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Abstract

The theory of groups acting on trees due to Bass and Serre (1969) is applied to simplify some
results of Burns (1972, 1973) giving conditions under which an amalgamated free product or HNN
extension has the properties that any finitely generated subgroup containing an infinite subnormal
subgroup must have finite index and that the intersection of two finitely generated subgroups is
finitely generated.

Burns (1972, 1973) gives sufficient conditions for an amalgamated free
product A*VB or HNN group (A,x ;x~' Ux = V) to have the following
properties: any two finitely generated subgroups intersect in a finitely gener-
ated subgroup, and any finitely generated subgroup containing a (sufficiently
large) subnormal subgroup has finite index. His conditions are on the position
of U in A, and include the case that A is free and U is cyclic generated by an
element which is not a proper power. He observes that one can deduce from his
results that a Fuchsian group has these properties.

In this paper we prove (and slightly extend) Burns's results using the
Bass-Serre theory of groups acting on trees (Cohen (1974), Serre (1969)). To
some extent this paper is propaganda for the view that the Bass-Serre theory
leads to simpler proofs than more combinatorial methods (because the tree
carries information that does not need to be mentioned explicitly). This paper is
a sequel to Cohen (1974), to which the reader is referred for notation and many
results.

1. Burns subgroups

The subgroup U of the group A is called a Burns subgroup if it has a left
transversal T with 1 E. T which satisfies the following two conditions:

(1) there is a finite subset F of U such that U(T-{]}) C TF;
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(2) for any finitely generated subgroup H of A and element a £ A there is
a finite subset F, of U (depending on H and a) such that aH C TF, (H DU).

These subgroups are introduced by Burns (1972, 1973) who calls them
almost malnormal finitely involved, or AMFI, subgroups. Burns (1972) shows
that when A is free and U is cyclic, generated by an element which is not a
proper power, then U is a Burns subgroup of A. Plainly any finite subgroup is a
Burns subgroup, so the results and methods of this paper extend those of
Cohen (1974).

(2) is plainly equivalent to:
(2') for any finitely generated subgroup H of A and element a there is a

finite subset F2 of A (depending on H and a) such that Ha C
TF2(a-'Ha D U).

(1) implies
(3) for any afc U, U D aUa~' is finite (which explains why U is referred to

as almost malnormal).
For we may assume a £ T - { l } . If u = tvt~l, where u,vE.U and

t £ T-{1}, then tv = ut £ TF shows v £ F, as required.
From (2) follows
(4) for any finitely generated subgroups H, K of A, the intersection of a

(H, U) double coset and a (K, U) double coset contains only finitely many
(H D K, U) double cosets (see the remark in section 4 of Burns (1972)).

Replacing H,K by g~' Hg,g~* Kg if necessary, we need only consider
HU HKU. Let k = hu, where h £ H, k £ K, and u £ U. There exist finite
subsets FUF2 of U with HCTF,(HnU) and K c r F 2 ( K n ( / ) . Then
ue(HC\ U)Fi(KD U) where Fi=Fl~

iF2 is a finite subset of U. Write
M = vcw, where i i £ H n [ / , w e X n [ / , and c £ F3. Then the (H f) K, U)
double coset containing k = hu will also contain kw~l = hvc which is an
element of K D He. Now K D He is a right H C\ K coset. Hence every
{H D K, U) double coset contained in HU n KU contains an element from one
of finitely many right H C\ K cosets, as needed.

LEMMA 1. Let Hbe a finitely generated subgroup of A. Let Ube a subgroup
of A which is either a Burns subgroup or is finitely generated and satisfies (3)
and (4). Then the intersection of a (H,U) double coset and a (H,aUa'1)
double coset, where a£ U, contains only finitely many right H cosets.

PROOF. AS usual, we need only consider HU D HaUa'. Choose an
element hu = ava~l in some right H coset, where h £ H, u,v€iU.

Let U be a Burns subgroup of A. Then there is a finite subset F, of U with
a lHCTF,(Hn U) and (writing a~l = tw, with t £ T-{\}, w £ U) a finite
subset F2 of U with Ua~' C TF2. As a1 hu = va~' £ TF,(H n U)u D TF2 we
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can write u = fee, where k G H n U and c is in the finite set F,'lF2. Then the
right H coset containing hu = hkc also contains c, and so is one of finitely
many cosets.

Suppose U is finitely generated and satisfies (3) and (4). Then by (4) there
is a finite subset F, of U such that hu = ava1 G HU D aUa'1 U C
(HnaUa-')F,U. Write fc« = /CCH> where c G F,, w G C/, and k G H n at/a"1.
The right H coset containing hu will also contain cw = k~l hu = fc~'aua~' =
av'a~' for some u ' G l / . For given c, this element is in a unique left
([ / D at/a"1) coset, so by (3) there are only finitely many possibilities for this
element.

LEMMA 2. Let U be a Burns subgroup of A, and let V be a subgroup of A
such that there is a finite subset F, of U with V(T-{l})C TF, (for instance,
V C U). Let H and K be finitely generated subgroups of A and c,d G A. Then
there is a finite subset X of U such that if u e U satisfies chu = vdk for some
h£H,kSK,vGV with dk£U then u G (H n U)X(K n U).

PROOF. There is a finite subset F2 of U such that dk G TF2(K n U). As
dfc£ 1/ we have t;dfe G TF,F2(K D t/) . There is also a finite subset F3 of t/
such that ch G TF3(// D I/). Then

C/IM = vdk G TF3(H D t/) u D TF, F2(K n U),

and so F3(H n t/)« intersects F,F2(K (1 U). Hence
« G ( H n l / )F 3

1 F 1 F 2 (Kn I/).

2. Bass-Serre theory

If G = A *VB then G acts without inversions on a tree T. There is an edge
e0 (the initial edge), whose stabiliser, stab e0, is U. One vertex of e0, the origin O,
has stabiliser A, the other has stabiliser B. There is one orbit of edges and two of
vertices, corresponding to e0 and its two vertices. If e is an edge with vertex O
then e G Aen.

If G = (A, x;x~1Ux= V), an HNN extension of A, then G acts without
inversions on a tree T. There is an edge e0 (the initial edge) with stab e0 = U. One
vertex of e0, the origin O, has stabiliser A, the other is xO with stabiliser xAx'\
There is one orbit of edges and one of vertices. The edge x"1 e0 has O as a vertex
and stab x~xe0 = x ' t / x = V. If e is an edge with vertex O then either e G Ae0 or
e G Ax'le0 but not both.

In either case if e has vertex O and / is an edge with / G Ae, then any h G G
with f = he must be in A. For let f = ae with a G A. Then a"1 he = e and as G
acts without inversions we must have a'1hO = O, whence a~' h G A. For the
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same reason, if e is an edge with vertex P and he = e0 with hP = O for some
h G G, then any g with ge = en has gP = O.

In either case we call an edge special if the following two conditions hold:
(i) the initial vertex of e (orienting outwards from O) is in GO, but is

not O;
(ii) if P is the initial vertex of e, and e' the unique edge ending at P, then

eG(stabP) e'.
Note that if P^ O, (i) always holds in the HNN case, while (ii) always holds

for the amalgamated free product.
Lemma 3 below is essentially the same as Lemma 2.6 of Burns (1973), a

reversing H -orbit containing a special edge being exactly what Burns calls a
double-ended coset. For the definition and significance of reversing orbits see
Cohen (1974). The reader is advised to draw parts of the relevant trees to help
visualise the proofs of Lemma 3 and later results.

LEMMA 3. Let G be either an amalgamated free product or an HNN group,
Tthe tree described above on which G acts. Let H be a subgroup of G. Then H
has only finitely many reversing orbits provided only finitely many of its
reversing orbits contain a special edge.

PROOF. If G is an amalgamated free product then any reversing H-orbit
contains an edge starting at a vertex of GO, which is special unless it starts at
O. Suppose a reversing H-orbit contains an edge e, starting at O, and let h be
negative for e,. Then if e/ e, is an edge starting at O, He contains he, which is
special since he, is the only edge ending at hO. Hence every reversing H-orbit
except perhaps He, contains a special edge.

Now let G be an HNN group. We first show that only finitely many
reversing H-orbits contain an edge e starting at P^ O (for some P)and such
that another edge / starting at P is also in a reversing H-orbit.

For either / G (stab P) e or e G (stab P) e' or / G (stab P) e', since there
are only two G -orbits of edges at each point. In the first case choose h G H so
that hf ends at hP (by choosing h negative for / ) . As the edge he lies in
(stab hP)hf, it is special, and so e lies on one of finitely many orbits. The same
holds in the second case, as e is special.

In the third case /, being special, lies in one of finitely many orbits, hence
so does P (which is a vertex of /) . In each orbit choose a vertex P ^ O and (if
possible) choose an edge e, starting at P, with e, in a reversing orbit and
«i^(stabPi)ci, where e\ is the edge ending at P. Let P, = hP. Then either
he = e'i or he starts at P, and lies in either (stab P ) e'i or (stabP)e, (for he is
in a reversing orbit, so if he£ (stab Pi)e\ an edge e{ exists and every edge with
vertex Pf is in the (stab P)-orbit of either e, or e'). Thus either he = e'i or he is
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special or (as in the first case of the previous paragraph) he can be shown to be in
one of finitely many orbits.

Also only finitely many reversing orbits contain an edge starting at O. For
let eu e2, and e start at O and lie in reversing orbits. Let h be negative for e2.
Then he2 ends at hO, so hO/ O, and both he and hex start at hO. Hence he is
one of the edges previously considered.

Choosing (at most) two suitable edges from each of the orbits we have
considered, we obtain a finite set X such that if e is in such an orbit there is an h
positive for e with he G X. Let Y be the finite set consisting of all edges in the
irreducible paths from O to the edges of X. We show that any reversing orbit
meets Y.

Note that if e is in a reversing orbit either e G HX or there is an edge /,
starting where e ends, in a reversing orbit. For let e end at Q. Choose h
negative for e, so that he starts at hQ. If hQ = O then he G HX. Otherwise take
/ to be the edge such that hf ends at hQ.

Hence if e, is in a reversing orbit there is either an infinite sequence of
edges e,,e2, •••, each in a reversing orbit, none in HX, with e, starting at Pi-,
and ending at P for all i, or else there is a finite sequence of edges e,,---,en,
each in a reversing orbit, with e, starting at P,_, and ending at P , with en G HX.

In the first case choose h so that he, ends at hPo. We cannot have het

ending at hP{-, for all i, as this would require the path from O to hPo to contain
he, for all i. Hence we can choose r so that her ends at hP,-, but he,+, does not
end at hPr. Then both her and her+i start at hPr. By definition this gives
er G HX. This contradicts the definition of the sequence, so this case does not
occur.

In the second case take n minimal. Choose h with hen G X and hen ending
at hPn. If he, ends at hP, for all i the definition of Y (since we are orienting
outwards from O) gives he, G Y. If not we can choose r so that he, ends at hPr

while he,-, ends at hPr-2. Then both he, and he,-, start at hP,-,. By definition
of X this gives he,-, G HX. As this contradicts the minimality of n, this case
cannot occur. Hence we must have lie, G V, so c, G HY, as required.

3. The main theorems

In the theorems below we consider a group A and a Burns subgroup U. It
is easy to see that we need only require the conclusions of Lemma 1 (or Lemma
2) to hold. Also we require certain subgroups of U to be finitely generated. The
easiest way to ensure this is to require that all subgroups of U are finitely
generated (the conditions stated require us to look outside U).
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THEOREM 1. Let U be a Burns subgroup of A and let G be either A*uB or
an HNN group (A,x; U* = V). Let H be a finitely generated subgroup of G
containing an infinite subnormal subgroup of G. If Hs D U is infinitely generated
for all g G G and U/ A (and U/ B also, in the first case) then H has finite index
in G.

PROOF. We first show that any subnormal subgroup N of G contained in a
conjugate of A or B must be finite. For it is easy to see that if A, is a subgroup
of A its normaliser will lie in A unless it has a conjugate in U or V. Hence we
may assume N C U. Now N is also subnormal in A. But any infinite subgroup
of U has A -normaliser in U, since U D U" is finite for a& U. Hence N must
be finite.

Theorem 8 of Cohen (1974) now tells us that there are only finitely many
(H, U) double cosets. For the same reason there are only finitely many (//", U)
double cosets, and so only finitely many (H,aUa~l) double cosets, where
a G A - U.

So it is enough to show that the intersection of any (//, U) double coset
and any (H, a Ua ') double coset contains only finitely many right H cosets. As
usual, it is enough to prove this for HU C\HaHa'\

Any H coset in HU D HaUa ' can be represented by hu = ava~\ h E H,
u,v£U. Plainly h G H D A. But (Lemma 2 of Cohen (1974)) H n A is finitely
generated. Hence Lemma 1 gives the result.

THEOREM 2. Let A and B have the property that the intersection of any two
finitely generated subgroups is finitely generated. Then the same property holds
forA*uB = G if U is a Burns subgroup of A and H n U is finitely generated for
all finitely generated subgroups H of G.

THEOREM 3. Let A have the above property, and let G be the HNN group
(A, x: U" = V). Then G has the same property if both U and V are Burns
subgroups of A, and H n U is finitely generated for all finitely generated
subgroups H of G.

PROOFS. The two cases may be considered together, using the action of G
on the tree T considered in Section 2. As in Theorem 7 of Cohen (1974), we
know that H n stab P and K D stab P are finitely generated for any vertex P of
T, and that there are only finitely many reversing //-orbits and reversing
/C-orbits. As H f) K f) stab P will be finitely generated for any P, it will be
enough to prove that there are only finitely many reversing (// n K)-orbits.
Hence, by Lemma 3, it is enough to show that for any edge / only finitely many
reversing (// D K)-orbits in Hf D Kf contain a special edge.

Take a special edge e in a reversing (// n K)-orbit in Hf D Kf. We may
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assume there is a g with gO = P (the start of e) and geo = e. This is certainly
possible for the amalgamated free product; for the HNN case if this does not
hold we can find g with gO = P and gx'eo = e. In the latter case we simply
replace eo and U by x~'eo and V in the rest of the proof.

We may also assume (replacing / by another edge, for instance e itself, if
necessary)that we can find giwith g,e,, = / and giO the start of/.Then we may
take / = eo ; if this does not hold we replace A and U by A '• and U'1 but need
make no other changes.

Since there are only finitely many reversing //-orbits, the edges which
start at O and lie in a reversing //-orbit will lie in finitely many (// fl A )-orbits.
Hence there is a finite subset C of A such that all these edges lie in (H D A) Ceo

if they are in Aeo. Similarly there is a finite subset D of A such that any edge in
Ae0 which lies in a reversing K-orbit lies in (K DA)Deo.

Now consider a special edge e with e = heo = keo, where h E H, k £ K,
and let e' be the edge ending at P. As remarked at the beginning of Section 2 we
must have hO = P = kO. Also k = hu for some u E U.

If g is negative for e, then ge ends at gP and so ge' starts at gP, whence g
is negative for e'. Hence e' is also in a reversing (// D K)-orbit. As e is special
we have e '£ (stabP)e, and so h'e' E. Aeo. Hence h'e' = yceo for some
y £ / / n A, c £ C; similarly fc V = zdeo for some z E K O A , d £ £>.

Then uzdeo = yceo, so that uzd = yew for some w E U. This equation can
be written as c~'y~'u = wd']z~\ Also zd£ 17 as k~le' / eo =k~'e. Conse-
quently by Lemma 2 there is a finite subset S of U such that « £
(// n U)S(K n {/) for all choices of special edge e in //«„ ("1 Keo.

Taking suitable h'EhU,k'EkU, we can write e = h'eo = k'eo with
k'Eh'S. If another edge d corresponds to the same element of S, say
e, = /t',eo = k\eo then e, belongs to (// D /C)c, since k',k~l = h',h~l E H n K.
Thus the special edges in Heo D /Ceo lie in finitely many (// D K)-orbits, as
required.

We conclude by discussing the group G = (x,y;y" = yk,k an integer).
Moldavanskii (1968) gave a short direct proof that the intersection of two finitely
generated subgroups of G is finitely generated. G is an HNN group with
A = U = (y) and V = (yk), and so does not satisfy the hypotheses of Theorem 3.
We indicate how the previous proof can be modified.

Let H and K be finitely generated subgroups of G and suppose
H(1K/{1}. Then we can find g = x'axs £ H n K where 1/aEA and
r g s S 0 . I f r = s then 1 ^ g"' £ H D K D A, since g"' = x W r = a. Then any
(//, A) double coset contains only finitely many H cosets, whence the intersec-
tion of a (//, U) double coset and a (K, U) double coset contains only finitely
many (// (~l K) cosets. If r > s, then x"+'e0E (H n K)xn+'ea for any ngO and
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any reversing (H fl K) orbit will contain xneo for some n with 0 S n § r, so there
are only finitely many such orbits.
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