
NOTES AND PROBLEMS NOTES ET PROBLEMES 

This department welcomes short notes and problems 
believed to be new. Contributors should include solutions 
where known, or background mater ia l in case the problem is 
unsolved. Send all communications concerning this department 
to I. G. Connell, Department of Mathematics, McGill University 
Montreal, P. Q. 

GENERALIZATION OF A BRACKET FUNCTION FORMULA 
OF L. MOSER 

H. W. Gould 

In Problem P 60 L. Moser has proposed the formula 

(1) 2 K k ] = K n ] 6 n - Z ^ \ - 3 ^ n ] + 5 

k i t 6 

This can be expressed in the more elegant form 

(2) S K k ] = m(n + 1) - m ( m + 1 , ) ( 2 m " i} , m - [vn] . 
k = l 6 

The formula has been given in the l i terature a number of 
t imes . For example, it was proved by Bouniakovsky [ l ] . 

For cube roots we have 

(3) 2 [frk] = m(n+ 1) - m {m* i] , m = [^11]. 
k = l 

We may generalize these in the single formula 

[NTII] 

(4) S [9k] + 2 k = m(n + 1) , m = [fci] , a =2, 3, 
k = l k = l 

n 
r a r 
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Thi s m a y be e a s i l y found f r o m the g e n e r a l t h e o r e m for 
a r r a y s of n u m b e r s 

n [\Tk] [*̂ ~n] n 

(5) 2 2 A. i = 2 2 A. n , 
J> k .a j , k 

k = l j = l J j = l k=j J ' 

which is r e a d i l y p r o v e d by induc t ion . Re la t ion (4) fol lows when 
A = 1 . 

j , k 

A s l ight g e n e r a l i z a t i o n of (4) w a s given by Z e l l e r [3] . 

F o r a n o t h e r e x a m p l e of the g e n e r a l r e l a t i o n (5) choose 

2 
A = 2j - 1 and r e c a l l tha t S (2j - 1) = n . We find 

j ' k j = l 

n [>v/n] 
(6) S [sTk] = S (2j - l ) (n - j a + 1) , 

k = l j = l 

which we m a y r e w r i t e in the f o r m 

I l 1 1 1 1 1 1 

(7) 2 $ k ] = (n + 1) rrT - 2 2 j * + + 2 f , m - [\Tn] . 
k = l j = l j = l 

If we set a = 2 in t h i s we find a f te r a l i t t l e a l g e b r a a n i ce 
companion to M o s e r ' s r e l a t i o n (in the f o r m (2)) 

n ? 

(8) 2 K k ] 2 = m 2 ( n + 1) - m ( m + 1 ) ( 3 T + 5 m + 1 } ! m = [Sn] 
k = l 6 

T h e r e a r e m a n y r e l a t i o n s s i m i l a r to (5) wh ich a r e not too 
we l l -known and which m a y be used to sum s e r i e s involving the 
b r a c k e t function. We sha l l m e n t i o n two o t h e r s h e r e : 

n [ k / r ] [ n / r ] n 

(9) 2 2 A. t = 2 2 A. 1 , 
k = a j = a j = a k = rj 
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n 2 - 1 2 - 1 n 
(10) 2 2 A = 2 2 A 

i > k r , i, k 
k = l j=l J ' j=l k = l + [log2J] J 

Inversion of order of summation quite naturally brings in to play 
the inverse of the function which is used for the upper limit of 
summation on the left. 
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Editor' s comment: Formulas (5), (9), and (10) are examples 
of the following general identity. Let f(k), k = 1, 2, . . . , be a 
non-decreasing sequence of positive integers and define, 
following Lambek and Moser (Amer. Math. Monthly, 1954, 
p. 454), the finverse' by 

f*(n) = number of m such that f(m) < n , 

(so that f** =f) . For example if f(n) = then 

f*(n) =n a - l . We have 

277 

https://doi.org/10.4153/CMB-1963-025-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1963-025-2


n £(k) f(n) n 

Z S A. = S 2 A. 

k = l j=l J k j=l k = f*(j)+l j k 

(in one case we are summing first by rows then by columns, in 

the other case in the opposite order). Lambek and Moser give 

several other entertaining examples; e. g. , 

rt \ . t h . 
f(n) = p , the n prime, 

f*(n) = IT (n - 1) , the number of primes < n . 

Kimura, in his solution of problem P 60, points out that 

since 

1 r 
oo r r k oo k 

(1 - x) 2 [\/k]x = 2 x = g(x) , say, we have 
.K. — x JK — l 

sn ^ k ] = ± / ii£L_ dz 
k = l L J ZTii I n+1, x2 

C z (1 - z) 

where C is a contour round the origin, contained in the unit 

circle. 

The analogue in the general case is 

oo n oo f*(n) 
(1 - x) 2 f(n)x = x 2 x V } 

n = 1 n = 1 

(note that some of the exponents f*(n) may be equal); and if 

f(n) does not increase too rapidly, so that the series have 

positive radii of convergence, there is a similar contour integral 

formula for S f(k) . 
k=l 
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