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ABSTRACT. Recent developments in the studies of the transport 

processes and the neutrino emission processes in the interior of 

white dwarfs are reviewed. Special emphasis is placed upon the 

accuracy of the calculations. Ionic correlation effects play an 

essential role in the transport processes and the neutrino 

bremsstrahlung process. The Weinberg-Salam theory is the basis for 

the calculation of the neutrino emission processes. 

1. INTRODUCTION 

Transport processes and neu t r ino emission processes are the key 

e l emen t s in t h e c a l c u l a t i o n of t h e e v o l u t i o n of w h i t e d w a r f s . 

Recent developments in plasma p h y s i c s and high energy physics have 

made a c c u r a t e c a l c u l a t i o n s of t h e t r a n s p o r t p r o c e s s e s and t h e 

n e u t r i n o emiss ion p rocesses p o s s i b l e . In t h i s paper we review the 

recent developments in the s t u d i e s of the t r anspor t processes and the 

neut r ino emission processes in the i n t e r i o r of white dwarfs. 

2. TRANSPORT PROCESSES 

Recent papers on the transport processes in the interior of 

white dwarfs include Flowers and I toh (1976,1979,1981). Yakovlev and 

Urpin (1980), Raikh and Yakovlev (1982), Itoh et al. (1983), Mitake, 

Ichimaru, and Itoh (1984), Itoh et al. (1984c), Nandkumar and Pethick 

(1984), Itoh, Kohyama, and Takeuchi (1987). 

2.1 Electrical and thermal conductivities of dense matter in the 

liquid metal phase 

Essential ingredients that go into accurate calculations of the 

transport properties of the dense matter include the inter-ionic cor­

relations brought about by the strong Coulomb coupling and the 

electron-ion interaction represented by the screening function of the 

electrons. Our understanding of such many-particle effects in the 
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Coulomb system has progressed remarkably during the period of those 

developments due mainly to the advancement in the Monte Carlo method 

and other theoretical means (see, e.g., Ichimaru 1982). In this 

section we take account of what we consider to be the most reliable 

results currently available on the description of those many-particle 

effects, and thereby present an accurate calculation of the electri­

cal and thermal conductivities of dense matter limited by electron-

ion scattering in the liquid metal phase. 

We shall consider the case that the atoms are completely 

pressure-ionized. We further restrict ourselves to the density-

temperature region in which electrons are strongly degenerate. This 

condition is expressed as 

T « Tp = 5.930X 109 [ 11 + 1 . 1018(Z/A)2/3p62/3]l/2 _!] [ K ] t (1) 

where Tp is the Fermi temperature, Z the atomic number of the 

nucleus, and pg the mass density in units of 10^ g cm"3. For the 

ionic system we consider the case that it is in the liquid state. 

The latest criterion corresponding to this condition is given by 

(Slattery, Doolen, and Dewitt 1982) 

72 2 72 
T = ^-^— = 2.275X10-1 ^ — (-££-) 1/3 < 178 , (2) 

akBT T8 A 

where a=[3/(47t npjl/3 is the ion-sphere radius, and Tg the tempera­

ture in units of 10^ K. 

In the present calculation we restrict ourselves to the cases 

where the high-temperature classical limit is applicable to the 

description of the ionic system. Specifically we assume that the 

parameter 

y S S i f = 1-656X ,0-2^1- (^)2/3p62/3 

is much less than unity, where kp is the Fermi wave number of the 

electrons and M is the mass of an ion. In Figure 1, we show the 

parameter domain for the validity of the present calculation in the 

case of 56pe plasma. 

For the calculation of the electrical and thermal conduc­

tivities we use the Ziman formula (1961) as is extended to the 

relativistical ly degenerate electrons (Flowers and Itoh 1976). On 

deriving the formula we retain the dielectric screening function due 

to the degenerate electrons. As to the explicit expression for the 
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FIG.1. Parameter domainlshaded area) for the validity 

of the present calculation in the case of 56pe plasma. 

dielectric function, we use the relativistic formula worked out by 

Jancovici (1962). The use of the relativistic dielectric function 

is an essential difference between the present work and that of 

Yakovlev and Urpin (1980). Yakovlev and Urpin set the dielectric 

function due to electrons equal to unity: this assumption is valid 

only in the high-density limit. 

Working on the transport theory for relativistic electrons 

given by Flowers and I toh (1976), we obtain the expression for the 

electrical conductivity a : 

a = 8.693X1021 ^ [ m . 0 | 8 ( Z / ' A , . / W / j ] < s > Ls-H. 

fere the scattering integral <S> is evaluated for y« 1 as 

(4 ) 

<S> = j j d ( k . , _ k . 3 S ( k / 2 k p ) 
2kp 2kp [ ( k / 2 k p ) 2 e ( k / 2 k p , 0 ) ] 2 

1 . 0 1 8 ( Z / A ) 2 / 3 p 6 2 / 3 1 
,2/3„e2/3 fj ( 

[ + 1 . 0 1 8 ( Z / A H 'P^ 
-> ( - ) 5 

S ( k / 2 k P ) 
2 k p 2 k p [ ( k / 2 k p ) 2 £ ; ( k / 2 k p , 0 ) l 2 

1 , 0 1 8 ( Z / A ) 2 / 3 p e 2 / 3 

- <S-{> ' l + 1 . 0 1 8 ( Z / A ) 2 / 3 P 6 2 / 3 <S+i> , (5) 

where "Rk is the momentum transferred from the ionic system to an 

electron, S(k/2kp) the ionic structure factor, and e(k/2kp,0) the 

static dielectric screening function due to degenerate electrons. 

The first term in equation (5) corresponds to the ordinary Coulomb 

logarithmic term, and the second term is a relativistic correction 

term. 

For the ionic liquid structure factor we use the results of the 
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improved h y p e r n e t t e d chain (IHNC) t h e o r y fo r t h e c l a s s i c a l o n e -

component plasma (Iyetomi and Ichimaru 1982). 

For the thermal conduct iv i ty K for r e l a t i v i s t i c a l l y degenera te 

e l e c t r o n s we analogously obtain the express ion : 

K = 2.363X1017 Jlfilfl. [ l t l 0 1 8 | z / f l
1 , ^ p ^ ] < s ) 

[ergs cm""1 s~ 1 K~' ] ( 6 ) 

where <S> is the same as that for electrical conductivity. 

We have carried out the integrations in equation (5) numeri­

cally by using the IHNC structure factor of the classical one-

component plasma and Jancovici's (1962) relativistic dielectric func­

tion for degenerate electrons. We have made calculations for the 

parameter ranges 2S T g 160. I0"4S rsg 0.5, which cover most of the 

density-temperature region of the dense matter in the liquid metal 

phase of astrophysical importance. 

In Figures 2,3,4, and 5 we compare the results of the calcula­

tion of <S> by Yakovlev and Urpin (1980) (dashed curves) with the 

present results (solid curves). For the 'll matter and the 4He 

to 
1H 
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/ 
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|r=io| 

-

2 „ 3 4 
logr (g^nv3) 

FIG. 2 

4 . 6 
logr (g<nr3) 

FIG.3. 

FIG.2. Comparison of Yakovlev and Urpin's results(dashed 

curves) with the present results(solid curves) for the 

'H matter. 

FIG.3. Same as FIG.2. for the 4He matter. 
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FIG.4. Same as FIG.2. for the 12c matter. 

FIG.5. Same as FIG.2. for the 56pe matter. 

matter Yakovlev and Urpin's results amount to an overestimation of 

<S> by 60% at low densities. For the 12c matter their overest i illa­

tion of <S> amounts to 40% at low densities. For the 56Fe matter 

their overestimation is nearly 30% at low densities. At high den­

sities Yakovlev and Urpin's results are reasonably close to the 

present ones. The large amount of the overestimation of <S> at low 

densities by Yakovlev and Urpin is due to their neglect of electron 

screening. At high densities, however, the effect of the screening 

due to electrons is relatively small. This is the main reason for 

their overestimati on of the resistivity (underestimation of the 

conductivity) at low densities. 

2.2 Electrical and thermal conductivities of dense matter in the 

crystalline lattice phase 

In this section we deal with the electrical and thermal conduc­

tivities of dense matter in the crystalline lattice phase P >178. 

The electrical conductivity a and thermal conductivity K are re­

lated to the effective electron collision frequencies va and vK by 

e^n £- = 1.525X 1 0 2 0 ± _ P 6 [ 1 + 1.018 ( — p 6 ) 2 / 3 ] - l / 2 

v 1018 s - l 
X s" (7) 
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g 2 k P 2 T " e = 4 . U 6 X 1 0 1 5 ^ p 6 [ 1 + 1.018 ( ^ p 6 ) 2 /3 ] -1 /2 
3m* v K 

X T 8 ergs cm K" (8) 

where n e is the number density of electrons and m* is the relativis-

tic effective mass of an electron at the Fermi surface. In this 

section we are interested in the scattering of electrons by phonons. 

The collision frequencies v0 and v K due to one-phonon processes 

can be calculated by the variational method (Flowers and Itoh 1976; 

Yakovlev and Urpin 1980; Raikh and Yakovlev 1982) as 

a, K - ^ ^ a , K - 9 .554X lOlSTs { ,+ T . Q , 8 [ (Jf l ) p ^ > 1 / 2 

X PG,K s " 1 . (9) 

a, K 
2r2

 f dS dS' 
S2 k4 | e ( k , 0 ) I 2 

[ 1- ( - ^ ) 2 ] e"2W(k) | f ( k ) | 2 
2kp 

X E [ k - g s ( p ) ] 2 ( e z s - 1 ) - 2 e z s g f f / c 
s= l 

CIO) 

In the above the integral is over the areas of the Fermi surface, k 

is the momentum transfer, £ s ( p ) the polarization unit vector of a 

phonon with momentum p and polarization s, and 

r = kBT 
7.832X 10_2 Z P6 

(AA' )l/2 j f 

1/2 P6 1/6 

= °-3443^e(A')i^z r m 

_ likpc 

E F 

_ ticds(p) 

{ 1 + 

Zs = 
kBT 

9a = k2 , 

.018[(Z/A)p6]2/3 ' 
1.-1/2 (12) 

( 13) 

( 14) 

k2-
k2Z s2 

27t2 

3kFz s2 
(15) 

w p being the ionic plasma frequency. The momentum conservation 

requires k=± p+K, where K is the reciprocal-lattice vector for the 

Brillouin zone to which k is confined. In equation (10) we have in­

cluded the dielectric screening function due to relativistically 
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degenerate electrons e (k,0), the Debye-Waller factor e~2W(k)t and 

the atomic form factor f(k). Yakovlev and Urpin (1980) and Raikh 

and Yakovlev (1982) have used the Thomas-Fermi screening and set 

e-2W(k)= 1, f(k)=l. 

The phonon spectra are modified by the screening due to 

electrons. The longitudinal optical phonon turns into an acoustic 

phonon in the long-wavelength limit, whereas the original transverse 

acoustic phonons are little affected by the electron screening 

(Pollock and Hansen 1973). Because the low-frequency transverse 

phonons play dominant roles in the resistivity of dense stellar mat­

ter, we neglect the effects of the electron screening on the phonon 

spectra and use the frequency moment sum rules for the pure Coulomb 

latti ce. 

As we consider the case in which the Fermi sphere is much 

larger than the Debye sphere, (kp/k[))3=Z/2» 1, Umklapp processes con­

tribute to the scattering dominantly, and the vector k in equation 

(10) most probably falls in a Brillouin zone distant from the first 

zone. When we perform an integration within a single distant zone 

corresponding to the reciprocal-lattice vector K, we can make an ap­

proximation k=K in the integrand and carry out an integration over p 

within the first zone only. 

Here we follow the semianalytical approach adopted by Yakovlev 

and Urpin (1980) and also by Raikh and Yakovlev (1982). We write 

E [k-'es(p)]2zsn(e
zs-i)-2ezs ^

 a"k ( » ( r ) , u 6 ) 

2 3 
G(n)(r ) = -4r, ;rE J dp zsn(e

zs-l)-2e
zs 

3VB7tn s=l 3 

(17) 

where n=0 or 2, and integration is carried out over the first Bril­

louin zone, whose volume is Vg. By the use of this approximation Fg 

and FK in equation (10) are expressed as 

Fff = I a cW)(r ) , (18) 

FK = I CT G<0) c r 1 + 1^2) G(2)(r , , cl9) 

^max _, e-2W(q) | f Cq) | 2 
j d/i ; n x , 9 (l-/32q2) , (20) •1 e(q,0) I 2 
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, (2) ^ m a x . e-2W(g) | f ( q ) | 2 ! 3 
[ K

( 2 ) = I d/i — p - ——^ ( l - / 3 - q 2 ) ( _ — q 2 + ) , (21) 
-1 q^ l £ ( q , ( ) ) I ' 2 4 

q = ( - ^ - ) l / 2 , (22) 

„ . _ ^ I #max v i / 2 ( O T ) 
qmin - <—2 ' ' U J 

#max l - 0 . 3 5 7 5 Z - 2 / 3 . (24) 

Here we h a v e i n t r o d u c e d a s m a l l momentum t r a n s f e r c u t o f f q m i n c o r ­

r e s p o n d i n g t o t h e u n a v a i l a b i l i t y of Umklapp p r o c e s s e s f o r q < q m i n -

The c o n t r i b u t i o n s of t h e normal p r o c e s s e s a r e v e r y much s m a l l e r t h a n 

t h o s e of t h e Umklapp p r o c e s s e s . For t h e c h o i c e of q m i n w e f o l l o w 

Ra ikh and Y a k o v l e v ( 1 9 8 2 ) . Y a k o v l e v and Urpin (1980) d e r i v e d t h e 

a s y m p t o t i c e x p r e s s i o n s of G(O) 

(r ) and G(2)(r ) for r (( 1 and r » 1 . 

and proposed the following analytic formulae for arbitrary r . which 

fit the main terms of the asymptotic expressions: 

G(0)(r )=u_o[l+( -^2J)
2]-l/2as 13.00(1+0.0174r

2)-1/2 , (25) 
7t ZC2 

G(2)(r ,= -^[i+< !A_)2/3 ]-3/2= -l^tU0.0118r2)-3/2. (26) 
71 ̂  471 4C2 Tf-

where u_2^ 13.00 (Pollock and Hansen 1973) and C2=29.98 (Coldwell-

Horsfall and Maradudin 1960) are the numerical constants that are 

characteristic of the phonon spectrum of the bcc Coulomb lattice. 

Raikh and Yakovlev (1982) calculated GW(?" ) and Ĝ 2)(y ) numerically 

with the exact spectrum of phonons for r < 100. It has been con­

firmed that the fitting formulae (25) and (26) have an accuracy bet­

ter than 10% even at r ~ 1• 

We have carried out the numerical integrations of equations 

(20) and (21) for 4He, 12C, 160, 20Ne, 24M g, 28si , 32s, 40Ca, 56Fe. 

Some of the results are presented in Figures 6-9. For comparison we 

have also included the case where we have neglected the effects of 

the Debye-Waller factor and set e~2W=i. ye a i s o show the results of 

Raikh and Yakovlev (1982) which are 

[Iff ] R Y = 2 - P2 , (27) 

[I/c(2) ]RY= In Z - p2 + 1 .583 . (28) 
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It is readily seen that the Debye-Waller factor reduces the resis­

tivities (enhances the conductivities) by a factor of 2-4 near the 

melting temperature. This means that the results of Yakovlev and 

Urpin (1980) and those of Raikh and Yacovlev 1982) give too low con­

ductivities by that factor. It is very interesting to observe that 

the present result is fortuitously rather close to the original 

Flowers-Itoh conductivity in the crystalline lattice phase near the 

melting temperature (Flowers and Itoh 1976,1981). 

3. NEUTRINO EMISSION PROCESSES 

Recent papers on the neutrino energy loss rates include 

Munakata, Kohyama, and Itoh (1985), Kohyama, Itoh, and Munakata 

(1986), Itoh, and Kohyama (1983), Itoh et al. (1984d), Itoh et al . 

(1984a), Itoh et al. (1984b), Munakata, Kohyama, and Itoh (1987), 

Schinder et al. (1987), and Itoh et al. (1988). 

3.1 Photoneutrino process 

The energy loss rate per unit volume per unit time due to the 

photoneutrino process is expressed as (Munakata, Kohyama, and Itoh 

1985) 

Qphoto = \ nCv
2+CA2) + n(C'v

2+CA2)] Q+photo 

" \ [(CV
2-CA2) + n(Cv

2-C'A2)] Q-photo , (29) 

CV = 1/2 +2sin
20w , cA = 1/2 , (30) 

Cy = 1 - CV , CA = 1 - CA , (31) 

sin20w = 0.23 , (32) 

where 0 W is the Weinberg angle, and n is the number of the neutrino 

flavors other than the electron neutrino whose masses can be 

neglected compared with kgT. 

As in Munakata, Kohyama, and Itoh (1985) we have carried out 

Monte Carlo computations, using the method of importance sampling, to 

evaluate the five-dimensional integral which appears in Q+p̂ oto and 

Q'photo- I n a 1 1 t n e calculations of the photoneutrino process we 

used 50000 random points. Schinder et all. (1987) used 50000 random 

points for the calculations corresponding to the temperatures T=108, 

109, 1010, 1011 K, and they used 5000 random points for the other 

temperatures. 
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3 . 2 P a i r n e u t r i n o p r o c e s s 

The e n e r g y l o s s r a t e d u e t o t h e p a i r n e u t r i n o p r o c e s s i s 

e x p r e s s e d as (Munakata , Kohyama, and I t o h 1985) 

Qpair = \ C(CV
2+CA2) + n ( C v 2 + C A

2 ) ] Q+
p a ir 

• \ [ (C V
2 -C A 2) + n (C ' v

2 -C A 2) ] Q - p a j r . ( 3 3 ) 

At high temperatures ( T>109 K ), the energy loss rate due to the 

pair neutrino process is independent of the density and dominates 

over the other processes. 

3.3 Plasma neutrino process 

Kohyama, Itoh, and Munakata (1986) have shown that the axial-

vector contribution to the plasma neutrino energy loss rate is at 

most on the order of 0.01% of the vector contribution for TS 1011 K. 

Thus for practical purposes the axial-vector contribution can be 

safely neglected. Therefore the energy loss rate due to the plasma 

neutrino process is written as 

Qplasma = <CV
2 + n Cy2) Qv . (34) 

The expression for Qv has been given by Beaudet, Petrosian, and Sal-

peter (1967) and also by Kohyama, Itoh, and Munakata (1986). 

3.3 Bremsstrahlung neutrino process 

The calculation of the neutrino energy loss rate due to the 

bremsstrahlung neutrino process has been carried out in the two dif­

ferent regions: the region in which electrons are strongly degenerate 

and the region in which electrons are partially degenerate. 

In the first region we can take into account the ionic correla­

tion accurately. The calculation of the bremsstrahlung neutrino 

energy loss rate based on the Weinberg-Salam theory which takes into 

account the ionic correlation fully has been reported by Itoh and 

Kohyama (1983), Itoh et al. (1984d), Itoh et al. (1984a), and Itoh et 

al. (1984b). 

For the density-temperature region in which electrons are par­

tially degenerate, Munakata, Kohyama, and Itoh (1987) have calculated 

the energy loss rate in the framework of the Weinberg-Salam theory. 
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3.4 Comparison of var ious neut r ino processes 
In F i g u r e s 10-14 we show t h e c o n t r i b u t i o n s of t he v a r i o u s 

neut r ino processes for the case of s in 2 t9 w =0.23, n=2, and 5 6 Fe matter 
corresponding to the temperatures T=107, 108, 109, 10 1 0 , 1011 K. In 
Figure 15 we show the most dominant neu t r ino process for a given den­
s i t y and temperature for the case of n=2 and 56pe mat te r . In Figure 
16 we show the contours of the constant t o t a l neu t r ino energy loss 
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FIG.15. Most dominant neutrino process for a given density 

and temperature for the case of n=2 and 56pe matter. 
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FIG.16. Contours of the constant total neutrino energy 

loss rates due to pair, photo-, plasma, and bremsstrahlung 

processes for the case of n=2 and 56pe matter, 

log Q (erg s"1 cm~3)=const. 

rates due to pair, photo-, plasma, and bremsstrahlung processes for 

the case of n=2 and 56pe matter. 

4. CONCLUDING REMARKS 

The transport processes and the neutrino emission processes in 

the interior of white dwarfs determine the structure and evolution of 

white dwarfs. The recent developments in this field reviewed in 

this article are expected to elucidate the comparison of the observa­

tions of white dwarfs with the theoretical studies. It is interest­

ing to quote the following: 

"Observe me well, Princess, before you give me 

your word," said the Yellow Dwarf. 

The classic fairy tales 

I would make a parody of this as follows: 

"Observe me well. Astronomers, before you give me 

your word," said the White Dwarf. 

The modern fairy tales 
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