A NOTE ON REGULAR METABELIAN GROUPS OF PRIME-POWER ORDER

M.F. Newman and Ming-Yao Xu

Let p be a prime and d, e positive integers. We prove that a regular d-generator metabelian p-group whose commutator subgroup has exponent p^{e} has nilpotency class at most $e(p-2)+1$ unless $e=1, d>2, p>2$ when the class can be p and these bounds are best possible.

It is known [3] that d-generator metabelian groups of exponent p^{e} have nilpotency class at most $d\left(p^{e-1}-1\right)+(p-2) p^{e-1}+1$ when $e \geqslant 2$ and $d \geqslant(p+2)(e-1)$ and this bound is best possible [6]. Here we report on the corresponding result under the additional condition that the groups are regular.

Theorem. Let p be a prime and d, e positive integers. A regular d-generator metabelian p-group G whose commutator subgroup has exponent p^{e} has nilpotency class at most $e(p-2)+1$ unless $e=1, d>2, p>2$ when the class can be p. These bounds are best possible.

We acknowledge that finding the result was considerably eased by using a program for computing with metabelian p-groups (see [6]). However the proof given below is self-contained.

The case of 2-groups is covered by the well-known result that a 2-group is regular if and only if it is abelian. For the rest of this note p is taken to be odd.

Our terminology and notation follow [4] except that we use G_{n} to denote the nth term of the lower central series of G, and G^{m} the subgroup generated by all m th powers of elements in G. We use the left-norming convention for commutators. For $a_{1}, a_{2}, \ldots, a_{s} \in G$ and positive integers $n_{1}, n_{2}, \ldots, n_{s}$, we make the convention

$$
\left[n_{1} a_{1}, n_{2} a_{2}, \ldots, n_{s} a_{s}\right]=[a_{1}, a_{2}, \underbrace{a_{1}, \ldots, a_{1}}_{n_{1}-1}, \underbrace{a_{2}, \ldots, a_{2}}_{n_{2}-1}, \underbrace{a_{3}, \ldots, a_{3}}_{n_{3}}, \ldots, \underbrace{a_{s}, \ldots, a_{3}}_{n_{4}}] .
$$

Recall that in a metabelian group $G:[a, b, c][b, c, a][c, a, b]=1$ for all a, b, c in G (Jacobi identity) and $[u, a, b]=[u, b, a]$ for all a, b in G and all u in G^{\prime}.

To prove our theorem, we use the following two lemmas.

[^0]Lemma 1. [1, Theorem 3.1], [7, Theorem 2.2] A two-generator metabelian p group G is regular if and only if $G_{p} \leqslant G_{2}^{p}$.

LEMMA 2. Let G be a metabelian p-group and k, r integers such that $r \geqslant 2$ and $k \leqslant r(p-1)-1$ and $k \neq p-1$ when $r=2$. If every r-generator subgroup of G has nilpotency class at most k, then the nilpotency class of G is at most k.

Proof: Since $k \leqslant r(p-1)-1$, there are r positive integers $n_{1}, n_{2}, \ldots, n_{r}$ with $n_{i}<p$ for all i such that $n_{1}+n_{2}+\cdots+n_{r}=k+1$. Since every r-generator subgroup of G has nilpotency class at most k, it follows that $\left[n_{1} a_{1}, n_{2} a_{2}, \ldots, n_{r} a_{r}\right]=1$ for all $a_{1}, a_{2}, \ldots, a_{r}$ in G. The theorem in [2] gives that G_{k+1} / G_{k+2} has exponent prime to p and it follows that G_{k+1} is trivial.

Proof of Theorem:
(1) $d=2$: by induction on e. When $e=1$, the conclusion is given by Lemma. 1. When $e>1$, the induction hypothesis applied to $G / G_{2}^{p^{e-1}}$ yields

$$
G_{2+(e-1)(p-2)} \leqslant G_{2}^{p^{e-1}}
$$

and it follows that

$$
\begin{aligned}
G_{2+e(p-2)} & =[G_{2+(e-1)(p-2)}, \underbrace{G, \ldots, G}_{p-2}] \\
& \leqslant[G_{2}^{p^{e-1}}, \underbrace{G, \ldots, G}_{p-2}] \\
& =G_{p}^{p^{e-1}} \\
& \leqslant G_{2}^{p^{e}} \\
& =1
\end{aligned}
$$

the desired result.
(2) $\quad d>2$: by induction on e.
(a) $e=1$: in this case every two-generator subgroup has nilpotency class at most $p-1$. It follows from Lemma 2 (with $k=p$) that G has nilpotency class at most p.
(b) $e=2$: every two-generator subgroup of G has nilpotency class at most $2 p-3$ and the conclusion follows from Lemma 2.
(c) $e=3$: it suffices by Lemma 2 to prove that every three-generator subgroup of G has nilpotency class at most $3 p-5$. In a commutator of weight $3 p-4$ with entries a, b or c at least one element, say b, occurs (at least) $p-1$ times. Hence, without loss of generality, the commutator has
the form $[a,(p-1) b, \ldots]$ or $[a, c,(p-1) b, \ldots]$ where "..." represents $2 p-4$ or $2 p-5$ entries, respectively. Since Lemma 1 implies $[a,(p-1) b] \in$ G_{2}^{p}, it follows that

$$
[a,(p-1) b, \ldots] \in[G_{2}^{p}, \underbrace{G, \ldots, G}_{2 p-4}]=G_{2 p-2}^{p} \leqslant\left(G_{2}^{p^{2}}\right)^{p}=G_{2}^{p^{3}}=1 .
$$

The Jacobi identity then gives

$$
[a, c,(p-1) b, \ldots]=[c,(p-1) b, a, \ldots]^{-1}[a,(p-1) b, c, \ldots]=1 .
$$

Thus every three-generator subgroup of G has nilpotency class at most $3 p-5$ as required.
(d) $e>3$: the induction hypothesis applied to $G / G_{2}^{p^{e-2}}$ yields

$$
G_{2+(e-2)(p-2)} \leqslant G_{2}^{p^{e-2}},
$$

and it follows that

$$
\begin{aligned}
G_{2+e(p-2)} & =[G_{2+(e-2)(p-2)}, \underbrace{G, \ldots, G}_{2 p-4}] \\
& \leqslant[G_{2}^{p^{e-2}}, \underbrace{G, \ldots, G}_{2 p-4}] \\
& =G_{2 p-2}^{p^{e-2}} \\
& \leqslant G_{2}^{p^{e}} \\
& =1,
\end{aligned}
$$

the desired result.
Meier-Wunderli [5] constructed three-generator metabelian groups of exponent p with nilpotency class p. To complete the proof we construct a two-generator metabelian group of exponent p^{e} with nilpotency class $e(p-2)+1$ which is regular.

Let \boldsymbol{H} be the direct product of $p-1$ cyclic groups of order p^{e} with generating set $\left\{c_{0}, \ldots, c_{p-2}\right\}$. Clearly H has an automorphism α such that
and

$$
\begin{aligned}
c_{i} \alpha & =c_{i} c_{i+1} \quad \text { for } i \text { in }\{0, \ldots, p-3\} \\
c_{p-2} \alpha & =c_{p-2} c_{1}^{p} .
\end{aligned}
$$

For $i>p-2$ put $c_{i}=c_{i-p+2}^{p}$; then c_{i} is not the identity for $i \leqslant e(p-2)$ and c_{i} is the identity for $i>e(p-2)$. It is routine to check that

$$
c_{i} \alpha^{t}=\prod_{j=0}^{t} c_{i+j}^{b(t, j)}
$$

where $b(t, j)$ is the binomial coefficient $t!/(j!(t-j)!)$ and therefore that α has order p^{e}. Let G be the semi-direct product of H by $\langle\alpha\rangle$. Clearly G is metabelian and generated by $\left\{c_{0}, \alpha\right\}$. Also $\left[c_{0}, e(p-2) \alpha\right]=c_{e(p-2)}$, so G has nilpotency class $e(p-2)+1$. Moreover $G_{p} \leqslant G_{2}^{p}$ and it follows from Lemma 1 that G is regular and hence has exponent $p^{\boldsymbol{e}}$.

References

[1] W. Brisley and I.D. Macdonald, 'Two classes of metabelian groups', Math. Z. 112 (1969), 5-12.
[2] N.D. Gupta and M.F. Newman, 'On metabelian groups', J. Austral. Math. Soc. 6 (1966), 362-368.
[3] N.D. Gupta, M.F. Newman and S.J. Tobin, 'On metabelian groups of prime-power exponent', Proc. Roy. Soc. London Ser. A 302 (1968), 237-242.
[4] B. Huppert, Endliche Gruppen I.: Die Grundlehren der Mathematischen Wissenschaften 134 (Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[5] H. Meier-Wunderli, 'Metabelischen Gruppen', Comment. Math. Helv. 25 (1951), 1-10.
[6] M.F. Newman, 'Metabelian groups of prime-power exponent', Groups-Korea 1983, in Lecture Notes in Mathematics 1098, pp. 87-98 (Springer-Verlag, Berlin, Heidelberg, New York, 1984).
[7] M.Y. Xu, On finite regular p-groups, Graduation Thesis at Peking University, 1964.

Mathematics Research Section School of Mathematical Sciences Australian National University GPO Box 4
Canberra ACT 2601
Australia

Institute of Mathematics
Peling University
Beijing 100871
People's Republic of China

[^0]: Received 29th October 1991
 The second author thanks the Australian National University, where he did his part of this work, for its hospitality.

