INTEGRATED SOLUTIONS OF STOCHASTIC EVOLUTION EQUATIONS WITH ADDITIVE NOISE

A. Filinkov and I. Maizurna

We investigate the existence of a solution to the abstract stochastic evolution equation with additive noise:

\[dX(t) = AX(t)\, dt + B\, dW(t), \quad X(0) = \xi, \]

in the case when \(A \) is the generator of an \(n \)-times integrated semigroup.

1. INTRODUCTION

Let \(H \) and \(U \) be real separable Hilbert spaces. We consider the stochastic differential equation

\[dX(t) = AX(t)\, dt + B\, dW(t), \quad X(0) = \xi, \]

where \(A : D(A) \subset H \to H \) is a closed linear operator and \(B : U \to H \) is a bounded linear operator. \(W(\cdot) \) is an \(U \)-valued cylindrical Wiener process in a probability space \((\Omega, \mathcal{F}, P) \) adapted to the filtration \(\{\mathcal{F}_t\}_{t \geq 0} \) and \(\xi \) is an \(H \)-valued random variable.

Equation (1) was studied by many authors (see [2] and [3] and references therein) in the case when \(A \) is the generator of a \(C_0 \)-semigroup. The novelty of this note is that we study this equation in the case when the operator \(A \) is the generator of an \(n \)-times integrated semigroup. We prove the existence of a weak \(n \)-integrated solution to (1) and discuss the existence a continuous version of this solution. Finally, we use the stochastic wave equation to illustrate our results.

2. PRELIMINARIES

By \(H \)-valued random variable, we understand an \(H \)-valued mapping \(\xi : \Omega \to H \) which is measurable from \((\Omega, \mathcal{F})\) to \((H, \mathcal{B}(H))\), where \(\mathcal{B}(H) \) is the smallest \(\sigma \)-field containing all closed (or open) subsets of \(H \). A stochastic process \(X(\cdot) \) is said to be adapted to the filtration \(\{\mathcal{F}_t\}_{t \geq 0} \) if, for any \(t \geq 0 \), \(X(t) \) is \(\{\mathcal{F}_t\} \)-measurable. A stochastic process \(X(\cdot) \) is called \(H \)-valued predictable if \(X : [0, \infty) \times \Omega \to H \) (or \(X : [0, T] \times \Omega \to H \) is
A. Filinkov and I. Maizurna [2]

\mathcal{P}_∞-measurable (respectively \mathcal{P}_T-measurable), where \mathcal{P}_∞ is a σ-field generated by sets of the form:

$(s, t] \times F, \ 0 \leq s < t, \ F \in \mathcal{F}_s$ and $\{0\} \times F, \ F \in \mathcal{F}_0$,

and \mathcal{P}_T is the restriction of \mathcal{P}_∞ to $[0, T]$.

We denote by $L^2(\Omega; H)$ the Banach space of all H-valued square integrable mappings endowed with the norm

$$\|X\|_2 := \left(E\left[\|X\|^2 \right] \right)^{1/2},$$

and by $C_W([0,T];H)$ the Banach space of all mappings $X : [0, T] \to L^2(\Omega; H)$, that are continuous and adapted to the filtration $\{\mathcal{F}_t\}_{t \geq 0}$, endowed with the norm

$$\|X(\cdot)\|_{C_W([0,T];H)} := \sup_{t \in [0,T]} \left(E\left[\|X(t)\|^2 \right] \right)^{1/2}.$$

Let furthermore $\{e_k\}_{k \in \mathbb{N}}$ be a complete orthonormal system in U and $\{\beta_k(\cdot)\}_{k \in \mathbb{N}}$ be a sequence of independent real Brownian motions on (Ω, \mathcal{F}, P) adapted to the filtration $\{\mathcal{F}_t\}_{t \geq 0}$. For all $y \in U$ and $t \geq 0$ one can define the following random variables

$$\langle W(t), y \rangle = \sum_{k=1}^{\infty} \beta_k(t) \langle e_k, y \rangle,$$

which clearly belong to $L^2(\Omega)$. The formal sum

$$W(t) = \sum_{k=1}^{\infty} \beta_k(t) e_k, \quad t \geq 0,$$

is called an U-valued cylindrical Wiener process. Note that the series in (2) is not convergent in $L^2(\Omega; U)$.

We now give a very brief summary of basic facts about integrated semigroups, which can be found, for example, in [1] and [6].

Definition 1. Let $n \in \mathbb{N}$. A one-parameter family of bounded linear operators $\{V_n(t) \in \mathcal{L}(H) : t \in [0, \infty)\}$ is called an n-times integrated exponentially bounded semigroup if the following conditions hold

(a) $\left(\frac{1}{(n-1)!} \right) \int_0^s [(s-r)^{n-1}V_n(t+r) - (t+s-r)^{n-1}V_n(r)] \, dr = V_n(t)V_n(s), \quad s, t \geq 0$;

(b) $V_n(t)$ is strongly continuous with respect to $t \geq 0$;

(c) $\exists C > 0, \ a \in \mathbb{R} : \|V_n(t)\| \leq Ce^{at}, \ t \geq 0$.

The semigroup $\{V_n(t) \in \mathcal{L}(H) : t \in [0, \infty)\}$ is called non-degenerate if

$$\forall t \geq 0, \ V_n(t)x = 0 \Rightarrow x = 0.$$
If the semigroup is non-degenerate, then $V_n(0) = 0$ and the operator

$$R(\lambda) := \int_0^\infty \lambda^n e^{-\lambda t} V_n(t) \, dt, \quad \text{Re} \lambda > a$$

is invertible. The operator A defined by

$$(\lambda I - A)^{-1} x = \int_0^\infty \lambda^n e^{-\lambda t} V_n(t)x \, dt, \quad x \in H$$

with the domain equal to the range of $(\lambda I - A)^{-1}$, is called the generator of $\{V_n(t) \in \mathcal{L}(H) : t \in [0, \infty)\}$.

Proposition 1. Let A be a densely defined linear operator on H with nonempty resolvent set. Then the following statements are equivalent:

1. A is the generator of an n-times integrated semigroup $\{V_n(t) \in \mathcal{L}(H) : t \in [0, \infty)\}$;
2. for any $x \in \mathcal{D}(A^{n+1})$ the Cauchy problem

$$u'(t) = Au(t), \quad t \geq 0, \quad u(0) = x,$$

has a unique solution $u(\cdot) \in C([0, \infty], \mathcal{D}(A)) \cap C^1([0, \infty], H)$ satisfying

$$\exists K > 0, \quad a \in \mathbb{R} : \|u(t)\| \leq K e^{at}\|x\|_{A^n},$$

where $\|x\|_{A^n} := \|x\| + \|Ax\| + \ldots + \|A^n x\|.$

In this case the solution of (3) has the form

$$u(t) = V_n^{(n)}(t)x, \quad x \in \mathcal{D}(A^{n+1}).$$

Assume that the operator A in problem (1) generates an exponentially bounded n-times integrated semigroup $\{V_n(t) \in \mathcal{L}(H) : t \in [0, \infty)\}$. We consider the stochastic convolution

$$W_n(t) := \int_0^t V_n(t-s)BdW(s) = \sum_{k=1}^\infty \int_0^t V_n(t-s)B_k d\beta_k(s).$$

The series in (4) is convergent in $L^2(\Omega, H)$ due to the following lemma, which is an obvious generalisation of the corresponding result for the generators of C_0-semigroups, which can be found in [2].

Lemma 1. Assume that $K(\cdot)x \in C([0, T]; H)$ for any $x \in H$, and that the linear operator

$$L_t x := \int_0^t K(s)BB^* K^*(s)x \, ds, \quad x \in H,$$
is of trace class:

$$\text{Tr } L_t = \sum_{k=1}^{\infty} \int_0^t \left\| K(s) B e_k \right\|^2_H ds < \infty.$$

Then for all $t > 0$ the series

$$W_K(t) = \int_0^t K(t-s) B dW(s) = \sum_{k=1}^{\infty} \int_0^t K(t-s) B e_k d\beta_k(t)$$

is convergent on $L^2(\Omega; H)$ to a Gaussian random variable $W_K(t)$ with mean zero and covariance operator L_t. Moreover $W_K(\cdot)$ belongs to $C_w([0,T]; H)$ for any $T > 0$.

By Lemma 1, we also have that

$$\int_0^t \frac{(t-s)^n}{n!} B dW(s)$$

is a Gaussian random variable.

3. MAIN RESULTS

Definition 2. An H-valued predictable process $X(t)$ is said to be a weak n-integrated solution of (1) if the trajectories of $X(\cdot)$ are P-almost surely Bochner integrable and if for all $\nu \in D(A^*)$ and $t \in [0,T]$ the equality

$$(6) \quad \langle X(t), \nu \rangle = \left\langle \frac{t^n}{n!} \xi, \nu \right\rangle + \left\langle \int_0^t X(s) ds, A^* \nu \right\rangle + \left\langle \int_0^t \frac{(t-s)^n}{n!} B dW(s), \nu \right\rangle,$$

holds P-almost surely.

Theorem 1. Let A be the generator of an n-times integrated semigroup $\{V_n(t) \in \mathcal{L}(H) : t \in [0,\infty)\}$ and let the operator L_t, defined by (5) with $K = V_n$, be of trace class. Then

$$X(t) = V_n(t)\xi + \int_0^t V_n(t-s) B dW(s)$$

is a weak n-integrated solution of (1).

Proof: Without loss of generality assume that $\xi = 0$. We show that equation (6) is satisfied by

$$W_n(t) = \int_0^t V_n(t-s) B dW(s).$$

Fix $t \in [0,T]$ and let $\nu \in D(A^*)$. Note that

$$\int_0^t \left\langle A^* \nu, W_n(s) \right\rangle ds = \int_0^t \left\langle A^* \nu, \int_0^s \chi_{[0,t]}(r) V_n(s-r) B dW(r) \right\rangle ds.$$
Hence by the stochastic Fubini theorem, we have
\[
\int_0^t \langle A^* \nu, W_n(s) \rangle ds = \int_0^t \left\langle A^* \nu, \int_0^t \chi_{[0,s]}(r) V_n(s-r) B dW(r) \right\rangle ds \\
= \int_0^t \left\langle \int_0^t \chi_{[0,s]}(r) B^* V_n^*(r-s) A^* \nu ds, dW(r) \right\rangle \\
= \int_0^t \left\langle \int_0^t B^* V_n^*(s-r) A^* \nu ds, dW(r) \right\rangle.
\]

Since \(A \) generates an \(n \)-times integrated semigroup \(\{ V_n(t) \in \mathcal{L}(H) : t \in [0,\infty) \} \), \(A^* \) generates the \(n \)-times integrated semigroup \(\{ V_n^*(t) \in \mathcal{L}(H^*) : t \in [0,\infty) \} \), where \(H^* \) is the dual space of \(H \). Since \(A^* \) and \(V_n^*(t) \) commute, using the properties of the \(n \)-times integrated semigroup \(\{ V^*_n(t) \in \mathcal{L}(H^*) : t \in [0,\infty) \} \) we obtain
\[
\int_0^t \langle A^* \nu, W_n(s) \rangle ds = \int_0^t \left\langle \int_0^t \chi_{[0,s]}(r) B^* A^* V_n^*(r-s) \nu ds, dW(r) \right\rangle \\
= \int_0^t \left\langle \int_0^t \left(B^* \frac{d}{ds} V^*(s-r) \nu - B^* \frac{(s-r)^{n-1}}{(n-1)!} \nu \right) ds, dW(r) \right\rangle \\
= \int_0^t \left\langle B^* V^*(t-r) \nu - B^* \frac{(t-r)^n}{n!} \nu, dW(r) \right\rangle \\
= \left\langle \nu, \int_0^t V^*(t-r) B dW(r) \right\rangle - \left\langle \nu, \int_0^t \frac{(t-r)^n}{n!} B dW(r) \right\rangle.
\]

Therefore \(W_n(t) = \int_0^t V_n(t-s) B dW(s) \) is a weak \(n \)-integrated solution of (1).

However, the solution \(X \) does not necessarily have a continuous version. The purpose of our next discussion is to find conditions under which the solutions have continuous versions.

Let \(A \) be the generator of an exponentially bounded \(n \)-times integrated semigroup \(\{ V_n(t) \in \mathcal{L}(H) : t \in [0,\infty) \} \). Hence \(A \) is also the generator of an exponentially bounded \((n+j) \)-times integrated semigroups \(\{ V_{n+j}(t) \in \mathcal{L}(H) : t \in [0,\infty) \} \) for \(j = 1, 2, \ldots \). In particular, \(A \) generates an exponentially bounded \(2n \)-times integrated semigroup \(\{ V_{2n}(t) \in \mathcal{L}(H) : t \in [0,\infty) \} \). It is shown in [5], that those semigroups satisfy the relation
\[
V_{2n}(t+s) = V_n(t)V_n(s) + \sum_{j=0}^{n-1} \frac{1}{j!} (s^j V_{2n-j}(t) + t^j V_{2n-j}(s)).
\]

Define
\[
W_{2n}(t) := \int_0^t V_{2n}(t-s) B dW(s) = \sum_{k=1}^{\infty} \int_0^t V_{2n}(t-s) B e_k d\beta_k(s).
\]

By Lemma 1, \(W_{2n}(t) \) is a Gaussian random variable with the law \(\mathcal{N}(0, L_t^{2n}) \), where
\[
L_t^{2n} x := \int_0^t V_{2n}(s) B B^* V_{2n}^*(s) x ds, \quad x \in H,
\]
given that \(L_t^{2n} \) is of trace class. We now show that \(W_{2n} \) has a continuous version. The following theorem is a generalisation of the corresponding result of Da Prato and Zabczyk [2] for generators of \(C_0 \)-semigroups.

Theorem 2. Assume that there is \(\alpha \in (0, 1/2) \) and \(T \in (0, \infty) \) such that

\[
\int_0^T s^{-2\alpha} \text{Tr} \left[V_n(s) BB^* V_n^*(s) \right] ds = C_{\alpha,T}^n < \infty,
\]

and for \(j = 0, 1, 2, \ldots, n - 1 \),

\[
\int_0^T s^{-2\alpha} \text{Tr} \left[V_{2n-j}(s) BB^* V_{2n-j}(s) \right] ds = C_{\alpha,T}^{2n-j} < \infty.
\]

Then \(W_{2n}(t) \) defined by (8) has a continuous version.

Proof: Using (7) we can write

\[
W_{2n}(t) = \int_0^t V_n(t - \sigma + \sigma - s) BdW(s) \\
= \int_0^t V_n(t - \sigma) V_n(\sigma - s) BdW(s) \\
+ \int_0^t \left(\sum_{j=0}^{n-1} \frac{1}{j!}(\sigma - s)^j V_{2n-j}(t - \sigma) + (t - \sigma)^j V_{2n-j}(\sigma - s) \right) BdW(s).
\]

Using the factorisation formula

\[
\frac{\pi}{\sin (\pi \alpha)} = \int_s^t (t - \sigma)^{-\alpha}(\sigma - s)^{-\alpha} d\sigma, \quad \alpha \in (0, 1), \quad 0 \leq s \leq t,
\]

we obtain

\[
W_{2n}(t) = \frac{\sin (\pi \alpha)}{\pi} \int_s^t (t - \sigma)^{-\alpha}(\sigma - s)^{-\alpha} d\sigma \int_0^t V_n(t - \sigma) V_n(\sigma - s) BdW(s) \\
+ \frac{\sin (\pi \alpha)}{\pi} \int_s^t (t - \sigma)^{-\alpha}(\sigma - s)^{-\alpha} d\sigma \sum_{j=0}^{n-1} \frac{1}{j!} (\sigma - s)^j V_{2n-j}(t - \sigma) BdW(s) \\
+ \frac{\sin (\pi \alpha)}{\pi} \int_s^t (t - \sigma)^{-\alpha}(\sigma - s)^{-\alpha} d\sigma \sum_{j=0}^{n-1} \frac{1}{j!} (t - \sigma)^j V_{2n-j}(\sigma - s) BdW(s).
\]

By the stochastic Fubini theorem, we have

\[
W_{2n}(t) = \frac{\sin (\pi \alpha)}{\pi} \int_0^t \int_0^t \frac{1}{(t - s)^{\alpha} - s^{-\alpha}} V_n(t - \sigma)(t - \sigma)^{-\alpha} V_n(\sigma - s)(\sigma - s)^{-\alpha} BdW(s) d\sigma
\]

\[
+ \frac{\sin (\pi \alpha)}{\pi} \sum_{j=0}^{n-1} \frac{1}{j!} \int_0^t V_{2n-j}(t - \sigma)(t - \sigma)^{-\alpha} \int_0^\sigma (\sigma - s)^j BdW(s) d\sigma \\
+ \frac{\sin (\pi \alpha)}{\pi} \sum_{j=0}^{n-1} \frac{1}{j!} \int_0^t (t - \sigma)^{j+\alpha-1} \int_0^\sigma V_{2n-j}(\sigma - s)(\sigma - s)^{-\alpha} BdW(s) d\sigma.
\]
Writing
\[U_n(\sigma) = \int_{0}^{\sigma} V_n(\sigma - s)(\sigma - s)^{-\alpha}BdW(s), \]
and for \(j = 0, 1, 2, \ldots, n - 1 \)
\[U_j(\sigma) = \int_{0}^{\sigma} (\sigma - s)^{j-\alpha}BdW(s), \]
\[U_{2n-j}(\sigma) = \int_{0}^{\sigma} V_{2n-j}(\sigma - s)(\sigma - s)^{-\alpha}BdW(s), \]
and
\[P_n(t) = \frac{\sin \left(\frac{\pi \alpha}{\pi} \right)}{\pi} \int_{0}^{t} V_n(t - \sigma)(t - \sigma)^{\alpha-1}U_n(\sigma) d\sigma, \]
\[P_{2n-j}(t) = \frac{\sin \left(\frac{\pi \alpha}{\pi} \right)}{\pi} \int_{0}^{t} \frac{1}{j!} V_{2n-j}(t - \sigma)(t - \sigma)^{\alpha-1}U_j(\sigma) d\sigma, \]
\[P_j(t) = \frac{\sin \left(\frac{\pi \alpha}{\pi} \right)}{\pi} \int_{0}^{t} \frac{1}{j!}(t - \sigma)^{j+\alpha-1}U_{2n-j}(\sigma) d\sigma, \]
we can write \(W_{2n}(t) \) as
\[W_{2n}(t) = P_n(t) + \sum_{j=0}^{n-1} P_{2n-j}(t) + \sum_{j=0}^{n-1} P_j(t). \]
As in Lemma 1 \(U_n(\sigma) \) is a Gaussian random variable \(\mathcal{N}(0, S_n^\alpha) \) for all \(\sigma \in [0, T] \), where
\[S_n^\alpha x := \int_{0}^{\sigma} s^{-2\alpha}V_n(s)BB^*V^*(s)x ds. \]
Accordingly, for all \(j = 0, 1, 2, \ldots, n - 1, \) \(U_{2n-j}(\sigma) \) and \(U_j(\sigma) \) are Gaussian random variables \(\mathcal{N}(0, S_{2n-j}^\alpha) \) and \(\mathcal{N}(0, S_j^\alpha) \) respectively, where
\[S_{2n-j}^\alpha x := \int_{0}^{\sigma} s^{-2\alpha}V_{2n-j}BB^*V_{2n-j}^*(s)x ds \]
\[S_j^\alpha x := \int_{0}^{t} s^{2j-2\alpha}BB^*x ds. \]
By (9), for any \(m > 0 \), there exists a constant \(D_{m,a}^n \) such that for all \(\sigma \in [0, T] \) we have
\[E\left[\|U_n(\sigma)\|^{2m} \right] \leq D_{m,a}^n \sigma^m. \]
By (10), for \(j = 0, 1, 2, \ldots, n - 1 \), there exist constants \(D_{m,a}^{2n-j} \) and \(D_{m,a}^j \) such that for all \(\sigma \in [0, T] \) we have
\[E\left[\|U_{2n-j}(\sigma)\|^{2m} \right] \leq D_{m,a}^{2n-j} \sigma^m, \]
\[E\left[\|U_j(\sigma)\|^{2m} \right] \leq D_{m,a}^j \sigma^m. \]
This implies
\[\int_0^T E \left[\left\| U_n(\sigma) \right\|^{2m} \right] d\sigma \leq \frac{D_{m,\alpha}^n T^{m+1}}{m+1}, \]
and for \(j = 0, 1, 2, \ldots, n - 1 \)
\[\int_0^T E \left[\left\| U_{2n-j}(\sigma) \right\|^{2m} \right] d\sigma \leq \frac{D_{m,\alpha}^{2n-j} T^{m+1}}{m+1}, \]
\[\int_0^T E \left[\left\| U_j(\sigma) \right\|^{2m} \right] d\sigma \leq \frac{D_{m,\alpha}^j T^{m+1}}{m+1}. \]
Therefore \(U_n(\cdot)\omega, U_{2n-j}(\cdot)\omega \) and \(U_j(\cdot)\omega \) are in \(L^{2m}(\mathbb{R}; H) \) for almost all \(\omega \in \Omega \) and \(j = 0, 1, 2, \ldots, n - 1 \). Furthermore, by Hölder's inequality and taking into account the exponential boundedness of \(V_1(t) \) we have
\[
\left\| P_n(t) \right\| \leq \frac{M_T}{\pi^j} \left(\int_0^t [(t - \sigma)^{a-1}]^{2m/(2m-1)} d\sigma \right)^{(2m-1)/2m} \left\| U_n \right\|_{L^{2m}(\mathbb{R}; H)}
=
\frac{M_T}{\pi^j} \left(\frac{2m - 1}{2m\alpha - 1} \right)^{(2m-1)/2m} \left\| U_n \right\|_{L^{2m}(\mathbb{R}; H)},
\]
where \(M_T = \sup_{t \in [0,T]} \left\| V_1(t) \right\| \). Accordingly, for all \(j = 0, 1, 2, \ldots, n - 1 \) we have
\[
\left\| P_{2n-j}(t) \right\| \leq \frac{M_T^j}{\pi^j} \left(\int_0^t [(t - \sigma)^{a-1}]^{2m/(2m-1)} d\sigma \right)^{(2m-1)/2m} \left\| U_{2n-j} \right\|_{L^{2m}(\mathbb{R}; H)}
=
\frac{M_T^j}{\pi^j} \left(\frac{2m - 1}{2m\alpha - 1} \right)^{(2m-1)/2m} \left\| U_{2n-j} \right\|_{L^{2m}(\mathbb{R}; H)},
\]
where \(M_T^j = \sup_{t \in [0,T]} \left\| V_{2n-j}(t) \right\| \), and furthermore
\[
\left\| P_j(t) \right\| \leq \frac{1}{\pi^j} \left(\int_0^t [(t - \sigma)^{j+\alpha-1}]^{2m/(2m-1)} d\sigma \right)^{(2m-1)/2m} \left\| U_{2n-j} \right\|_{L^{2m}(\mathbb{R}; H)}
=
\frac{1}{\pi^j} \left(\frac{2m - 1}{2m\alpha - 1} \right)^{(2m-1)/2m} \left\| U_{2n-j} \right\|_{L^{2m}(\mathbb{R}; H)}.
\]
Hence \(P_n(\cdot)\omega \in C([0,T]; H) \) for almost all \(\omega \in \Omega \) and for all \(j = 0, 1, 2, \ldots, n - 1 \), \(P_{2n-j}(\cdot)\omega, P_j(\cdot)\omega \in C([0,T]; X) \) for almost all \(\omega \in \Omega \). Thus
\[
W_{2n}(\cdot)\omega = \left(P_n + \sum_{j=0}^{n-1} P_{2n-j} + \sum_{j=0}^{n-1} P_j \right)(\cdot)\omega \in C([0,T]; H)
\]
for almost all \(\omega \in \Omega \) and (11) defines a continuous version of \(W_{2n} \).

Corollary 1. Let \(A \) be the generator of an \(n \)-times integrated semigroup \(\{V_n(t) \in \mathcal{L}(H); t \in \mathbb{R} \} \) and all the assumptions in Theorem 2 hold. Then
\[
X(t) = V_{2n}(t) \xi + \int_0^t V_{2n}(t-s) BdW(s)
\]
is a weak \(2n \)-integrated solution of (1) which has a continuous version.
4. Example

Consider the stochastic wave equation

\[dY_t(t,x) = \frac{d^2}{dx^2} Y(t,x) \, dt + dW(t,x), \quad t \in [0,T], \ x \in \Omega = (0,1), \]

\[Y(t,0) = Y(t,1) = 0, \quad t \in [0,T], \]

\[Y(0,x) = Y_0(x), \ Y'_t(0,x) = Y_1(x), \ x \in \Omega, \]

where \(dW(t,x) \) is white noise. Define the operator \(A = \frac{d^2}{dx^2} \) in \(L^2(\Omega) \) with the domain

\[D(A) = H^2(\Omega) \cap H^1_0(\Omega), \]

where \(H^2(\Omega) \) and \(H^1_0(\Omega) \) are the classical Sobolev spaces. The operator \(-A\) has a self-adjoint compact inverse and therefore its spectrum consists of discrete eigenvalues. Eigenfunctions and eigenvalues of \(-A\) can be obtained by solving

\[\frac{d^2 e_k}{dx^2} = -\mu_k e_k, \quad e_k(0) = e_k(1) = 0, \ k \in \mathbb{N}, \]

which gives

\[\mu_k = k^2 \pi^2 > 0, \ e_k = \sqrt{2} \sin k\pi x, \ k \in \mathbb{N}. \]

Note that \(\{e_k\}_{k=1}^{\infty} \) forms an orthonormal basis in \(L^2(\Omega) \). Denote \(L^2(\Omega) =: U, \ L^2(\Omega) \times L^2(\Omega) =: H \), and let \(W(\cdot) \) be a \(U \)-valued cylindrical Wiener process. Setting

\[X(t) = \begin{pmatrix} X_1(t) \\ X_2(t) \end{pmatrix}, \ Y(t,x) = \begin{pmatrix} Y(t,x) \\ Y'_t(t,x) \end{pmatrix}, \ X_0 = \begin{pmatrix} Y_0(x) \\ Y_1(x) \end{pmatrix}, \]

where \(X(t), X_0 \in H \), we can rewrite the wave equation in the form (1):

\[dX(t) = AX(t) \, dt + BdW(t), \quad X(0) = X_0. \]

The operator \(A \) is defined by

\[AX = \begin{pmatrix} X_2 \\ A X_1 \end{pmatrix} = \begin{pmatrix} 0 & I \\ A & 0 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}, \]

\[D(A) = D(A) \times L^2(\Omega) \subset H, \]

and \(B \in \mathcal{L}(U,H) \) is defined by

\[Bu = \begin{pmatrix} 0 \\ u \end{pmatrix}. \]
Then (see, for example, [4]) A generates an exponentially bounded non-degenerate 1-time integrated semigroup

$$V(t) = \left(\begin{array}{c} S(t) \\ C(t) - I \end{array} \right) \int_0^t S(s) \, ds, \quad t \geq 0,$$

on H. Here C and S are cosine and sine operator-functions defined by

$$C(t) := \sum_{k=1}^{\infty} \cos (\sqrt{\mu_k}t) \, v_k e_k, \quad S(t) := \sum_{k=1}^{\infty} \frac{\sin (\sqrt{\mu_k}t)}{\sqrt{\mu_k}} \, v_k e_k,$$

where $v \in L^2(\Omega)$ and $v_k = \langle v, e_k \rangle_{L^2(\Omega)}$.

Note that if we consider a smaller space $H_1 := H_0^1(\Omega) \times L^2(\Omega)$, then the operator A with the domain $D(A) = D(A) \times H_0^1(\Omega) \subset H_1$, is the generator of a C_0-semigroup on H_1.

Now, since we have that

$$\sum_{k=1}^{\infty} \int_0^t \|V(s)Be_k\|^2 \, ds \leq C(T) \sum_{k=1}^{\infty} \frac{1}{\mu_k} < \infty,$$

then the process

$$X(t) = V(t)\xi + \int_0^t V(t-s)BdW(s)$$

is a weak 1-integrated solution of (1), that is,

$$\langle X(t), \nu \rangle = \langle tX_0, \nu \rangle + \left\langle \int_0^t X(s) \, ds, A^* \nu \right\rangle + \left\langle \int_0^t (t-s)BdW(s), \nu \right\rangle, \quad \nu \in D(A^*).$$

REFERENCES