1 ,
h-»0+ A-»O-t-

so that

p(x) —«(x) =/(x)— El (— ) l im (Afc/(0)//i9- (3)
r = o \ r ! / /i-*o +

Since ?D = pD+nD, t(x) ̂  ^(x)+n(x). But fD = (pD-nD)+2nD, so that

2«D+/(xJ- Y ( m ) A;D/(0) g <(x),
r = o \ r )

and hence

2«(x)+/(x)- "E f ^ lim (AJ/CO/fcO g f(x),

i.e. /?(x)+n(jc) ^ ?(x), using (3). Thus t{x) = p(x) + n(x), which completes the
proof.

Remark. The continuity of/figures essentially in the above. For example
there are discontinuous solutions (unbounded in any finite interval) of the
functional equation/(x+j) =/(x)+/(y). (Use a Hamel basis for the reals
over the rationals.) For such an / , t(x) = p(x) = «(x) = 0 but the full state-
ment of Lemma 4 is not meaningful (except in the case n = 1).

It remains to prove that, e.g. p(x) belongs to An. It seems convenient to
travel by a somewhat indirect route.
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Lemma 5. If\ ^ s ^ n, 0 ^ x < l , then for any k>e>0 such that

x + sk+e ^ 1,

i(s-l)/ \

^ X L )
r = i \2r/

s even.

s odd.

Proof. Let D be an M-admissible subdivision of [0, x+ski] with mesh length
h<e/s. For definiteness let D = {xr}/ = 0. Let t be the largest integer such
that x, ^ x. (t may be zero i.e. if x = 0). Let m be the largest integer such
that xt+m ^ x+k. Take A sufficiently small to ensure t ^ n if x>0, and to
ensure /w ^ w if x = 0.

We set xt+r = x, + rh, r = 0, 1, ..., J/M (this may or may not be a proper
extension of D) and write

9 = 0 \ «—

and p0 = 0 if x = 0.
For w = 2, ..., s,

\xwm+t—(x+wk)\ = | x(

^ | x-x,+k-mh
= \x,+m-(x+k)\ + (w-l)\k-mh\<sh<e.

It follows that x+wA: —e ^ 1,,,,+, ^ x+wAr+e for w = 2, ..., J.
We now have

p(x + wfe—e) ^ sup pw ^p(x+wk+£), w = 2, ..., s, 1

sup p! = p(x + k), and sup p0 = p(x),
D D J

where the sup is over all subdivisions of the type described above. However
s t+ms-n

I (-Ds->w=
w = 0

where

and the integer r satisfies max ((9— t+ri)/m, 0) g r g j . It follows that /?,
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is the coefficient of zms+t~q~" in the expression (1 -zm)s(l —z)~", and hence that
pq ^ 0. This gives

(*) (2)

(1) and (2) combine to give the required result.
The proof of the next Lemma follows a standard pattern used to prove the

continuity of a convex function. Recall our standing assumption that / is a
continuous function with bounded nth variation on [0, 1].

Lemma 6. Ifn^2 thenp is continuous in [0, 1[.

Proof. By the previous Lemma p is non-negative, non-decreasing and
satisfies

p(x+2k+e)-p(x+k) ^ p(x+k)-p(x) (1)
whenever &>e>0, x ^ 0, x+2k+e g 1.

Suppose that there exists 5>0 such that p(x+h)—p(x) ^ S whenever «>0.
Choose h = im(m + l), e = 1/W2(TM+1) where m>2 is a positive integer
satisfying y+l/m ^ 1. By repeated application of (1), for different choices
of x, k, we obtain, for r = 2 m + 1,

p(y + rh+ir(r~l)s)-p(y + (r-l)h + i(r-l)(r-2)e) ^ p(y+h)-p(y) 2; 5.

Summation gives

r = 2

Thereforep(y+l/m) = p(y+(m + l)h+im(m + l)e) ^ m8-*co, as m->oo. This
contradicts the boundedness of p, and shows that p is right hand continuous
on [0, 1[. A similar argument shows that/? is left hand continuous on ]0, 1[.

Definition. Suppose/belongs to C[0, 1] and has bounded nth variation on
[0, 1]. We define

fi(x) = p(x)+ "X (-\ Urn (AJ/(O)/«r)+, 0 ^ x £ 1
r = o\r!/*-o+

Ux) = n(x)+ "f (-) lim (A'J(0)lhT, Ogxgl.
r = o \r!/*-»o+

Note that/(x) = fi(x)-f2(x), 0 ^ JC ̂  1, by Lemma 4 (ii).

Lemma 7. 7/"0 ^ x ^ x+rn ^ l , 0 | r g n

Proof. Since p is non-negative non-decreasing on [0, 1] in all cases, it is
not hard to see that/!,/2 are non-negative, non-decreasing. This gives the full
result in the case n = 1.

If n ^ 2, it follows from Lemmas 5, 6 that p satisfies AJp(x) ^ 0 for

0 | x ^ x+rh<l,
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0 g r g n. It follows easily that a similar result holds for / j , / 2 . Since/,,/2

are non-negative, non-decreasing this may be strengthened to read

AJ/^x) ^ 0, AJJ/2(x) ^ 0 for 0 g x ̂  x + rh g 1, 0 ̂  r ^ n.

Lemma 8. If Ax) = /3(x)-/4(x), 0 g x ^ 1, wAere / 3 , / 4

A*/3(x) ^ 0, A£/4(x) ^0 for Ogx^
then

Mx) £/3(x),/2(x) g/4(x) 0<x
Proof.

hence
AJ/3 W ^ (A^/(x))+ . O g x g x + r / i g l , O g r g n .

If D is an ^-admissible subdivision, say {xr}"?= 0, of [0, x\ where 0 < x g 1,

t h e n / , ( x j - ^ (m) AJD/3(0) ^ pD (cf. Lemma 2). A fortiori,

and, reasoning as in the proof of Lemma 4, we deduce that /3(x) ^/ i (x) .
Similarly/4(x) ^ /2(x). This completes the proof.

Theorem 1. Let f belong to C[0, 1] and suppose that n is a positive integer.
Then f has bounded nth variation on [0,1] if and only iff is of the form f = ft —f2,
withfuf2eAn.

Proof. UfeAtt then VJJ) g / ( l ) (see Lemma 2 (ii)). Therefore if

Suppose now that / belongs to C[0, 1] and has bounded nth variation.
Suppose first that n ^ 2. In view of Lemmas 6, 7 it remains only to prove
that the functions fuf2 appearing in the statement of Lemma 7 are continuous
at 1.

Let /3(x) =/!(x), 0 g x< 1, /3(1) = lim f^x),

/•(x) =/2(x), 0 g x< 1, /4(1) = lim /2(x).
x-l-

It is easily seen that / 3 ( l ) - / 4 ( l ) =/( l ) . Moreover / 3 , / 4 have their first n
differences non-negative on [0, 1] so that, by Lemma 8, /3(1) ^ ft(l) and
/4(1) ^ / J C I ) - However the reverse inequalities hold since fu f2 are non-
decreasing on [0, 1]. It follows that/1 ; / 2 are indeed continuous at 1. In the
case n = 1 it is possible to prove fu f2 right hand continuous in [0, 1[ and
left hand continuous in ]0, 1] by making an appropriate choice of/3, / 4 in an
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argument similar to the above. Since such proofs are already well known in
this situation we omit the details.

4. Cone norm on Sa

Bonsall proves in (1) that if A is a closed semi-algebra in a Banach algebra
then the difference algebra 5 = A —A is itself a Banach algebra with respect
to the cone norm || ||s. (|| ||s is the Minkowski functional of the absolutely
convex hull of the unit ball of A). In (2) we study the semi-algebras An (which
are closed in the uniform norm topology of the Banach algebra C[0, 1])
obtaining an integral representation for the cone norm and relating the order
structure of Sn to that norm. We shall now show that the results of Section 3
enable us to interpret the cone norm of Sn as the nth variation norm.

Definition. Fo r / e C[0, 1] and any positive integer n,
n - l

hm /r!

With slight abuse of language we call || ||n the nth variation norm. (In fact
|| || „ is a sub-additive extended real valued functional on C[0, 1]).

Theorem 2. Let n be a positive integer.

(i) {/e C[0, l]:||/||,,<oo} = Sn = An-An.

(ii) Sn, under || ||n, is a Banach algebra with maximal ideal space [0, 1].

(iii) {/eSn:||/"+1 ||n = (| | / | |ny+1} = ±An.

(iv) Sn with norm || ||n and the order induced by An is an abstract {L)-space.

Proof, (i) I f / e Sn then || / ||n = /x(l) +/2(1) < oo, where / = fx -f2 is the
canonical decomposition appearing in Lemma 7. The rest follows from
Theorem 1.

(ii) The definition of the cone norm, || ||Sn, shows that

where || || denotes the uniform norm and the inf is over all f3, / 4 e An such
t h a t / = / 3 - / 4 (cf- (2)). By Lemma 8, ̂ (1) g/3( l ) and/2(1) g / 4 ( l ) . It
follows that

since the uniform norm coincides with evaluation at 1 on An.
We have now proved that || ||n coincides with the cone norm on Sn, and,

as a result, parts (ii), (iii), (iv) of the theorem coincide with Theorems 2, 3, 4
of (2).

5. The case of Sm

Definition. Fo r / e C[0, 1], let | | / L = sup
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Lemma 9. Sm = {fe C[0, l]:||/Hco<°o} and || !«, coincides with the
cone norm on S^.

Proof. Suppose that fe Sx and that / = f["^ —/2
(n) is the canonical decom-

position of/regarded as an element of Sn, n = 1, 2, .... Then

If/ = h—f*i where f3,f4 e S^, then by repeated application of Lemma 8

Hence sup | | / [ |B g/ 3( l )+/4( l )<oo. Let h = sup//"', f2 = sup/2
w. In fact,

n n n

/ i W = lim//">, / 2 (x)= lim/i"'(^),

so tha t /^ /2 have non-negative nth differences for each n = 1, 2, ..., and we
can show that / i , / 2 e An (cf. the proof of Theorem 1).

Arguing as in the proof of Theorem 2 we deduce that/i(l) +/2(1) equals the
cone norm of/, and hence that || / 1 | „ equals the cone norm of/.

Finally, if we are given fe C[0, 1] with | | / | | 0 0<oo then we can construct
fi,f2 as above.

Remarks, (i) The Lemma shows that a function in C[0, 1] has an absolutely
convergent Taylor series if and only if its wth variation norms are uniformly
bounded. Note however that

C(" )[0! l] = { /6C[0 ! l ] :F n ( / )<co, n = \, 2 , . . .}= f] Sn,
n = 1

where C(oo)[0, 1] denotes the infinitely differentiable functions on [0, 1]. There
is no norm under which C(oo) [0, 1] is a Banach algebra, see (3).

(ii) It is not difficult to establish an isometric isomorphism between £„>
with the cone norm, and the sequence space I1. This means we have exact
analogues of parts (i) and (iv) of Theorem 2. The maximal ideal space of
Sx is easily seen to be the closed unit disc, but the analogue of part (iii), which
amounts to describing those elements of S^ on which spectral radius coincides
with norm, is rather tedious to state. The details appear in (2).
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