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BEHAVIOR OF COEFFICIENTS OF INVERSES OF 
«SPIRAL FUNCTIONS 

RICHARD J. LIBERA AND ELIGIUSZ J. ZIZOTKIEWICZ 

1. Preliminary remarks. I f / (z) is univalent (regular and one-to-one) in 
the open unit disk A, A = {z e C:|z| < 1}, and has a Maclaurin series 
expansion of the form 

(1.1) f(z) = z + a2z
2 + a3z

3 + . . . , z e A, 

then, as de Branges has shown, \ak\ = k, for k = 2, 3, . . . and the Koebe 
function. 

oo 

(1.2) K(z) = Z = 2 kzk 

(1 - z) k = \ 

serves to show that these bounds are the best ones possible (see [3] ). The 
functions defined above are generally said to constitute the class Sf. 

Iff(z) is i n ^ then its inverse f(w) exists and has a series expansion 

(1.3) f(w) = w + A2w
2 + A3w

3 + . . . 

in some disk of positive radius centered at the origin. Using his parametric 
method, Loewner [10] showed that 

for n â 2 and that the sharp upper bound is achieved by the inverse of a 
suitable rotation of the Koebe function. 

Recently there has been a good deal of interest in determining the 
behavior of the coefficients given in (1.3) when the corresponding function 
f(z) is restricted to some proper subclass of St For example, it has been 
shown ( [8], [1] ) that \Ak\ ^ 1, k = 2, 3 , . . . , 8, whenever/(z) i n ^ m a p s A 
onto a convex domain, but that |^410| > 1 for some such function [5]. Other 
subclasses of St have been shown to have curious properties relating to the 
coefficients Ah ( [5], [6], [8], [9], [12] ). Our purpose here is to report on 
the behavior of the coefficients Ak when/(z) is spiral-like. 

A function/(z) as in (1.1) is spiral-like if for some real a, \a\ < TT/2, 
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(1.5) R e L " * ^ ^ ) > 0 , z G A. 
I Hz) J m 

V 

The class of all such functions is often denoted by the symbol «9£ and 
Spacek, who introduced the class [13], showed that SPa c ïf; it was later 
called the class of a-spiral functions [7]. For a = 0 one obtains the class of 
starlike function S?*, i.e., «9g = «5̂  

& will represent the family of all functions regular in A for which 
P(0) = 1 and Re P(z) > 0, z e A. Then condition (1.5) can be restated in 
the equivalent form 

(1.6) em - ^ - ^ - / sin a = P(z) • cos a 
f(z) 

for P(z) in ^ and z in A. (Note: In subsequent computations it will be 
convenient to replace P(z) by its reciprocal; this is no restriction, since 
both P(z) and its reciprocal are simultaneously in &.) 

2. Our conclusions. 

THEOREM 1. Iff(z) is an a-spiral function, f (w) = w -f A2w -f- . . . , 

(2.1) a = ie~ia sin a, A = \32a2 - 52a + 21| W 5 = |5 - 6a\; 

then 

(2.2) U2 | ^ |1 - fl|-2; 

and 

(2.3) |v43| ^ 5 cos a, 

which are both sharp, and 

4 

(2.4) H4| ^ 

- .4 cos a, / / 2 £ 2 + 5B + 2 ^ ^ ( £ 2 + 3£ + 3) 

4 / ,4 + £ 2 IB \ T 

- cos a I T H I, otherwise. 
3 V(l + Bf 5 + 1 / 

THEOREM 2. Iff(z) is an a-spiralfunction andf(w) = w + yl2w + • • • » 

, _ , , , ^ e™ °°s a sin a r ( l + In cos2 a) 
(2.5) UJ ^ • — = % 

" n (T(l 4- « c o s 2 a ) ) 2 

/or n = 2, 3, 4, 

THEOREM 3. Iff(z) is a starlike function in £f i.e.,f(z) is a zero-spiral 
function, andf(w) = w + A2w + . . . , then 
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<2-6> ^ = ; ( « ï i ) ' > « = 2 

and this bound is rendered sharp when f(z) is a properly chosen rotation of 
the Koebe function (1.2). 

This, of course, is not a new result, but a consequence of the work of 
Loewner cited above. However, the proof given here is a new one, 
relatively simple and applicable directly to the class Sf*. 

3. Proof of theorem 1. If we let a member of @ have the represen
tation 

(3.1) P(z) = 1 + Cxz + C2z
2 + . . . , z in A, 

V 

let w = f(z) and z = f(w), recall that 

(f(w)y = i / / ' (z) , 

and rewrite (1.6) accordingly; we obtain 

(3.2) f(w)P(f(w) ) = w(f(w) y(e~iacos a + ie~ia sin a • P(f(w) ) ), 

or 

CO / CO \ 

(3.3) 2 ^HA- ( 1 + 2 Ck(f{w))k) 
k=\ V fc=l 7 

CO / CO \ 

= 2 ^ y • 1 + 2 aCk(f(w))kh 
k=\ x k=\ ' 

and finally that 

'A2 = (1 - a)Cx, 

2A3 = (2 - 7>à)CxA2 + (1 - a)C2, and 

3 ^ 4 = (2 - 4a)C,^3 + (3 - 4a)C2^2 + 0 ~ ^)CXA\ 

+ (1 - a)C3. 

The relations in (3.4) may be rewritten as 

A2 = (l - a)Cu 

2A3 = (1 - aX(2 - 3a)CJ + C2), and 

(3-4) J 

(3.5) 
3A4 = (1 - a ) ( ( l " 2a)(3 - 4a)C? 

+ (4 - 6a)C,C2 + C3). 

(2.2) is now obtained from the first of these relations by an application of 
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Caratheodôry's well-known theorem which states that \Ck\ â 2 for all k, 
(see [3], [4], for example). 

To justify (2.3) and (2.4) we call upon another result due to 
Caratheôdory (stated here in a form due to Toeplitz); it appears in [4]. 

LEMMA. The power series for P(z) given in (3.1) converges in A to a 
function in & if and only if the Toeplitz determinants 

(3.6) Dn = 

2 

C_ 

Ci 

2 

c_ 

c2 

c_ 

C„-x 
,n = 1 , 2 , 3 , . . . , 

-«+1 ^ - n + 2 • • • z' 

with C_yt = C t , are all non-negative. They are strictly positive except for 

m 

P(z) = 2 PkPoW'z), 

(3.7) P0(z) 

A: — 1 

1 + Z 

1 - z 
1 + 2z + 2zz + . . . , 

p^ > 0, tk real and tk ¥* t- for k ^ j \ in this exceptional case Dn > 0 
for n < m — 1 ««J Dn = 0 for n ^ m. 

With no restriction we may assume that Cx > 0 and write 

.Z C j (^2 

(3.8) Z), = C, 2 c, = 8 + 2 Re{C,C2} 2|C2|
2 - 4C? S 0 

from which we conclude that 

(3.9) 2C2 

This representation for C2 and (3.6) gives 

(3.10) 44 3 = (1 - a)((4 - 6a + 1)C? + x(4 

and the bound |JC| = 1, along with an application of the triangle 
inequality, gives 

(3.11) 4U3 | â |1 - a | - | ( | 5 - 6a\ 

^ 4|1 - a| • |5 - 6a\, 

C\ + x(4 - C\), for some x, \x\ ë 1. 

C?)) 

\)C\ + 4| 

because |5 — 6va| =S 1. Equality holds true in (2.2) and (2.3) when/(z) , and 
consequently/(w), is the solution of (1.6) with P(z) replaced by P0(z). 

To arrive at (2.4) we appeal once again to the lemma. D3 =£ 0, in (3.6), is 
equivalent to 
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(3.12) | (4C3 - 4C,C2 + C])(4 - c]) + CX{2C2 - c]f\ 

^ 2(4 - C]f - 2|2C2 - C]\2; 

and using (3.9) we rewrite (3.12) as 

(3.13) 4C3 = C\ + 2(4 - C?)C,JC - C,(4 - C?)x2 

+ 2(4 - Cf)(l - |x|2)z, 

for some z, |z| ^ 1. Combining (3.13) with (3.9) and (3.13) yields the 
equation 

(3.14) i- = (21 - 52a + 32tf2)C^ + 2C,(4 - C2)(5 - 6a)* 
1 — a 

- C,(4 - C2)*2 + 2(4 - C2)(l - |x|2)z. 

Letting |JC| = p, recalling the definitions of A and i? given in (2.1), 
applying the triangle inequality and replacing \z\ by its maximum value 1, 
we may find an upper bound for the right side of (3.14) by maximizing the 
function 

(3.15) # p ) = AC\ + 2Cj(4 - c])Bp + C,(4 - C2
x)p

2 

+ 2(4 - C2)(l - p2). 

If Cx = 2, then |«p) | ^ 8.4, and if C, = 0, then |<#p) | â 8; consequently, 
we assume 0 < Cx < 2. 

<|>'(p) = 2(4 - CÎXQS + P(Q - 2)) 

and <f>(p) achieves its maximum when 

Po = 
CXB 

2 - Cx 

If PO ^ 1, then 

5 + 1 

and in this case we have 

(3.16) - ^ ^ * ( - ^ - ) l c 
II - al \ 2 - C , / C| 

2 
1 ' B+l 

{ (J + B2)C] + 2(B2 - \)C] + 8} | c 2 
1" 

£+1 

\(B + l)3 5 + 1 / 
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having made use of 5 2 — 1 = 24 cos2 a > 0, for |a| ¥= 77-/2. 
Now we suppose that <J/(p) has its zero at 

CXB 
Po = * > h 

0 2 - C, 
then 

—?— < C, ë 2. 

Replacing p by 1 in (3.15), we see that our problem reduces to one of 
maximizing 

(3.17) KC,) = C\((A - 2 B - Y)C\ + (85 + 4)) 

over the interval 
\B + 1 J 

. If ^ — IB — 1 iï 0, then the maximum 

occurs at 2, and we conclude that 

^ 8/4. 
n\A4\ 

H - a l 
On the other hand, if A — 2B — 1 < 0, then the solution of \^\CX) = 0 we 
are interested in is the (non-negative) solution of 

2 85 + 4 
Cî = 3(1 + 25 - A) 

lying in the interval given above. These conditions on Cx are equivalent to 
the statement 

4 85 + 4 
< ^ 4. (5 + l)2 3(1 + 25 - A) 

Then the maximum for xp occurs at Cx = 2, because ty > 0 over 

(—4 
i//(2) = 8̂ 4 and this is the upper bound when 

A + 5 2 25 

+ < ̂ , (1 + 5 ) 3 5 + 1 

which is equivalent to 

252 + 55 + 2 ^ A(B2 + 35 + 3). 

The sharp upper bound corresponds to the example given above for (2.2) 
and (2.3). 

4. Proofs of theorems 2 and 3. I f / (z) and/ (w) are as before, let C(r) be 
the image of the circle \z\ = r, r < 1, under / (z) , then 
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(4 1) A --L [ ^ ^ - -L ( Zf'(z) Jz 

- _L f JL. 
~ 2<nin M=rJ(z)n' 

and to bound An, using (4.1), we seek a bound for | / (z) \~n. 
Using the Stieltjes integral representation for P(z) in @, (see [3], for 

example) in (1.6), then performing an integration we have 

(4.2) j — = exp { 2e~ia cos a J J log(l - e"z) dpif)}, 

for a non-decreasing /*(/) such that 

/

lit 

0 * ( 0 = 1 . 

From (4.2) we get 

(4.3) '/(*) 
exp{«7T sin a cos a} • exp j 2n cos2a / log|l — zelt\d\*it) \ 

and this, along with (4.1) yields 

<"> > ^ i t ^ 
•nncosa sina f / f2ir 2 \ 

- W " i - , (ex? Jo ^ - -"l2"COS " <W'>)l* 
p7rncosa sina /• / ^ 

2 W 

2™r"~ /o" /r |! ~ ^V'|W"<»4i(0, 

having let z = re1 , 0 < r < 1. (Here we have used the integral 
generalization of the inequality between the arithmetic and geometric 
means, (see p. 110, [11], for example).) 

The integrals in (4.4) are bounded, consequently we let r —> 1 and 
obtain 

irncosa sina r^m 

( jlncosTa. rm 

2irn J -« 

ei0anco,2ade 

sina . I 2_ 

2<nn J ~« r~~ 2 

Incos a rm i n 

= e™œsa sma • | / cos 
2ncos2a ^ 

de, 
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= e™cos a sina . I . T(2» COS2 « + 1) 

n (T(n cos2a + l ) ) 2 ' 

having referred to standard tables ( [2], or see the analogous form 
p. 108 [6]). 

Our proof of Theorem 3 begins with an analysis of the relationships 
between coefficients Ck and Ak, all k, as given in (3.1), (3.2), (3.3), (3.4) 
and (3.5), but with a = 0. Computation and rearrangement of terms yields 
the following relationships: 

[ A2 = C\ 
I 2^3 = 2Cj 4- C2, 

I 1A* = 3C? 4 4CXC2 4 C3, 
(4-6) \ \ \ 2 

I 4L45 = 24C| 4 58CjC2 4 28C tC3 + 9C2 + 6 Q , and 
I 5 U 6 = 120C^ + 436C]C2 + 1 9 2 ^ ^ + 312CiC3 

I + 108C1C4 4- 72C2C3 4 24C5. 

Now, an examination of the way in which the coefficients in (4.6) are 
formed shows that 

(4.7) (k - \)\Ak = Ck
x-

{ + Qk(Cx, C2, . . . , <:*_,), 

for each k, and Qk is a polynomial all of whose coefficients are 
non-negative. Consequently, a sharp upper bound for (4.7) is obtained by 
a direct application of the triangle inequality and the bounds \Ck\ ^ 2, all 
k. A function maximizing \CX\ and all subsequent \Ck\ is P0(z), given 
above; the corresponding extremal in ^ * is the inverse of a suitable 
rotation of the Koebe function, K(z), see (1.2), and whose inverse has 
coefficients as in (1.4). 

5. Remarks, (i) Replacing P(z) in (1.6) by its reciprocal plays a 
significant role in all the above computations since doing so gives 
tractable representations for the Aks in terms of coefficients of members 
of &. This observation was made by Campschroer [1] in a similar 
situation. 

(ii) The bound in (2.5) is not best possible. In particular, when a = 0, 
(2.5) does not reduce to (2.6); however (2.5) is of the correct order. 

(iii) The methods used to find bounds given in Theorem 1 appear too 
cumbersome to handle \A5\9 \A6\9. . . . For example, 

445 = (2 - 5a)CxAA 4 (3 - 5a)C2^3 4 (3 - 5a)C2A\ 

4 (4 - 5a)C3A2 4 (2 ~ 5a)C^2v43 4 (1 - a)C4, 

which upon elimination of Cks reduces to 
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4L45 = (1 - a){ (24 - 130a + 225a2 - \25a3)C4
l 

+ 2(29 - 95a + 15a2)C2
xC2 + 4(7 - l O ^ C ^ 

+ 3(3 - 5a)C\ + 6C4}. 
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