BEHAVIOR OF COEFFICIENTS OF INVERSES OF α-SPIRAL FUNCTIONS

RICHARD J. LIBERA AND ELIGIUSZ J. ZLOTKIEWICZ

1. Preliminary remarks. If $f(z)$ is univalent (regular and one-to-one) in the open unit disk $\Delta, \Delta=\{z \in \mathbf{C}:|z|<1\}$, and has a Maclaurin series expansion of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots, \quad z \in \Delta, \tag{1.1}
\end{equation*}
$$

then, as de Branges has shown, $\left|a_{k}\right| \leqq k$, for $k=2,3, \ldots$ and the Koebe function.

$$
\begin{equation*}
K(z)=\frac{z}{(1-z)^{2}}=\sum_{k=1}^{\infty} k z^{k} \tag{1.2}
\end{equation*}
$$

serves to show that these bounds are the best ones possible (see [3]). The functions defined above are generally said to constitute the class \mathscr{S}.

If $f(z)$ is in \mathscr{S}, then its inverse $\mathfrak{f}(w)$ exists and has a series expansion

$$
\begin{equation*}
\check{f}(w)=w+A_{2} w^{2}+A_{3} w^{3}+\ldots \tag{1.3}
\end{equation*}
$$

in some disk of positive radius centered at the origin. Using his parametric method, Loewner [10] showed that

$$
\begin{equation*}
\left|A_{n}\right| \leqq \frac{1}{n}\binom{2 n}{n+1} \tag{1.4}
\end{equation*}
$$

for $n \geqq 2$ and that the sharp upper bound is achieved by the inverse of a suitable rotation of the Koebe function.

Recently there has been a good deal of interest in determining the behavior of the coefficients given in (1.3) when the corresponding function $f(z)$ is restricted to some proper subclass of \mathscr{S}. For example, it has been shown ($[8],[1]$) that $\left|A_{k}\right| \leqq 1, k=2,3, \ldots, 8$, whenever $f(z)$ in \mathscr{S} maps Δ onto a convex domain, but that $\left|A_{10}\right|>1$ for some such function [5]. Other subclasses of \mathscr{S} have been shown to have curious properties relating to the coefficients A_{k}, ([5], [6], [8], [9], [12]). Our purpose here is to report on the behavior of the coefficients A_{k} when $f(z)$ is spiral-like.

A function $f(z)$ as in (1.1) is spiral-like if for some real $\alpha,|\alpha|<\pi / 2$,

Received October 4, 1983 and in revised form October 3, 1985.

$$
\begin{equation*}
\operatorname{Re}\left\{e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in \Delta \tag{1.5}
\end{equation*}
$$

The class of all such functions is often denoted by the symbol $\mathscr{\mathscr { S }}_{\alpha}$ and Spaček, who introduced the class [13], showed that $\mathscr{S}_{\alpha} \subset \mathscr{S}$; it was later called the class of α-spiral functions [7]. For $\alpha=0$ one obtains the class of starlike function \mathscr{S}^{*}, i.e., $\mathscr{\mathscr { L }}_{0}=\stackrel{*}{\mathscr{S}}$,
\mathscr{P} will represent the family of all functions regular in Δ for which $P(0)=1$ and $\operatorname{Re} P(z)>0, z \in \Delta$. Then condition (1.5) can be restated in the equivalent form

$$
\begin{equation*}
e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}-i \sin \alpha=P(z) \cdot \cos \alpha \tag{1.6}
\end{equation*}
$$

for $P(z)$ in \mathscr{P} and z in Δ. (Note: In subsequent computations it will be convenient to replace $P(z)$ by its reciprocal; this is no restriction, since both $P(z)$ and its reciprocal are simultaneously in \mathscr{P}.)

2. Our conclusions.

Theorem 1. If $f(z)$ is an α-spiral function, $\check{f}(w)=w+A_{2} w^{2}+\ldots$,

$$
\begin{equation*}
a=i e^{-i \alpha} \sin \alpha, A=\left|32 a^{2}-52 a+21\right| \text { and } B=|5-6 a| ; \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|A_{2}\right| \leqq|1-a| \cdot 2 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{3}\right| \leqq B \cos \alpha \tag{2.3}
\end{equation*}
$$

which are both sharp, and

$$
\left|A_{4}\right| \leqq\left\{\begin{array}{l}
\frac{4}{3} A \cos \alpha, \text { if } 2 B^{2}+5 B+2 \leqq A\left(B^{2}+3 B+3\right) \tag{2.4}\\
\frac{4}{3} \cos \alpha\left(\frac{A+B^{2}}{(1+B)^{3}}+\frac{2 B}{B+1}\right), \text { otherwise }
\end{array}\right.
$$

THEOREM 2. If $f(z)$ is an α-spiral function and $\check{f}(w)=w+A_{2} w^{2}+\ldots$, then

$$
\begin{equation*}
\left|A_{n}\right| \leqq \frac{e^{\pi n \cos \alpha \sin \alpha}}{n} \cdot \frac{\Gamma\left(1+2 n \cos ^{2} \alpha\right)}{\left(\Gamma\left(1+n \cos ^{2} \alpha\right)\right)^{2}} \tag{2.5}
\end{equation*}
$$

for $n=2,3,4, \ldots$.
Theorem 3j If $f(z)$ is a starlike function in \mathscr{S}, i.e., $f(z)$ is a zero-spiral function, and $f(w)=w+A_{2} w^{2}+\ldots$, then

$$
\begin{equation*}
\left|A_{n}\right| \leqq \frac{1}{n}\binom{2 n}{n+1}, \text { for } n \geqq 2 \tag{2.6}
\end{equation*}
$$

and this bound is rendered sharp when $f(z)$ is a properly chosen rotation of the Koebe function (1.2).

This, of course, is not a new result, but a consequence of the work of Loewner cited above. However, the proof given here is a new one, relatively simple and applicable directly to the class \mathscr{S}^{*}.
3. Proof of theorem 1. If we let a member of \mathscr{P} have the representation

$$
\begin{equation*}
P(z)=1+C_{1} z+C_{2} z^{2}+\ldots, z \text { in } \Delta, \tag{3.1}
\end{equation*}
$$

let $w=f(z)$ and $z=\stackrel{\vee}{f}(w)$, recall that

$$
(\check{f}(w))^{\prime}=1 / f^{\prime}(z),
$$

and rewrite (1.6) accordingly; we obtain

$$
\begin{equation*}
\check{f}(w) P(\check{f}(w))=w(\check{f}(w))^{\prime}\left(e^{-i \alpha} \cos \alpha+i e^{-i \alpha} \sin \alpha \cdot P(\check{f}(w))\right), \tag{3.2}
\end{equation*}
$$

or

$$
\begin{align*}
& \sum_{k=1}^{\infty} A_{k} w^{k} \cdot\left(1+\sum_{k=1}^{\infty} C_{k}(\check{f}(w))^{k}\right) \tag{3.3}\\
& =\sum_{k=1}^{\infty} k A_{k} w^{k} \cdot\left(1+\sum_{k=1}^{\infty} a C_{k}(\stackrel{f}{f}(w))^{k}\right)
\end{align*}
$$

and finally that

$$
\left\{\begin{align*}
A_{2} & =(1-a) C_{1}, \tag{3.4}\\
2 A_{3} & =(2-3 a) C_{1} A_{2}+(1-a) C_{2}, \text { and } \\
3 A_{4} & =(2-4 a) C_{1} A_{3}+(3-4 a) C_{2} A_{2}+(1-2 a) C_{1} A_{2}^{2} \\
& +(1-a) C_{3} .
\end{align*}\right.
$$

The relations in (3.4) may be rewritten as

$$
\left\{\begin{align*}
A_{2} & =(1-a) C_{1}, \tag{3.5}\\
2 A_{3} & =(1-a)\left((2-3 a) C_{1}^{2}+C_{2}\right), \text { and } \\
3 A_{4} & =(1-a)\left((1-2 a)(3-4 a) C_{1}^{3}\right. \\
& \left.+(4-6 a) C_{1} C_{2}+C_{3}\right)
\end{align*}\right.
$$

(2.2) is now obtained from the first of these relations by an application of

Caratheodóry's well-known theorem which states that $\left|C_{k}\right| \leqq 2$ for all k, (see [3], [4], for example).

To justify (2.3) and (2.4) we call upon another result due to Caratheódory (stated here in a form due to Toeplitz); it appears in [4].

Lemma. The power series for $P(z)$ given in (3.1) converges in Δ to a function in \mathscr{P} if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{lllll}
2 & C_{1} & C_{2} & \ldots & C_{n} \tag{3.6}\\
C_{-1} & 2 & C_{1} & \ldots & C_{n-1} \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & \\
C_{-n} & C_{-n+1} & C_{-n+2} & \ldots & 2
\end{array}\right|, n=1,2,3, \ldots
$$

with $C_{-k}=\bar{C}_{k}$, are all non-negative. They are strictly positive except for

$$
\begin{align*}
& P(z)=\sum_{k=1}^{m} \rho_{k} P_{0}\left(e^{i t} z\right) \\
& P_{0}(z)=\frac{1+z}{1-z}=1+2 z+2 z^{2}+\ldots \tag{3.7}
\end{align*}
$$

$\rho_{k}>0, t_{k}$ real and $t_{k} \neq t_{j}$ for $k \neq j$ in this exceptional case $D_{n}>0$ for $n<m-1$ and $D_{n}=0$ for $n \geqq m$.

With no restriction we may assume that $C_{1}>0$ and write

$$
D_{2}=\left|\begin{array}{lll}
2 & C_{1} & C_{2} \tag{3.8}\\
C_{1} & 2 & C_{1} \\
\bar{C}_{2} & C_{1} & 2
\end{array}\right|=8+2 \operatorname{Re}\left\{C_{1}^{2} C_{2}\right\}-2\left|C_{2}\right|^{2}-4 C_{1}^{2} \geqq 0
$$

from which we conclude that

$$
\begin{equation*}
2 C_{2}=C_{1}^{2}+x\left(4-C_{1}^{2}\right), \quad \text { for some } x,|x| \leqq 1 \tag{3.9}
\end{equation*}
$$

This representation for C_{2} and (3.6) gives
(3.10) $4 A_{3}=(1-a)\left((4-6 a+1) C_{1}^{2}+x\left(4-C_{1}^{2}\right)\right)$
and the bound $|x| \leqq 1$, along with an application of the triangle inequality, gives

$$
\begin{align*}
4\left|A_{3}\right| & \leqq|1-a| \cdot\left|(|5-6 a|-1) C_{1}^{2}+4\right| \tag{3.11}\\
& \leqq 4|1-a| \cdot|5-6 a|
\end{align*}
$$

because $|5-6 a| \geqq 1$. Equality holds true in (2.2) and (2.3) when $f(z)$, and consequently $\check{f}(w)$, is the solution of (1.6) with $P(z)$ replaced by $P_{0}(z)$.

To arrive at (2.4) we appeal once again to the lemma. $D_{3} \geqq 0$, in (3.6), is equivalent to
(3.12) $\left|\left(4 C_{3}-4 C_{1} C_{2}+C_{1}^{3}\right)\left(4-C_{1}^{2}\right)+C_{1}\left(2 C_{2}-C_{1}^{2}\right)^{2}\right|$

$$
\leqq 2\left(4-C_{1}^{2}\right)^{2}-2\left|2 C_{2}-C_{1}^{2}\right|^{2}
$$

and using (3.9) we rewrite (3.12) as
(3.13) $4 C_{3}=C_{1}^{3}+2\left(4-C_{1}^{2}\right) C_{1} x-C_{1}\left(4-C_{1}^{2}\right) x^{2}$

$$
+2\left(4-C_{1}^{2}\right)\left(1-|x|^{2}\right) z
$$

for some $z,|z| \leqq 1$. Combining (3.13) with (3.9) and (3.13) yields the equation

$$
\begin{align*}
\frac{12 A_{4}}{1-a} & =\left(21-52 a+32 a^{2}\right) C_{1}^{3}+2 C_{1}\left(4-C_{1}^{2}\right)(5-6 a) x \tag{3.14}\\
& -C_{1}\left(4-C_{1}^{2}\right) x^{2}+2\left(4-C_{1}^{2}\right)\left(1-|x|^{2}\right) z
\end{align*}
$$

Letting $|x|=\rho$, recalling the definitions of A and B given in (2.1), applying the triangle inequality and replacing $|z|$ by its maximum value 1 , we may find an upper bound for the right side of (3.14) by maximizing the function

$$
\begin{align*}
\phi(\rho) & =A C_{1}^{3}+2 C_{1}\left(4-C_{1}^{2}\right) B \rho+C_{1}\left(4-C_{1}^{2}\right) \rho^{2} \tag{3.15}\\
& +2\left(4-C_{1}^{2}\right)\left(1-\rho^{2}\right) .
\end{align*}
$$

If $C_{1}=2$, then $|\phi(\rho)| \leqq 8 A$, and if $C_{1}=0$, then $|\phi(\rho)| \leqq 8$; consequently, we assume $0<C_{1}<2$.

$$
\phi^{\prime}(\rho)=2\left(4-C_{1}^{2}\right)\left(C_{1} B+\rho\left(C_{1}-2\right)\right)
$$

and $\phi(\rho)$ achieves its maximum when

$$
\rho_{0}=\frac{C_{1} B}{2-C_{1}}
$$

If $\rho_{0} \leqq 1$, then

$$
C_{1} \leqq \frac{2}{B+1}
$$

and in this case we have
(3.16) $\frac{12\left|A_{4}\right|}{|1-a|} \leqq\left.\phi\left(\frac{C_{1} B}{2-C_{1}}\right)\right|_{C_{1}=\frac{2}{B+1}}$

$$
\begin{aligned}
& =\left.\left\{\left(A+B^{2}\right) C_{1}^{3}+2\left(B^{2}-1\right) C_{1}^{2}+8\right\}\right|_{C_{1}=\frac{2}{B+1}} \\
& =8\left(\frac{A+B^{2}}{(B+1)^{3}}+\frac{2 B}{B+1}\right),
\end{aligned}
$$

having made use of $B^{2}-1=24 \cos ^{2} \alpha>0$, for $|\alpha| \neq \pi / 2$.
Now we suppose that $\phi^{\prime}(\rho)$ has its zero at

$$
\rho_{0}=\frac{C_{1} B}{2-C_{1}}>1,
$$

then

$$
\frac{2}{B+1}<C_{1} \leqq 2
$$

Replacing ρ by 1 in (3.15), we see that our problem reduces to one of maximizing

$$
\begin{equation*}
\psi\left(C_{1}\right)=C_{1}\left((A-2 B-1) C_{1}^{2}+(8 B+4)\right) \tag{3.17}
\end{equation*}
$$

over the interval $\left(\frac{2}{B+1}, 2\right]$. If $A-2 B-1 \geqq 0$, then the maximum occurs at 2 , and we conclude that

$$
\frac{12\left|A_{4}\right|}{|1-a|} \leqq 8 A
$$

On the other hand, if $A-2 B-1<0$, then the solution of $\psi^{\prime}\left(C_{1}\right)=0$ we are interested in is the (non-negative) solution of

$$
C_{1}^{2}=\frac{8 B+4}{3(1+2 B-A)}
$$

lying in the interval given above. These conditions on C_{1} are equivalent to the statement

$$
\frac{4}{(B+1)^{2}}<\frac{8 B+4}{3(1+2 B-A)} \leqq 4
$$

Then the maximum for ψ occurs at $C_{1}=2$, because $\psi^{\prime}>0$ over $\left(\frac{2}{B+1}, 2\right] . \quad \psi(2)=8 A$ and this is the upper bound when

$$
\frac{A+B^{2}}{(1+B)^{3}}+\frac{2 B}{B+1}<A
$$

which is equivalent to

$$
2 B^{2}+5 B+2 \leqq A\left(B^{2}+3 B+3\right)
$$

The sharp upper bound corresponds to the example given above for (2.2) and (2.3).
4. Proofs of theorems 2 and 3. If $f(z)$ and $\check{f}(w)$ are as before, let $C(r)$ be the image of the circle $|z|=r, r<1$, under $f(z)$, then

$$
\begin{align*}
A_{n} & =\frac{1}{2 \pi i} \int_{C(r)} \frac{\stackrel{\vee}{f}(w) d w}{w^{n+1}}=\frac{1}{2 \pi i} \int_{|z|=r} \frac{z f^{\prime}(z)}{f(z)^{n+1}} d z \tag{4.1}\\
& =\frac{1}{2 \pi i n} \int_{|z|=r} \frac{d z}{f(z)^{n}},
\end{align*}
$$

and to bound A_{n}, using (4.1), we seek a bound for $|f(z)|^{-n}$.
Using the Stieltjes integral representation for $P(z)$ in \mathscr{P}, (see [3], for example) in (1.6), then performing an integration we have

$$
\begin{equation*}
\frac{z}{f(z)}=\exp \left\{2 e^{-i \alpha} \cos \alpha \int_{0}^{2 \pi} \log \left(1-e^{i t} z\right) d \mu(t)\right\} \tag{4.2}
\end{equation*}
$$

for a non-decreasing $\mu(t)$ such that

$$
\int_{0}^{2 \pi} d \mu(t)=1
$$

From (4.2) we get

$$
\begin{align*}
& \left|\frac{z}{f(z)}\right|^{n} \tag{4.3}\\
& \leqq \exp \{n \pi \sin \alpha \cos \alpha\} \cdot \exp \left\{2 n \cos ^{2} \alpha \int_{0}^{2 \pi} \log \left|1-z e^{i t}\right| d \mu(t)\right\}
\end{align*}
$$

and this, along with (4.1) yields

$$
\begin{align*}
\left|A_{n}\right| & \leqq \frac{1}{2 \pi n} \int_{|z|=r} \frac{|d z|}{|f(z)|^{n}} \tag{4.4}\\
& \leqq \frac{e^{\pi n \cos \alpha \sin \alpha}}{2 \pi n r^{n}} \int_{|z|=r}\left(\exp \int_{0}^{2 \pi} \log \left|1-z e^{i t \mid}\right|^{n n \cos ^{2} \alpha} d \mu(t)\right)|d z| \\
& \left.\leqq \frac{e^{\pi n \cos \alpha \sin \alpha}}{2 \pi n r^{n}} \int_{|z|=r} \int_{0}^{2 \pi}\left|1-z e^{i t \mid 2 n \cos ^{2} \alpha} d \mu(t)\right| d z \right\rvert\, \\
& \left.=\frac{e^{\pi n \cos \alpha \sin \alpha}}{2 \pi n r^{n-1}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \right\rvert\, 1-r e^{i t} e^{i \theta \mid 2 n \cos ^{2} \alpha} d \theta d \mu(t)
\end{align*}
$$

having let $z=r e^{i \theta}, 0<r<1$. (Here we have used the integral generalization of the inequality between the arithmetic and geometric means. (see p. 110, [11], for example).)

The integrals in (4.4) are bounded, consequently we let $r \rightarrow 1$ and obtain

$$
\begin{align*}
\left|A_{n}\right| & \leqq \frac{e^{\pi n \cos \alpha \sin \alpha}}{2 \pi n} \int_{0}^{2 \pi}\left|1-e^{i \theta}\right|^{2 n \cos ^{2} \alpha} d \theta \tag{4.5}\\
& =e^{\pi n \cos \alpha \sin \alpha} \cdot\left(\frac{2^{2 n \cos ^{2} \alpha}}{2 \pi n} \int_{-\pi}^{\pi}\left|\cos \frac{\theta}{2}\right|^{2 n \cos ^{2} \alpha} d \theta\right)
\end{align*}
$$

$$
=e^{\pi n \cos \alpha \sin \alpha} \cdot \frac{1}{n} \cdot \frac{\Gamma\left(2 n \cos ^{2} \alpha+1\right)}{\left(\Gamma\left(n \cos ^{2} \alpha+1\right)\right)^{2}},
$$

having referred to standard tables ([2], or see the analogous form p. 108 [6]).

Our proof of Theorem 3 begins with an analysis of the relationships between coefficients C_{k} and A_{k}, all k, as given in (3.1), (3.2), (3.3), (3.4) and (3.5), but with $\alpha=0$. Computation and rearrangement of terms yields the following relationships:

$$
\left\{\begin{array}{l}
A_{2}=C_{1} \tag{4.6}\\
2 A_{3}=2 C_{1}^{2}+C_{2}, \\
3 A_{4}=3 C_{1}^{3}+4 C_{1} C_{2}+C_{3}, \\
4!A_{5}=24 C_{1}^{4}+58 C_{1}^{2} C_{2}+28 C_{1} C_{3}+9 C_{2}^{2}+6 C_{4}, \text { and } \\
5!A_{6}=120 C_{1}^{5}+436 C_{1}^{3} C_{2}+192 C_{1} C_{2}^{2}+312 C_{1}^{2} C_{3} \\
\\
\quad+108 C_{1} C_{4}+72 C_{2} C_{3}+24 C_{5} .
\end{array}\right.
$$

Now, an examination of the way in which the coefficients in (4.6) are formed shows that

$$
\begin{equation*}
(k-1)!A_{k}=C_{1}^{k-1}+Q_{k}\left(C_{1}, C_{2}, \ldots, C_{k-1}\right) \tag{4.7}
\end{equation*}
$$

for each k, and Q_{k} is a polynomial all of whose coefficients are non-negative. Consequently, a sharp upper bound for (4.7) is obtained by a direct application of the triangle inequality and the bounds $\left|C_{k}\right| \leqq 2$, all k. A function maximizing $\left|C_{1}\right|$ and all subsequent $\left|C_{k}\right|$ is $P_{0}(z)$, given above; the corresponding extremal in \mathscr{S}^{*} is the inverse of a suitable rotation of the Koebe function, $K(z)$, see (1.2), and whose inverse has coefficients as in (1.4).
5. Remarks. (i) Replacing $P(z)$ in (1.6) by its reciprocal plays a significant role in all the above computations since doing so gives tractable representations for the A_{k} 's in terms of coefficients of members of \mathscr{P}. This observation was made by Campschroer [1] in a similar situation.
(ii) The bound in (2.5) is not best possible. In particular, when $\alpha=0$, (2.5) does not reduce to (2.6); however (2.5) is of the correct order.
(iii) The methods used to find bounds given in Theorem 1 appear too cumbersome to handle $\left|A_{5}\right|,\left|A_{6}\right|, \ldots$ For example,

$$
\begin{aligned}
4 A_{5} & =(2-5 a) C_{1} A_{4}+(3-5 a) C_{2} A_{3}+(3-5 a) C_{2} A_{2}^{2} \\
& +(4-5 a) C_{3} A_{2}+(2-5 a) C_{1} A_{2} A_{3}+(1-a) C_{4},
\end{aligned}
$$

which upon elimination of C_{k} 's reduces to

$$
\begin{aligned}
4!A_{5} & =(1-a)\left\{\left(24-130 a+225 a^{2}-125 a^{3}\right) C_{1}^{4}\right. \\
& +2\left(29-95 a+75 a^{2}\right) C_{1}^{2} C_{2}+4(7-10 a) C_{1} C_{3} \\
& \left.+3(3-5 a) C_{2}^{2}+6 C_{4}\right\} .
\end{aligned}
$$

Acknowledgements. This work was done while the first author was at Uniwersytet Marii Curie-Sklodowskiej under support of the (U.S.) National Academy of Sciences and Polska Akademia Nauk.

References

1. J. T. P. Campschroer, Coefficients of the inverse of a convex function, Report 8227, Dept. of Math., Catholic University, Nijmegen, The Netherlands (1982).
2. H. B. Dwight, Tables of integrals and other mathematical data (New York, 1961).
3. L. de Branges, A proof of the Bieberbach conjecture, Acta Math 154 (1985), 137-152.
4. U. Grenander and G. Szegö, Toeplitz forms and their applications (Univ. of California Press, Berkeley and Los Angeles, 1958).
5. W. E. Kirwan and G. Schober, Inverse coefficients for functions of bounded boundary rotation, J. Analyse Math. 36 (1979), 167-178.
6. J. G. Krzyz, R. J. Libera and E. J. Zlotkiewicz, Coefficients of inverses of regular starlike functions, Ann. Univ. Mariae Curie-Sktodowska, Sect. A 33 (1979), 103-110.
7. R. J. Libera, Univalent $\boldsymbol{\alpha}$-spiral functions, Can. J. Math. 19 (1967), 449-456.
8. R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. A.M.S. 85 (1982), 225-230.
9. - Coefficient bounds for the inverse of a function with derivative in \mathscr{P}, Proc. A.M.S. 87 (1983), 251-257.
10. C. Loewner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I, Math. Ann. 89 (1923), 103-121.
11. H. L. Royden, Real analysis, 2nd ed. (The Macmillan Company, New York, 1968).
12. G. Schober, Coefficient estimates for inverses of schlicht functions, Aspects of contemporary complex analysis (Academic Press, New York, 1980), 503-513.
13. L. Špaček, Prǐspěvek k teorii funkci prostych, Cǎsopis Pěst. Mat a Fys. 62 (1933), 12-19.

University of Delaware,
Newark, Delaware;
Uniwersytet Marii Curie-Sklodowskiej,
Lublin, Polska

