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ABSTRACT. Recent developments in the studies of the transport
processes and the neutrino emission processes in the interior of
white dwarfs are reviewed. Special emphasis is placed wupon the
accuracy of the calculations. ionic correlation effects play an
essential role in the transport processes and the neutrino
bremsstrahlung process. The Weinberg-Salam theory is the basis for
the calculation of the neutrino emission processes.

1. INTRODUCTION

Transport processes and neutrino emission processes are the key
elements in the calculation of the evolution of white dwarfs.
Recent developments in plasma physics and high energy physics have
made accurate calculations of the transport processes and the
neutrino emission processes possible. In this paper we review the
recent developments in the studies of the transport processes and the
neutrino emission processes in the interior of white dwarfs.

2. TRANSPORT PROCESSES

Recent papers on the transport processes in the interior of
white dwarfs include Flowers and Itoh (1976,1979,1981), Yakovlev and
Urpin (1980), Raikh and Yakovlev (1982), Itoh et al. (1983), Mitake,
Ichimaru, and Itoh (1984), Itoh et al. (1984c), Nandkumar and Pethick
(1984), Itoh, Kohyama, and Takeuchi (1987).

2.1 Electrical and thermal conductivities of dense matter in the
liquid metal phase
Essential ingredients that go into accurate calculations of the
transport properties of the dense matter include the inter-ionic cor-
relations brought about by the strong Coulomb coupling and the
electron-ion interaction represented by the screening function of the
electrons. Our understanding of such many-particle effects in the
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Coulomb system has progressed remarkably during the period of those
developments due mainly to the advancement in the Monte Carlo method
and other theoretical means (see, e.g9., Ichimaru 1982). In this
section we take account of what we consider to be the most reliable
results currently available on the description of those many-particle
effects, and thereby present an accurate calculation of the electri-
cal and thermal conductivities of dense matter limited by electron-
ion scattering in the liquid metal phase.

We shall consider the case that the atoms are completely
pressure-ionized. We further restrict ourselves to the density-
temperature region in which electrons are strongly degenerate. This
condition is expressed as

TETE = 5.930X 109 [ [1+1.1018(Z/A)2/3p¢2/331/2 17 (K1, (1)

where Tgp is the Fermi temperature, Z the atomic number of the
nucleus, and pg the mass density in units of 106 g cm=3, For the
ionic system we consider the case that it is in the liquid state.
The latest criterion corresponding to this condition is given by
(Slattery, Doolen, and Dewitt 1982)

Z2e2
akpT

2
= 2.275% 10-1 L5 (LEY/3 ¢ 178 (2)
Tg A

where a={3/(4n nj)]1/3 is the i1on-sphere radius, and Tg the tempera-
ture in units of 108 K.

In the present calculation we restrict ourselves to the cases
where the high-temperature classical 1imit is applicable to the

description of the ionic system. Specifically we assume that the
parameter
H2kg2 1 Z
= — " = ].656X 1072 —— (—=-)2/3p2/3 (3)
Y = DMkgT ag (a7 7P

is much less than unity, where kp is the Fermi wave number of the
electrons and M is the mass of an ion. In Figure 1, we show the
parameter domain for the validity of the present calculation in the
case of 56Fe plasma.

For the calculation of the electrical and thermal conduc-
tivities we use the Ziman formula (1961) as is extended to the

relativistically degenerate electrons (Flowers and [toh 1976). On

deriving the formula we retain the dielectric screening function due

to the degenerate electrons. As to the explicit expression for the
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F1G.1. Parameter domain(shaded area) for the validity
of the present calculation in the case of ®6Fe plasma.

dielectric function, we use the relativistic formula worked out by
dancovici (1962). The use of the relativistic dielectric function
is an essential difference between the present work and that of
Yakovlev and Urpin (1980). Yakovlev and Urpin set the dielectric
function due to electrons equal to unity: this assumption is vatlid
only in the high-density limit.

Wworking on the transport theory for relativistic electrons
given by Flowers and Itoh (1976), we obtain the expression for the
electrical conductivity o :

PG 1

= 8.693% 1021 .
d A 1+1.018(Z/M352731<s)y

Is=17. (4)

Here the scattering integral <S> is evaluated for y{1 as

1 X K S(K/2Kf)
8> = d 3
5 (2kF) (2kF) [ (k/2Kg)2g (k/2Kp,0)12

1.018(2/A)2%/3pg2/3 %d(k) (K _y5 __Stk/2Kp)
1+1.018(Z/A)12/3pg2/3 2kp 2kp~ [(K/2Kp)2€ (K/2Kp,0)12

1.018(2/8)2/3pg2/3
1+1.018(Z/8)2/3pg2/3

It

(S_1> - <S412 (5)
where Hk is the momentum transferred from the i1onic system to an
electron, S(k/2Kg) the ionic structure factor. and ¢ (K/2Kkp,0) the
static dielectric screening function due to degenerate electrons.
The first term in equation (5) corresponds to the ordinary Coulomb
logarithmic term, and the second term is a relativistic correction
term.

For the ionic liquid structure factor we use the results of the
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improved hypernetted chain
component plasma (Iyetomi

(IHNC) theory for the classical one-
and Ichimaru 1982).
For the thermal conductivity &« for relativistically degenerate

electrons we analogously obtain the expression:

T 1
= 2.363% 1017 L618 —r
K= 236310 A T1+1.018(Z/M 235 ¢2731¢s>
Cergs cm~1 s-1 K-131 | (6)

where <5> i1s the same as that for electrical conductivity.
We have carried out the

cally by

integrations in equation (5) numeri-
IHNC structure factor of the classical

component plasma and Jancovici's (1962)

using the one-

relativistic dielectric func-
We have made calculations for the
parameter ranges 2= [ S 160. 10742 rg=<0.5. which cover most of the

tion for degenerate electrons.

density-temperature region
phase of astrophysical

In Figures 2,3,4,

importance.

of the dense matter

in

the liquid

and 5 we compare the results of the calcula-

tion of <S> by Yakovlev and Urpin (1980) (dashed curves)
present results (solid curves). For the IH matter and
1.0, T T 1.0
H
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FIG.2 FIG.3.
FIG.2.

Comparison of Yakovlev and Urpin‘'s results(dashed
curves) with the present results(solid curves)
I matter.

FIG.3. Same as FIG.2.

for the

for the 4He matter.
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FIG.4. Same as FIG.2. for the !2C matter.

FI1G.5. Same as FIG.2. for the 56fFe matter.

12

matter Yakovliev and Urpin's results amount to an overestimation of

<S> by 60% at low densities. For the 12C matter their overestima-
tion of <S> amounts to 40% at low densities. For the 56Fe matter
their overestimation is nearly 30% at low densities. At high den-

sities Yakovlev and Urpin's results are reasonably close to the
pPresent ones. The large amount of the overestimation of <S> at low
densities by Yakovlev and Urpin is due to their neglect of electron
screening. At high densities, however, the effect of the screening
due to electrons is relatively small. This is the main reason for
their overestimation of the resistivity (underestimation of the
conductivity) at low densities.

2.2 Electrical and thermal conductivities of dense matter in the
crystalline lattice phase
In this section we deal with the electrical and thermal conduc-
tivities of dense matter in the crystalline lattice phase I' >178.
The electrical conductivity ¢ and thermal conductivity & are re-
lated to the effective electron collision frequencies vy and v, by

2
€<l Z Z
= = 1.525% 1020 = . & 5 .)2/37-1/2

g A P6 [1+1.018 ( Ape) ]

18 -1

12___§___ s—1 , (7)
Vg
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2knp2 VA
- KT Ne _ 4 146x 10152 1+41.018 (= pg)2/31-1/2
K I, . A P8 [ (A pE) 3]

X Tg 191225:1, ergs cm~! s-1 k-1, (8)
where ng is the number density of electrons and m* is the relativis-
tic effective mass of an electron at the Fermi surface. In this
section we are interested in the scattering of electrons by phonons.
The collision frequencies vg and v , due to one-phonon processes
can be calculated by the variational method (Flowers and Itoh 19763

Yakovlev and Urpin 1980; Raikh and Yakovlev 1982) as

2
e2 kpT . 1
; =—— —2F = . X 16 1/2
VoK T Fup n 0.k T 9:-584X 1010 e LIk T s
XFg,k 57, (9)
272 ds ds’ Bk
F = 1- (=2)27 e-2W(K) | f(K) |2
G,K s2 k41 e(x,0)12 [ (ZKF) ] )
3 -~
Xg:_l[k-es(p)J2(eZS—1)‘2eZSgU,K (10)

In the above the integral is over the areas of the Fermi surface, Kk
is the momentum transfer, gs(p) the polarization unit vector of a
phonon with momentum p and polarization s, and

e 7 pgl/2 0616
= 2P - 7 .832x 10-2 6 = 0.3443 ,
"= XgT VY O V4 0.3443 176 (w1727 1:11)
= JDkpc = 14 1 v-1/2 (12)
A Ep { 1.0180(Z/8)pg1?/3 ° ’ 2
_— hwg(p)
2s= T (13
95 = k2, (14)
k2z42 3kpzg2
= K2- S FZs
Ik K Tt - R (15)
wp being the ionic plasma frequency. The momentum conservation
requires k=# p+K, where K is the reciprocal-lattice vector for the
Brillouin zone to which k is confined. In equation (10) we have in-

cluded the dielectric screening function due to relativistically
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degenerate electrons € (k,0), the Debye-Waller factor e~2W(K)  and
the atomic form factor f(k). Yakovlev and Urpin (1980) and Raikh
and Yakovlev (1982) have used the Thomas-Fermi screening and set
e 2W(K)=1, f(k=1.

The phonon spectra are modified by the screening due to
electrons. The longitudinal optical phonon turns into an acoustic
phonon in the long-wavelength limit, whereas the original transverse
acoustic phonons are little affected by the electron screening
(Pollock and Hansen 1973). Because the low-frequency transverse
phonons play dominant roles in the resistivity of dense stellar mat-
ter, we neglect the effects of the electron screening on the phonon
spectra and use the frequency moment sum rules for the pure Coulomb
lattice.

As we consider the case in which the Fermi sphere is much
larger than the Debye sphere, (kp/kp)3=Z/2) 1, Umklapp processes con-
tribute to the scattering dominantly, and the vector k in equation
(10) most probably falls in a Brillouin zone distant from the first
zone. When we perform an integration within a single distant zone
corresponding to the reciprocal-lattice vector K, we can make an ap-
proximation k=K in the integrand and carry out an integration over p
within the first zone only.

Here we follow the semianalytical approach adopted by Yakovlev

and Urpin (1980) and also by Raikh and Yakovlev (1982). We write
3 nnkz
L [k E5(p)12zgN(e5-1)"2e%5 ~ ——% ey, (16)
- 2 3
My y = T d N(eZ5-1)-2e%s
r aannEs=1$ p zgl(es5-1)"2es | (L7

where n=0 or 2, and integration is carried out over the first Bril-
louin zone, whose volume is Vg. By the use of this approximation Fg

and F, in equation (10) are expressed as

Fg = ILg GOy | (18)

Fre = 1g60crH+1, ¢y (19)
Hmax e"2W(a) | f(q)2 .

1g = §"%4 a) (1-B82q2) (20)

2 B i eq, 012
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Hpax e 2W(a) | f(q)12
142 = §™% g, @

1 3
(1-82q2) (- 7q2+T) , (21)

et 921 e(q,0)12
a = (1—;‘—‘—)1/2 . (22)
1_
amin = ¢ gmaX)l/z , (23)
Emax = 1-0.3575272/3 | (24)

Here we have introduced a small momentum transfer cutoff qpjp cor-
responding to the unavailability of Umklapp processes for d<dpjp-
The contributions of the normal processes are very much smaller than
those of the Umklapp processes. For the choice of qpjp we follow
Raikh and Yakovlev (1982). Yakovlev and Urpin (1880) derived the
asymptotic expressions of GO (7 ) and 62 ¢y ) for 7 €1 and 7 Y 1,
and proposed the following analytic formulae for arbitrary ¢ , which
fit the main terms of the asymptotic expressions:

3u_ 2
6O (¢ ymu_n [ 1+ ( 22275 1-1/20 13.00(1+0.01747 2)-1/2 | (25)
“ T!2C2

2
2/371-3/2= L (140.011872)-3/2, (26)

(2)( =
G 2

L PG LI
n2 andcy
where u-2= 13.00 (Pollock and Hansen 1973) and c9=29.98 (Coldwell-
Horsfall and Maradudin 1960) are the numerical constants that are
characteristic of the phonon spectrum of the bcc Coulomb lattice.
Raikh and Yakovlev (1982) calculated GO ¢y ) and ¢ (¢ ) numerically
with the exact spectrum of phonons for ¢ <100. It has been con-
firmed that the fitting formulae (25) and (26) have an accuracy bet-
ter than 10% even at 7y ~ 1.

We have carried out the numerical integrations of equations
(20) and (21) for 4He, l2¢, 160, 20Ne, 24Mg, 285y, 325, 40ca, S5S6fe.
Some of the results are presented in Figures 6-9. For comparison we
have also included the case where we have neglected the effects of
the Debye-Waller factor and set e~2W=y, We also show the results of
Raikh and Yakovlev (1982) which are

(lglgy =2 - B2, : (27)

(I 2)1gy= In Z - B2 + 1.583 . (28)
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FIG.6. I5 for the 12C matter. RY stands for the results
of Raikh and Yakovlev(1982).
FIG.7. 1,(2) for the !12C matter.
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FIG.8. 14 for the S56Fe matter.
FIG.9. I,(2) for the 56Fe matter.
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It is readily seen that the Debye-Waller factor reduces the resis-
tivities (enhances the conductivities) by a factor of 2-4 near the
melting temperature. This means that the results of Yakovliev and
Urpin (1980) and those of Raikh and Yacovlev 1882) give too low con-
ductivities by that factor. [t is very interesting to observe that
the present result is fortuitously rather close to the original
Flowers-1toh conductivity in the crystalline lattice phase near the
melting temperature (Flowers and [ftoh 1976,1981).

3. NEUTRINO EMISSION PROCESSES

Recent papers on the neutrino energy loss rates include
Munakata, Kohyama, and Itoh (1985), Kohyama, Itoh, and Munakata
(1986), Itoh, and Kohyama (1983), Itoh et al. (1984d), Itoh et al.
(1984a), Itoh et al. (1984b), Munakata, Kohyama, and Itoh (1887),
Schinder et al. (1987), and Itoh et al. (1988).

3.1 Photoneutrino process

The energy loss rate per unit volume per unit time due to the
photoneutrino process is expressed as (Munakata, Kohyama, and [toh
1985)

1 , .
Cphoto = 5 [(Cy2+Cp2) + n(Cy2+CAZIT WFppoto

- % [(Cy2-Cp2) + n(Cy2-CA2)] QU photo - (29)
Cy = 1/2 +2s5in2@, , Cp = 1/2 , (30)
Cy =1-Cy , CA=1-2Cp (31)
sin28y = 0.23 , (32)

where 6y is the Weinberg angle, and n is the number of the neutrino
flavors other than the electron neutrino whose masses can be
neglected compared with KkgT.

As in Munakata, Kohyama, and Itoh (1985) we have carried out
Monte Carlo computations, using the method of importance sampling, to
evaluate the five-dimensional integral which appears in Q+mmto and
Qphoto - In all the calculations of the photoneutrino process we
used 50000 random points. Schinder et all. (1987) used 50000 random
points for the calculations corresponding to the temperatures T=108,

109, 1010, 10!1 K, and they used 5000 random points for the other
temperatures.
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3.2 Pair neutrino process
The energy loss rate due to the pair neutrino process is
expressed as (Munakata, Kohyama, and Itoh 1985)

1 ’ ’
Qpair = 5 [(CV2+CA2) + n(cv2+CA2)] Q+pair

+ = [(Cy2-CA2) + n(Cy2-CAD) 1 W pair - (33)

1
2
At high temperatures ( T>109 K ), the energy loss rate due to the
pair neutrino process is independent of the density and dominates
over the other processes.

3.3 Plasma neutrino process

Kohyama, Itoh, and Munakata (1986) have shown that the axial-
vector contribution to the plasma neutrino energy l0ss rate is at
most on the order of 0.01% of the vector contribution for T= 10!l K.
Thus for practical purposes the axial-vector contribution can be
safely neglected. Therefore the energy loss rate due to the plasma
neutrino process is written as

Oplasma = (Cy2 + n Cy2) Qy . (34)

The expression for Qy has been given by Beaudet, Petrosian, and Sal-
peter (1967) and also by Kohyama, [toh, and Munakata (1986).

3.3 Bremsstrahlung neutrino process

The calculation of the neutrino energy loss rate due to the
bremsstrahlung neutrino process has been carried out in the two dif-
ferent regions: the region in which electrons are strongly degenerate
and the region in which electrons are partially degenerate.

In the first region we can take into account the ionic correla-
tion accurately. The calculation of the bremsstrahlung neutrino
energy loss rate based on the Weinberg-Salam theory which takes into
account the ionic correlation fully has been reported by Itoh and
Kohyama (1983), [toh et al. (1984d), Itoh et al. (1984a), and Itoh et
al. (1984b).

For the density-temperature region in which electrons are par-
tially degenerate, Munakata, Kohyama., and Itoh (1987) have calculated
the energy loss rate in the framework of the Weinberg-Salam theory.
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3.4 Comparison of various neutrino processes

In Figures 10-14 we show the contributions of the various
neutrino processes for the case of 5in28,=0.23, n=2, and 56Fe matter
corresponding to the temperatures T=107, 108, 109, 1010, 1011 K. In
Figure 15 we show the most dominant neutrino process for a given den-
sity and temperature for the case of n=2 and 56Fe matter. In Figure
16 we show the contours of the constant total neutrino energy loss

Log Q (ergs'enid) Log Q (ergs'en3)

LA AR R T T —

10 Fe LogT(=70(n=2) | o1 e LogTK=80 (n=2) ]

10

,-1OL | )

1 1 1

01 2 34 56 78 9 01 23456 7 8 91011 1
Log(pre) (gentd) Log(p/ke) (gentd)
FIG.10. FIG.IT.

F1G.10. Neutrino energy loss rates due to photo-,plasma,
and bremsstrahiung processes for n=2, 96Fe matter, T=107 K.
FIG.11. Same as FIG.10. but including pair neutrino
process, for T=108 K.

Log Q (erg§'eri3)
30t pe LogTK)=80 (n=2) 4
20t

Plasma

01T 2 3 4 5 6 7 8 9101 1213 W
Log(prue) (gend)
FIG.12. Same as FIG.11. for T=109 K.
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FIG.14. Same as FIG.11. for T=10!l1 K.
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FIG.15. Most dominant neutrino process for a given density

and temperature for the case of n=2 and 96Fe matter.
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FIG.16. Contours of the constant total neutrino energy

loss rates due to pair, photo-, plasma, and bremsstrahlung
processes for the case of n=2 and 56Fe matter,
log Q (erg s~! cm=3)=const.

rates due to pair, photo-, plasma, and bremsstrahlung processes for
the case of n=2 and 56Fe matter.

4. CONCLUDING REMARKS
The transport processes and the neutrino emission processes in

the interior of white dwarfs determine the structure and evolution of
white dwarfs. The recent developments in this field reviewed in
this article are expected to elucidate the comparison of the observa-
tions of white dwarfs with the theoretical studies. It is interest-
ing to quote the following:

“Observe me well, Princess, before you give me

your word,” said the Yellow Dwarf.

The classic fairy tales

[ would make a parody of this as follows:

“0Observe me well, Astronomers, before you give me

your word,” said the White Dwarf.

The modern fairy tales
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